A Taylor model toolbox for solving ODEs implemented in MATLAB/INTLAB
The new INTLAB release V11 contains two verified ODE solvers. One is a MATLAB implementation of Lohner’s classical AWA, the other one follows the so-called Taylor model approach which is the main subject of this article.
Saved in:
Published in | Journal of computational and applied mathematics Vol. 368; p. 112511 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The new INTLAB release V11 contains two verified ODE solvers. One is a MATLAB implementation of Lohner’s classical AWA, the other one follows the so-called Taylor model approach which is the main subject of this article. |
---|---|
AbstractList | The new INTLAB release V11 contains two verified ODE solvers. One is a MATLAB implementation of Lohner’s classical AWA, the other one follows the so-called Taylor model approach which is the main subject of this article. |
ArticleNumber | 112511 |
Author | Bünger, Florian |
Author_xml | – sequence: 1 givenname: Florian surname: Bünger fullname: Bünger, Florian email: florian.buenger@tuhh.de organization: Institute for Reliable Computing, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany |
BookMark | eNp9kEFOwzAQRS1UJNrCAdj5Akk9sRPHYhXaApUK3ZS1lTgT5CqJKztC9PakKisWXX3Nl95I_83IpHc9EvIILAYG2eIQm7KLEwYqBkhSgBsyhVyqCKTMJ2TKuJQRE4m8I7MQDoyxTIGYklVB9-WpdZ52rsaWDs61lfuhzdgE137b_ovuVutAbXdsscN-wJranr4X-23xvNh8nOOe3DZlG_DhL-fk82W9X75F293rZllsI5MoOURlJjkTTZPmaSXyRBohsMq5aDjjBoEhA6GqJquMGm_kFSqOApQ0KUvRAJ8TuPw13oXgsdFHb7vSnzQwfdagD3rUoM8a9EXDyMh_jLFDOVjXD7607VXy6ULiOOnbotfBWOwN1tajGXTt7BX6F3kEd0Y |
CitedBy_id | crossref_primary_10_1007_s00211_024_01415_w crossref_primary_10_1007_s00332_023_09900_6 crossref_primary_10_3390_a14030085 crossref_primary_10_3390_a15050162 crossref_primary_10_3390_fractalfract5010017 crossref_primary_10_1587_nolta_12_2 crossref_primary_10_1016_j_cam_2023_115332 crossref_primary_10_1137_21M1451440 crossref_primary_10_1007_s11075_023_01725_4 crossref_primary_10_3934_jcd_2021015 |
Cites_doi | 10.1007/s11075-014-9889-x 10.1023/A:1023009910949 10.1109/SCAN.2006.47 10.1145/1577190.1577206 10.1137/050638448 10.1007/s11075-017-0410-1 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cam.2019.112511 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-1778 |
ExternalDocumentID | 10_1016_j_cam_2019_112511 S0377042719305163 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ NHB O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 UPT WUQ XPP YQT ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-a67304ff585b4827c44eb834f303ce10e0149bf6bc93cee3be93e4197c505ec13 |
IEDL.DBID | IXB |
ISSN | 0377-0427 |
IngestDate | Thu Apr 24 23:13:26 EDT 2025 Tue Jul 01 04:27:10 EDT 2025 Fri Feb 23 02:49:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 65L05 Ordinary differential equations Taylor models Initial value problems 65G20 34-04 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-a67304ff585b4827c44eb834f303ce10e0149bf6bc93cee3be93e4197c505ec13 |
ParticipantIDs | crossref_primary_10_1016_j_cam_2019_112511 crossref_citationtrail_10_1016_j_cam_2019_112511 elsevier_sciencedirect_doi_10_1016_j_cam_2019_112511 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | M. Kashiwagi, kv - a C++ library for verified numerical computation Rump (b9) 1999 Bünger (b16) 2018; 78 A. Rauh, E.P. Hofer, E. Auer, VALENCIA-IVP: A comparison with other initial value problem solvers, Published in: 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN 2006. X. Chen, Reachability analysis of non-linear hybrid systems using Taylor models, Dissertation at RWTH Aachen University, 2015, Software: FLOW Dzetkulič (b7) 2015; 69 Eble (b8) 2007 Hoefkens, Berz, Makino (b21) 2003; 8 . Rump (b11) 1980 M. Berz, K. Makino, Rigorous integration of flows and ODEs using Taylor models, in: Proceedings of the 2009 conference on symbolic numeric computation, 2009, pp. 79-84 Berz, Makino (b19) 2006; 36 Neher, Jackson, Nedialkov (b17) 2016; 23 M. Berz, et al. The COSY INFINITY web page Lohner (b1) 1988 N.S. Nedialkov, VNODE-LP - a validated solver for initial value problems in ordinary differential equations. Technical Report CAS-06-06-NN, Department of Computing and Software, McMaster University, Hamilton, Canada, L8S4K1, 2006, Software: VNODE-LP VNODE M. Neher, Personal communication, 2017. Berz, Makino (b13) 2005; 10 Neher, Jackson, Nedialkov (b12) 2007; 45 Y. Lin, M.A. Stadtherr, Validated solution of initial value problems for ODEs with interval parameters, in: R. L. Muhanna, R. L. Mullen(Eds.), Proceedings of 2nd NSF Workshop on Reliable Engineering Computing, Savannah, GA, 2006. K. Makino, Taylor model-based verified integrators, in: Seventh International Workshop on Taylor Methods, Key West, Florida, 2011, Slides Berz, Makino (b14) 2005; 10 Hoefkens (b20) 2001 10.1016/j.cam.2019.112511_b18 Berz (10.1016/j.cam.2019.112511_b14) 2005; 10 10.1016/j.cam.2019.112511_b15 Bünger (10.1016/j.cam.2019.112511_b16) 2018; 78 10.1016/j.cam.2019.112511_b3 10.1016/j.cam.2019.112511_b4 Rump (10.1016/j.cam.2019.112511_b9) 1999 10.1016/j.cam.2019.112511_b5 10.1016/j.cam.2019.112511_b6 Rump (10.1016/j.cam.2019.112511_b11) 1980 Lohner (10.1016/j.cam.2019.112511_b1) 1988 10.1016/j.cam.2019.112511_b2 Berz (10.1016/j.cam.2019.112511_b13) 2005; 10 Dzetkulič (10.1016/j.cam.2019.112511_b7) 2015; 69 Hoefkens (10.1016/j.cam.2019.112511_b21) 2003; 8 Eble (10.1016/j.cam.2019.112511_b8) 2007 Neher (10.1016/j.cam.2019.112511_b17) 2016; 23 Neher (10.1016/j.cam.2019.112511_b12) 2007; 45 10.1016/j.cam.2019.112511_b10 10.1016/j.cam.2019.112511_b22 Berz (10.1016/j.cam.2019.112511_b19) 2006; 36 Hoefkens (10.1016/j.cam.2019.112511_b20) 2001 |
References_xml | – volume: 23 start-page: 15 year: 2016 end-page: 34 ident: b17 article-title: On the blunting method in verified integration of ODEs publication-title: Reliab. Comput. – reference: , VNODE, – year: 1980 ident: b11 article-title: Kleine Fehlerschranken bei Matrixproblemen – volume: 78 start-page: 1001 year: 2018 end-page: 1017 ident: b16 article-title: Shrink wrapping for Taylor models revisited publication-title: Numer. Algorithms – reference: M. Berz, K. Makino, Rigorous integration of flows and ODEs using Taylor models, in: Proceedings of the 2009 conference on symbolic numeric computation, 2009, pp. 79-84, – reference: M. Kashiwagi, kv - a C++ library for verified numerical computation, – reference: M. Berz, et al. The COSY INFINITY web page, – reference: A. Rauh, E.P. Hofer, E. Auer, VALENCIA-IVP: A comparison with other initial value problem solvers, Published in: 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN 2006. – reference: M. Neher, Personal communication, 2017. – reference: . – volume: 10 start-page: 105 year: 2005 end-page: 136 ident: b14 article-title: Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by preconditioning publication-title: Int. J. Differential Equations Applications – volume: 8 start-page: 21 year: 2003 end-page: 41 ident: b21 article-title: Controlling the wrapping effect in the solution of ODEs for asteroids publication-title: Reliab. Comput. – start-page: 77 year: 1999 end-page: 104 ident: b9 article-title: INTLAB-INTerval LABoratory publication-title: Developments in Reliable Computing – year: 1988 ident: b1 article-title: Einschließung der Lösung Gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen – reference: K. Makino, Taylor model-based verified integrators, in: Seventh International Workshop on Taylor Methods, Key West, Florida, 2011, Slides: – reference: N.S. Nedialkov, VNODE-LP - a validated solver for initial value problems in ordinary differential equations. Technical Report CAS-06-06-NN, Department of Computing and Software, McMaster University, Hamilton, Canada, L8S4K1, 2006, Software: VNODE-LP, – volume: 10 start-page: 385 year: 2005 end-page: 403 ident: b13 article-title: Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by shrink wrapping publication-title: Int. J. Differential Equations Applications – volume: 36 start-page: 175 year: 2006 end-page: 197 ident: b19 article-title: Suppression of the wrapping effect by Taylor model-based verified integrators: the single step publication-title: Int. J. Pure Appl. Math. – reference: Y. Lin, M.A. Stadtherr, Validated solution of initial value problems for ODEs with interval parameters, in: R. L. Muhanna, R. L. Mullen(Eds.), Proceedings of 2nd NSF Workshop on Reliable Engineering Computing, Savannah, GA, 2006. – volume: 69 start-page: 183 year: 2015 end-page: 205 ident: b7 article-title: Rigorous integration of non-linear ordinary differential equations in Chebyshev basis publication-title: Numer. Algorithms – year: 2007 ident: b8 article-title: Über Taylor-Modelle – reference: X. Chen, Reachability analysis of non-linear hybrid systems using Taylor models, Dissertation at RWTH Aachen University, 2015, Software: FLOW, – volume: 45 start-page: 236 year: 2007 end-page: 262 ident: b12 article-title: On Taylor model based integration of ODEs publication-title: SIAM J. Numer. Anal. – year: 2001 ident: b20 article-title: Rigorous numerical analysis with high-order Taylor models – ident: 10.1016/j.cam.2019.112511_b3 – ident: 10.1016/j.cam.2019.112511_b4 – year: 1980 ident: 10.1016/j.cam.2019.112511_b11 – ident: 10.1016/j.cam.2019.112511_b2 – volume: 69 start-page: 183 year: 2015 ident: 10.1016/j.cam.2019.112511_b7 article-title: Rigorous integration of non-linear ordinary differential equations in Chebyshev basis publication-title: Numer. Algorithms doi: 10.1007/s11075-014-9889-x – year: 2001 ident: 10.1016/j.cam.2019.112511_b20 – volume: 8 start-page: 21 year: 2003 ident: 10.1016/j.cam.2019.112511_b21 article-title: Controlling the wrapping effect in the solution of ODEs for asteroids publication-title: Reliab. Comput. doi: 10.1023/A:1023009910949 – volume: 36 start-page: 175 issue: 2 year: 2006 ident: 10.1016/j.cam.2019.112511_b19 article-title: Suppression of the wrapping effect by Taylor model-based verified integrators: the single step publication-title: Int. J. Pure Appl. Math. – ident: 10.1016/j.cam.2019.112511_b22 doi: 10.1109/SCAN.2006.47 – year: 2007 ident: 10.1016/j.cam.2019.112511_b8 – year: 1988 ident: 10.1016/j.cam.2019.112511_b1 – ident: 10.1016/j.cam.2019.112511_b6 – ident: 10.1016/j.cam.2019.112511_b10 doi: 10.1145/1577190.1577206 – ident: 10.1016/j.cam.2019.112511_b5 – volume: 23 start-page: 15 year: 2016 ident: 10.1016/j.cam.2019.112511_b17 article-title: On the blunting method in verified integration of ODEs publication-title: Reliab. Comput. – ident: 10.1016/j.cam.2019.112511_b15 – start-page: 77 year: 1999 ident: 10.1016/j.cam.2019.112511_b9 article-title: INTLAB-INTerval LABoratory – ident: 10.1016/j.cam.2019.112511_b18 – volume: 10 start-page: 105 issue: 4 year: 2005 ident: 10.1016/j.cam.2019.112511_b14 article-title: Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by preconditioning publication-title: Int. J. Differential Equations Applications – volume: 45 start-page: 236 issue: 1 year: 2007 ident: 10.1016/j.cam.2019.112511_b12 article-title: On Taylor model based integration of ODEs publication-title: SIAM J. Numer. Anal. doi: 10.1137/050638448 – volume: 10 start-page: 385 issue: 4 year: 2005 ident: 10.1016/j.cam.2019.112511_b13 article-title: Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by shrink wrapping publication-title: Int. J. Differential Equations Applications – volume: 78 start-page: 1001 issue: 4 year: 2018 ident: 10.1016/j.cam.2019.112511_b16 article-title: Shrink wrapping for Taylor models revisited publication-title: Numer. Algorithms doi: 10.1007/s11075-017-0410-1 |
SSID | ssj0006914 |
Score | 2.357449 |
Snippet | The new INTLAB release V11 contains two verified ODE solvers. One is a MATLAB implementation of Lohner’s classical AWA, the other one follows the so-called... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 112511 |
SubjectTerms | Initial value problems Ordinary differential equations Taylor models |
Title | A Taylor model toolbox for solving ODEs implemented in MATLAB/INTLAB |
URI | https://dx.doi.org/10.1016/j.cam.2019.112511 |
Volume | 368 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5qvehBXLEuZQ6ehJhOMslkjulGq20VbaG3kJlOIFKTYiN48rc7L0tRUA-ehoT3IHzz8paZtyB0pU2uRxxmGRaJJIwws40wDBcGZSGNFNw7KTjvGE_cwYzezp15DXWqWhhIqyx1f6HTc21dvjFLNM1VHJtPLZsxmBShXRAtWS50_LSplxfxzdsbbezyor-3JjaAurrZzHO8ZAjF6IRDIY1DyM-26Yu96e-jvdJRxH7xLQeoppJDtDvedFldH6Guj4uAG-fzbHCWpkuRvmPth2ItUnBUgO-7vTWOX8oscbXAcYLH_nTkt83hBJZjNOv3pp2BUU5FMKTFWWaErv4paRRpP19AD09JqRKeTSNtjKQiLQVBj4hcIbl-VrZQ3FaUcCa1s6MksU9QPUkTdYqwB8VoOgBh1FOUuTB2XHpCCLKw-EI5vIFaFR6BLFuGw-SKZVDlhj0HGsIAIAwKCBvoesOyKvpl_EVMK5CDb5seaH3-O9vZ_9jO0Y4FwXKednOB6tnrm7rUHkUmmmjr5oM00bbfeRw9wDq8G0yauSB9AoZ9yF8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7UelAPxmeszz14MiF0YWHhSB-m1VIPtklvG3ZZEkyFxmLiz3eHR6OJevBEILMJGYaZb3Zn5kPoVodcjzjMMiySSKAws40oimKDsogmCs6dFOx3hFN3NKcPC2fRQv2mFwbKKmvfX_n00lvXT8xam-YqTc3nrs0YMEVoCKIty7W30LZGAwz4G8aL3sYdu3414FtLGyDeHG2WRV4ygm504kMnjUPIz8HpS8C5P0D7NVLEQfUyh6ilsiO0F27GrK6P0SDAVcaNS0IbXOT5UuQfWANRrG0K9grw02C4xulrXSauYpxmOAxmk6BnjqdwOUHz--GsPzJqWgRDWj4rjMjVfyVNEg30BQzxlJQq4dk00dFIKtJVkPWIxBXS1_fKFsq3FSU-kxrtKEnsU9TO8kydIexBN5rOQBj1FGUu8I5LTwhBYsuPleN3ULfRB5f1zHCgrljypjjshWsVclAhr1TYQXebJatqYMZfwrRRMv_21bl26L8vO__fshu0M5qFEz4ZTx8v0K4FmXNZg3OJ2sXbu7rS8KIQ16X5fAJsxMdd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Taylor+model+toolbox+for+solving+ODEs+implemented+in+MATLAB%2FINTLAB&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=B%C3%BCnger%2C+Florian&rft.date=2020-04-01&rft.issn=0377-0427&rft.volume=368&rft.spage=112511&rft_id=info:doi/10.1016%2Fj.cam.2019.112511&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2019_112511 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |