Ascorbic acid-assisted iron silicate composite activated peroxydisulfate for enhanced degradation of aqueous contaminants: Accelerated Fe(III)/Fe(II) cycle and the interaction between iron and silicate
[Display omitted] •AA significantly enhanced SMT removal by the iron silicate composite/PDS process.•The role of AA and interaction between iron and silicate were explored.••OH and SO4•− mainly contributed to the overall SMT degradation.•AA and O2•− enabled the accelerated Fe(III)/Fe(II) cycle. In t...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 455; p. 140773 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•AA significantly enhanced SMT removal by the iron silicate composite/PDS process.•The role of AA and interaction between iron and silicate were explored.••OH and SO4•− mainly contributed to the overall SMT degradation.•AA and O2•− enabled the accelerated Fe(III)/Fe(II) cycle.
In this study, an ascorbic acid (AA)-assisted iron silicate composite activated persulfate (ISC/PDS) process was developed for the degradation of sulfamethazine (SMT). Experimental results suggested that AA could significantly enhance SMT degradation by 72.4 % compared with the ISC/PDS process. The enhancement in SMT degradation mainly benefited from the accelerated surface Fe(III)/Fe(II) cycle and the interaction between iron and silicate. It was revealed that the promoted Fe(III)/Fe(II) cycle induced by AA and superoxide radical (O2•−) favored the continuous activation of PDS. The formation of Fe − Si binary oxides on the surface of iron silicate composite promoted the electron transfer from iron silicate composite to PDS. Meanwhile, the formation of [Si − Fe(II)] complexes could avoid the rapid and invalid oxidation of soluble Fe(II). The ISC/PDS/AA process was confirmed to be a radical-dominated (i.e., hydroxyl radical (•OH) and sulfate radical (SO4•−)) oxidation process based on the quenching, electron spin resonance (ESR), and competition kinetics experiments. Additionally, the effects of several key influencing factors on degradation performance were studied. Degradation pathways of SMT and AA and their eco-safety of intermediates were also investigated. This work deepens the understanding of the iron-based catalyst for efficient heterogeneous PDS activation towards water decontamination with the assistance of reductant. |
---|---|
AbstractList | [Display omitted]
•AA significantly enhanced SMT removal by the iron silicate composite/PDS process.•The role of AA and interaction between iron and silicate were explored.••OH and SO4•− mainly contributed to the overall SMT degradation.•AA and O2•− enabled the accelerated Fe(III)/Fe(II) cycle.
In this study, an ascorbic acid (AA)-assisted iron silicate composite activated persulfate (ISC/PDS) process was developed for the degradation of sulfamethazine (SMT). Experimental results suggested that AA could significantly enhance SMT degradation by 72.4 % compared with the ISC/PDS process. The enhancement in SMT degradation mainly benefited from the accelerated surface Fe(III)/Fe(II) cycle and the interaction between iron and silicate. It was revealed that the promoted Fe(III)/Fe(II) cycle induced by AA and superoxide radical (O2•−) favored the continuous activation of PDS. The formation of Fe − Si binary oxides on the surface of iron silicate composite promoted the electron transfer from iron silicate composite to PDS. Meanwhile, the formation of [Si − Fe(II)] complexes could avoid the rapid and invalid oxidation of soluble Fe(II). The ISC/PDS/AA process was confirmed to be a radical-dominated (i.e., hydroxyl radical (•OH) and sulfate radical (SO4•−)) oxidation process based on the quenching, electron spin resonance (ESR), and competition kinetics experiments. Additionally, the effects of several key influencing factors on degradation performance were studied. Degradation pathways of SMT and AA and their eco-safety of intermediates were also investigated. This work deepens the understanding of the iron-based catalyst for efficient heterogeneous PDS activation towards water decontamination with the assistance of reductant. |
ArticleNumber | 140773 |
Author | Chu, Dongdong Hou, Yanni Dong, Haoran Xiang, Shuxue Li, Yangju Li, Long Xiao, Junyang Dong, Qixia Hou, Xiuzhen |
Author_xml | – sequence: 1 givenname: Yangju surname: Li fullname: Li, Yangju organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China – sequence: 2 givenname: Haoran orcidid: 0000-0003-4437-2060 surname: Dong fullname: Dong, Haoran email: dongh@hnu.edu.cn organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China – sequence: 3 givenname: Junyang surname: Xiao fullname: Xiao, Junyang organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China – sequence: 4 givenname: Long surname: Li fullname: Li, Long organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China – sequence: 5 givenname: Yanni surname: Hou fullname: Hou, Yanni organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China – sequence: 6 givenname: Dongdong surname: Chu fullname: Chu, Dongdong organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China – sequence: 7 givenname: Xiuzhen surname: Hou fullname: Hou, Xiuzhen organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China – sequence: 8 givenname: Shuxue surname: Xiang fullname: Xiang, Shuxue organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China – sequence: 9 givenname: Qixia surname: Dong fullname: Dong, Qixia organization: Collegeof Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China |
BookMark | eNp9kMFuEzEQhvdQJNrCA3DzkR42tXez6104RRWFSJW4wNmajMd0oo0dbKeQR-xb4U3gwqGnGY3__5_xd1Vd-OCpqt4puVBS9bfbBdJ20cimWail1Lq9qC5VO3T1MC716-oqpa2Ush_VeFk9rxKGuGEUgGxrSIlTJis4Bi8ST4yQSWDY7UPi0gFmfoJZsacYfh8tp8PkZo0LUZB_BI_l0dKPCBYyl5TgBPw8UDikkuMz7NiDz-mDWCHSRPGUdk_v1-v1ze2p3gg84lSWeSvyIwn2ucjwlLah_IvInw-cBf-OfFO9cjAlevu3Xlff7z99u_tSP3z9vL5bPdTYjDrXoFsprR4at2z7UQLpUbVlMLrGgeypw8E2_aA2ndWtanXTwUDO2a6ncXDDpr2u1DkXY0gpkjP7yDuIR6OkmfmbrSn8zczfnPkXj_7Pg5xPdHIEnl50fjw7qXzpiSmahEwzY46E2djAL7j_ANPtqH4 |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_144984 crossref_primary_10_1016_j_jece_2024_115024 crossref_primary_10_1016_j_seppur_2025_131661 crossref_primary_10_3390_w15101930 crossref_primary_10_1016_j_jhazmat_2024_134254 crossref_primary_10_1016_j_seppur_2024_130209 crossref_primary_10_22144_ctujos_2024_463 crossref_primary_10_1016_j_molliq_2024_123962 crossref_primary_10_1016_j_jhazmat_2024_135217 crossref_primary_10_1016_j_cej_2024_153950 crossref_primary_10_1016_j_seppur_2024_131364 crossref_primary_10_1016_j_cej_2024_156337 crossref_primary_10_2166_wst_2024_098 crossref_primary_10_1080_09593330_2024_2442779 crossref_primary_10_1016_j_psep_2024_04_074 |
Cites_doi | 10.1016/j.jenvman.2020.110820 10.1021/acs.est.9b04696 10.1016/j.apcatb.2020.119386 10.1016/j.watres.2020.115752 10.1016/j.cej.2019.04.101 10.1016/j.apcatb.2012.09.042 10.1016/j.cej.2016.10.138 10.1016/j.watres.2009.02.029 10.1016/j.apcatb.2019.118383 10.1021/acs.jpcc.6b09281 10.1016/j.cej.2022.137620 10.1016/j.apcatb.2022.121418 10.1016/j.jclepro.2022.131276 10.1016/j.apcatb.2016.01.059 10.1016/j.apcatb.2021.120446 10.1021/acs.est.9b01783 10.1016/j.watres.2019.115456 10.1016/j.jhazmat.2016.01.031 10.1039/C8EN00124C 10.1016/j.jhazmat.2016.01.020 10.1021/acs.est.0c04867 10.1016/j.cej.2015.06.115 10.1016/j.jhazmat.2020.124725 10.1016/j.apcatb.2016.03.067 10.1016/j.watres.2012.03.051 10.1016/j.watres.2021.117451 10.1021/acs.est.7b06560 10.1016/j.watres.2015.09.005 10.1021/acs.est.8b04669 10.1016/j.cej.2017.09.166 10.1021/acs.est.5b00623 10.1021/acs.estlett.0c00025 10.1016/j.watres.2020.116136 10.1016/j.chemosphere.2017.01.093 10.1016/j.cej.2016.05.025 10.1021/acs.est.7b04875 10.1016/j.seppur.2022.120873 10.1021/es400262n 10.1021/es9610646 10.1016/j.apcatb.2020.119484 10.1021/acsami.6b16600 10.1016/j.watres.2019.115093 10.1016/j.jhazmat.2022.129183 10.1021/acs.est.9b05904 10.1021/acs.est.7b05563 10.1016/j.cej.2021.132500 10.1016/j.apsusc.2007.09.063 10.1016/j.apcatb.2019.117783 10.1016/j.cej.2015.02.014 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2022.140773 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_cej_2022_140773 S1385894722062532 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ACVFH ADBBV ADCNI ADEWK ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AAYXX ABXDB AFFNX AGRNS ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW ZY4 |
ID | FETCH-LOGICAL-c297t-a7300d782f43690ae79130d79f2fa06e5c8d2681b5d7313725a8effd56e98f8b3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Wed Aug 06 19:22:25 EDT 2025 Thu Apr 24 23:08:06 EDT 2025 Sat Aug 30 17:17:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Advanced oxidation processes Peroxydisulfate Iron redox cycle Ascorbic acid Iron silicate composite |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-a7300d782f43690ae79130d79f2fa06e5c8d2681b5d7313725a8effd56e98f8b3 |
ORCID | 0000-0003-4437-2060 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2022_140773 crossref_citationtrail_10_1016_j_cej_2022_140773 elsevier_sciencedirect_doi_10_1016_j_cej_2022_140773 |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Qian, Kopinke, Scherzer, Griebel, Georgi (b0100) 2022; 429 Bolobajev, Trapido, Goi (b0060) 2015; 281 Chan, Chu (b0225) 2009; 43 Huang, Hou, Song, Zhao, Zhang (b0070) 2017; 121 Yu, Mao, He, Zheng, Zhang, Su, Xi (b0180) 2022; 312 Yuan, Shen, Yan, Chen (b0115) 2018; 52 Ye, Shan, Zhang, Liu, Wang, Lv, Pan (b0135) 2018; 52 Jiang, Xu, Wang, Jiang, Zhang (b0220) 2020; 54 Li, Wang, Liu, Zhao, Ma (b0045) 2020; 168 Zhou, Yu, Zhang, Meng, Luo, Deng, Shi, Crittenden (b0065) 2018; 52 Dong, Li, Wang, Liu, Zhou, Xie, Guan (b0170) 2020; 7 Lei, Chen, Tu, Huang, Zhang (b0010) 2015; 49 Fang, Gao, Dionysiou, Liu, Zhou (b0155) 2013; 47 Chen, J.j. pignatello (b0160) 1997; 31 Cui, Wang, Zheng, Wang, Zhu, Mao (b0210) 2020; 54 Wang, Pan, Yu, Wu, Pan, Yang (b0165) 2020; 185 Li, Dong, Li, Xiao, Xiao, Jin (b0120) 2021; 202 Du, Zhang, Hussain, Huang, Huang (b0230) 2017; 313 Wang, Tian, Wang, Xiao, Gao, Shi, Cui (b0240) 2019; 256 Li, Dong, Xiao, Li, Chu, Hou, Xiang, Dong (b0260) 2022; 446 Qiao, Feng, Dong, Zhao, Guan (b0185) 2019; 53 Jawad, Zhan, Wang, Shahzad, Zeng, Wang, Zhou, Ullah, Chen, Chen (b0140) 2020; 54 Jin, Li, Dong, Xiao, Xiao, Chu, Hou, Xiang, Dong, Li (b0250) 2022; 448 Liu, Liu, Gong (b0125) 2014; 955–959 Xiao, Xiao, Dong, Jin, Li, Li, Tian, Li, Chen, Xie (b0030) 2022; 346 Hou, Huang, Ai, Zhao, Zhang (b0085) 2016; 310 Li, Shan, Pan (b0035) 2018; 52 da Silva-Rackov, Lawal, Nfodzo, Vianna, do Nascimento, Choi (b0105) 2016; 192 Lou, Fang, Geng, Jin, Xiao, Wang, Liu, Guo (b0150) 2017; 173 Yamashita, Hayes (b0195) 2008; 254 Yi, Bu, Shi, Zhou (b0055) 2016; 302 Fang, Dionysiou, Al-Abed, Zhou (b0205) 2013; 129 Hou, Shen, Huang, Ai, Zhang (b0080) 2016; 308 Wang, He, Zhang, Ma, Jiang, Huang, Cheng, Pang, Zhou, Zhai (b0025) 2020; 177 Duan, Ao, Zhou, Sun, Wang, Wang (b0245) 2016; 188 Zhou, Yu, Sun, Zhu, Deng (b0075) 2018; 333 Huang, Hou, Jia, Song, Zhao, Zhang (b0095) 2017; 9 Liang, Duan, Xu, Chen, Wu, Qiu, Liu, Wang, Cao (b0040) 2021; 297 Zhang, Gao, Huang, Wang, Hayat, Li, Xu, Wang (b0200) 2018; 5 Zhu, Li, Kang, Duan, Wang (b0130) 2019; 53 Ji, Fan, Liu, Kong, Lu (b0145) 2015; 87 Chu, Dong, Li, Xiao, Hou, Xiang, Dong (b0015) 2022; 436 Xiang, Dong, Li, Xiao, Dong, Hou, Chu (b0020) 2022; 290 Dell'Arciprete, Soler, Santos-Juanes, Arques, Martire, Furlong, Gonzalez (b0235) 2012; 46 Wang, Qiu, Pang, Zhou, Gao, Guan, Jiang (b0175) 2019; 371 Xiong, Li, Li, Yuan, Jiang, Yao, Lai (b0215) 2021; 406 Ioannidi, Oulego, Collado, Petala, Arniella, Frontistis, Angelopoulos, Diaz, Mantzavinos (b0110) 2020; 270 Xin, Liu, Ma, Gong, Ma, Yan, Chen, Ma, Zhang, Gao, Xin (b0190) 2021; 280 Sun, Xie, He, Zhang (b0090) 2020; 267 Lei, Zhang, Wang, Ai (b0050) 2015; 270 Liu, Ren, Ding, He, Deng, Zhao, Wang, Dionysiou (b0005) 2020; 171 Peng, Shang, Gao, Xu (b0255) 2021; 282 Duan (10.1016/j.cej.2022.140773_b0245) 2016; 188 Jin (10.1016/j.cej.2022.140773_b0250) 2022; 448 da Silva-Rackov (10.1016/j.cej.2022.140773_b0105) 2016; 192 Li (10.1016/j.cej.2022.140773_b0120) 2021; 202 Bolobajev (10.1016/j.cej.2022.140773_b0060) 2015; 281 Xiao (10.1016/j.cej.2022.140773_b0030) 2022; 346 Cui (10.1016/j.cej.2022.140773_b0210) 2020; 54 Hou (10.1016/j.cej.2022.140773_b0085) 2016; 310 Fang (10.1016/j.cej.2022.140773_b0205) 2013; 129 Wang (10.1016/j.cej.2022.140773_b0165) 2020; 185 Dong (10.1016/j.cej.2022.140773_b0170) 2020; 7 Huang (10.1016/j.cej.2022.140773_b0070) 2017; 121 Du (10.1016/j.cej.2022.140773_b0230) 2017; 313 Jawad (10.1016/j.cej.2022.140773_b0140) 2020; 54 Yi (10.1016/j.cej.2022.140773_b0055) 2016; 302 Xiang (10.1016/j.cej.2022.140773_b0020) 2022; 290 Liang (10.1016/j.cej.2022.140773_b0040) 2021; 297 Huang (10.1016/j.cej.2022.140773_b0095) 2017; 9 Zhou (10.1016/j.cej.2022.140773_b0065) 2018; 52 Xin (10.1016/j.cej.2022.140773_b0190) 2021; 280 Lou (10.1016/j.cej.2022.140773_b0150) 2017; 173 Lei (10.1016/j.cej.2022.140773_b0010) 2015; 49 Ioannidi (10.1016/j.cej.2022.140773_b0110) 2020; 270 Fang (10.1016/j.cej.2022.140773_b0155) 2013; 47 Chen (10.1016/j.cej.2022.140773_b0160) 1997; 31 Dell'Arciprete (10.1016/j.cej.2022.140773_b0235) 2012; 46 Yamashita (10.1016/j.cej.2022.140773_b0195) 2008; 254 Hou (10.1016/j.cej.2022.140773_b0080) 2016; 308 Liu (10.1016/j.cej.2022.140773_b0125) 2014; 955–959 Lei (10.1016/j.cej.2022.140773_b0050) 2015; 270 Jiang (10.1016/j.cej.2022.140773_b0220) 2020; 54 Ye (10.1016/j.cej.2022.140773_b0135) 2018; 52 Chu (10.1016/j.cej.2022.140773_b0015) 2022; 436 Sun (10.1016/j.cej.2022.140773_b0090) 2020; 267 Qiao (10.1016/j.cej.2022.140773_b0185) 2019; 53 Liu (10.1016/j.cej.2022.140773_b0005) 2020; 171 Qian (10.1016/j.cej.2022.140773_b0100) 2022; 429 Li (10.1016/j.cej.2022.140773_b0045) 2020; 168 Wang (10.1016/j.cej.2022.140773_b0175) 2019; 371 Yu (10.1016/j.cej.2022.140773_b0180) 2022; 312 Zhou (10.1016/j.cej.2022.140773_b0075) 2018; 333 Li (10.1016/j.cej.2022.140773_b0035) 2018; 52 Chan (10.1016/j.cej.2022.140773_b0225) 2009; 43 Yuan (10.1016/j.cej.2022.140773_b0115) 2018; 52 Zhu (10.1016/j.cej.2022.140773_b0130) 2019; 53 Li (10.1016/j.cej.2022.140773_b0260) 2022; 446 Peng (10.1016/j.cej.2022.140773_b0255) 2021; 282 Ji (10.1016/j.cej.2022.140773_b0145) 2015; 87 Xiong (10.1016/j.cej.2022.140773_b0215) 2021; 406 Wang (10.1016/j.cej.2022.140773_b0025) 2020; 177 Zhang (10.1016/j.cej.2022.140773_b0200) 2018; 5 Wang (10.1016/j.cej.2022.140773_b0240) 2019; 256 |
References_xml | – volume: 346 year: 2022 ident: b0030 article-title: Degradation of sulfamethazine by amorphous zero-valent iron microspheres (A-mZVI) activated peroxydisulfate in groundwater publication-title: J. Clean. Prod. – volume: 185 year: 2020 ident: b0165 article-title: A novel peroxymonosulfate (PMS)-enhanced iron coagulation process for simultaneous removal of trace organic pollutants in water publication-title: Water Res – volume: 448 year: 2022 ident: b0250 article-title: A comparative study on the activation of persulfate by mackinawite@biochar and pyrite@biochar for sulfamethazine degradation: The role of different natural iron-sulfur minerals doping publication-title: Chem. Eng. J. – volume: 7 start-page: 219 year: 2020 end-page: 224 ident: b0170 article-title: Both Fe(IV) and Radicals Are Active Oxidants in the Fe(II)/Peroxydisulfate Process publication-title: Environ. Sci. Technol. Lett. – volume: 282 year: 2021 ident: b0255 article-title: Co publication-title: Appl Catal B – volume: 280 year: 2021 ident: b0190 article-title: High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO publication-title: Appl Catal B – volume: 297 year: 2021 ident: b0040 article-title: Biomass-derived pyrolytic carbons accelerated Fe(III)/Fe(II) redox cycle for persulfate activation: Pyrolysis temperature-depended performance and mechanisms publication-title: Appl Catal B – volume: 256 year: 2019 ident: b0240 article-title: Development of CuO coated ceramic hollow fiber membrane for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for bisphenol a degradation publication-title: Appl Catal B – volume: 267 year: 2020 ident: b0090 article-title: Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling publication-title: Appl Catal B – volume: 312 year: 2022 ident: b0180 article-title: Efficient degradation of sulfamethazine in a silicified microscale zero-valent iron activated persulfate process publication-title: Appl Catal B – volume: 177 year: 2020 ident: b0025 article-title: Highly efficient removal of p-arsanilic acid with Fe(II)/peroxydisulfate under near-neutral conditions publication-title: Water Res – volume: 54 start-page: 1242 year: 2020 end-page: 1249 ident: b0210 article-title: Concentration-Dependent Enhancing Effect of Dissolved Silicate on the Oxidative Degradation of Sulfamethazine by Zero-Valent Iron under Aerobic Conditions publication-title: Environ Sci Technol – volume: 129 start-page: 325 year: 2013 end-page: 332 ident: b0205 article-title: Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs publication-title: Appl Catal B – volume: 371 start-page: 842 year: 2019 end-page: 847 ident: b0175 article-title: Further understanding the involvement of Fe(IV) in peroxydisulfate and peroxymonosulfate activation by Fe(II) for oxidative water treatment publication-title: Chem. Eng. J. – volume: 270 start-page: 73 year: 2015 end-page: 79 ident: b0050 article-title: Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system publication-title: Chem. Eng. J. – volume: 46 start-page: 3479 year: 2012 end-page: 3489 ident: b0235 article-title: Reactivity of neonicotinoid insecticides with carbonate radicals publication-title: Water Res – volume: 202 year: 2021 ident: b0120 article-title: Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite publication-title: Water Res – volume: 31 start-page: 2399 year: 1997 end-page: 2406 ident: b0160 article-title: Role of Quinone Intermediates as Electron Shuttles in Fenton and Photoassisted Fenton Oxidations of Aromatic Compounds publication-title: Environ. Sci. Technol. – volume: 270 year: 2020 ident: b0110 article-title: Persulfate activation by modified red mud for the oxidation of antibiotic sulfamethoxazole in water publication-title: J Environ Manage – volume: 173 start-page: 529 year: 2017 end-page: 534 ident: b0150 article-title: Significantly enhanced base activation of peroxymonosulfate by polyphosphates: Kinetics and mechanism publication-title: Chemosphere – volume: 52 start-page: 1429 year: 2018 end-page: 1434 ident: b0115 article-title: Interface Mechanisms of Catalytic Ozonation with Amorphous Iron Silicate for Removal of 4-Chloronitrobenzene in Aqueous Solution publication-title: Environ. Sci. Technol. – volume: 52 start-page: 10657 year: 2018 end-page: 10664 ident: b0135 article-title: Water Decontamination from Cr(III)-Organic Complexes Based on Pyrite/H publication-title: Mechanism, and Validation, Environ Sci Technol – volume: 171 year: 2020 ident: b0005 article-title: Simultaneous regeneration of cathodic activated carbon fiber and mineralization of desorbed contaminations by electro-peroxydisulfate process: Advantages and limitations publication-title: Water Res – volume: 313 start-page: 1023 year: 2017 end-page: 1032 ident: b0230 article-title: Insight into reactive oxygen species in persulfate activation with copper oxide: Activated persulfate and trace radicals publication-title: Chem. Eng. J. – volume: 333 start-page: 443 year: 2018 end-page: 450 ident: b0075 article-title: Oxidation of microcystin-LR by copper (II) coupled with ascorbic acid: Kinetic modeling towards generation of H publication-title: Chem. Eng. J. – volume: 87 start-page: 1 year: 2015 end-page: 9 ident: b0145 article-title: Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds publication-title: Water Res – volume: 302 start-page: 417 year: 2016 end-page: 425 ident: b0055 article-title: Epigallocatechin-3-gallate-coated Fe publication-title: Chem. Eng. J. – volume: 121 start-page: 1113 year: 2017 end-page: 1121 ident: b0070 article-title: Ascorbate Induced Facet Dependent Reductive Dissolution of Hematite Nanocrystals publication-title: J. Phys. Chem. C – volume: 406 year: 2021 ident: b0215 article-title: Simultaneously enhanced degradation of N, N-dimethylacetamide and reduced formation of iron sludge by an efficient electrolysis catalyzed ozone process in the presence of dissolved silicate publication-title: J Hazard Mater – volume: 254 start-page: 2441 year: 2008 end-page: 2449 ident: b0195 article-title: Analysis of XPS spectra of Fe publication-title: Appl. Surf. Sci. – volume: 43 start-page: 2513 year: 2009 end-page: 2521 ident: b0225 article-title: Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process publication-title: Water Res – volume: 5 start-page: 1179 year: 2018 end-page: 1190 ident: b0200 article-title: Ultrathin g-C3N4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation publication-title: Environ. Sci. Nano – volume: 188 start-page: 98 year: 2016 end-page: 105 ident: b0245 article-title: Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation publication-title: Appl Catal B – volume: 436 year: 2022 ident: b0015 article-title: Sulfur or nitrogen-doped rGO supported Fe-Mn bimetal-organic frameworks composite as an efficient heterogeneous catalyst for degradation of sulfamethazine via peroxydisulfate activation publication-title: J Hazard Mater – volume: 47 start-page: 4605 year: 2013 end-page: 4611 ident: b0155 article-title: Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs publication-title: Environ Sci Technol – volume: 192 start-page: 253 year: 2016 end-page: 259 ident: b0105 article-title: Degradation of PFOA by hydrogen peroxide and persulfate activated by iron-modified diatomite publication-title: Appl Catal B – volume: 429 year: 2022 ident: b0100 article-title: Enhanced degradation of perfluorooctanoic acid by heat-activated persulfate in the presence of zeolites publication-title: Chem. Eng. J. – volume: 54 start-page: 14057 year: 2020 end-page: 14065 ident: b0220 article-title: Nonradical Oxidation of Pollutants with Single-Atom-Fe(III)-Activated Persulfate: Fe(V) Being the Possible Intermediate Oxidant publication-title: Environ Sci Technol – volume: 310 start-page: 170 year: 2016 end-page: 178 ident: b0085 article-title: Ascorbic acid/Fe@Fe publication-title: J Hazard Mater – volume: 446 year: 2022 ident: b0260 article-title: Oxidation of sulfamethazine by a novel CuS/calcium peroxide/tetraacetylethylenediamine process: High efficiency and contribution of oxygen-centered radicals publication-title: Chem. Eng. J. – volume: 281 start-page: 566 year: 2015 end-page: 574 ident: b0060 article-title: Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid publication-title: Chem. Eng. J. – volume: 53 start-page: 10320 year: 2019 end-page: 10328 ident: b0185 article-title: Overlooked Role of Sulfur-Centered Radicals During Bromate Reduction by Sulfite publication-title: Environ Sci Technol – volume: 54 start-page: 2476 year: 2020 end-page: 2488 ident: b0140 article-title: Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide publication-title: Environmental Science&Technology54(4) – volume: 52 start-page: 4305 year: 2018 end-page: 4312 ident: b0065 article-title: Oxidation of Microcystin-LR via Activation of Peroxymonosulfate Using Ascorbic Acid: Kinetic Modeling and Toxicity Assessment publication-title: Environ Sci Technol – volume: 955–959 start-page: 2162 year: 2014 end-page: 2168 ident: b0125 article-title: Degradation of p-Chloronitrobenzene in Aqueous Solution by Iron Silicate Catalytic Ozonation publication-title: Adv. Mat. Res. – volume: 49 start-page: 6838 year: 2015 end-page: 6845 ident: b0010 article-title: Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe publication-title: Environ Sci Technol – volume: 52 start-page: 2197 year: 2018 end-page: 2205 ident: b0035 article-title: Fe(III)-Doped g-C publication-title: Environ Sci Technol – volume: 308 start-page: 67 year: 2016 end-page: 74 ident: b0080 article-title: Ascorbic acid enhanced activation of oxygen by ferrous iron: A case of aerobic degradation of rhodamine B publication-title: J Hazard Mater – volume: 53 start-page: 307 year: 2019 end-page: 315 ident: b0130 article-title: Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants publication-title: Environ Sci Technol – volume: 168 year: 2020 ident: b0045 article-title: Unraveling the interaction of hydroxylamine and Fe(III) in Fe(II)/Persulfate system: A kinetic and simulating study publication-title: Water Res – volume: 9 start-page: 8751 year: 2017 end-page: 8758 ident: b0095 article-title: Ascorbate-Promoted Surface Iron Cycle for Efficient Heterogeneous Fenton Alachlor Degradation with Hematite Nanocrystals publication-title: ACS Appl Mater Interfaces – volume: 290 year: 2022 ident: b0020 article-title: A comparative study of activation of peroxymonosulfate and peroxydisulfate by greigite (Fe publication-title: Sep. Purif. Technol. – volume: 270 year: 2020 ident: 10.1016/j.cej.2022.140773_b0110 article-title: Persulfate activation by modified red mud for the oxidation of antibiotic sulfamethoxazole in water publication-title: J Environ Manage doi: 10.1016/j.jenvman.2020.110820 – volume: 54 start-page: 2476 issue: 4 year: 2020 ident: 10.1016/j.cej.2022.140773_b0140 article-title: Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide publication-title: Environmental Science&Technology54(4) doi: 10.1021/acs.est.9b04696 – volume: 280 year: 2021 ident: 10.1016/j.cej.2022.140773_b0190 article-title: High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism publication-title: Appl Catal B doi: 10.1016/j.apcatb.2020.119386 – volume: 177 year: 2020 ident: 10.1016/j.cej.2022.140773_b0025 article-title: Highly efficient removal of p-arsanilic acid with Fe(II)/peroxydisulfate under near-neutral conditions publication-title: Water Res doi: 10.1016/j.watres.2020.115752 – volume: 371 start-page: 842 year: 2019 ident: 10.1016/j.cej.2022.140773_b0175 article-title: Further understanding the involvement of Fe(IV) in peroxydisulfate and peroxymonosulfate activation by Fe(II) for oxidative water treatment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.101 – volume: 129 start-page: 325 year: 2013 ident: 10.1016/j.cej.2022.140773_b0205 article-title: Superoxide radical driving the activation of persulfate by magnetite nanoparticles: Implications for the degradation of PCBs publication-title: Appl Catal B doi: 10.1016/j.apcatb.2012.09.042 – volume: 955–959 start-page: 2162 year: 2014 ident: 10.1016/j.cej.2022.140773_b0125 article-title: Degradation of p-Chloronitrobenzene in Aqueous Solution by Iron Silicate Catalytic Ozonation publication-title: Adv. Mat. Res. – volume: 313 start-page: 1023 year: 2017 ident: 10.1016/j.cej.2022.140773_b0230 article-title: Insight into reactive oxygen species in persulfate activation with copper oxide: Activated persulfate and trace radicals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.138 – volume: 43 start-page: 2513 issue: 9 year: 2009 ident: 10.1016/j.cej.2022.140773_b0225 article-title: Degradation of atrazine by cobalt-mediated activation of peroxymonosulfate: Different cobalt counteranions in homogenous process and cobalt oxide catalysts in photolytic heterogeneous process publication-title: Water Res doi: 10.1016/j.watres.2009.02.029 – volume: 267 year: 2020 ident: 10.1016/j.cej.2022.140773_b0090 article-title: Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling publication-title: Appl Catal B doi: 10.1016/j.apcatb.2019.118383 – volume: 121 start-page: 1113 issue: 2 year: 2017 ident: 10.1016/j.cej.2022.140773_b0070 article-title: Ascorbate Induced Facet Dependent Reductive Dissolution of Hematite Nanocrystals publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b09281 – volume: 448 year: 2022 ident: 10.1016/j.cej.2022.140773_b0250 article-title: A comparative study on the activation of persulfate by mackinawite@biochar and pyrite@biochar for sulfamethazine degradation: The role of different natural iron-sulfur minerals doping publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137620 – volume: 312 year: 2022 ident: 10.1016/j.cej.2022.140773_b0180 article-title: Efficient degradation of sulfamethazine in a silicified microscale zero-valent iron activated persulfate process publication-title: Appl Catal B doi: 10.1016/j.apcatb.2022.121418 – volume: 346 year: 2022 ident: 10.1016/j.cej.2022.140773_b0030 article-title: Degradation of sulfamethazine by amorphous zero-valent iron microspheres (A-mZVI) activated peroxydisulfate in groundwater publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131276 – volume: 188 start-page: 98 year: 2016 ident: 10.1016/j.cej.2022.140773_b0245 article-title: Occurrence of radical and nonradical pathways from carbocatalysts for aqueous and nonaqueous catalytic oxidation publication-title: Appl Catal B doi: 10.1016/j.apcatb.2016.01.059 – volume: 297 year: 2021 ident: 10.1016/j.cej.2022.140773_b0040 article-title: Biomass-derived pyrolytic carbons accelerated Fe(III)/Fe(II) redox cycle for persulfate activation: Pyrolysis temperature-depended performance and mechanisms publication-title: Appl Catal B doi: 10.1016/j.apcatb.2021.120446 – volume: 53 start-page: 10320 issue: 17 year: 2019 ident: 10.1016/j.cej.2022.140773_b0185 article-title: Overlooked Role of Sulfur-Centered Radicals During Bromate Reduction by Sulfite publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b01783 – volume: 446 year: 2022 ident: 10.1016/j.cej.2022.140773_b0260 article-title: Oxidation of sulfamethazine by a novel CuS/calcium peroxide/tetraacetylethylenediamine process: High efficiency and contribution of oxygen-centered radicals publication-title: Chem. Eng. J. – volume: 171 year: 2020 ident: 10.1016/j.cej.2022.140773_b0005 article-title: Simultaneous regeneration of cathodic activated carbon fiber and mineralization of desorbed contaminations by electro-peroxydisulfate process: Advantages and limitations publication-title: Water Res doi: 10.1016/j.watres.2019.115456 – volume: 52 start-page: 10657 issue: 18 year: 2018 ident: 10.1016/j.cej.2022.140773_b0135 article-title: Water Decontamination from Cr(III)-Organic Complexes Based on Pyrite/H2O2: Performance publication-title: Mechanism, and Validation, Environ Sci Technol – volume: 308 start-page: 67 year: 2016 ident: 10.1016/j.cej.2022.140773_b0080 article-title: Ascorbic acid enhanced activation of oxygen by ferrous iron: A case of aerobic degradation of rhodamine B publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2016.01.031 – volume: 5 start-page: 1179 issue: 5 year: 2018 ident: 10.1016/j.cej.2022.140773_b0200 article-title: Ultrathin g-C3N4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation publication-title: Environ. Sci. Nano doi: 10.1039/C8EN00124C – volume: 310 start-page: 170 year: 2016 ident: 10.1016/j.cej.2022.140773_b0085 article-title: Ascorbic acid/Fe@Fe2O3: A highly efficient combined Fenton reagent to remove organic contaminants publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2016.01.020 – volume: 54 start-page: 14057 issue: 21 year: 2020 ident: 10.1016/j.cej.2022.140773_b0220 article-title: Nonradical Oxidation of Pollutants with Single-Atom-Fe(III)-Activated Persulfate: Fe(V) Being the Possible Intermediate Oxidant publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c04867 – volume: 281 start-page: 566 year: 2015 ident: 10.1016/j.cej.2022.140773_b0060 article-title: Improvement in iron activation ability of alachlor Fenton-like oxidation by ascorbic acid publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.06.115 – volume: 406 year: 2021 ident: 10.1016/j.cej.2022.140773_b0215 article-title: Simultaneously enhanced degradation of N, N-dimethylacetamide and reduced formation of iron sludge by an efficient electrolysis catalyzed ozone process in the presence of dissolved silicate publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.124725 – volume: 192 start-page: 253 year: 2016 ident: 10.1016/j.cej.2022.140773_b0105 article-title: Degradation of PFOA by hydrogen peroxide and persulfate activated by iron-modified diatomite publication-title: Appl Catal B doi: 10.1016/j.apcatb.2016.03.067 – volume: 46 start-page: 3479 issue: 11 year: 2012 ident: 10.1016/j.cej.2022.140773_b0235 article-title: Reactivity of neonicotinoid insecticides with carbonate radicals publication-title: Water Res doi: 10.1016/j.watres.2012.03.051 – volume: 202 year: 2021 ident: 10.1016/j.cej.2022.140773_b0120 article-title: Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite publication-title: Water Res doi: 10.1016/j.watres.2021.117451 – volume: 52 start-page: 4305 issue: 7 year: 2018 ident: 10.1016/j.cej.2022.140773_b0065 article-title: Oxidation of Microcystin-LR via Activation of Peroxymonosulfate Using Ascorbic Acid: Kinetic Modeling and Toxicity Assessment publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b06560 – volume: 87 start-page: 1 year: 2015 ident: 10.1016/j.cej.2022.140773_b0145 article-title: Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds publication-title: Water Res doi: 10.1016/j.watres.2015.09.005 – volume: 53 start-page: 307 issue: 1 year: 2019 ident: 10.1016/j.cej.2022.140773_b0130 article-title: Persulfate activation on crystallographic manganese oxides: Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants publication-title: Environ Sci Technol doi: 10.1021/acs.est.8b04669 – volume: 333 start-page: 443 year: 2018 ident: 10.1016/j.cej.2022.140773_b0075 article-title: Oxidation of microcystin-LR by copper (II) coupled with ascorbic acid: Kinetic modeling towards generation of H2O2 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.166 – volume: 49 start-page: 6838 issue: 11 year: 2015 ident: 10.1016/j.cej.2022.140773_b0010 article-title: Heterogeneous Degradation of Organic Pollutants by Persulfate Activated by CuO-Fe3O4: Mechanism Stability, and Effects of pH and Bicarbonate Ions publication-title: Environ Sci Technol doi: 10.1021/acs.est.5b00623 – volume: 7 start-page: 219 issue: 3 year: 2020 ident: 10.1016/j.cej.2022.140773_b0170 article-title: Both Fe(IV) and Radicals Are Active Oxidants in the Fe(II)/Peroxydisulfate Process publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.0c00025 – volume: 185 year: 2020 ident: 10.1016/j.cej.2022.140773_b0165 article-title: A novel peroxymonosulfate (PMS)-enhanced iron coagulation process for simultaneous removal of trace organic pollutants in water publication-title: Water Res doi: 10.1016/j.watres.2020.116136 – volume: 173 start-page: 529 year: 2017 ident: 10.1016/j.cej.2022.140773_b0150 article-title: Significantly enhanced base activation of peroxymonosulfate by polyphosphates: Kinetics and mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.093 – volume: 302 start-page: 417 year: 2016 ident: 10.1016/j.cej.2022.140773_b0055 article-title: Epigallocatechin-3-gallate-coated Fe 3O4 as a novel heterogeneous catalyst of peroxymonosulfate for diuron degradation: Performance and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.05.025 – volume: 52 start-page: 1429 issue: 3 year: 2018 ident: 10.1016/j.cej.2022.140773_b0115 article-title: Interface Mechanisms of Catalytic Ozonation with Amorphous Iron Silicate for Removal of 4-Chloronitrobenzene in Aqueous Solution publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04875 – volume: 290 year: 2022 ident: 10.1016/j.cej.2022.140773_b0020 article-title: A comparative study of activation of peroxymonosulfate and peroxydisulfate by greigite (Fe3S4) for the degradation of sulfamethazine in water publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120873 – volume: 47 start-page: 4605 issue: 9 year: 2013 ident: 10.1016/j.cej.2022.140773_b0155 article-title: Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs publication-title: Environ Sci Technol doi: 10.1021/es400262n – volume: 31 start-page: 2399 year: 1997 ident: 10.1016/j.cej.2022.140773_b0160 article-title: Role of Quinone Intermediates as Electron Shuttles in Fenton and Photoassisted Fenton Oxidations of Aromatic Compounds publication-title: Environ. Sci. Technol. doi: 10.1021/es9610646 – volume: 282 year: 2021 ident: 10.1016/j.cej.2022.140773_b0255 article-title: Co3O4 anchored in N, S heteroatom co-doped porous carbons for degradation of organic contaminant: role of pyridinic N-Co binding and high tolerance of chloride publication-title: Appl Catal B doi: 10.1016/j.apcatb.2020.119484 – volume: 9 start-page: 8751 issue: 10 year: 2017 ident: 10.1016/j.cej.2022.140773_b0095 article-title: Ascorbate-Promoted Surface Iron Cycle for Efficient Heterogeneous Fenton Alachlor Degradation with Hematite Nanocrystals publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.6b16600 – volume: 168 year: 2020 ident: 10.1016/j.cej.2022.140773_b0045 article-title: Unraveling the interaction of hydroxylamine and Fe(III) in Fe(II)/Persulfate system: A kinetic and simulating study publication-title: Water Res doi: 10.1016/j.watres.2019.115093 – volume: 436 year: 2022 ident: 10.1016/j.cej.2022.140773_b0015 article-title: Sulfur or nitrogen-doped rGO supported Fe-Mn bimetal-organic frameworks composite as an efficient heterogeneous catalyst for degradation of sulfamethazine via peroxydisulfate activation publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2022.129183 – volume: 54 start-page: 1242 issue: 2 year: 2020 ident: 10.1016/j.cej.2022.140773_b0210 article-title: Concentration-Dependent Enhancing Effect of Dissolved Silicate on the Oxidative Degradation of Sulfamethazine by Zero-Valent Iron under Aerobic Conditions publication-title: Environ Sci Technol doi: 10.1021/acs.est.9b05904 – volume: 52 start-page: 2197 issue: 4 year: 2018 ident: 10.1016/j.cej.2022.140773_b0035 article-title: Fe(III)-Doped g-C3N4 Mediated Peroxymonosulfate Activation for Selective Degradation of Phenolic Compounds via High-Valent Iron-Oxo Species publication-title: Environ Sci Technol doi: 10.1021/acs.est.7b05563 – volume: 429 year: 2022 ident: 10.1016/j.cej.2022.140773_b0100 article-title: Enhanced degradation of perfluorooctanoic acid by heat-activated persulfate in the presence of zeolites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132500 – volume: 254 start-page: 2441 issue: 8 year: 2008 ident: 10.1016/j.cej.2022.140773_b0195 article-title: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.09.063 – volume: 256 year: 2019 ident: 10.1016/j.cej.2022.140773_b0240 article-title: Development of CuO coated ceramic hollow fiber membrane for peroxymonosulfate activation: a highly efficient singlet oxygen-dominated oxidation process for bisphenol a degradation publication-title: Appl Catal B doi: 10.1016/j.apcatb.2019.117783 – volume: 270 start-page: 73 year: 2015 ident: 10.1016/j.cej.2022.140773_b0050 article-title: Rapid and continuous oxidation of organic contaminants with ascorbic acid and a modified ferric/persulfate system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.02.014 |
SSID | ssj0006919 |
Score | 2.5040054 |
Snippet | [Display omitted]
•AA significantly enhanced SMT removal by the iron silicate composite/PDS process.•The role of AA and interaction between iron and silicate... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 140773 |
SubjectTerms | Advanced oxidation processes Ascorbic acid Iron redox cycle Iron silicate composite Peroxydisulfate |
Title | Ascorbic acid-assisted iron silicate composite activated peroxydisulfate for enhanced degradation of aqueous contaminants: Accelerated Fe(III)/Fe(II) cycle and the interaction between iron and silicate |
URI | https://dx.doi.org/10.1016/j.cej.2022.140773 |
Volume | 455 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gIHxFOURzUHDhTJbNZ24pjbqupqlxU9ABW9RY4fIlWVrfaB6KX_r_-KmTiBIgEHTpaicWRlrJnP8TffMPYqqDJinjbcCFdwZbzlZYyCo7N1PdauDBkVCn84KWan6v1ZfrbDjoZaGKJV9rE_xfQuWvdPRv3XHF02zejTmO60DIkdZgjiJcVhpTTt8rfXv2gehemae5AxJ-vhZrPjeLlwjkdEITBeZFrLP-emW_lmep_d64EiTNJaHrCd0D5kd2_JBz5iN5M1nh3rxoF1jecIg8lnHqhyDdZNKm8DIo0TMysA1TB8s2RB6uDfr3yz3l5EskHkCqH92rEBwJN-RGq1BMsIFjPHcrsGIrXbnjjzDibOYcJadW-bhtfz-fxw1I2H4K5wwWBbDwgugfQoVql6AnpSWFogGQyLfMxOp8efj2a8b83AnTB6wy3J3HtEF1FJPF_boA0mQ69NFNFmRchd6UWBkDj3Wo6lFrktQ4w-L4IpY1nLJ2y3XbbhKQOqoEIMMbZKKyUyW5oaQaaXGGxqKetin2WDUyrX65ZT-4yLaiConVfox4r8WCU_7rM3P6dcJtGOfxmrwdPVbzuvwqTy92nP_m_ac3aHGtannzgv2O5mtQ0vEdZs6oNu3x6wvcl8MTuhcfHxy-IHWln6Sw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhc2h7KE0fNH0kc-ihKYj1SrZl9baELus89tIEcjOyHtQheMM-SvMT-686Y9khhbaHngxmxgiPmPlkf_MNYx98WgSs05prYXOeamd4EYLgGGxVT5QtfEKNwueLfH6ZnlxlVzvseOiFIVpln_tjTu-ydX9n3L_N8W3TjL9O6J-WJrHDBEG8xDy8S-pU2YjtTsvT-eI-Iee6m-9B9pwchp-bHc3L-ms8JQqBKSNRSv65PD0oObNn7GmPFWEal7PHdnz7nD15oCD4gv2crvH4WDcWjG0cRyRMYXNAzWuwbmKHGxBvnMhZHqiN4bshCxII_3HnmvX2JpANglfw7beOEACOJCTitCVYBjBYPJbbNRCv3fTcmc8wtRZr1qp72sx_LMvyaNxdj8De4YLBtA4QXwJJUqxiAwX0vLC4QDIYFvmSXc6-XBzPeT-dgVuh1YYbUrp3CDBCKvGIbbzSWA-d0kEEk-Q-s4UTOaLizCk5kUpkpvAhuCz3ughFLV-xUbts_WsG1ESFMGJiUpWmIjGFrhFnOon5ppayzvdZMgSlsr10OU3QuKkGjtp1hXGsKI5VjOM--3Tvcht1O_5lnA6Rrn7bfBXWlb-7vfk_t0P2aH5xfladlYvTt-wxza-P33TesdFmtfXvEeVs6oN-F_8CD3P7WQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ascorbic+acid-assisted+iron+silicate+composite+activated+peroxydisulfate+for+enhanced+degradation+of+aqueous+contaminants%3A+Accelerated+Fe%28III%29%2FFe%28II%29+cycle+and+the+interaction+between+iron+and+silicate&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Li%2C+Yangju&rft.au=Dong%2C+Haoran&rft.au=Xiao%2C+Junyang&rft.au=Li%2C+Long&rft.date=2023-01-01&rft.issn=1385-8947&rft.volume=455&rft.spage=140773&rft_id=info:doi/10.1016%2Fj.cej.2022.140773&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2022_140773 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |