Zn anode surface engineering for stable zinc-ion batteries: Carbon dots incorporated mesoporous TiO2 as a coating layer
•This protective layer is constructed by TiO2 nanosheets and N-doped carbon dots.•The TiO2 layer can immobilize water molecules and prevent the side reactions.•NCDs with abundant functional groups provide the zincophilic nucleation sites.•The Zn-TiO2/NCDs||MnO2 full cells show an excellent reversibi...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 471; p. 144735 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •This protective layer is constructed by TiO2 nanosheets and N-doped carbon dots.•The TiO2 layer can immobilize water molecules and prevent the side reactions.•NCDs with abundant functional groups provide the zincophilic nucleation sites.•The Zn-TiO2/NCDs||MnO2 full cells show an excellent reversibility at 2 A/g.
Uncontrolled Zn dendrites growth and sustained corrosion originating from severe interfacial reactions are the major shortcomings of Zn metal electrodes in aqueous zinc-ion batteries (ZIBs). In order to overcome these obstacles, we designed a protective coating layer to stabilize the zinc anode and regulate the Zn deposition simultaneously. This hybrid layer (TiO2/NCDs) is constructed by mesoporous TiO2 nanosheets and N-doped carbon dots (NCDs), which is prepared by a solvothermal growth under the control of NCDs. On one hand, the TiO2 layer immobilize water molecules effectively, preventing them from the parasitic reactions with Zn electrodes. On the other, NCDs with abundant functional groups (–OH, –COOH, –NH2) provide the zincophilic nucleation sites to endow a small deposition overpotential of 28 mV and guide Zn deposition into a petal structure. Owing to mesoporous protective coating layer, the Zn-TiO2/NCDs anode presents a low voltage hysteresis of 48 mV and a prolonged cycling lifespan of 1500 h at 5 mA cm−2 and 2.5 mAh cm−2. Moreover, aqueous ZIBs assembled with the Zn-TiO2/NCDs anode and the α-MnO2 cathode show outstanding reversibility and good cycling stability, whose capacity retention is up to 90% after 1000 cycles. |
---|---|
AbstractList | •This protective layer is constructed by TiO2 nanosheets and N-doped carbon dots.•The TiO2 layer can immobilize water molecules and prevent the side reactions.•NCDs with abundant functional groups provide the zincophilic nucleation sites.•The Zn-TiO2/NCDs||MnO2 full cells show an excellent reversibility at 2 A/g.
Uncontrolled Zn dendrites growth and sustained corrosion originating from severe interfacial reactions are the major shortcomings of Zn metal electrodes in aqueous zinc-ion batteries (ZIBs). In order to overcome these obstacles, we designed a protective coating layer to stabilize the zinc anode and regulate the Zn deposition simultaneously. This hybrid layer (TiO2/NCDs) is constructed by mesoporous TiO2 nanosheets and N-doped carbon dots (NCDs), which is prepared by a solvothermal growth under the control of NCDs. On one hand, the TiO2 layer immobilize water molecules effectively, preventing them from the parasitic reactions with Zn electrodes. On the other, NCDs with abundant functional groups (–OH, –COOH, –NH2) provide the zincophilic nucleation sites to endow a small deposition overpotential of 28 mV and guide Zn deposition into a petal structure. Owing to mesoporous protective coating layer, the Zn-TiO2/NCDs anode presents a low voltage hysteresis of 48 mV and a prolonged cycling lifespan of 1500 h at 5 mA cm−2 and 2.5 mAh cm−2. Moreover, aqueous ZIBs assembled with the Zn-TiO2/NCDs anode and the α-MnO2 cathode show outstanding reversibility and good cycling stability, whose capacity retention is up to 90% after 1000 cycles. |
ArticleNumber | 144735 |
Author | Ma, Qian-Li Ni, Jia-Wen Xiong, Huan-Ming He, Tian-Le Zhang, Xi-Rong Song, Tian-Bing |
Author_xml | – sequence: 1 givenname: Tian-Bing surname: Song fullname: Song, Tian-Bing – sequence: 2 givenname: Qian-Li surname: Ma fullname: Ma, Qian-Li – sequence: 3 givenname: Xi-Rong surname: Zhang fullname: Zhang, Xi-Rong – sequence: 4 givenname: Jia-Wen surname: Ni fullname: Ni, Jia-Wen – sequence: 5 givenname: Tian-Le surname: He fullname: He, Tian-Le – sequence: 6 givenname: Huan-Ming orcidid: 0000-0002-3118-942X surname: Xiong fullname: Xiong, Huan-Ming email: hmxiong@fudan.edu.cn |
BookMark | eNp9kMtOQjEQhrvAREAfwF1f4GDbc9eVId4SEja4cdNM2zmkBFrSFg0-vSW4csFqJvPnm8x8EzJy3iEhd5zNOOPN_WamcTMTTJQzXlVtWY_ImJddXXR91V6TSYwbxljT835Mvj8dBecN0ngIA2ik6NbWIQbr1nTwgcYEaov0xzpdWO-ogpRyivGBziGoPDE-RZpjH_Y-QEJDdxh97v0h0pVdCgqRAtUe0mnpFo4YbsjVANuIt391Sj5enlfzt2KxfH2fPy0KLfo2FdCUjRgA0GDdqbJWRiveD1zUjRnqrkbIgahKzYTgqm6V7nmDChQq1rHGlFPCz3t18DEGHOQ-2B2Eo-RMnmzJjcy25MmWPNvKTPuP0Tbl271LAez2Ivl4JjG_9GUxyKgtOo3GBtRJGm8v0L9lRYtZ |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_149206 crossref_primary_10_1039_D4GC01812E crossref_primary_10_1016_j_jcis_2024_11_097 crossref_primary_10_1002_adfm_202400001 crossref_primary_10_1016_j_cej_2024_150533 crossref_primary_10_1002_smll_202400565 crossref_primary_10_1016_j_ccr_2025_216478 crossref_primary_10_1016_j_cej_2024_151542 crossref_primary_10_1021_acsami_3c11957 crossref_primary_10_1021_acssuschemeng_4c04674 crossref_primary_10_1063_5_0184529 crossref_primary_10_1002_adfm_202316070 crossref_primary_10_1002_adfm_202410843 crossref_primary_10_1016_j_ensm_2024_103702 crossref_primary_10_1016_j_jpowsour_2025_236316 crossref_primary_10_1007_s11426_024_2390_5 crossref_primary_10_1038_s42004_024_01259_3 crossref_primary_10_1021_acsnano_4c14244 crossref_primary_10_1002_batt_202300486 crossref_primary_10_1016_j_ccr_2024_216044 crossref_primary_10_1002_adsu_202401048 crossref_primary_10_1016_j_jcis_2024_12_065 crossref_primary_10_1016_j_cej_2025_161327 crossref_primary_10_1002_smll_202404294 crossref_primary_10_1002_ece2_83 crossref_primary_10_1016_j_ensm_2024_103616 |
Cites_doi | 10.1016/j.cej.2022.139090 10.1021/acsnano.5b05406 10.1002/smll.202001323 10.1007/s12274-022-4990-2 10.1016/j.cej.2021.130660 10.1021/acsenergylett.2c00560 10.1016/j.electacta.2021.138106 10.1002/adma.202008424 10.1021/acsami.0c22911 10.1016/j.cclet.2019.07.039 10.1021/acsami.0c18433 10.1002/anie.202000162 10.1021/acsami.7b17659 10.1002/anie.202001844 10.1016/j.nanoen.2021.106837 10.1021/acsaem.0c00990 10.1002/slct.201900836 10.1016/j.apsusc.2021.149372 10.1038/s41467-022-28238-3 10.1002/aenm.202200665 10.1002/aenm.202003065 10.1002/cssc.202102390 10.1002/aenm.201600173 10.1002/aenm.202103979 10.1007/s40820-022-00867-9 10.1016/j.cej.2021.128584 10.1002/sus2.53 10.1007/s12274-021-3891-0 10.1016/j.apsusc.2019.03.197 10.1007/s12598-021-01858-2 10.1039/C9EE00596J 10.1002/smll.201602164 10.1039/C9QM00554D 10.1038/s41467-020-15478-4 10.1021/jacs.2c00551 10.1016/j.ensm.2023.03.002 10.1016/j.cej.2021.130643 10.1016/j.cej.2022.137843 10.1002/adma.202105951 10.1016/j.nanoen.2021.106322 10.1002/adfm.202211271 10.1016/j.cej.2019.122248 10.1002/adma.202109092 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2023.144735 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_cej_2023_144735 S1385894723034666 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAYWO AAYXX ABXDB ACVFH ADCNI AEUPX AFFNX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-a6362faaede58b35bdcb19f1256df585eade5243c0221b57bc916ebabeb0806d3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 23:11:20 EDT 2025 Tue Jul 01 05:20:03 EDT 2025 Sat Mar 08 15:49:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Coating layer Carbon dots Zinc anode Zinc ion batteries Mesoporous TiO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-a6362faaede58b35bdcb19f1256df585eade5243c0221b57bc916ebabeb0806d3 |
ORCID | 0000-0002-3118-942X |
ParticipantIDs | crossref_primary_10_1016_j_cej_2023_144735 crossref_citationtrail_10_1016_j_cej_2023_144735 elsevier_sciencedirect_doi_10_1016_j_cej_2023_144735 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 2023-09-00 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cao, Zhang, Gu, Zhang, Okhawilai, Wang, Han, Qin, Huang (b0050) 2021; 89 Chen, Dai, Xiao, Yang, Cai, Xu, Fan, Bao (b0225) 2022; 34 Lu, Liu, Du, Wang, Ding, Omar, Mikhailova (b0215) 2021; 13 Zhou, Cao, Wei, Zou, Ye, Liu, Tang, Yang (b0210) 2021; 13 Wei, Zhu, Zhao, Song, Huang, Zhang, Liu, Chen, Niu, Wang, Xiong (b0110) 2021; 425 Zhao, Fan, Liu, Liu, Li, Zhou, Ni, Yu, Zhang, Su, Liu, Cheng (b0045) 2022; 144 Song, Zhong (b0085) 2022; 41 Luo, Zhou, Luo, Shi, Li, Xie, Sun, Cao, Long, Liang, Fang (b0090) 2023; 57 Qiu, Xie, Zhang, Cheng, Lin, Liu, He, Zhang, Mi (b0060) 2022; 449 Ran, Zeng, Zhu, Wan, Meng, Shi, Wen, Lang, Jiang (b0190) 2023; 33 Ling, Bai, Wang, Ni, Chen, Zhou, Wu (b0170) 2018; 10 Yang, Li, Sun, Yang, Shi, Huang, Liu, Li, Wu, Wang, Su, Dou, Sun (b0075) 2021; 33 Ran, Shi, Meng, Zeng, Wan, Zhang, Wen, Lang, Jiang (b0200) 2022; 13 J. Yang, H. Yan, H. Hao, Y. Song, Y. Li, Q. Liu, A. Tang, Synergetic Modulation on Solvation Structure and Electrode Interface Enables a Highly Reversible Zinc Anode for Zinc-Iron Flow Batteries, ACS Energy Lett. 7 (7) 7 (2022) 2331-2339. Meng, Ran, Dai, Shi, Zeng, Zhu, Wen, Zhang, Lang, Zheng, Jiang (b0195) 2022; 14 Pudza, Abidin, Abdul-Rashid, Yassin, Noor, Abdullah (b0135) 2019; 4 Zhang, Li, Xu, Momen, Deng, Hu, Zou, Hou, Ji (b0120) 2022; 12 Li, Fu, Miao, Wang, Zhao, Wu, Zhang, Yang (b0180) 2021; 33 Li, Shi, Liang, Ma, Han, Wu, Zhou (b0030) 2020; 379 Han, Lee, Liu, Kim, Chu, Liu, Yang (b0115) 2023; 452 Díaz-Marín, Zhang, Lu, Alshrah, Grossman, Wang (b0095) 2022; 21 Xia, Pu, Tao, Liu, Wang (b0065) 2019; 481 Zhang, Xi, Ma, Chen, Feng, Xiong (b0015) 2022; 2 Zhang, Cao, Liu, Du, Cui, Gu, Shi, Li, Yang (b0175) 2022; 12 Zhao, Zhao, Hu, Li, Li, Zhang, Wang, Cui (b0205) 2019; 12 Song, Huang, Zhang, Ni, Xiong (b0125) 2023; 2205558 Cui, Yin, Xu, Jin, Li, Shao (b0080) 2022; 93 Wu, Gao, Hu, Zhao, Zhang (b0165) 2020; 31 Hieu, So, Kim, Hur (b0040) 2021; 411 Moniruzzaman, Kim (b0145) 2021; 552 Ding, Yu, Wei, Xiong (b0150) 2016; 10 Wei, Ding, Zhang, Song, Chen, Wang, Xiong (b0155) 2016; 12 Liu, Wang, Wang, Lei, Chen, Mai (b0035) 2020; 16 Wei, Song, Zhang, Niu, Chen, Xiong (b0100) 2020; 4 Ding, Zhou, Zhang, Zhao, Wei, Xiong (b0130) 2021; 15 Zhang, Wang, Hou, Zou, Ji (b0160) 2017; 7 Jian, Guo, Zhang, Wu, Zhao (b0220) 2021; 425 Yi, Chen, Hou, Wang, Liang (b0005) 2021; 11 Bao, Zhang, An, Liu, Feng, Xi, Xiong (b0010) 2023; 16 Zhang, Luan, Tang, Ji, Wang (b0025) 2020; 59 Song, Huang, Niu, Zhang, Wei, Xiong (b0140) 2022; 15 Wang, Ran, Yao, Shi, Wen, Zhao, Lang (b0185) 2020; 11 Wei, Song, Zhang, Zhu, Dong, Niu, Xiong (b0105) 2020; 3 Yang, Chang, Qiao, Deng, Mu, He, Zhou (b0020) 2020; 59 Zeng, Meng, Jiang, Ling, Yan, Liang (b0070) 2021; 378 Qiu (10.1016/j.cej.2023.144735_b0060) 2022; 449 Song (10.1016/j.cej.2023.144735_b0125) 2023; 2205558 Meng (10.1016/j.cej.2023.144735_b0195) 2022; 14 Pudza (10.1016/j.cej.2023.144735_b0135) 2019; 4 Lu (10.1016/j.cej.2023.144735_b0215) 2021; 13 Ding (10.1016/j.cej.2023.144735_b0150) 2016; 10 Bao (10.1016/j.cej.2023.144735_b0010) 2023; 16 Jian (10.1016/j.cej.2023.144735_b0220) 2021; 425 Cui (10.1016/j.cej.2023.144735_b0080) 2022; 93 Hieu (10.1016/j.cej.2023.144735_b0040) 2021; 411 Ling (10.1016/j.cej.2023.144735_b0170) 2018; 10 Wei (10.1016/j.cej.2023.144735_b0155) 2016; 12 Cao (10.1016/j.cej.2023.144735_b0050) 2021; 89 Moniruzzaman (10.1016/j.cej.2023.144735_b0145) 2021; 552 Wang (10.1016/j.cej.2023.144735_b0185) 2020; 11 Xia (10.1016/j.cej.2023.144735_b0065) 2019; 481 Liu (10.1016/j.cej.2023.144735_b0035) 2020; 16 Zhao (10.1016/j.cej.2023.144735_b0045) 2022; 144 Yang (10.1016/j.cej.2023.144735_b0075) 2021; 33 Zhou (10.1016/j.cej.2023.144735_b0210) 2021; 13 Ran (10.1016/j.cej.2023.144735_b0190) 2023; 33 Han (10.1016/j.cej.2023.144735_b0115) 2023; 452 Yi (10.1016/j.cej.2023.144735_b0005) 2021; 11 Song (10.1016/j.cej.2023.144735_b0140) 2022; 15 10.1016/j.cej.2023.144735_b0055 Zhao (10.1016/j.cej.2023.144735_b0205) 2019; 12 Zeng (10.1016/j.cej.2023.144735_b0070) 2021; 378 Song (10.1016/j.cej.2023.144735_b0085) 2022; 41 Zhang (10.1016/j.cej.2023.144735_b0025) 2020; 59 Zhang (10.1016/j.cej.2023.144735_b0175) 2022; 12 Wei (10.1016/j.cej.2023.144735_b0110) 2021; 425 Wei (10.1016/j.cej.2023.144735_b0100) 2020; 4 Wei (10.1016/j.cej.2023.144735_b0105) 2020; 3 Ding (10.1016/j.cej.2023.144735_b0130) 2021; 15 Zhang (10.1016/j.cej.2023.144735_b0160) 2017; 7 Wu (10.1016/j.cej.2023.144735_b0165) 2020; 31 Chen (10.1016/j.cej.2023.144735_b0225) 2022; 34 Zhang (10.1016/j.cej.2023.144735_b0015) 2022; 2 Li (10.1016/j.cej.2023.144735_b0180) 2021; 33 Yang (10.1016/j.cej.2023.144735_b0020) 2020; 59 Zhang (10.1016/j.cej.2023.144735_b0120) 2022; 12 Ran (10.1016/j.cej.2023.144735_b0200) 2022; 13 Li (10.1016/j.cej.2023.144735_b0030) 2020; 379 Díaz-Marín (10.1016/j.cej.2023.144735_b0095) 2022; 21 Luo (10.1016/j.cej.2023.144735_b0090) 2023; 57 |
References_xml | – volume: 31 start-page: 897 year: 2020 end-page: 902 ident: b0165 article-title: Boosting sodium storage of mesoporous TiO publication-title: Chin. Chem. Lett. – reference: J. Yang, H. Yan, H. Hao, Y. Song, Y. Li, Q. Liu, A. Tang, Synergetic Modulation on Solvation Structure and Electrode Interface Enables a Highly Reversible Zinc Anode for Zinc-Iron Flow Batteries, ACS Energy Lett. 7 (7) 7 (2022) 2331-2339. – volume: 41 start-page: 356 year: 2022 end-page: 360 ident: b0085 article-title: Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries publication-title: Rare Met. – volume: 452 year: 2023 ident: b0115 article-title: Toward highly reversible aqueous zinc-ion batteries: nanoscale-regulated zinc nucleation via graphene quantum dots functionalized with multiple functional groups publication-title: Chem. Eng. J. – volume: 13 start-page: 576 year: 2022 ident: b0200 article-title: Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries publication-title: Nat. Commun. – volume: 4 start-page: 729 year: 2020 end-page: 749 ident: b0100 article-title: A new generation of energy storage electrode materials constructed from carbon dots publication-title: Mater. Chem. Front. – volume: 425 year: 2021 ident: b0110 article-title: Self-assembled ZnO-carbon dots anode materials for high performance nickel-zinc alkaline batteries publication-title: Chem. Eng. J. – volume: 13 start-page: 8181 year: 2021 end-page: 8190 ident: b0210 article-title: Driving the interfacial ion-transfer kinetics by mesoporous TiO publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 4140 year: 2019 end-page: 4146 ident: b0135 article-title: Synthesis and Characterization of Fluorescent Carbon Dots from Tapioca publication-title: ChemistrySelect – volume: 33 start-page: 2105951 year: 2021 ident: b0075 article-title: Interfacial Manipulation via In Situ Grown ZnSe Cultivator toward Highly Reversible Zn Metal Anodes publication-title: Adv. Mater. – volume: 12 start-page: 1938 year: 2019 end-page: 1949 ident: b0205 article-title: Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase publication-title: Energ. Environ. Sci. – volume: 144 start-page: 11129 year: 2022 end-page: 11137 ident: b0045 article-title: Boosting the Kinetics and Stability of Zn Anodes in Aqueous Electrolytes with Supramolecular Cyclodextrin Additives publication-title: J. Am. Chem. Soc. – volume: 379 year: 2020 ident: b0030 article-title: Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode publication-title: Chem. Eng. J. – volume: 12 start-page: 2200665 year: 2022 ident: b0120 article-title: High-Yield Carbon Dots Interlayer for Ultra-Stable Zinc Batteries publication-title: Adv. Energy Mater. – volume: 12 start-page: 2103979 year: 2022 ident: b0175 article-title: Charge-Enriched Strategy Based on MXene-Based Polypyrrole Layers Toward Dendrite-Free Zinc Metal Anodes publication-title: Adv. Energy Mater. – volume: 481 start-page: 852 year: 2019 end-page: 859 ident: b0065 article-title: Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries publication-title: Appl. Surf. Sci. – volume: 2205558 year: 2023 ident: b0125 article-title: Nitrogen-Doped and Sulfonated Carbon Dots as a Multifunctional Additive to Realize Highly Reversible Aqueous Zinc-Ion Batteries publication-title: Small – volume: 59 start-page: 9377 year: 2020 end-page: 9381 ident: b0020 article-title: Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries publication-title: Angew. Chemie Int. Ed. – volume: 21 start-page: 119 year: 2022 end-page: 127 ident: b0095 article-title: Kinetics of Sorption in Hygroscopic Hydrogels publication-title: Nano Lett. – volume: 33 start-page: 2211271 year: 2023 ident: b0190 article-title: Uniformly MXene-Grafted Eutectic Aluminum-Cerium Alloys as Flexible and Reversible Anode Materials for Rechargeable Aluminum-Ion Battery publication-title: Adv. Funct. Mater. – volume: 93 year: 2022 ident: b0080 article-title: Fluorine enhanced nucleophilicity of TiO publication-title: Nano Energy – volume: 13 start-page: 16869 year: 2021 end-page: 16875 ident: b0215 article-title: Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 59 start-page: 13180 year: 2020 end-page: 13191 ident: b0025 article-title: Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries publication-title: Angew. Chemie Int. Ed. – volume: 3 start-page: 6907 year: 2020 end-page: 6914 ident: b0105 article-title: Integrating Carbon Dots with Porous Hydrogels to Produce Full Carbon Electrodes for Electric Double-Layer Capacitors publication-title: ACS Appl. Energy Mater. – volume: 552 year: 2021 ident: b0145 article-title: Shape-engineered carbon quantum dots embedded on CdS-nanorods for enhanced visible light harvesting towards photocatalytic application publication-title: Appl. Surf. Sci. – volume: 10 start-page: 5560 year: 2018 end-page: 5568 ident: b0170 article-title: Remarkable Effect of Sodium Alginate Aqueous Binder on Anatase TiO publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 1600173 year: 2017 ident: b0160 article-title: Nitrogen Doped/Carbon Tuning Yolk-Like TiO publication-title: Adv. Energy Mater. – volume: 425 year: 2021 ident: b0220 article-title: A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes publication-title: Chem. Eng. J. – volume: 411 year: 2021 ident: b0040 article-title: Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life publication-title: Chem. Eng. J. – volume: 57 start-page: 628 year: 2023 end-page: 638 ident: b0090 article-title: Regulation of desolvation process and dense electrocrystalization behavior for stable Zn metal anode publication-title: Energy Storage Mater. – volume: 16 start-page: 2001323 year: 2020 ident: b0035 article-title: Novel 3D Nanoporous Zn-Cu Alloy as Long-Life Anode toward High-Voltage Double Electrolyte Aqueous Zinc-Ion Batteries publication-title: Small – volume: 449 year: 2022 ident: b0060 article-title: Toward reversible wide-temperature Zn storage by regulating the electrolyte solvation structure via trimethyl phosphate publication-title: Chem. Eng. J. – volume: 12 start-page: 5927 year: 2016 end-page: 5934 ident: b0155 article-title: Carbon Dots/NiCo publication-title: Small – volume: 11 start-page: 1634 year: 2020 ident: b0185 article-title: Q, Jiang, Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries publication-title: Nat. Commun. – volume: 16 start-page: 2445 year: 2023 end-page: 2453 ident: b0010 article-title: Introducing Ce ions and oxygen defects into V publication-title: Nano Res. – volume: 34 start-page: 2109092 year: 2022 ident: b0225 article-title: Reunderstanding the Reaction Mechanism of Aqueous Zn-Mn Batteries with Sulfate Electrolytes: Role of the Zinc Sulfate Hydroxide publication-title: Adv. Mater. – volume: 15 start-page: 3548 year: 2021 end-page: 3555 ident: b0130 article-title: Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method publication-title: Nano Res. – volume: 11 start-page: 2003065 year: 2021 ident: b0005 article-title: Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries publication-title: Adv. Energy Mater. – volume: 378 year: 2021 ident: b0070 article-title: In-situ constructing polyacrylamide interphase enables dendrite-free zinc anode in aqueous batteries publication-title: Electrochim. Acta – volume: 10 start-page: 484 year: 2016 end-page: 491 ident: b0150 article-title: Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism publication-title: ACS Nano – volume: 33 start-page: 2008424 year: 2021 ident: b0180 article-title: Toward Planar and Dendrite-Free Zn Electrodepositions by Regulating Sn-Crystal Textured Surface publication-title: Adv. Mater. – volume: 14 start-page: 128 year: 2022 ident: b0195 article-title: Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery publication-title: Nano-Micro Lett. – volume: 15 start-page: e202102390 year: 2022 ident: b0140 article-title: In-Situ Growth of Mn publication-title: ChemSusChem – volume: 2 start-page: 114 year: 2022 end-page: 141 ident: b0015 article-title: Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zinc-ion batteries publication-title: Susmat – volume: 89 year: 2021 ident: b0050 article-title: Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode publication-title: Nano Energy – volume: 452 year: 2023 ident: 10.1016/j.cej.2023.144735_b0115 article-title: Toward highly reversible aqueous zinc-ion batteries: nanoscale-regulated zinc nucleation via graphene quantum dots functionalized with multiple functional groups publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139090 – volume: 10 start-page: 484 issue: 1 year: 2016 ident: 10.1016/j.cej.2023.144735_b0150 article-title: Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism publication-title: ACS Nano doi: 10.1021/acsnano.5b05406 – volume: 16 start-page: 2001323 issue: 22 year: 2020 ident: 10.1016/j.cej.2023.144735_b0035 article-title: Novel 3D Nanoporous Zn-Cu Alloy as Long-Life Anode toward High-Voltage Double Electrolyte Aqueous Zinc-Ion Batteries publication-title: Small doi: 10.1002/smll.202001323 – volume: 16 start-page: 2445 issue: 2 year: 2023 ident: 10.1016/j.cej.2023.144735_b0010 article-title: Introducing Ce ions and oxygen defects into V2O5 nanoribbons for efficient aqueous zinc ion storage publication-title: Nano Res. doi: 10.1007/s12274-022-4990-2 – volume: 425 year: 2021 ident: 10.1016/j.cej.2023.144735_b0110 article-title: Self-assembled ZnO-carbon dots anode materials for high performance nickel-zinc alkaline batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130660 – ident: 10.1016/j.cej.2023.144735_b0055 doi: 10.1021/acsenergylett.2c00560 – volume: 378 year: 2021 ident: 10.1016/j.cej.2023.144735_b0070 article-title: In-situ constructing polyacrylamide interphase enables dendrite-free zinc anode in aqueous batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138106 – volume: 33 start-page: 2008424 issue: 21 year: 2021 ident: 10.1016/j.cej.2023.144735_b0180 article-title: Toward Planar and Dendrite-Free Zn Electrodepositions by Regulating Sn-Crystal Textured Surface publication-title: Adv. Mater. doi: 10.1002/adma.202008424 – volume: 13 start-page: 16869 issue: 14 year: 2021 ident: 10.1016/j.cej.2023.144735_b0215 article-title: Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c22911 – volume: 2205558 year: 2023 ident: 10.1016/j.cej.2023.144735_b0125 article-title: Nitrogen-Doped and Sulfonated Carbon Dots as a Multifunctional Additive to Realize Highly Reversible Aqueous Zinc-Ion Batteries publication-title: Small – volume: 31 start-page: 897 issue: 3 year: 2020 ident: 10.1016/j.cej.2023.144735_b0165 article-title: Boosting sodium storage of mesoporous TiO2 nanostructure regulated by carbon quantum dots publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2019.07.039 – volume: 13 start-page: 8181 issue: 7 year: 2021 ident: 10.1016/j.cej.2023.144735_b0210 article-title: Driving the interfacial ion-transfer kinetics by mesoporous TiO2 spheres for high-performance aqueous Zn-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c18433 – volume: 59 start-page: 13180 issue: 32 year: 2020 ident: 10.1016/j.cej.2023.144735_b0025 article-title: Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries publication-title: Angew. Chemie Int. Ed. doi: 10.1002/anie.202000162 – volume: 10 start-page: 5560 issue: 6 year: 2018 ident: 10.1016/j.cej.2023.144735_b0170 article-title: Remarkable Effect of Sodium Alginate Aqueous Binder on Anatase TiO2 as High-Performance Anode in Sodium Ion Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17659 – volume: 59 start-page: 9377 issue: 24 year: 2020 ident: 10.1016/j.cej.2023.144735_b0020 article-title: Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries publication-title: Angew. Chemie Int. Ed. doi: 10.1002/anie.202001844 – volume: 93 year: 2022 ident: 10.1016/j.cej.2023.144735_b0080 article-title: Fluorine enhanced nucleophilicity of TiO2 nanorod arrays: A general approach for dendrite-free anodes towards high-performance metal batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106837 – volume: 3 start-page: 6907 issue: 7 year: 2020 ident: 10.1016/j.cej.2023.144735_b0105 article-title: Integrating Carbon Dots with Porous Hydrogels to Produce Full Carbon Electrodes for Electric Double-Layer Capacitors publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00990 – volume: 4 start-page: 4140 issue: 14 year: 2019 ident: 10.1016/j.cej.2023.144735_b0135 article-title: Synthesis and Characterization of Fluorescent Carbon Dots from Tapioca publication-title: ChemistrySelect doi: 10.1002/slct.201900836 – volume: 552 year: 2021 ident: 10.1016/j.cej.2023.144735_b0145 article-title: Shape-engineered carbon quantum dots embedded on CdS-nanorods for enhanced visible light harvesting towards photocatalytic application publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149372 – volume: 13 start-page: 576 year: 2022 ident: 10.1016/j.cej.2023.144735_b0200 article-title: Aluminum-copper alloy anode materials for high-energy aqueous aluminum batteries publication-title: Nat. Commun. doi: 10.1038/s41467-022-28238-3 – volume: 12 start-page: 2200665 issue: 26 year: 2022 ident: 10.1016/j.cej.2023.144735_b0120 article-title: High-Yield Carbon Dots Interlayer for Ultra-Stable Zinc Batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200665 – volume: 11 start-page: 2003065 issue: 1 year: 2021 ident: 10.1016/j.cej.2023.144735_b0005 article-title: Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003065 – volume: 15 start-page: e202102390 issue: 6 year: 2022 ident: 10.1016/j.cej.2023.144735_b0140 article-title: In-Situ Growth of Mn3O4 Nanoparticles on Nitrogen-Doped Carbon Dots-Derived Carbon Skeleton as Cathode Materials for Aqueous Zinc Ion Batteries publication-title: ChemSusChem doi: 10.1002/cssc.202102390 – volume: 7 start-page: 1600173 issue: 4 year: 2017 ident: 10.1016/j.cej.2023.144735_b0160 article-title: Nitrogen Doped/Carbon Tuning Yolk-Like TiO2 and Its Remarkable Impact on Sodium Storage Performances publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600173 – volume: 12 start-page: 2103979 issue: 13 year: 2022 ident: 10.1016/j.cej.2023.144735_b0175 article-title: Charge-Enriched Strategy Based on MXene-Based Polypyrrole Layers Toward Dendrite-Free Zinc Metal Anodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103979 – volume: 14 start-page: 128 year: 2022 ident: 10.1016/j.cej.2023.144735_b0195 article-title: Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery publication-title: Nano-Micro Lett. doi: 10.1007/s40820-022-00867-9 – volume: 411 year: 2021 ident: 10.1016/j.cej.2023.144735_b0040 article-title: Zn anode with flexible β-PVDF coating for aqueous Zn-ion batteries with long cycle life publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128584 – volume: 2 start-page: 114 issue: 2 year: 2022 ident: 10.1016/j.cej.2023.144735_b0015 article-title: Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zinc-ion batteries publication-title: Susmat doi: 10.1002/sus2.53 – volume: 15 start-page: 3548 issue: 4 year: 2021 ident: 10.1016/j.cej.2023.144735_b0130 article-title: Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method publication-title: Nano Res. doi: 10.1007/s12274-021-3891-0 – volume: 481 start-page: 852 year: 2019 ident: 10.1016/j.cej.2023.144735_b0065 article-title: Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.03.197 – volume: 41 start-page: 356 issue: 2 year: 2022 ident: 10.1016/j.cej.2023.144735_b0085 article-title: Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries publication-title: Rare Met. doi: 10.1007/s12598-021-01858-2 – volume: 12 start-page: 1938 issue: 6 year: 2019 ident: 10.1016/j.cej.2023.144735_b0205 article-title: Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase publication-title: Energ. Environ. Sci. doi: 10.1039/C9EE00596J – volume: 12 start-page: 5927 issue: 43 year: 2016 ident: 10.1016/j.cej.2023.144735_b0155 article-title: Carbon Dots/NiCo2O4 Nanocomposites with Various Morphologies for High Performance Supercapacitors publication-title: Small doi: 10.1002/smll.201602164 – volume: 4 start-page: 729 issue: 3 year: 2020 ident: 10.1016/j.cej.2023.144735_b0100 article-title: A new generation of energy storage electrode materials constructed from carbon dots publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00554D – volume: 11 start-page: 1634 year: 2020 ident: 10.1016/j.cej.2023.144735_b0185 article-title: Q, Jiang, Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries publication-title: Nat. Commun. doi: 10.1038/s41467-020-15478-4 – volume: 144 start-page: 11129 issue: 25 year: 2022 ident: 10.1016/j.cej.2023.144735_b0045 article-title: Boosting the Kinetics and Stability of Zn Anodes in Aqueous Electrolytes with Supramolecular Cyclodextrin Additives publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c00551 – volume: 57 start-page: 628 year: 2023 ident: 10.1016/j.cej.2023.144735_b0090 article-title: Regulation of desolvation process and dense electrocrystalization behavior for stable Zn metal anode publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.03.002 – volume: 425 year: 2021 ident: 10.1016/j.cej.2023.144735_b0220 article-title: A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130643 – volume: 449 year: 2022 ident: 10.1016/j.cej.2023.144735_b0060 article-title: Toward reversible wide-temperature Zn storage by regulating the electrolyte solvation structure via trimethyl phosphate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137843 – volume: 21 start-page: 119 issue: 1 year: 2022 ident: 10.1016/j.cej.2023.144735_b0095 article-title: Kinetics of Sorption in Hygroscopic Hydrogels publication-title: Nano Lett. – volume: 33 start-page: 2105951 issue: 52 year: 2021 ident: 10.1016/j.cej.2023.144735_b0075 article-title: Interfacial Manipulation via In Situ Grown ZnSe Cultivator toward Highly Reversible Zn Metal Anodes publication-title: Adv. Mater. doi: 10.1002/adma.202105951 – volume: 89 year: 2021 ident: 10.1016/j.cej.2023.144735_b0050 article-title: Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106322 – volume: 33 start-page: 2211271 year: 2023 ident: 10.1016/j.cej.2023.144735_b0190 article-title: Uniformly MXene-Grafted Eutectic Aluminum-Cerium Alloys as Flexible and Reversible Anode Materials for Rechargeable Aluminum-Ion Battery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202211271 – volume: 379 year: 2020 ident: 10.1016/j.cej.2023.144735_b0030 article-title: Spatially homogeneous copper foam as surface dendrite-free host for zinc metal anode publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122248 – volume: 34 start-page: 2109092 issue: 15 year: 2022 ident: 10.1016/j.cej.2023.144735_b0225 article-title: Reunderstanding the Reaction Mechanism of Aqueous Zn-Mn Batteries with Sulfate Electrolytes: Role of the Zinc Sulfate Hydroxide publication-title: Adv. Mater. doi: 10.1002/adma.202109092 |
SSID | ssj0006919 |
Score | 2.573288 |
Snippet | •This protective layer is constructed by TiO2 nanosheets and N-doped carbon dots.•The TiO2 layer can immobilize water molecules and prevent the side... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 144735 |
SubjectTerms | Carbon dots Coating layer Mesoporous TiO2 Zinc anode Zinc ion batteries |
Title | Zn anode surface engineering for stable zinc-ion batteries: Carbon dots incorporated mesoporous TiO2 as a coating layer |
URI | https://dx.doi.org/10.1016/j.cej.2023.144735 |
Volume | 471 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5MekkPJWlamubBHHoKbGx5V5KVWzA1bkwTaBMachGzq12wcSVj2QRy6G_vjB6JA2kPOUlazcIyu-x8w3wzI8QXsqIYxCaUcaRR6shbiYlWchAOTOKUURlyovD3y2h8oy9uw9uOGLa5MEyrbO7--k6vbutmpNtos7uYTrs_A45pJTomEK00oXDOYNcxn_LTP080jyipmnuwsGTpNrJZcbysm51y_3AOccZVx7cXbNOGvRntiHcNUITzei27ouPy9-LtRvnAPXF_lwPmReagXC89Wgfu6TcQGgWCfmbu4GGaW0kbAKaqpknO8RkMcWlohJzSErhCQ13Q2GXw25UFvRfrEq6nV33AEhBsgcyPhjkSRP8gbkZfr4dj2TRSkLafxCuJEZkpj-gyR1ugQpNZEySesE2UefIXmDQd9rWyZNADE8bGEmh0Bo0zBCijTH0UW3mRu08CsJdh34fGa620JRnvByEqH3GCLzm8-6LXqjC1TZVxbnYxT1s62Swlraes9bTW-r44eZyyqEts_E9Yt_uSPjsnKZmAf0_7_LppB2Kbv2pO2aHYWi3X7ohAyMocV6fsWLw5_zYZX_Jz8uPX5C9x-97l |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB4S59D0UNomIUlfc-ipoDi2pF1vb8Y0OE3iHOpA6GUZaSWwcXeD1ybQX9_RPpwEmh56W6QZWEZi5htm9A3AZ46i1IuNFnGkSKjIW0GJkmKgByZx0siMwkPhq0k0vlHfb_XtFozatzChrbLx_bVPr7x1s9JtrNm9m826P3qhppWomEG0VIzCt2EnsFPpDuwMzy_Gk41DjpJqvkeQF0GhLW5WbV7WzU_CCPFQ5YyroW9_CU-PQs7Za3jVYEUc1r_zBrZc_hZePmIQ3IP7nzlSXmQOy_XSk3XoHraRASky-jMLh79nuRV8BmgqQk3Oj7_iiJaGVzgvLTGQNNScxi7DX64s-LtYlzidXfeRSiS0BYUWaVwQo_R9uDn7Nh2NRTNLQdh-Eq8ERRypPJHLHJ-C1Cazppd4hjdR5jllCH3Tuq-k5ZjeMzo2lnGjM2ScYUwZZfIAOnmRu0NAOs2o77XxSkllWcb7gSbpo_DGl3PeIzhtTZjahmg8zLtYpG1H2Txlq6fB6mlt9SP4slG5q1k2_iWs2nNJn1yVlKPA82rH_6f2CV6Mp1eX6eX55OId7IadusXsPXRWy7X7wJhkZT42d-4PHtzf8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zn+anode+surface+engineering+for+stable+zinc-ion+batteries%3A+Carbon+dots+incorporated+mesoporous+TiO2+as+a+coating+layer&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Song%2C+Tian-Bing&rft.au=Ma%2C+Qian-Li&rft.au=Zhang%2C+Xi-Rong&rft.au=Ni%2C+Jia-Wen&rft.date=2023-09-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.volume=471&rft_id=info:doi/10.1016%2Fj.cej.2023.144735&rft.externalDocID=S1385894723034666 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |