A Taylor model toolbox for solving ODEs implemented in MATLAB/INTLAB

The new INTLAB release V11 contains two verified ODE solvers. One is a MATLAB implementation of Lohner’s classical AWA, the other one follows the so-called Taylor model approach which is the main subject of this article.

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 368; p. 112511
Main Author Bünger, Florian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The new INTLAB release V11 contains two verified ODE solvers. One is a MATLAB implementation of Lohner’s classical AWA, the other one follows the so-called Taylor model approach which is the main subject of this article.
AbstractList The new INTLAB release V11 contains two verified ODE solvers. One is a MATLAB implementation of Lohner’s classical AWA, the other one follows the so-called Taylor model approach which is the main subject of this article.
ArticleNumber 112511
Author Bünger, Florian
Author_xml – sequence: 1
  givenname: Florian
  surname: Bünger
  fullname: Bünger, Florian
  email: florian.buenger@tuhh.de
  organization: Institute for Reliable Computing, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany
BookMark eNp9kEFOwzAQRS1UJNrCAdj5Akk9sRPHYhXaApUK3ZS1lTgT5CqJKztC9PakKisWXX3Nl95I_83IpHc9EvIILAYG2eIQm7KLEwYqBkhSgBsyhVyqCKTMJ2TKuJQRE4m8I7MQDoyxTIGYklVB9-WpdZ52rsaWDs61lfuhzdgE137b_ovuVutAbXdsscN-wJranr4X-23xvNh8nOOe3DZlG_DhL-fk82W9X75F293rZllsI5MoOURlJjkTTZPmaSXyRBohsMq5aDjjBoEhA6GqJquMGm_kFSqOApQ0KUvRAJ8TuPw13oXgsdFHb7vSnzQwfdagD3rUoM8a9EXDyMh_jLFDOVjXD7607VXy6ULiOOnbotfBWOwN1tajGXTt7BX6F3kEd0Y
CitedBy_id crossref_primary_10_1007_s00211_024_01415_w
crossref_primary_10_1007_s00332_023_09900_6
crossref_primary_10_3390_a14030085
crossref_primary_10_3390_a15050162
crossref_primary_10_3390_fractalfract5010017
crossref_primary_10_1587_nolta_12_2
crossref_primary_10_1016_j_cam_2023_115332
crossref_primary_10_1137_21M1451440
crossref_primary_10_1007_s11075_023_01725_4
crossref_primary_10_3934_jcd_2021015
Cites_doi 10.1007/s11075-014-9889-x
10.1023/A:1023009910949
10.1109/SCAN.2006.47
10.1145/1577190.1577206
10.1137/050638448
10.1007/s11075-017-0410-1
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2019.112511
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
ExternalDocumentID 10_1016_j_cam_2019_112511
S0377042719305163
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
NHB
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WUQ
XPP
YQT
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-a67304ff585b4827c44eb834f303ce10e0149bf6bc93cee3be93e4197c505ec13
IEDL.DBID IXB
ISSN 0377-0427
IngestDate Thu Apr 24 23:13:26 EDT 2025
Tue Jul 01 04:27:10 EDT 2025
Fri Feb 23 02:49:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 65L05
Ordinary differential equations
Taylor models
Initial value problems
65G20
34-04
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-a67304ff585b4827c44eb834f303ce10e0149bf6bc93cee3be93e4197c505ec13
ParticipantIDs crossref_primary_10_1016_j_cam_2019_112511
crossref_citationtrail_10_1016_j_cam_2019_112511
elsevier_sciencedirect_doi_10_1016_j_cam_2019_112511
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References M. Kashiwagi, kv - a C++ library for verified numerical computation
Rump (b9) 1999
Bünger (b16) 2018; 78
A. Rauh, E.P. Hofer, E. Auer, VALENCIA-IVP: A comparison with other initial value problem solvers, Published in: 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN 2006.
X. Chen, Reachability analysis of non-linear hybrid systems using Taylor models, Dissertation at RWTH Aachen University, 2015, Software: FLOW
Dzetkulič (b7) 2015; 69
Eble (b8) 2007
Hoefkens, Berz, Makino (b21) 2003; 8
.
Rump (b11) 1980
M. Berz, K. Makino, Rigorous integration of flows and ODEs using Taylor models, in: Proceedings of the 2009 conference on symbolic numeric computation, 2009, pp. 79-84
Berz, Makino (b19) 2006; 36
Neher, Jackson, Nedialkov (b17) 2016; 23
M. Berz, et al. The COSY INFINITY web page
Lohner (b1) 1988
N.S. Nedialkov, VNODE-LP - a validated solver for initial value problems in ordinary differential equations. Technical Report CAS-06-06-NN, Department of Computing and Software, McMaster University, Hamilton, Canada, L8S4K1, 2006, Software: VNODE-LP
VNODE
M. Neher, Personal communication, 2017.
Berz, Makino (b13) 2005; 10
Neher, Jackson, Nedialkov (b12) 2007; 45
Y. Lin, M.A. Stadtherr, Validated solution of initial value problems for ODEs with interval parameters, in: R. L. Muhanna, R. L. Mullen(Eds.), Proceedings of 2nd NSF Workshop on Reliable Engineering Computing, Savannah, GA, 2006.
K. Makino, Taylor model-based verified integrators, in: Seventh International Workshop on Taylor Methods, Key West, Florida, 2011, Slides
Berz, Makino (b14) 2005; 10
Hoefkens (b20) 2001
10.1016/j.cam.2019.112511_b18
Berz (10.1016/j.cam.2019.112511_b14) 2005; 10
10.1016/j.cam.2019.112511_b15
Bünger (10.1016/j.cam.2019.112511_b16) 2018; 78
10.1016/j.cam.2019.112511_b3
10.1016/j.cam.2019.112511_b4
Rump (10.1016/j.cam.2019.112511_b9) 1999
10.1016/j.cam.2019.112511_b5
10.1016/j.cam.2019.112511_b6
Rump (10.1016/j.cam.2019.112511_b11) 1980
Lohner (10.1016/j.cam.2019.112511_b1) 1988
10.1016/j.cam.2019.112511_b2
Berz (10.1016/j.cam.2019.112511_b13) 2005; 10
Dzetkulič (10.1016/j.cam.2019.112511_b7) 2015; 69
Hoefkens (10.1016/j.cam.2019.112511_b21) 2003; 8
Eble (10.1016/j.cam.2019.112511_b8) 2007
Neher (10.1016/j.cam.2019.112511_b17) 2016; 23
Neher (10.1016/j.cam.2019.112511_b12) 2007; 45
10.1016/j.cam.2019.112511_b10
10.1016/j.cam.2019.112511_b22
Berz (10.1016/j.cam.2019.112511_b19) 2006; 36
Hoefkens (10.1016/j.cam.2019.112511_b20) 2001
References_xml – volume: 23
  start-page: 15
  year: 2016
  end-page: 34
  ident: b17
  article-title: On the blunting method in verified integration of ODEs
  publication-title: Reliab. Comput.
– reference: , VNODE,
– year: 1980
  ident: b11
  article-title: Kleine Fehlerschranken bei Matrixproblemen
– volume: 78
  start-page: 1001
  year: 2018
  end-page: 1017
  ident: b16
  article-title: Shrink wrapping for Taylor models revisited
  publication-title: Numer. Algorithms
– reference: M. Berz, K. Makino, Rigorous integration of flows and ODEs using Taylor models, in: Proceedings of the 2009 conference on symbolic numeric computation, 2009, pp. 79-84,
– reference: M. Kashiwagi, kv - a C++ library for verified numerical computation,
– reference: M. Berz, et al. The COSY INFINITY web page,
– reference: A. Rauh, E.P. Hofer, E. Auer, VALENCIA-IVP: A comparison with other initial value problem solvers, Published in: 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN 2006.
– reference: M. Neher, Personal communication, 2017.
– reference: .
– volume: 10
  start-page: 105
  year: 2005
  end-page: 136
  ident: b14
  article-title: Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by preconditioning
  publication-title: Int. J. Differential Equations Applications
– volume: 8
  start-page: 21
  year: 2003
  end-page: 41
  ident: b21
  article-title: Controlling the wrapping effect in the solution of ODEs for asteroids
  publication-title: Reliab. Comput.
– start-page: 77
  year: 1999
  end-page: 104
  ident: b9
  article-title: INTLAB-INTerval LABoratory
  publication-title: Developments in Reliable Computing
– year: 1988
  ident: b1
  article-title: Einschließung der Lösung Gewöhnlicher Anfangs- und Randwertaufgaben und Anwendungen
– reference: K. Makino, Taylor model-based verified integrators, in: Seventh International Workshop on Taylor Methods, Key West, Florida, 2011, Slides:
– reference: N.S. Nedialkov, VNODE-LP - a validated solver for initial value problems in ordinary differential equations. Technical Report CAS-06-06-NN, Department of Computing and Software, McMaster University, Hamilton, Canada, L8S4K1, 2006, Software: VNODE-LP,
– volume: 10
  start-page: 385
  year: 2005
  end-page: 403
  ident: b13
  article-title: Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by shrink wrapping
  publication-title: Int. J. Differential Equations Applications
– volume: 36
  start-page: 175
  year: 2006
  end-page: 197
  ident: b19
  article-title: Suppression of the wrapping effect by Taylor model-based verified integrators: the single step
  publication-title: Int. J. Pure Appl. Math.
– reference: Y. Lin, M.A. Stadtherr, Validated solution of initial value problems for ODEs with interval parameters, in: R. L. Muhanna, R. L. Mullen(Eds.), Proceedings of 2nd NSF Workshop on Reliable Engineering Computing, Savannah, GA, 2006.
– volume: 69
  start-page: 183
  year: 2015
  end-page: 205
  ident: b7
  article-title: Rigorous integration of non-linear ordinary differential equations in Chebyshev basis
  publication-title: Numer. Algorithms
– year: 2007
  ident: b8
  article-title: Über Taylor-Modelle
– reference: X. Chen, Reachability analysis of non-linear hybrid systems using Taylor models, Dissertation at RWTH Aachen University, 2015, Software: FLOW,
– volume: 45
  start-page: 236
  year: 2007
  end-page: 262
  ident: b12
  article-title: On Taylor model based integration of ODEs
  publication-title: SIAM J. Numer. Anal.
– year: 2001
  ident: b20
  article-title: Rigorous numerical analysis with high-order Taylor models
– ident: 10.1016/j.cam.2019.112511_b3
– ident: 10.1016/j.cam.2019.112511_b4
– year: 1980
  ident: 10.1016/j.cam.2019.112511_b11
– ident: 10.1016/j.cam.2019.112511_b2
– volume: 69
  start-page: 183
  year: 2015
  ident: 10.1016/j.cam.2019.112511_b7
  article-title: Rigorous integration of non-linear ordinary differential equations in Chebyshev basis
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-014-9889-x
– year: 2001
  ident: 10.1016/j.cam.2019.112511_b20
– volume: 8
  start-page: 21
  year: 2003
  ident: 10.1016/j.cam.2019.112511_b21
  article-title: Controlling the wrapping effect in the solution of ODEs for asteroids
  publication-title: Reliab. Comput.
  doi: 10.1023/A:1023009910949
– volume: 36
  start-page: 175
  issue: 2
  year: 2006
  ident: 10.1016/j.cam.2019.112511_b19
  article-title: Suppression of the wrapping effect by Taylor model-based verified integrators: the single step
  publication-title: Int. J. Pure Appl. Math.
– ident: 10.1016/j.cam.2019.112511_b22
  doi: 10.1109/SCAN.2006.47
– year: 2007
  ident: 10.1016/j.cam.2019.112511_b8
– year: 1988
  ident: 10.1016/j.cam.2019.112511_b1
– ident: 10.1016/j.cam.2019.112511_b6
– ident: 10.1016/j.cam.2019.112511_b10
  doi: 10.1145/1577190.1577206
– ident: 10.1016/j.cam.2019.112511_b5
– volume: 23
  start-page: 15
  year: 2016
  ident: 10.1016/j.cam.2019.112511_b17
  article-title: On the blunting method in verified integration of ODEs
  publication-title: Reliab. Comput.
– ident: 10.1016/j.cam.2019.112511_b15
– start-page: 77
  year: 1999
  ident: 10.1016/j.cam.2019.112511_b9
  article-title: INTLAB-INTerval LABoratory
– ident: 10.1016/j.cam.2019.112511_b18
– volume: 10
  start-page: 105
  issue: 4
  year: 2005
  ident: 10.1016/j.cam.2019.112511_b14
  article-title: Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by preconditioning
  publication-title: Int. J. Differential Equations Applications
– volume: 45
  start-page: 236
  issue: 1
  year: 2007
  ident: 10.1016/j.cam.2019.112511_b12
  article-title: On Taylor model based integration of ODEs
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/050638448
– volume: 10
  start-page: 385
  issue: 4
  year: 2005
  ident: 10.1016/j.cam.2019.112511_b13
  article-title: Suppression of the wrapping effect by Taylor model-based verified integrators: long-term stabilization by shrink wrapping
  publication-title: Int. J. Differential Equations Applications
– volume: 78
  start-page: 1001
  issue: 4
  year: 2018
  ident: 10.1016/j.cam.2019.112511_b16
  article-title: Shrink wrapping for Taylor models revisited
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-017-0410-1
SSID ssj0006914
Score 2.357449
Snippet The new INTLAB release V11 contains two verified ODE solvers. One is a MATLAB implementation of Lohner’s classical AWA, the other one follows the so-called...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112511
SubjectTerms Initial value problems
Ordinary differential equations
Taylor models
Title A Taylor model toolbox for solving ODEs implemented in MATLAB/INTLAB
URI https://dx.doi.org/10.1016/j.cam.2019.112511
Volume 368
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5qvehBXLEuZQ6ehJhOMslkjulGq20VbaG3kJlOIFKTYiN48rc7L0tRUA-ehoT3IHzz8paZtyB0pU2uRxxmGRaJJIwws40wDBcGZSGNFNw7KTjvGE_cwYzezp15DXWqWhhIqyx1f6HTc21dvjFLNM1VHJtPLZsxmBShXRAtWS50_LSplxfxzdsbbezyor-3JjaAurrZzHO8ZAjF6IRDIY1DyM-26Yu96e-jvdJRxH7xLQeoppJDtDvedFldH6Guj4uAG-fzbHCWpkuRvmPth2ItUnBUgO-7vTWOX8oscbXAcYLH_nTkt83hBJZjNOv3pp2BUU5FMKTFWWaErv4paRRpP19AD09JqRKeTSNtjKQiLQVBj4hcIbl-VrZQ3FaUcCa1s6MksU9QPUkTdYqwB8VoOgBh1FOUuTB2XHpCCLKw-EI5vIFaFR6BLFuGw-SKZVDlhj0HGsIAIAwKCBvoesOyKvpl_EVMK5CDb5seaH3-O9vZ_9jO0Y4FwXKednOB6tnrm7rUHkUmmmjr5oM00bbfeRw9wDq8G0yauSB9AoZ9yF8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN7UelAPxmeszz14MiF0YWHhSB-m1VIPtklvG3ZZEkyFxmLiz3eHR6OJevBEILMJGYaZb3Zn5kPoVodcjzjMMiySSKAws40oimKDsogmCs6dFOx3hFN3NKcPC2fRQv2mFwbKKmvfX_n00lvXT8xam-YqTc3nrs0YMEVoCKIty7W30LZGAwz4G8aL3sYdu3414FtLGyDeHG2WRV4ygm504kMnjUPIz8HpS8C5P0D7NVLEQfUyh6ilsiO0F27GrK6P0SDAVcaNS0IbXOT5UuQfWANRrG0K9grw02C4xulrXSauYpxmOAxmk6BnjqdwOUHz--GsPzJqWgRDWj4rjMjVfyVNEg30BQzxlJQq4dk00dFIKtJVkPWIxBXS1_fKFsq3FSU-kxrtKEnsU9TO8kydIexBN5rOQBj1FGUu8I5LTwhBYsuPleN3ULfRB5f1zHCgrljypjjshWsVclAhr1TYQXebJatqYMZfwrRRMv_21bl26L8vO__fshu0M5qFEz4ZTx8v0K4FmXNZg3OJ2sXbu7rS8KIQ16X5fAJsxMdd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Taylor+model+toolbox+for+solving+ODEs+implemented+in+MATLAB%2FINTLAB&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=B%C3%BCnger%2C+Florian&rft.date=2020-04-01&rft.issn=0377-0427&rft.volume=368&rft.spage=112511&rft_id=info:doi/10.1016%2Fj.cam.2019.112511&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2019_112511
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon