Ascorbic acid-assisted iron silicate composite activated peroxydisulfate for enhanced degradation of aqueous contaminants: Accelerated Fe(III)/Fe(II) cycle and the interaction between iron and silicate

[Display omitted] •AA significantly enhanced SMT removal by the iron silicate composite/PDS process.•The role of AA and interaction between iron and silicate were explored.••OH and SO4•− mainly contributed to the overall SMT degradation.•AA and O2•− enabled the accelerated Fe(III)/Fe(II) cycle. In t...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 455; p. 140773
Main Authors Li, Yangju, Dong, Haoran, Xiao, Junyang, Li, Long, Hou, Yanni, Chu, Dongdong, Hou, Xiuzhen, Xiang, Shuxue, Dong, Qixia
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •AA significantly enhanced SMT removal by the iron silicate composite/PDS process.•The role of AA and interaction between iron and silicate were explored.••OH and SO4•− mainly contributed to the overall SMT degradation.•AA and O2•− enabled the accelerated Fe(III)/Fe(II) cycle. In this study, an ascorbic acid (AA)-assisted iron silicate composite activated persulfate (ISC/PDS) process was developed for the degradation of sulfamethazine (SMT). Experimental results suggested that AA could significantly enhance SMT degradation by 72.4 % compared with the ISC/PDS process. The enhancement in SMT degradation mainly benefited from the accelerated surface Fe(III)/Fe(II) cycle and the interaction between iron and silicate. It was revealed that the promoted Fe(III)/Fe(II) cycle induced by AA and superoxide radical (O2•−) favored the continuous activation of PDS. The formation of Fe − Si binary oxides on the surface of iron silicate composite promoted the electron transfer from iron silicate composite to PDS. Meanwhile, the formation of [Si − Fe(II)] complexes could avoid the rapid and invalid oxidation of soluble Fe(II). The ISC/PDS/AA process was confirmed to be a radical-dominated (i.e., hydroxyl radical (•OH) and sulfate radical (SO4•−)) oxidation process based on the quenching, electron spin resonance (ESR), and competition kinetics experiments. Additionally, the effects of several key influencing factors on degradation performance were studied. Degradation pathways of SMT and AA and their eco-safety of intermediates were also investigated. This work deepens the understanding of the iron-based catalyst for efficient heterogeneous PDS activation towards water decontamination with the assistance of reductant.
AbstractList [Display omitted] •AA significantly enhanced SMT removal by the iron silicate composite/PDS process.•The role of AA and interaction between iron and silicate were explored.••OH and SO4•− mainly contributed to the overall SMT degradation.•AA and O2•− enabled the accelerated Fe(III)/Fe(II) cycle. In this study, an ascorbic acid (AA)-assisted iron silicate composite activated persulfate (ISC/PDS) process was developed for the degradation of sulfamethazine (SMT). Experimental results suggested that AA could significantly enhance SMT degradation by 72.4 % compared with the ISC/PDS process. The enhancement in SMT degradation mainly benefited from the accelerated surface Fe(III)/Fe(II) cycle and the interaction between iron and silicate. It was revealed that the promoted Fe(III)/Fe(II) cycle induced by AA and superoxide radical (O2•−) favored the continuous activation of PDS. The formation of Fe − Si binary oxides on the surface of iron silicate composite promoted the electron transfer from iron silicate composite to PDS. Meanwhile, the formation of [Si − Fe(II)] complexes could avoid the rapid and invalid oxidation of soluble Fe(II). The ISC/PDS/AA process was confirmed to be a radical-dominated (i.e., hydroxyl radical (•OH) and sulfate radical (SO4•−)) oxidation process based on the quenching, electron spin resonance (ESR), and competition kinetics experiments. Additionally, the effects of several key influencing factors on degradation performance were studied. Degradation pathways of SMT and AA and their eco-safety of intermediates were also investigated. This work deepens the understanding of the iron-based catalyst for efficient heterogeneous PDS activation towards water decontamination with the assistance of reductant.
ArticleNumber 140773
Author Chu, Dongdong
Hou, Yanni
Dong, Haoran
Xiang, Shuxue
Li, Yangju
Li, Long
Xiao, Junyang
Dong, Qixia
Hou, Xiuzhen
Author_xml – sequence: 1
  givenname: Yangju
  surname: Li
  fullname: Li, Yangju
  organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
– sequence: 2
  givenname: Haoran
  orcidid: 0000-0003-4437-2060
  surname: Dong
  fullname: Dong, Haoran
  email: dongh@hnu.edu.cn
  organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
– sequence: 3
  givenname: Junyang
  surname: Xiao
  fullname: Xiao, Junyang
  organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
– sequence: 4
  givenname: Long
  surname: Li
  fullname: Li, Long
  organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
– sequence: 5
  givenname: Yanni
  surname: Hou
  fullname: Hou, Yanni
  organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
– sequence: 6
  givenname: Dongdong
  surname: Chu
  fullname: Chu, Dongdong
  organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
– sequence: 7
  givenname: Xiuzhen
  surname: Hou
  fullname: Hou, Xiuzhen
  organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
– sequence: 8
  givenname: Shuxue
  surname: Xiang
  fullname: Xiang, Shuxue
  organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
– sequence: 9
  givenname: Qixia
  surname: Dong
  fullname: Dong, Qixia
  organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China
BookMark eNp9kMFuEzEQhvdQJNrCA3DzkR42tXez6104RRWFSJW4wNmajMd0oo0dbKeQR-xb4U3gwqGnGY3__5_xd1Vd-OCpqt4puVBS9bfbBdJ20cimWail1Lq9qC5VO3T1MC716-oqpa2Ush_VeFk9rxKGuGEUgGxrSIlTJis4Bi8ST4yQSWDY7UPi0gFmfoJZsacYfh8tp8PkZo0LUZB_BI_l0dKPCBYyl5TgBPw8UDikkuMz7NiDz-mDWCHSRPGUdk_v1-v1ze2p3gg84lSWeSvyIwn2ucjwlLah_IvInw-cBf-OfFO9cjAlevu3Xlff7z99u_tSP3z9vL5bPdTYjDrXoFsprR4at2z7UQLpUbVlMLrGgeypw8E2_aA2ndWtanXTwUDO2a6ncXDDpr2u1DkXY0gpkjP7yDuIR6OkmfmbrSn8zczfnPkXj_7Pg5xPdHIEnl50fjw7qXzpiSmahEwzY46E2djAL7j_ANPtqH4
CitedBy_id crossref_primary_10_1016_j_cej_2023_144984
crossref_primary_10_1016_j_jece_2024_115024
crossref_primary_10_1016_j_seppur_2025_131661
crossref_primary_10_3390_w15101930
crossref_primary_10_1016_j_jhazmat_2024_134254
crossref_primary_10_1016_j_seppur_2024_130209
crossref_primary_10_22144_ctujos_2024_463
crossref_primary_10_1016_j_molliq_2024_123962
crossref_primary_10_1016_j_jhazmat_2024_135217
crossref_primary_10_1016_j_cej_2024_153950
crossref_primary_10_1016_j_seppur_2024_131364
crossref_primary_10_1016_j_cej_2024_156337
crossref_primary_10_2166_wst_2024_098
crossref_primary_10_1080_09593330_2024_2442779
crossref_primary_10_1016_j_psep_2024_04_074
Cites_doi 10.1016/j.jenvman.2020.110820
10.1021/acs.est.9b04696
10.1016/j.apcatb.2020.119386
10.1016/j.watres.2020.115752
10.1016/j.cej.2019.04.101
10.1016/j.apcatb.2012.09.042
10.1016/j.cej.2016.10.138
10.1016/j.watres.2009.02.029
10.1016/j.apcatb.2019.118383
10.1021/acs.jpcc.6b09281
10.1016/j.cej.2022.137620
10.1016/j.apcatb.2022.121418
10.1016/j.jclepro.2022.131276
10.1016/j.apcatb.2016.01.059
10.1016/j.apcatb.2021.120446
10.1021/acs.est.9b01783
10.1016/j.watres.2019.115456
10.1016/j.jhazmat.2016.01.031
10.1039/C8EN00124C
10.1016/j.jhazmat.2016.01.020
10.1021/acs.est.0c04867
10.1016/j.cej.2015.06.115
10.1016/j.jhazmat.2020.124725
10.1016/j.apcatb.2016.03.067
10.1016/j.watres.2012.03.051
10.1016/j.watres.2021.117451
10.1021/acs.est.7b06560
10.1016/j.watres.2015.09.005
10.1021/acs.est.8b04669
10.1016/j.cej.2017.09.166
10.1021/acs.est.5b00623
10.1021/acs.estlett.0c00025
10.1016/j.watres.2020.116136
10.1016/j.chemosphere.2017.01.093
10.1016/j.cej.2016.05.025
10.1021/acs.est.7b04875
10.1016/j.seppur.2022.120873
10.1021/es400262n
10.1021/es9610646
10.1016/j.apcatb.2020.119484
10.1021/acsami.6b16600
10.1016/j.watres.2019.115093
10.1016/j.jhazmat.2022.129183
10.1021/acs.est.9b05904
10.1021/acs.est.7b05563
10.1016/j.cej.2021.132500
10.1016/j.apsusc.2007.09.063
10.1016/j.apcatb.2019.117783
10.1016/j.cej.2015.02.014
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2022.140773
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_cej_2022_140773
S1385894722062532
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ACDAQ
ACRLP
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AAYXX
ABXDB
AFFNX
AGRNS
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
ZY4
ID FETCH-LOGICAL-c297t-a7300d782f43690ae79130d79f2fa06e5c8d2681b5d7313725a8effd56e98f8b3
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Wed Aug 06 19:22:25 EDT 2025
Thu Apr 24 23:08:06 EDT 2025
Sat Aug 30 17:17:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Advanced oxidation processes
Peroxydisulfate
Iron redox cycle
Ascorbic acid
Iron silicate composite
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-a7300d782f43690ae79130d79f2fa06e5c8d2681b5d7313725a8effd56e98f8b3
ORCID 0000-0003-4437-2060
ParticipantIDs crossref_primary_10_1016_j_cej_2022_140773
crossref_citationtrail_10_1016_j_cej_2022_140773
elsevier_sciencedirect_doi_10_1016_j_cej_2022_140773
PublicationCentury 2000
PublicationDate 2023-01-01
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Qian, Kopinke, Scherzer, Griebel, Georgi (b0100) 2022; 429
Bolobajev, Trapido, Goi (b0060) 2015; 281
Chan, Chu (b0225) 2009; 43
Huang, Hou, Song, Zhao, Zhang (b0070) 2017; 121
Yu, Mao, He, Zheng, Zhang, Su, Xi (b0180) 2022; 312
Yuan, Shen, Yan, Chen (b0115) 2018; 52
Ye, Shan, Zhang, Liu, Wang, Lv, Pan (b0135) 2018; 52
Jiang, Xu, Wang, Jiang, Zhang (b0220) 2020; 54
Li, Wang, Liu, Zhao, Ma (b0045) 2020; 168
Zhou, Yu, Zhang, Meng, Luo, Deng, Shi, Crittenden (b0065) 2018; 52
Dong, Li, Wang, Liu, Zhou, Xie, Guan (b0170) 2020; 7
Lei, Chen, Tu, Huang, Zhang (b0010) 2015; 49
Fang, Gao, Dionysiou, Liu, Zhou (b0155) 2013; 47
Chen, J.j. pignatello (b0160) 1997; 31
Cui, Wang, Zheng, Wang, Zhu, Mao (b0210) 2020; 54
Wang, Pan, Yu, Wu, Pan, Yang (b0165) 2020; 185
Li, Dong, Li, Xiao, Xiao, Jin (b0120) 2021; 202
Du, Zhang, Hussain, Huang, Huang (b0230) 2017; 313
Wang, Tian, Wang, Xiao, Gao, Shi, Cui (b0240) 2019; 256
Li, Dong, Xiao, Li, Chu, Hou, Xiang, Dong (b0260) 2022; 446
Qiao, Feng, Dong, Zhao, Guan (b0185) 2019; 53
Jawad, Zhan, Wang, Shahzad, Zeng, Wang, Zhou, Ullah, Chen, Chen (b0140) 2020; 54
Jin, Li, Dong, Xiao, Xiao, Chu, Hou, Xiang, Dong, Li (b0250) 2022; 448
Liu, Liu, Gong (b0125) 2014; 955–959
Xiao, Xiao, Dong, Jin, Li, Li, Tian, Li, Chen, Xie (b0030) 2022; 346
Hou, Huang, Ai, Zhao, Zhang (b0085) 2016; 310
Li, Shan, Pan (b0035) 2018; 52
da Silva-Rackov, Lawal, Nfodzo, Vianna, do Nascimento, Choi (b0105) 2016; 192
Lou, Fang, Geng, Jin, Xiao, Wang, Liu, Guo (b0150) 2017; 173
Yamashita, Hayes (b0195) 2008; 254
Yi, Bu, Shi, Zhou (b0055) 2016; 302
Fang, Dionysiou, Al-Abed, Zhou (b0205) 2013; 129
Hou, Shen, Huang, Ai, Zhang (b0080) 2016; 308
Wang, He, Zhang, Ma, Jiang, Huang, Cheng, Pang, Zhou, Zhai (b0025) 2020; 177
Duan, Ao, Zhou, Sun, Wang, Wang (b0245) 2016; 188
Zhou, Yu, Sun, Zhu, Deng (b0075) 2018; 333
Huang, Hou, Jia, Song, Zhao, Zhang (b0095) 2017; 9
Liang, Duan, Xu, Chen, Wu, Qiu, Liu, Wang, Cao (b0040) 2021; 297
Zhang, Gao, Huang, Wang, Hayat, Li, Xu, Wang (b0200) 2018; 5
Zhu, Li, Kang, Duan, Wang (b0130) 2019; 53
Ji, Fan, Liu, Kong, Lu (b0145) 2015; 87
Chu, Dong, Li, Xiao, Hou, Xiang, Dong (b0015) 2022; 436
Xiang, Dong, Li, Xiao, Dong, Hou, Chu (b0020) 2022; 290
Dell'Arciprete, Soler, Santos-Juanes, Arques, Martire, Furlong, Gonzalez (b0235) 2012; 46
Wang, Qiu, Pang, Zhou, Gao, Guan, Jiang (b0175) 2019; 371
Xiong, Li, Li, Yuan, Jiang, Yao, Lai (b0215) 2021; 406
Ioannidi, Oulego, Collado, Petala, Arniella, Frontistis, Angelopoulos, Diaz, Mantzavinos (b0110) 2020; 270
Xin, Liu, Ma, Gong, Ma, Yan, Chen, Ma, Zhang, Gao, Xin (b0190) 2021; 280
Sun, Xie, He, Zhang (b0090) 2020; 267
Lei, Zhang, Wang, Ai (b0050) 2015; 270
Liu, Ren, Ding, He, Deng, Zhao, Wang, Dionysiou (b0005) 2020; 171
Peng, Shang, Gao, Xu (b0255) 2021; 282
Duan (10.1016/j.cej.2022.140773_b0245) 2016; 188
Jin (10.1016/j.cej.2022.140773_b0250) 2022; 448
da Silva-Rackov (10.1016/j.cej.2022.140773_b0105) 2016; 192
Li (10.1016/j.cej.2022.140773_b0120) 2021; 202
Bolobajev (10.1016/j.cej.2022.140773_b0060) 2015; 281
Xiao (10.1016/j.cej.2022.140773_b0030) 2022; 346
Cui (10.1016/j.cej.2022.140773_b0210) 2020; 54
Hou (10.1016/j.cej.2022.140773_b0085) 2016; 310
Fang (10.1016/j.cej.2022.140773_b0205) 2013; 129
Wang (10.1016/j.cej.2022.140773_b0165) 2020; 185
Dong (10.1016/j.cej.2022.140773_b0170) 2020; 7
Huang (10.1016/j.cej.2022.140773_b0070) 2017; 121
Du (10.1016/j.cej.2022.140773_b0230) 2017; 313
Jawad (10.1016/j.cej.2022.140773_b0140) 2020; 54
Yi (10.1016/j.cej.2022.140773_b0055) 2016; 302
Xiang (10.1016/j.cej.2022.140773_b0020) 2022; 290
Liang (10.1016/j.cej.2022.140773_b0040) 2021; 297
Huang (10.1016/j.cej.2022.140773_b0095) 2017; 9
Zhou (10.1016/j.cej.2022.140773_b0065) 2018; 52
Xin (10.1016/j.cej.2022.140773_b0190) 2021; 280
Lou (10.1016/j.cej.2022.140773_b0150) 2017; 173
Lei (10.1016/j.cej.2022.140773_b0010) 2015; 49
Ioannidi (10.1016/j.cej.2022.140773_b0110) 2020; 270
Fang (10.1016/j.cej.2022.140773_b0155) 2013; 47
Chen (10.1016/j.cej.2022.140773_b0160) 1997; 31
Dell'Arciprete (10.1016/j.cej.2022.140773_b0235) 2012; 46
Yamashita (10.1016/j.cej.2022.140773_b0195) 2008; 254
Hou (10.1016/j.cej.2022.140773_b0080) 2016; 308
Liu (10.1016/j.cej.2022.140773_b0125) 2014; 955–959
Lei (10.1016/j.cej.2022.140773_b0050) 2015; 270
Jiang (10.1016/j.cej.2022.140773_b0220) 2020; 54
Ye (10.1016/j.cej.2022.140773_b0135) 2018; 52
Chu (10.1016/j.cej.2022.140773_b0015) 2022; 436
Sun (10.1016/j.cej.2022.140773_b0090) 2020; 267
Qiao (10.1016/j.cej.2022.140773_b0185) 2019; 53
Liu (10.1016/j.cej.2022.140773_b0005) 2020; 171
Qian (10.1016/j.cej.2022.140773_b0100) 2022; 429
Li (10.1016/j.cej.2022.140773_b0045) 2020; 168
Wang (10.1016/j.cej.2022.140773_b0175) 2019; 371
Yu (10.1016/j.cej.2022.140773_b0180) 2022; 312
Zhou (10.1016/j.cej.2022.140773_b0075) 2018; 333
Li (10.1016/j.cej.2022.140773_b0035) 2018; 52
Chan (10.1016/j.cej.2022.140773_b0225) 2009; 43
Yuan (10.1016/j.cej.2022.140773_b0115) 2018; 52
Zhu (10.1016/j.cej.2022.140773_b0130) 2019; 53
Li (10.1016/j.cej.2022.140773_b0260) 2022; 446
Peng (10.1016/j.cej.2022.140773_b0255) 2021; 282
Ji (10.1016/j.cej.2022.140773_b0145) 2015; 87
Xiong (10.1016/j.cej.2022.140773_b0215) 2021; 406
Wang (10.1016/j.cej.2022.140773_b0025) 2020; 177
Zhang (10.1016/j.cej.2022.140773_b0200) 2018; 5
Wang (10.1016/j.cej.2022.140773_b0240) 2019; 256
References_xml – volume: 346
  year: 2022
  ident: b0030
  article-title: Degradation of sulfamethazine by amorphous zero-valent iron microspheres (A-mZVI) activated peroxydisulfate in groundwater
  publication-title: J. Clean. Prod.
– volume: 185
  year: 2020
  ident: b0165
  article-title: A novel peroxymonosulfate (PMS)-enhanced iron coagulation process for simultaneous removal of trace organic pollutants in water
  publication-title: Water Res
– volume: 448
  year: 2022
  ident: b0250
  article-title: A comparative study on the activation of persulfate by mackinawite@biochar and pyrite@biochar for sulfamethazine degradation: The role of different natural iron-sulfur minerals doping
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 219
  year: 2020
  end-page: 224
  ident: b0170
  article-title: Both Fe(IV) and Radicals Are Active Oxidants in the Fe(II)/Peroxydisulfate Process
  publication-title: Environ. Sci. Technol. Lett.
– volume: 282
  year: 2021
  ident: b0255
  article-title: Co
  publication-title: Appl Catal B
– volume: 280
  year: 2021
  ident: b0190
  article-title: High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO
  publication-title: Appl Catal B
– volume: 297
  year: 2021
  ident: b0040
  article-title: Biomass-derived pyrolytic carbons accelerated Fe(III)/Fe(II) redox cycle for persulfate activation: Pyrolysis temperature-depended performance and mechanisms
  publication-title: Appl Catal B
– volume: 256
  year: 2019
  ident: b0240
  article-title: Development of CuO coated ceramic hollow fiber membrane for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for bisphenol a degradation
  publication-title: Appl Catal B
– volume: 267
  year: 2020
  ident: b0090
  article-title: Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling
  publication-title: Appl Catal B
– volume: 312
  year: 2022
  ident: b0180
  article-title: Efficient degradation of sulfamethazine in a silicified microscale zero-valent iron activated persulfate process
  publication-title: Appl Catal B
– volume: 177
  year: 2020
  ident: b0025
  article-title: Highly efficient removal of p-arsanilic acid with Fe(II)/peroxydisulfate under near-neutral conditions
  publication-title: Water Res
– volume: 54
  start-page: 1242
  year: 2020
  end-page: 1249
  ident: b0210
  article-title: Concentration-Dependent Enhancing Effect of Dissolved Silicate on the Oxidative Degradation of Sulfamethazine by Zero-Valent Iron under Aerobic Conditions
  publication-title: Environ Sci Technol
– volume: 129
  start-page: 325
  year: 2013
  end-page: 332
  ident: b0205
  article-title: Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs
  publication-title: Appl Catal B
– volume: 371
  start-page: 842
  year: 2019
  end-page: 847
  ident: b0175
  article-title: Further understanding the involvement of Fe(IV) in peroxydisulfate and peroxymonosulfate activation by Fe(II) for oxidative water treatment
  publication-title: Chem. Eng. J.
– volume: 270
  start-page: 73
  year: 2015
  end-page: 79
  ident: b0050
  article-title: Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 3479
  year: 2012
  end-page: 3489
  ident: b0235
  article-title: Reactivity of neonicotinoid insecticides with carbonate radicals
  publication-title: Water Res
– volume: 202
  year: 2021
  ident: b0120
  article-title: Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite
  publication-title: Water Res
– volume: 31
  start-page: 2399
  year: 1997
  end-page: 2406
  ident: b0160
  article-title: Role of Quinone Intermediates as Electron Shuttles in Fenton and Photoassisted Fenton Oxidations of Aromatic Compounds
  publication-title: Environ. Sci. Technol.
– volume: 270
  year: 2020
  ident: b0110
  article-title: Persulfate activation by modified red mud for the oxidation of antibiotic sulfamethoxazole in water
  publication-title: J Environ Manage
– volume: 173
  start-page: 529
  year: 2017
  end-page: 534
  ident: b0150
  article-title: Significantly enhanced base activation of peroxymonosulfate by polyphosphates: Kinetics and mechanism
  publication-title: Chemosphere
– volume: 52
  start-page: 1429
  year: 2018
  end-page: 1434
  ident: b0115
  article-title: Interface Mechanisms of Catalytic Ozonation with Amorphous Iron Silicate for Removal of 4-Chloronitrobenzene in Aqueous Solution
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 10657
  year: 2018
  end-page: 10664
  ident: b0135
  article-title: Water Decontamination from Cr(III)-Organic Complexes Based on Pyrite/H
  publication-title: Mechanism, and Validation, Environ Sci Technol
– volume: 171
  year: 2020
  ident: b0005
  article-title: Simultaneous regeneration of cathodic activated carbon fiber and mineralization of desorbed contaminations by electro-peroxydisulfate process: Advantages and limitations
  publication-title: Water Res
– volume: 313
  start-page: 1023
  year: 2017
  end-page: 1032
  ident: b0230
  article-title: Insight into reactive oxygen species in persulfate activation with copper oxide: Activated persulfate and trace radicals
  publication-title: Chem. Eng. J.
– volume: 333
  start-page: 443
  year: 2018
  end-page: 450
  ident: b0075
  article-title: Oxidation of microcystin-LR by copper (II) coupled with ascorbic acid: Kinetic modeling towards generation of H
  publication-title: Chem. Eng. J.
– volume: 87
  start-page: 1
  year: 2015
  end-page: 9
  ident: b0145
  article-title: Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds
  publication-title: Water Res
– volume: 302
  start-page: 417
  year: 2016
  end-page: 425
  ident: b0055
  article-title: Epigallocatechin-3-gallate-coated Fe
  publication-title: Chem. Eng. J.
– volume: 121
  start-page: 1113
  year: 2017
  end-page: 1121
  ident: b0070
  article-title: Ascorbate Induced Facet Dependent Reductive Dissolution of Hematite Nanocrystals
  publication-title: J. Phys. Chem. C
– volume: 406
  year: 2021
  ident: b0215
  article-title: Simultaneously enhanced degradation of N, N-dimethylacetamide and reduced formation of iron sludge by an efficient electrolysis catalyzed ozone process in the presence of dissolved silicate
  publication-title: J Hazard Mater
– volume: 254
  start-page: 2441
  year: 2008
  end-page: 2449
  ident: b0195
  article-title: Analysis of XPS spectra of Fe
  publication-title: Appl. Surf. Sci.
– volume: 43
  start-page: 2513
  year: 2009
  end-page: 2521
  ident: b0225
  article-title: Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process
  publication-title: Water Res
– volume: 5
  start-page: 1179
  year: 2018
  end-page: 1190
  ident: b0200
  article-title: Ultrathin g-C3N4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation
  publication-title: Environ. Sci. Nano
– volume: 188
  start-page: 98
  year: 2016
  end-page: 105
  ident: b0245
  article-title: Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation
  publication-title: Appl Catal B
– volume: 436
  year: 2022
  ident: b0015
  article-title: Sulfur or nitrogen-doped rGO supported Fe-Mn bimetal-organic frameworks composite as an efficient heterogeneous catalyst for degradation of sulfamethazine via peroxydisulfate activation
  publication-title: J Hazard Mater
– volume: 47
  start-page: 4605
  year: 2013
  end-page: 4611
  ident: b0155
  article-title: Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs
  publication-title: Environ Sci Technol
– volume: 192
  start-page: 253
  year: 2016
  end-page: 259
  ident: b0105
  article-title: Degradation of PFOA by hydrogen peroxide and persulfate activated by iron-modified diatomite
  publication-title: Appl Catal B
– volume: 429
  year: 2022
  ident: b0100
  article-title: Enhanced degradation of perfluorooctanoic acid by heat-activated persulfate in the presence of zeolites
  publication-title: Chem. Eng. J.
– volume: 54
  start-page: 14057
  year: 2020
  end-page: 14065
  ident: b0220
  article-title: Nonradical Oxidation of Pollutants with Single-Atom-Fe(III)-Activated Persulfate: Fe(V) Being the Possible Intermediate Oxidant
  publication-title: Environ Sci Technol
– volume: 310
  start-page: 170
  year: 2016
  end-page: 178
  ident: b0085
  article-title: Ascorbic acid/Fe@Fe
  publication-title: J Hazard Mater
– volume: 446
  year: 2022
  ident: b0260
  article-title: Oxidation of sulfamethazine by a novel CuS/calcium peroxide/tetraacetylethylenediamine process: High efficiency and contribution of oxygen-centered radicals
  publication-title: Chem. Eng. J.
– volume: 281
  start-page: 566
  year: 2015
  end-page: 574
  ident: b0060
  article-title: Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid
  publication-title: Chem. Eng. J.
– volume: 53
  start-page: 10320
  year: 2019
  end-page: 10328
  ident: b0185
  article-title: Overlooked Role of Sulfur-Centered Radicals During Bromate Reduction by Sulfite
  publication-title: Environ Sci Technol
– volume: 54
  start-page: 2476
  year: 2020
  end-page: 2488
  ident: b0140
  article-title: Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide
  publication-title: Environmental Science&Technology54(4)
– volume: 52
  start-page: 4305
  year: 2018
  end-page: 4312
  ident: b0065
  article-title: Oxidation of Microcystin-LR via Activation of Peroxymonosulfate Using Ascorbic Acid: Kinetic Modeling and Toxicity Assessment
  publication-title: Environ Sci Technol
– volume: 955–959
  start-page: 2162
  year: 2014
  end-page: 2168
  ident: b0125
  article-title: Degradation of p-Chloronitrobenzene in Aqueous Solution by Iron Silicate Catalytic Ozonation
  publication-title: Adv. Mat. Res.
– volume: 49
  start-page: 6838
  year: 2015
  end-page: 6845
  ident: b0010
  article-title: Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe
  publication-title: Environ Sci Technol
– volume: 52
  start-page: 2197
  year: 2018
  end-page: 2205
  ident: b0035
  article-title: Fe(III)-Doped g-C
  publication-title: Environ Sci Technol
– volume: 308
  start-page: 67
  year: 2016
  end-page: 74
  ident: b0080
  article-title: Ascorbic acid enhanced activation of oxygen by ferrous iron: A case of aerobic degradation of rhodamine B
  publication-title: J Hazard Mater
– volume: 53
  start-page: 307
  year: 2019
  end-page: 315
  ident: b0130
  article-title: Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants
  publication-title: Environ Sci Technol
– volume: 168
  year: 2020
  ident: b0045
  article-title: Unraveling the interaction of hydroxylamine and Fe(III) in Fe(II)/Persulfate system: A kinetic and simulating study
  publication-title: Water Res
– volume: 9
  start-page: 8751
  year: 2017
  end-page: 8758
  ident: b0095
  article-title: Ascorbate-Promoted Surface Iron Cycle for Efficient Heterogeneous Fenton Alachlor Degradation with Hematite Nanocrystals
  publication-title: ACS Appl Mater Interfaces
– volume: 290
  year: 2022
  ident: b0020
  article-title: A comparative study of activation of peroxymonosulfate and peroxydisulfate by greigite (Fe
  publication-title: Sep. Purif. Technol.
– volume: 270
  year: 2020
  ident: 10.1016/j.cej.2022.140773_b0110
  article-title: Persulfate activation by modified red mud for the oxidation of antibiotic sulfamethoxazole in water
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2020.110820
– volume: 54
  start-page: 2476
  issue: 4
  year: 2020
  ident: 10.1016/j.cej.2022.140773_b0140
  article-title: Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide
  publication-title: Environmental Science&Technology54(4)
  doi: 10.1021/acs.est.9b04696
– volume: 280
  year: 2021
  ident: 10.1016/j.cej.2022.140773_b0190
  article-title: High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2020.119386
– volume: 177
  year: 2020
  ident: 10.1016/j.cej.2022.140773_b0025
  article-title: Highly efficient removal of p-arsanilic acid with Fe(II)/peroxydisulfate under near-neutral conditions
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115752
– volume: 371
  start-page: 842
  year: 2019
  ident: 10.1016/j.cej.2022.140773_b0175
  article-title: Further understanding the involvement of Fe(IV) in peroxydisulfate and peroxymonosulfate activation by Fe(II) for oxidative water treatment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.101
– volume: 129
  start-page: 325
  year: 2013
  ident: 10.1016/j.cej.2022.140773_b0205
  article-title: Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2012.09.042
– volume: 955–959
  start-page: 2162
  year: 2014
  ident: 10.1016/j.cej.2022.140773_b0125
  article-title: Degradation of p-Chloronitrobenzene in Aqueous Solution by Iron Silicate Catalytic Ozonation
  publication-title: Adv. Mat. Res.
– volume: 313
  start-page: 1023
  year: 2017
  ident: 10.1016/j.cej.2022.140773_b0230
  article-title: Insight into reactive oxygen species in persulfate activation with copper oxide: Activated persulfate and trace radicals
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.10.138
– volume: 43
  start-page: 2513
  issue: 9
  year: 2009
  ident: 10.1016/j.cej.2022.140773_b0225
  article-title: Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process
  publication-title: Water Res
  doi: 10.1016/j.watres.2009.02.029
– volume: 267
  year: 2020
  ident: 10.1016/j.cej.2022.140773_b0090
  article-title: Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2019.118383
– volume: 121
  start-page: 1113
  issue: 2
  year: 2017
  ident: 10.1016/j.cej.2022.140773_b0070
  article-title: Ascorbate Induced Facet Dependent Reductive Dissolution of Hematite Nanocrystals
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b09281
– volume: 448
  year: 2022
  ident: 10.1016/j.cej.2022.140773_b0250
  article-title: A comparative study on the activation of persulfate by mackinawite@biochar and pyrite@biochar for sulfamethazine degradation: The role of different natural iron-sulfur minerals doping
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137620
– volume: 312
  year: 2022
  ident: 10.1016/j.cej.2022.140773_b0180
  article-title: Efficient degradation of sulfamethazine in a silicified microscale zero-valent iron activated persulfate process
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2022.121418
– volume: 346
  year: 2022
  ident: 10.1016/j.cej.2022.140773_b0030
  article-title: Degradation of sulfamethazine by amorphous zero-valent iron microspheres (A-mZVI) activated peroxydisulfate in groundwater
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131276
– volume: 188
  start-page: 98
  year: 2016
  ident: 10.1016/j.cej.2022.140773_b0245
  article-title: Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2016.01.059
– volume: 297
  year: 2021
  ident: 10.1016/j.cej.2022.140773_b0040
  article-title: Biomass-derived pyrolytic carbons accelerated Fe(III)/Fe(II) redox cycle for persulfate activation: Pyrolysis temperature-depended performance and mechanisms
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2021.120446
– volume: 53
  start-page: 10320
  issue: 17
  year: 2019
  ident: 10.1016/j.cej.2022.140773_b0185
  article-title: Overlooked Role of Sulfur-Centered Radicals During Bromate Reduction by Sulfite
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b01783
– volume: 446
  year: 2022
  ident: 10.1016/j.cej.2022.140773_b0260
  article-title: Oxidation of sulfamethazine by a novel CuS/calcium peroxide/tetraacetylethylenediamine process: High efficiency and contribution of oxygen-centered radicals
  publication-title: Chem. Eng. J.
– volume: 171
  year: 2020
  ident: 10.1016/j.cej.2022.140773_b0005
  article-title: Simultaneous regeneration of cathodic activated carbon fiber and mineralization of desorbed contaminations by electro-peroxydisulfate process: Advantages and limitations
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.115456
– volume: 52
  start-page: 10657
  issue: 18
  year: 2018
  ident: 10.1016/j.cej.2022.140773_b0135
  article-title: Water Decontamination from Cr(III)-Organic Complexes Based on Pyrite/H2O2: Performance
  publication-title: Mechanism, and Validation, Environ Sci Technol
– volume: 308
  start-page: 67
  year: 2016
  ident: 10.1016/j.cej.2022.140773_b0080
  article-title: Ascorbic acid enhanced activation of oxygen by ferrous iron: A case of aerobic degradation of rhodamine B
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2016.01.031
– volume: 5
  start-page: 1179
  issue: 5
  year: 2018
  ident: 10.1016/j.cej.2022.140773_b0200
  article-title: Ultrathin g-C3N4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation
  publication-title: Environ. Sci. Nano
  doi: 10.1039/C8EN00124C
– volume: 310
  start-page: 170
  year: 2016
  ident: 10.1016/j.cej.2022.140773_b0085
  article-title: Ascorbic acid/Fe@Fe2O3: A highly efficient combined Fenton reagent to remove organic contaminants
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2016.01.020
– volume: 54
  start-page: 14057
  issue: 21
  year: 2020
  ident: 10.1016/j.cej.2022.140773_b0220
  article-title: Nonradical Oxidation of Pollutants with Single-Atom-Fe(III)-Activated Persulfate: Fe(V) Being the Possible Intermediate Oxidant
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.0c04867
– volume: 281
  start-page: 566
  year: 2015
  ident: 10.1016/j.cej.2022.140773_b0060
  article-title: Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.06.115
– volume: 406
  year: 2021
  ident: 10.1016/j.cej.2022.140773_b0215
  article-title: Simultaneously enhanced degradation of N, N-dimethylacetamide and reduced formation of iron sludge by an efficient electrolysis catalyzed ozone process in the presence of dissolved silicate
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.124725
– volume: 192
  start-page: 253
  year: 2016
  ident: 10.1016/j.cej.2022.140773_b0105
  article-title: Degradation of PFOA by hydrogen peroxide and persulfate activated by iron-modified diatomite
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2016.03.067
– volume: 46
  start-page: 3479
  issue: 11
  year: 2012
  ident: 10.1016/j.cej.2022.140773_b0235
  article-title: Reactivity of neonicotinoid insecticides with carbonate radicals
  publication-title: Water Res
  doi: 10.1016/j.watres.2012.03.051
– volume: 202
  year: 2021
  ident: 10.1016/j.cej.2022.140773_b0120
  article-title: Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite
  publication-title: Water Res
  doi: 10.1016/j.watres.2021.117451
– volume: 52
  start-page: 4305
  issue: 7
  year: 2018
  ident: 10.1016/j.cej.2022.140773_b0065
  article-title: Oxidation of Microcystin-LR via Activation of Peroxymonosulfate Using Ascorbic Acid: Kinetic Modeling and Toxicity Assessment
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b06560
– volume: 87
  start-page: 1
  year: 2015
  ident: 10.1016/j.cej.2022.140773_b0145
  article-title: Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.09.005
– volume: 53
  start-page: 307
  issue: 1
  year: 2019
  ident: 10.1016/j.cej.2022.140773_b0130
  article-title: Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.8b04669
– volume: 333
  start-page: 443
  year: 2018
  ident: 10.1016/j.cej.2022.140773_b0075
  article-title: Oxidation of microcystin-LR by copper (II) coupled with ascorbic acid: Kinetic modeling towards generation of H2O2
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.166
– volume: 49
  start-page: 6838
  issue: 11
  year: 2015
  ident: 10.1016/j.cej.2022.140773_b0010
  article-title: Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe3O4: Mechanism Stability, and Effects of pH and Bicarbonate Ions
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.5b00623
– volume: 7
  start-page: 219
  issue: 3
  year: 2020
  ident: 10.1016/j.cej.2022.140773_b0170
  article-title: Both Fe(IV) and Radicals Are Active Oxidants in the Fe(II)/Peroxydisulfate Process
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.0c00025
– volume: 185
  year: 2020
  ident: 10.1016/j.cej.2022.140773_b0165
  article-title: A novel peroxymonosulfate (PMS)-enhanced iron coagulation process for simultaneous removal of trace organic pollutants in water
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.116136
– volume: 173
  start-page: 529
  year: 2017
  ident: 10.1016/j.cej.2022.140773_b0150
  article-title: Significantly enhanced base activation of peroxymonosulfate by polyphosphates: Kinetics and mechanism
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.01.093
– volume: 302
  start-page: 417
  year: 2016
  ident: 10.1016/j.cej.2022.140773_b0055
  article-title: Epigallocatechin-3-gallate-coated Fe 3O4 as a novel heterogeneous catalyst of peroxymonosulfate for diuron degradation: Performance and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.05.025
– volume: 52
  start-page: 1429
  issue: 3
  year: 2018
  ident: 10.1016/j.cej.2022.140773_b0115
  article-title: Interface Mechanisms of Catalytic Ozonation with Amorphous Iron Silicate for Removal of 4-Chloronitrobenzene in Aqueous Solution
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04875
– volume: 290
  year: 2022
  ident: 10.1016/j.cej.2022.140773_b0020
  article-title: A comparative study of activation of peroxymonosulfate and peroxydisulfate by greigite (Fe3S4) for the degradation of sulfamethazine in water
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.120873
– volume: 47
  start-page: 4605
  issue: 9
  year: 2013
  ident: 10.1016/j.cej.2022.140773_b0155
  article-title: Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs
  publication-title: Environ Sci Technol
  doi: 10.1021/es400262n
– volume: 31
  start-page: 2399
  year: 1997
  ident: 10.1016/j.cej.2022.140773_b0160
  article-title: Role of Quinone Intermediates as Electron Shuttles in Fenton and Photoassisted Fenton Oxidations of Aromatic Compounds
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9610646
– volume: 282
  year: 2021
  ident: 10.1016/j.cej.2022.140773_b0255
  article-title: Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: role of pyridinic N-Co binding and high tolerance of chloride
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2020.119484
– volume: 9
  start-page: 8751
  issue: 10
  year: 2017
  ident: 10.1016/j.cej.2022.140773_b0095
  article-title: Ascorbate-Promoted Surface Iron Cycle for Efficient Heterogeneous Fenton Alachlor Degradation with Hematite Nanocrystals
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.6b16600
– volume: 168
  year: 2020
  ident: 10.1016/j.cej.2022.140773_b0045
  article-title: Unraveling the interaction of hydroxylamine and Fe(III) in Fe(II)/Persulfate system: A kinetic and simulating study
  publication-title: Water Res
  doi: 10.1016/j.watres.2019.115093
– volume: 436
  year: 2022
  ident: 10.1016/j.cej.2022.140773_b0015
  article-title: Sulfur or nitrogen-doped rGO supported Fe-Mn bimetal-organic frameworks composite as an efficient heterogeneous catalyst for degradation of sulfamethazine via peroxydisulfate activation
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2022.129183
– volume: 54
  start-page: 1242
  issue: 2
  year: 2020
  ident: 10.1016/j.cej.2022.140773_b0210
  article-title: Concentration-Dependent Enhancing Effect of Dissolved Silicate on the Oxidative Degradation of Sulfamethazine by Zero-Valent Iron under Aerobic Conditions
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.9b05904
– volume: 52
  start-page: 2197
  issue: 4
  year: 2018
  ident: 10.1016/j.cej.2022.140773_b0035
  article-title: Fe(III)-Doped g-C3N4 Mediated Peroxymonosulfate Activation for Selective Degradation of Phenolic Compounds via High-Valent Iron-Oxo Species
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b05563
– volume: 429
  year: 2022
  ident: 10.1016/j.cej.2022.140773_b0100
  article-title: Enhanced degradation of perfluorooctanoic acid by heat-activated persulfate in the presence of zeolites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132500
– volume: 254
  start-page: 2441
  issue: 8
  year: 2008
  ident: 10.1016/j.cej.2022.140773_b0195
  article-title: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.09.063
– volume: 256
  year: 2019
  ident: 10.1016/j.cej.2022.140773_b0240
  article-title: Development of CuO coated ceramic hollow fiber membrane for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for bisphenol a degradation
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2019.117783
– volume: 270
  start-page: 73
  year: 2015
  ident: 10.1016/j.cej.2022.140773_b0050
  article-title: Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.02.014
SSID ssj0006919
Score 2.5040054
Snippet [Display omitted] •AA significantly enhanced SMT removal by the iron silicate composite/PDS process.•The role of AA and interaction between iron and silicate...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 140773
SubjectTerms Advanced oxidation processes
Ascorbic acid
Iron redox cycle
Iron silicate composite
Peroxydisulfate
Title Ascorbic acid-assisted iron silicate composite activated peroxydisulfate for enhanced degradation of aqueous contaminants: Accelerated Fe(III)/Fe(II) cycle and the interaction between iron and silicate
URI https://dx.doi.org/10.1016/j.cej.2022.140773
Volume 455
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gIHxFOURzUHDhTJbNZ24pjbqupqlxU9ABW9RY4fIlWVrfaB6KX_r_-KmTiBIgEHTpaicWRlrJnP8TffMPYqqDJinjbcCFdwZbzlZYyCo7N1PdauDBkVCn84KWan6v1ZfrbDjoZaGKJV9rE_xfQuWvdPRv3XHF02zejTmO60DIkdZgjiJcVhpTTt8rfXv2gehemae5AxJ-vhZrPjeLlwjkdEITBeZFrLP-emW_lmep_d64EiTNJaHrCd0D5kd2_JBz5iN5M1nh3rxoF1jecIg8lnHqhyDdZNKm8DIo0TMysA1TB8s2RB6uDfr3yz3l5EskHkCqH92rEBwJN-RGq1BMsIFjPHcrsGIrXbnjjzDibOYcJadW-bhtfz-fxw1I2H4K5wwWBbDwgugfQoVql6AnpSWFogGQyLfMxOp8efj2a8b83AnTB6wy3J3HtEF1FJPF_boA0mQ69NFNFmRchd6UWBkDj3Wo6lFrktQ4w-L4IpY1nLJ2y3XbbhKQOqoEIMMbZKKyUyW5oaQaaXGGxqKetin2WDUyrX65ZT-4yLaiConVfox4r8WCU_7rM3P6dcJtGOfxmrwdPVbzuvwqTy92nP_m_ac3aHGtannzgv2O5mtQ0vEdZs6oNu3x6wvcl8MTuhcfHxy-IHWln6Sw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhc2h7KE0fNH0kc-ihKYj1SrZl9baELus89tIEcjOyHtQheMM-SvMT-686Y9khhbaHngxmxgiPmPlkf_MNYx98WgSs05prYXOeamd4EYLgGGxVT5QtfEKNwueLfH6ZnlxlVzvseOiFIVpln_tjTu-ydX9n3L_N8W3TjL9O6J-WJrHDBEG8xDy8S-pU2YjtTsvT-eI-Iee6m-9B9pwchp-bHc3L-ms8JQqBKSNRSv65PD0oObNn7GmPFWEal7PHdnz7nD15oCD4gv2crvH4WDcWjG0cRyRMYXNAzWuwbmKHGxBvnMhZHqiN4bshCxII_3HnmvX2JpANglfw7beOEACOJCTitCVYBjBYPJbbNRCv3fTcmc8wtRZr1qp72sx_LMvyaNxdj8De4YLBtA4QXwJJUqxiAwX0vLC4QDIYFvmSXc6-XBzPeT-dgVuh1YYbUrp3CDBCKvGIbbzSWA-d0kEEk-Q-s4UTOaLizCk5kUpkpvAhuCz3ughFLV-xUbts_WsG1ESFMGJiUpWmIjGFrhFnOon5ppayzvdZMgSlsr10OU3QuKkGjtp1hXGsKI5VjOM--3Tvcht1O_5lnA6Rrn7bfBXWlb-7vfk_t0P2aH5xfladlYvTt-wxza-P33TesdFmtfXvEeVs6oN-F_8CD3P7WQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ascorbic+acid-assisted+iron+silicate+composite+activated+peroxydisulfate+for+enhanced+degradation+of+aqueous+contaminants%3A+Accelerated+Fe%28III%29%2FFe%28II%29+cycle+and+the+interaction+between+iron+and+silicate&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Li%2C+Yangju&rft.au=Dong%2C+Haoran&rft.au=Xiao%2C+Junyang&rft.au=Li%2C+Long&rft.date=2023-01-01&rft.issn=1385-8947&rft.volume=455&rft.spage=140773&rft_id=info:doi/10.1016%2Fj.cej.2022.140773&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2022_140773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon