Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis
[Display omitted] •Creative and representative works for porphyrin and phthalocyanine based COFs electrocatalysts are summarized.•The synthetic strategies for porphyrin and phthalocyanine based COFs are discussed in detail.•The electrocatalytic performances in CO2 reduction, hydrogen evolution, oxyg...
Saved in:
Published in | Coordination chemistry reviews Vol. 464; p. 214563 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Creative and representative works for porphyrin and phthalocyanine based COFs electrocatalysts are summarized.•The synthetic strategies for porphyrin and phthalocyanine based COFs are discussed in detail.•The electrocatalytic performances in CO2 reduction, hydrogen evolution, oxygen evolution, and oxygen reduction reactions are presented.•Challenges and outlooks are provided for further research of advanced COFs-based electrocatalysts.
Covalent organic frameworks (COFs) are a burgeoning class of crystalline porous polymers. Owing to their unique features including tunable porosity, abundant accessible active sites, synthetically controllability, and pre-designed topological structures, COFs have been widely employed in various fields including catalysis, energy storage and conversion, gas adsorption, and optoelectronics. The incorporation of porphyrin (Por-) and phthalocyanine (Pc-) building units into COFs endows COFs with unique structural characteristics, excellent optical and electrical properties. Recent years have witnessed significant progress in reasonable design and construction of Por- and Pc-based COFs for electrocatalytic water splitting, CO2 reduction, and oxygen reduction. Herein, the synthetic strategies of Por- and Pc-based COFs are first summarized, which includes the rational design of building units and linkers, and the reaction types used in constructing Por- and Pc-based COFs. A systematic overview of the application of Por- and Pc-based COFs in the electrocatalytic reactions including CO2 reduction reaction (CO2RR), hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) are then performed. Lastly, the current challenges and directions to tailor Por- and Pc-based COFs for efficient and stable electrocatalysis are presented. |
---|---|
AbstractList | [Display omitted]
•Creative and representative works for porphyrin and phthalocyanine based COFs electrocatalysts are summarized.•The synthetic strategies for porphyrin and phthalocyanine based COFs are discussed in detail.•The electrocatalytic performances in CO2 reduction, hydrogen evolution, oxygen evolution, and oxygen reduction reactions are presented.•Challenges and outlooks are provided for further research of advanced COFs-based electrocatalysts.
Covalent organic frameworks (COFs) are a burgeoning class of crystalline porous polymers. Owing to their unique features including tunable porosity, abundant accessible active sites, synthetically controllability, and pre-designed topological structures, COFs have been widely employed in various fields including catalysis, energy storage and conversion, gas adsorption, and optoelectronics. The incorporation of porphyrin (Por-) and phthalocyanine (Pc-) building units into COFs endows COFs with unique structural characteristics, excellent optical and electrical properties. Recent years have witnessed significant progress in reasonable design and construction of Por- and Pc-based COFs for electrocatalytic water splitting, CO2 reduction, and oxygen reduction. Herein, the synthetic strategies of Por- and Pc-based COFs are first summarized, which includes the rational design of building units and linkers, and the reaction types used in constructing Por- and Pc-based COFs. A systematic overview of the application of Por- and Pc-based COFs in the electrocatalytic reactions including CO2 reduction reaction (CO2RR), hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) are then performed. Lastly, the current challenges and directions to tailor Por- and Pc-based COFs for efficient and stable electrocatalysis are presented. |
ArticleNumber | 214563 |
Author | Chen, Kai Huang, Shengsheng Li, Ting-Ting |
Author_xml | – sequence: 1 givenname: Shengsheng surname: Huang fullname: Huang, Shengsheng organization: School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China – sequence: 2 givenname: Kai surname: Chen fullname: Chen, Kai organization: School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China – sequence: 3 givenname: Ting-Ting surname: Li fullname: Li, Ting-Ting email: litingting@nbu.edu.cn organization: School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China |
BookMark | eNp9kMtKAzEUQIMo2FY_wF1-YMY8ZiYzuJLiCwoK6jrcycOmTpOShMr8vVPqykVXl3vhXDhnjs598AahG0pKSmhzuymViiUjjJWMVnXDz9CMtoIXvK3IOZoRQknR1lV9ieYpbaa16To2Q-9vIe7WY3Qeg9d4t85rGIIawTtvcA_JaKzCHgbjMw7xa7orbCNszU-I3wnbELEZjMoxKMgwjMmlK3RhYUjm-m8u0Ofjw8fyuVi9Pr0s71eFYp3IBfDGqo4SzYlpwXCrq5po29m253Vjm1bzWlStAEEnI60J6RhrTG1FLXogPV8gcfyrYkgpGiuVy5Bd8DmCGyQl8tBGbuTURh7ayGObiaT_yF10W4jjSebuyJhJae9MlEk545XRLk7-Ugd3gv4F70mAFQ |
CitedBy_id | crossref_primary_10_1002_ange_202416771 crossref_primary_10_1002_elt2_39 crossref_primary_10_1021_acsanm_4c00397 crossref_primary_10_3390_nano12203615 crossref_primary_10_1016_j_dyepig_2023_111924 crossref_primary_10_1016_j_enchem_2024_100121 crossref_primary_10_1002_ejic_202400259 crossref_primary_10_3390_molecules28155878 crossref_primary_10_1016_j_cej_2024_149742 crossref_primary_10_1002_adfm_202310195 crossref_primary_10_1002_anie_202309775 crossref_primary_10_1039_D4TA06982J crossref_primary_10_1002_smll_202207876 crossref_primary_10_1016_j_ijhydene_2023_11_096 crossref_primary_10_1016_j_mtcomm_2025_112333 crossref_primary_10_1016_j_memsci_2022_121268 crossref_primary_10_1016_j_cclet_2023_108865 crossref_primary_10_1039_D4TA05918B crossref_primary_10_1016_j_jechem_2022_11_032 crossref_primary_10_1002_advs_202300797 crossref_primary_10_1016_j_foodchem_2024_140777 crossref_primary_10_1039_D2CP04372F crossref_primary_10_1016_j_cclet_2024_110049 crossref_primary_10_1021_acsami_3c05679 crossref_primary_10_1007_s44275_024_00007_y crossref_primary_10_1002_anie_202407090 crossref_primary_10_1039_D3QM01315D crossref_primary_10_1016_j_ijhydene_2022_09_077 crossref_primary_10_1039_D4BM00214H crossref_primary_10_1021_acsomega_2c02548 crossref_primary_10_3390_molecules28010150 crossref_primary_10_1021_acsami_3c17662 crossref_primary_10_3390_macromol5010010 crossref_primary_10_1016_j_envres_2023_117406 crossref_primary_10_1021_jacs_4c18645 crossref_primary_10_1016_j_apcatb_2023_122366 crossref_primary_10_1002_jcc_27526 crossref_primary_10_1016_j_electacta_2024_144025 crossref_primary_10_1002_ange_202407090 crossref_primary_10_1002_adma_202413710 crossref_primary_10_1002_smll_202204023 crossref_primary_10_1039_D3CC05214A crossref_primary_10_1016_j_jcis_2024_12_205 crossref_primary_10_1016_S1872_2067_23_64457_2 crossref_primary_10_1016_j_dyepig_2022_110745 crossref_primary_10_1016_j_ensm_2023_102790 crossref_primary_10_1039_D3RA04345B crossref_primary_10_1021_acs_inorgchem_4c05494 crossref_primary_10_1186_s11671_023_03890_w crossref_primary_10_3390_met12091442 crossref_primary_10_1021_acs_inorgchem_4c03870 crossref_primary_10_1016_j_cej_2024_154997 crossref_primary_10_1002_chem_202403297 crossref_primary_10_1021_acs_bioconjchem_3c00432 crossref_primary_10_1021_acs_chemmater_2c02962 crossref_primary_10_1016_j_cej_2024_151224 crossref_primary_10_1021_acsnano_4c00128 crossref_primary_10_1039_D4TA00737A crossref_primary_10_1002_chem_202301108 crossref_primary_10_1016_j_ccr_2023_215066 crossref_primary_10_1039_D4TA02807D crossref_primary_10_1039_D4MH00313F crossref_primary_10_3390_molecules28207137 crossref_primary_10_1039_D4QM00499J crossref_primary_10_1002_smll_202307853 crossref_primary_10_1039_D4QI01298D crossref_primary_10_1142_S1088424624500445 crossref_primary_10_1007_s00604_023_05978_7 crossref_primary_10_1021_acsami_3c05702 crossref_primary_10_1002_bio_70153 crossref_primary_10_1002_chem_202302201 crossref_primary_10_1002_cplu_202400069 crossref_primary_10_1016_j_mtcata_2024_100044 crossref_primary_10_1016_j_jechem_2024_12_031 crossref_primary_10_1016_j_electacta_2022_141095 crossref_primary_10_1002_agt2_702 crossref_primary_10_1002_smll_202401880 crossref_primary_10_1039_D3QM00565H crossref_primary_10_1007_s11426_024_1998_5 crossref_primary_10_1016_j_ica_2025_122580 crossref_primary_10_1016_j_electacta_2022_141774 crossref_primary_10_1002_adma_202313197 crossref_primary_10_1039_D3CP05904A crossref_primary_10_3390_nano13101660 crossref_primary_10_1002_cssc_202300021 crossref_primary_10_1039_D3AN01758C crossref_primary_10_1039_D4QI03018D crossref_primary_10_1016_j_xinn_2024_100778 crossref_primary_10_1021_jacs_3c08594 crossref_primary_10_3390_biomimetics8020171 crossref_primary_10_1002_cssc_202400217 crossref_primary_10_1016_j_aca_2022_340743 crossref_primary_10_3389_fchbi_2023_1346465 crossref_primary_10_1002_chem_202500003 crossref_primary_10_1016_j_jelechem_2024_118344 crossref_primary_10_1021_acscatal_2c02908 crossref_primary_10_1002_cctc_202400517 crossref_primary_10_1016_j_apcatb_2023_123418 crossref_primary_10_1007_s42114_024_01177_x crossref_primary_10_1016_j_ijoes_2023_100225 crossref_primary_10_1016_j_apsusc_2022_155119 crossref_primary_10_1016_j_cis_2024_103178 crossref_primary_10_1002_agt2_442 crossref_primary_10_1002_anie_202416771 crossref_primary_10_1021_acs_jpclett_3c01262 crossref_primary_10_1021_acsanm_4c06800 crossref_primary_10_1007_s10904_024_03037_z crossref_primary_10_1039_D2SC03238D crossref_primary_10_1039_D3CC02082G crossref_primary_10_1016_j_fuel_2023_129332 crossref_primary_10_1002_cctc_202400100 crossref_primary_10_1002_cctc_202401674 crossref_primary_10_1039_D3QI00589E crossref_primary_10_1016_j_ccr_2024_216046 crossref_primary_10_1038_s41467_024_44899_8 crossref_primary_10_1039_D4TA08190K crossref_primary_10_1107_S2414314624010289 crossref_primary_10_1002_smtd_202301652 crossref_primary_10_1016_j_jcis_2023_04_115 crossref_primary_10_1016_j_apcatb_2023_123660 crossref_primary_10_1016_j_trac_2024_117680 crossref_primary_10_1021_jacs_3c06113 crossref_primary_10_1002_ange_202309775 crossref_primary_10_1002_adfm_202316187 |
Cites_doi | 10.1021/ja202642y 10.1021/acsaem.8b01381 10.1038/ncomms13461 10.1038/ncomms12325 10.1039/C8TA11044A 10.1021/acscatal.7b01067 10.1002/cssc.202002761 10.1039/C8CC01291A 10.1002/anie.201811399 10.1021/jacs.1c08351 10.1039/D0CC08359C 10.1016/j.nanoen.2017.09.043 10.1021/acs.inorgchem.0c01977 10.1039/C4CC07104B 10.1021/acs.accounts.8b00002 10.1002/adma.201806326 10.1039/C9EE03660A 10.1039/C8TA03120G 10.1002/smll.202001847 10.1002/anie.200705710 10.1039/C5QI00198F 10.1016/j.chempr.2018.11.010 10.1021/acsami.0c06537 10.1021/cm201140r 10.1002/advs.201700275 10.1016/j.ccr.2012.03.010 10.1039/C9NJ04017J 10.1038/srep14650 10.1126/science.1120411 10.1002/anie.201915217 10.1016/j.joule.2018.09.021 10.1002/adfm.201800499 10.1002/adma.201200751 10.1021/acsenergylett.8b00245 10.1021/jz2016507 10.1021/acs.chemmater.8b04370 10.1002/cssc.201900779 10.1126/science.aac8343 10.1039/C9CS00163H 10.1002/anie.201106203 10.1021/acsenergylett.9b02756 10.1002/aenm.201803795 10.1039/C9CS00911F 10.1002/anie.202011722 10.1038/35104620 10.1038/s41560-019-0450-y 10.1039/C7CP02855E 10.1002/adma.201903796 10.1021/ef9600265 10.1002/anie.201814711 10.1016/j.chempr.2017.08.002 10.1038/s41467-019-14237-4 10.1039/C3CS60342C 10.1109/JPROC.2011.2156750 10.1021/jacs.9b09502 10.1126/science.aaw7515 10.1002/adfm.201806884 10.1021/acs.chemmater.9b02718 10.1021/acsami.6b16423 10.1073/pnas.0812721106 10.1021/jacs.7b11940 10.1039/C9TA00040B 10.1126/science.1249625 10.1002/anie.201708526 10.1002/adfm.202000793 10.1016/j.cclet.2016.05.020 10.1039/D1NR06197F 10.1039/D1CC02468J 10.1038/nchem.695 10.1038/s41570-016-0003 10.1002/aenm.201703597 10.1007/s11426-017-9078-7 10.1021/ja2052396 10.1039/B804323J 10.1126/sciadv.aaw2322 10.1126/science.aam6284 10.1002/anie.201916595 10.1016/j.ccr.2017.08.023 10.1039/C4TA06231K 10.1038/ncomms1542 10.1007/s10847-019-00924-8 10.1039/c2cs35157a 10.1039/C7DT01694H 10.1039/D0CS00017E 10.1002/anie.201107070 10.1021/jacs.8b12381 10.1016/j.cclet.2016.06.046 10.1002/anie.201300256 10.1126/science.1188566 10.1016/j.trechm.2020.06.007 10.1021/acsami.8b07795 10.1007/s12598-020-01600-4 10.1039/c2cc33929c 10.1016/j.cej.2020.127850 10.1002/advs.201700684 10.1039/C9CS00299E 10.1002/chem.202102209 10.1039/cs9952400019 10.1021/acsami.8b20142 10.1021/acscatal.1c02459 10.1021/acs.jpcc.6b04410 10.1038/s41929-019-0306-7 10.1039/C8CY00483H 10.1021/jacs.1c06238 10.1002/anie.201808226 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E 10.1021/acsenergylett.1c01681 10.1039/C1SC00260K 10.1016/j.chempr.2018.02.006 10.1007/s11426-020-9801-3 10.1039/D0CS01605E 10.1021/acsami.0c06022 10.1039/c3py00083d 10.1039/C2CS35072F 10.1016/j.apcatb.2021.120897 10.1021/acs.chemmater.5b00882 10.1021/ja502692w 10.1002/anie.202005274 10.1002/cssc.202000103 10.1002/adma.202002038 10.1016/j.ccr.2021.213778 10.1039/D0EE01856B 10.1002/chem.201800363 10.1021/cr050972v 10.1021/acsami.7b06968 10.1039/C8CS00527C 10.1038/s41467-021-21527-3 10.3390/molecules25102425 10.1039/c3ce40706c 10.1038/nature11475 10.1002/aenm.201902666 10.1039/C9CS00890J 10.1021/acs.chemrev.9b00550 10.1039/D0CC05870J 10.1021/acs.accounts.5b00369 10.1016/j.apcatb.2020.118908 10.1039/C6CC01171C 10.1002/anie.201407031 10.1002/anie.201209513 10.1002/asia.202000438 10.1021/jacs.7b04141 10.1039/C7TA09785A 10.1039/C2TA00063F 10.1002/anie.201005919 10.1002/anie.201808593 10.1002/smtd.202100102 10.1039/C9CC06916J 10.1021/acsaem.8b02048 10.1039/D1TA02795F 10.1021/jacs.5b03553 10.1039/D1TA10991J 10.1039/D0QM01076F 10.1039/C8CS00919H 10.1126/science.1209688 10.1007/s40242-021-1374-1 10.1039/D0CS00930J 10.1126/science.aad4998 10.1039/C4CS00448E 10.1039/C3EE42613K 10.1002/smll.202004933 10.1021/acs.chemmater.9b05289 10.1039/D1CC04928C 10.1039/C8TA09490J 10.31635/ccschem.019.20190011 10.1016/j.ccr.2021.213875 10.1039/C8TB02870B 10.1021/jacs.1c02145 10.1039/D0CS01482F 10.1016/j.msec.2020.110864 10.1021/ja206846p 10.1039/C5TA06309D 10.1039/D0CC01091J 10.1016/j.cclet.2021.04.047 10.1021/ja509551m 10.1021/cr1002326 10.1002/er.3021 10.1016/j.jcis.2020.06.109 10.1039/C3CC48813F |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ccr.2022.214563 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3840 |
ExternalDocumentID | 10_1016_j_ccr_2022_214563 S0010854522001588 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6J9 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M23 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSZ T5K TN5 TWZ UPT WH7 XPP YK3 ZMT ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HMH HVGLF HZ~ H~9 NDZJH OHT R2- RIG SCB SEW SIC SSH UQL VH1 WUQ XJT ZKB ZY4 |
ID | FETCH-LOGICAL-c297t-a36fc910d30e8ae3fd450df9f8b356f68d357487a71145dd009226e5f757ba0b3 |
IEDL.DBID | .~1 |
ISSN | 0010-8545 |
IngestDate | Tue Jul 01 02:43:53 EDT 2025 Thu Apr 24 22:54:57 EDT 2025 Fri Feb 23 02:40:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Covalent organic frameworks Phthalocyanine Electrocatalysis Performance Porphyrin |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-a36fc910d30e8ae3fd450df9f8b356f68d357487a71145dd009226e5f757ba0b3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ccr_2022_214563 crossref_primary_10_1016_j_ccr_2022_214563 elsevier_sciencedirect_doi_10_1016_j_ccr_2022_214563 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 2022-08-00 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Coordination chemistry reviews |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Hu, Lu, Hu, Zhu, Duan, Du (b0885) 2022; 14 Aykanat, Meng, Benedetto, Mirica (b0430) 2020; 32 Côté, Benin, Ockwig, O’Keeffe, Matzger, Yaghi (b0295) 2005; 310 L.j. Wang, R.l. Wang, X. Zhang, J.l. Mu, Z.y. Zhou, Z.m. Su, ChemSusChem 13 (2020) 2973–2980. Xiang, Cao (b0305) 2013; 1 Simon, Gogotsi, Dunn (b0015) 2014; 343 Wang, Ding, Meng, Wang (b0405) 2016; 27 Liu, Yan, Li, Zhang, Fu, Lu, Wang, Gu (b0625) 2019; 43 Ursúa, Gandía, Sanchis (b0110) 2012; 100 Feng, Hao, Huang, Lang, Wang (b0535) 2021; 5 Benson, Kubiak, Sathrum, Smieja (b0050) 2009; 38 Cui, Gao, Ma, Wei, Lu, Li, Yang (b0360) 2021; 9 Chen, Furukawa, Gao, Nagai, Nakamura, Dong, Jiang (b0760) 2014; 136 Yusran, Fang, Valtchev (b0350) 2020; 32 Feng, Ding, Jiang (b0315) 2012; 41 Roger, Shipman, Symes (b0060) 2017; 1 Bhunia, Bhunia, Patra, Das, Pradhan, Bhaumik, Pradhan, Bhattacharya (b0510) 2019; 11 Jin, Ding, Feng, Supur, Furukawa, Takahashi, Addicoat, El-Khouly, Nakamura, Irle, Fukuzumi, Nagai, Jiang (b0755) 2013; 52 Han, Wang, Ma, Wen, Li, Zheng, Nie, Wang, Zhao, Li, Fan, Zhong, Wu, Miller, Lu, Lee, Li (b0285) 2017; 3 Wang, Cheng, Zhao, Shen, Zhu (b0575) 2020; 579 Liao, Hu, Liang, Zhang, Yang, He, Tong, Liu, Chen, Su (b0650) 2018; 6 Jia, Sun, Jiang, Yang, Du (b0920) 2016; 3 Ross, Luna, Li, Dinh, Kim, Yang, Sargent (b0100) 2019; 2 Hou, Huang, Liang, Chai, Yi, Zhang, Zang, Luo, Xu, Lin, Zhang, Wang, Cao (b0680) 2019; 1 Zhang, Wang, Wang, Zhang, Cheng, Liu (b0905) 2022; 435 Gu, Hsu, Bai, Chen, Hu (b0065) 2019; 364 Diercks, Lin, Kornienko, Kapustin, Nichols, Zhu, Zhao, Chang, Yaghi (b0525) 2018; 140 Zuo, Cheng, Luo (b0460) 2017; 46 Li, Xu, Qian, Li (b0230) 2021; 57 Zhang, Xiao, Chen, Yu, Yu, Si, Wang, Wang, Meng, Wang, Tian, Deng (b0385) 2018; 57 Li, Shao, Wu, Duan, Li, Wang (b0665) 2018; 8 Yuan, Li, Zhu, Zhang, Puyvelde, Bruggen (b0415) 2019; 48 Huang, Zhai, Coupry, Addicoat, Okushita, Nishimura, Heine, Jiang (b0765) 2016; 7 Li, Jing, Li, Li, Gao, Feng, Wang (b0310) 2020; 49 Zou, Zhang (b0125) 2015; 44 Ma, Hansen, Valenti, Wang, Cao, Dong, Smith (b0255) 2017; 42 Anantharaj, Aravindan (b0075) 2020; 10 Feng, Zheng, Zhu, Li, Yang, Wen, Lu, Lei, Wang, Hou (b0470) 2020; 270 Liu, Li, Zhang, Xu, Xia, Mu (b0685) 2013; 4 Lu, Yang, Wei, Bi, Xia, Chen, Hou, Qiu, Yuan, Su, Zhang, Liang, Zhuang (b0475) 2019; 29 Goodenough (b0035) 2014; 7 Feng, Liu, Honsho, Saeki, Seki, Irle, Dong, Nagai, Jiang (b0695) 2012; 51 Walter, Warren, McKone, Boettcher, Mi, Santori, Lewis (b0030) 2010; 110 Sahabudeen, Qi, Glatz, Tranca, Dong, Hou, Zhang, Kuttner, Lehnert, Seifert, Kaiser, Fery, Zheng, Feng (b0445) 2016; 7 Wang, Chen, Zhang, Du, Amal, Qiao, Wu, Yin (b0105) 2019; 48 Waller, Gándara, Yaghi (b0330) 2015; 48 Jia, Sun, Jiang, Du (b0870) 2015; 27 Chen, Li, Liu, Liu, Feng, Wee, Zhang (b0395) 2021; 435 Zheng, Jiao, Jaroniec, Qiao (b0840) 2015; 54 Birdja, Pérez-Gallent, Figueiredo, Göttle, Calle-Vallejo, Koper (b0095) 2019; 4 Liu, Li, Wang, Pan, Liu, Wang, Zeng, Wang, Jiang (b0630) 2019; 141 Dou, Song, Xi, Du, Wang, Huang, Xu, Wang (b0275) 2019; 58 Gan, Lu, Qiu, Zhu, Gu, Du (b0875) 2021; 415 Rodríguez-San-Miguel, Montoro, Zamora (b0490) 2020; 49 Khodakov, Chu, Fongarland (b0090) 2007; 107 Liu, Huang, Lai, Zeng, Qin, Wang, Yi, Li, Liu, Zhang, Deng, Fu, Li, Xue, Chen (b0485) 2019; 48 Chi, Chen, Zhao, Si, Wu, Huang, Cao (b0825) 2022; 10 Ma, Wang, Feng, Wang (b0300) 2016; 27 Wu, Mao, Wu, Liang, Huang, Cao (b0560) 2021; 17 Spitler, Giovino, White, Dichtel (b0715) 2011; 2 Han, Ma, Zhu (b0815) 2021; 5 Song, Zhu, Fu, Chen, Liu, Zhang, Lin, Zhu (b0210) 2020; 32 Peng, Shi, Huo, Mi, Wu, Zhang, Xiang (b0915) 2019; 5 Wu, Li, Tung, Wu (b0020) 2018; 5 Ding, Guo, Feng, Honsho, Guo, Seki, Maitarad, Saeki, Nagase, Jiang (b0730) 2021; 50 Brüller, Liang, Kramm, Krumpfer, Feng, Müllen (b0930) 2015; 3 Ding, Liu, Sun, Wang, Zheng (b0335) 2016; 52 Cave, Montoya, Kuhl, Abram, Hatsukade, Shi, Hahn, Nørskov, Jaramillo (b0250) 2017; 19 Lv, Sa, Li, Yuan, Wang, Wang (b0610) 2020; 63 Zhou, Tan, Wu, Tian, Li (b0505) 2019; 58 Lu, Zhang, Wei, Ma, Wu, Zhu (b0450) 2020; 12 Huang, Li, Zhang, Chen (b0865) 2019; 7 Davis, Caldeira, Matthews (b0160) 2010; 329 Huang, Mensi, Oveisi, Mantella, Buonsanti (b0245) 2019; 141 Lin, Ding, Chen, Peng, Wang, Wang (b0530) 2017; 139 Yang, Li, Zhang, Wang, Liu, Jiao, Guo, Zhang, Hu (b0280) 2020; 16 Chu, Majumdar (b0005) 2012; 488 Patra, Khilari, Manna, Mondal, Pradhan, Pradhan, Bhaumik (b0635) 2017; 7 Kuhn, Antonietti, Thomas (b0340) 2008; 47 Zhou, Li, Qian, Hu, Guo, Zheng (b0025) 2018; 6 Li, Mei, Li, Qian, Wu, Zheng (b0235) 2020; 59 Xu, Shang, Wang, Du (b0130) 2020; 30 Liu, Li, Wang (b0420) 2019; 95 Obama (b0165) 2017; 355 Nguyen, Alzamly (b0365) 2021; 11 Wan, Gándara, Asano, Furukawa, Saeki, Dey, Liao, Ambrogio, Botros, Duan, Seki, Stoddart, Yaghi (b0520) 2011; 23 Yella, Lee, Tsao, Yi, Chandiran, Nazeeruddin, Diau, Yeh, Zakeeruddin, Grätzel (b0380) 2011; 334 Johnson, Haiges, Marinescu (b0565) 2018; 10 Xie, Xu, Wang, Liang, Wang, Song (b0605) 2020; 112 Yue, Wang, Wu, Yang, Ma, Liu, Tang (b0895) 2021; 57 Yu, Ma, Li, Guan, Fang, Qiu (b0900) 2022; 38 Nagai, Chen, Feng, Ding, Guo, Jiang (b0785) 2013; 52 Xu, Wang, Yue, Huang (b0620) 2020; 12 Steele, Heinzel (b0040) 2001; 414 Lan, Wang, Ding, Ma, Liu, Yang, Chen, Li (b0830) 2022; 61 Yi, Xu, Chai, Zhang, Zang, Nan, Lin, Liang, Lv, Luo, Si, Huang, Cao (b0480) 2019; 7 Geng, He, Liu, Dalapati, Tan, Li, Tao, Gong, Jiang, Jiang (b0290) 2020; 120 Lei, Lucas, Moya, Huang, Rong, Wesche, Li, Bodkin, Jin, Holewinski, Zhang (b0795) 2021; 32 Lu, Zhang, Liu, Liu, Shang, Wang, Chang, Li, Lan (b0435) 2021; 60 Cong, Huang, Mei, Li (b0835) 2021; 27 Mota, Kim (b0175) 2019; 48 Zhu, Lu, Wang, Yao, Zhang, Kan, Liu, Chen, Li, Lan (b0440) 2020; 11 Shinde, Kandambeth, Pachfule, Kumar, Banerjee (b0545) 2015; 51 Ren, Bojdys, Dawson, Laybourn, Khimyak, Adams, Cooper (b0690) 2012; 24 Ding, Chen, Honsho, Feng, Saengsawang, Guo, Saeki, Seki, Irle, Nagase, Parasuk, Jiang (b0725) 2011; 133 Han, Jin, Chen, Zhou, Yu, Wei, Wang, Wang, Chen, Chen, Jiang (b0820) 2022; 134 Wang, Qi, Li, Wang, Liu, Jiang (b0425) 2019; 378 Resasco, Bell (b0215) 2020; 2 Lin, Diercks, Zhang, Kornienko, Nichols, Zhao, Paris, Kim, Yang, Yaghi, Chang (b0410) 2015; 349 Bejtka, Zeng, Sacco, Castellino, Hernández, Farkhondehfal, Savino, Ansaloni, Pirri, Chiodoni (b0260) 2019; 2 Olah, Prakash, Goeppert (b0170) 2011; 133 Lu, Liu, Liu, Lu, Li, Yang, Qin, Zheng, Zhang (b0540) 2019; 7 Xu, Lei, Zhou, Zhang, Xie, Zhang, Cao (b0860) 2019; 55 Laha, Lee, Podjaski, Weber, Duppel, Schoop, Pielnhofer, Scheurer, Müller, Starke, Reuter, Lotsch (b0140) 2019; 9 Sahabudeen, Qi, Ballabio, Položij, Olthof, Shivhare, Jing, Park, Liu, Zhang, Ma, Rellinghaus, Mannsfeld, Heine, Bonn, Cánovas, Zheng, Kaiser, Dong, Feng (b0595) 2020; 59 Liu, Wang, Zhang, Pan, Liu, Chen, Yang, Xiang, Wang, Jiang, Yao (b0910) 2019; 7 Meng, Stolz, Mirica (b0790) 1937; 141 Li, Xin, Xia, Gao, Tung, Wu (b0045) 2020; 49 Wang, Xu, Chen, Guo, Zhang, Li, Peng (b0455) 2021; 291 Sun, Yan, Liu, Xu, Cheng, Chen (b0115) 2020; 32 Solomon, Plattner, Knutti, Friedlingstein (b0155) 2009; 106 Liu, Yang, Huang, Liu, Cai, Gao, Li, Zhang, Huang, Liu (b0270) 2018; 28 Cui, Lei, Wang, Gao, Zhang, Yang, Lin (b0355) 2020; 70 Yang, Nosheen, Zhang (b0220) 2021; 40 Wu, Xie, Mao, Chai, Yi, Zhao, Huang, Cao (b0600) 2020; 5 Ding, Feng, Saeki, Seki, Nagai, Jiang (b0740) 2012; 48 Spitler, Dichtel (b0710) 2010; 2 Yi, Xu, Wu, Zhang, Luo, Liang, Huang, Cao (b0925) 2018; 3 Han, Ding, Yu, Wu, Zhou, Liu, Wei, Chen, Qi, Wang, Wang, Chen, Chen, Jiang (b0800) 2021; 143 Yang, Yu, Gao, Zhang, Wang (b0890) 2021; 50 Wang, Han, Lv, Zhang, Zheng (b0200) 2018; 2 Guan, Chen, Fang, Qiu (b0325) 2020; 49 An, Lu, Xu, Lian, Peng, Hu, Zhuang, Liu (b0555) 2021; 6 Liu, Xiao, Huang, Cheng, Xie (b0120) 2018; 4 Li, Zhu (b0205) 2020; 2 Singh, Roy, Das, Samanta, Maji (b0660) 2018; 54 Windle, Perutz (b0195) 2012; 256 Bonnett (b0375) 1995; 24 Wang, Yang, Dong, Cao, Wang, Yang, Wei, Wan, Chen, Jing (b0570) 2020; 396 Chen, Addicoat, Jin, Xu, Hayashi, Xu, Huang, Irle, Jiang (b0770) 2015; 5 Wu, Li, Tung, Wu (b0070) 2020; 56 Najafabadi (b0185) 2013; 37 Sun, Reddu, Fisher, Wang (b0240) 2020; 13 Yao, Li, Gao, Jiang (b0720) 2018; 24 Shan, Guo, Zhu, Chen, Song, Jaroniec, Zheng, Qiao (b0145) 2019; 5 Kang, Han, Kang (b0265) 2019; 12 Xu, Chen, Gao, Lin, Addicoat, Irle, Jiang (b0550) 2014; 50 Gole, Stepanenko, Rager, Grüne, Medina, Bein, Würthner, Beuerle (b0655) 2018; 57 Nikolaou, Charalambidis, Ladomenou, Nikoloudakis, Drivas, Vamvasakis, Panagiotakis, Landrou, Agapaki, Stangel, Henkel, Joseph, Armatas, Vasilopoulou, Kennou, Guldi, Coutsolelos (b0850) 2021; 14 Guo, Xia, Li, Wang, Liang, Lin, Tung, Wu (b0055) 2020; 56 Hao, Chen, Li, Yang, Xing, Li, Chen (b0590) 2019; 31 Yue, Cai, Xu, Li, Chen, Zhou, Huang (b0805) 2021; 143 Sun, Li, Dong, Wu, Wang (b0615) 2016; 120 Lu, Yang, Zhu, Huggins, Ren, Liu, Zhang (b0515) 2015; 3 Neti, Wu, Deng, Echegoyen (b0390) 2013; 15 Ding, Wang (b0320) 2013; 42 Ji, Wang, Ding, Lei, Han (b0400) 2021; 439 Calik, Auras, Salonen, Bader, Grill, Handloser, Medina, Dogru, Löbermann, Trauner, Hartschuh, Bein (b0705) 2014; 136 Jin, Supur, Addicoat, Furukawa, Chen, Nakamura, Fukuzumi, Irle, Jiang (b0745) 2015; 137 Xu, Moulijn (b0180) 1996; 10 Nagai, Guo, Feng, Jin, Chen, Ding, Jiang (b0735) 2011; 2 Zhang, Zhang, Yan, Xia, Huang, Xian (b0780) 2017; 9 Zhou, Pei, Wei, Zhao, Jian, Chen (b0080) 2020; 13 You, Sun (b0085) 2018; 51 Li, Zhao, Liu, Liu, Ma (b0370) 2020; 25 Spitler, Colson, Uribe-Romo, Woll, Giovino, Saldivar, Dichtel (b0750) 2012; 51 Cheung, Lee, Kubiak (b0585) 2019; 31 Lu, Jin, Gu, Zhang (b0880) 2017; 60 Ding, Gao, Wang, Zhang, Song, Su, Wang (b0345) 2011; 133 R. Chen, Y. Wang, Yuan. Ma, A. Mal, X.Y. Gao, L. Gao, L. Qiao, X.B. Li, L.Z. Wu, C. Wang, Nat. Commun. 12 (2021) 1354. Zhang, Yang, Wang, Dou, Liu (b0135) 2018; 8 Ranjeesh, Illathvalappil, Wakchaure, Goudappagouda, Kurungot (b0855) 2018; 1 Lee, Suntivich, May, Perry, Shao-Horn (b0150) 2012; 3 Guo, Lin, Xia, Xiang (b0465) 2018; 57 Park, Liao, Ibarlucea, Qi, Lin, Becker, Melidonie, Zhang, Sahabudeen, Baraban, Baek, Zheng, Zschech, Fery, Heine, Kaiser, Cuniberti, Dong, Feng (b0700) 2020; 59 Zhang, Hu, Ma, Zhu, Wang, Xue, Ch Rowan (10.1016/j.ccr.2022.214563_b0500) 2002; 41 Shan (10.1016/j.ccr.2022.214563_b0145) 2019; 5 Bejtka (10.1016/j.ccr.2022.214563_b0260) 2019; 2 Li (10.1016/j.ccr.2022.214563_b0665) 2018; 8 Simon (10.1016/j.ccr.2022.214563_b0015) 2014; 343 Resasco (10.1016/j.ccr.2022.214563_b0215) 2020; 2 Spitler (10.1016/j.ccr.2022.214563_b0750) 2012; 51 Olah (10.1016/j.ccr.2022.214563_b0170) 2011; 133 Guo (10.1016/j.ccr.2022.214563_b0465) 2018; 57 Wilson (10.1016/j.ccr.2022.214563_b0495) 2014; 43 Zuo (10.1016/j.ccr.2022.214563_b0460) 2017; 46 Huang (10.1016/j.ccr.2022.214563_b0765) 2016; 7 Sun (10.1016/j.ccr.2022.214563_b0115) 2020; 32 Li (10.1016/j.ccr.2022.214563_b0310) 2020; 49 Nguyen (10.1016/j.ccr.2022.214563_b0365) 2021; 11 Johnson (10.1016/j.ccr.2022.214563_b0565) 2018; 10 Ross (10.1016/j.ccr.2022.214563_b0100) 2019; 2 Ma (10.1016/j.ccr.2022.214563_b0300) 2016; 27 Bhunia (10.1016/j.ccr.2022.214563_b0580) 2017; 9 Wan (10.1016/j.ccr.2022.214563_b0520) 2011; 23 Gu (10.1016/j.ccr.2022.214563_b0065) 2019; 364 Chen (10.1016/j.ccr.2022.214563_b0760) 2014; 136 Zhou (10.1016/j.ccr.2022.214563_b0025) 2018; 6 Lee (10.1016/j.ccr.2022.214563_b0150) 2012; 3 Feng (10.1016/j.ccr.2022.214563_b0315) 2012; 41 Liao (10.1016/j.ccr.2022.214563_b0650) 2018; 6 Li (10.1016/j.ccr.2022.214563_b0645) 2020; 15 Wang (10.1016/j.ccr.2022.214563_b0885) 2022; 14 Zhang (10.1016/j.ccr.2022.214563_b0190) 2018; 5 Lin (10.1016/j.ccr.2022.214563_b0530) 2017; 139 Feng (10.1016/j.ccr.2022.214563_b0470) 2020; 270 Lu (10.1016/j.ccr.2022.214563_b0515) 2015; 3 Liang (10.1016/j.ccr.2022.214563_b0225) 2021; 50 Ji (10.1016/j.ccr.2022.214563_b0400) 2021; 439 Khodakov (10.1016/j.ccr.2022.214563_b0090) 2007; 107 Cheung (10.1016/j.ccr.2022.214563_b0585) 2019; 31 Obama (10.1016/j.ccr.2022.214563_b0165) 2017; 355 Nikolaou (10.1016/j.ccr.2022.214563_b0850) 2021; 14 Dou (10.1016/j.ccr.2022.214563_b0275) 2019; 58 Najafabadi (10.1016/j.ccr.2022.214563_b0185) 2013; 37 Xu (10.1016/j.ccr.2022.214563_b0130) 2020; 30 Lin (10.1016/j.ccr.2022.214563_b0410) 2015; 349 Peng (10.1016/j.ccr.2022.214563_b0915) 2019; 5 Huang (10.1016/j.ccr.2022.214563_b0865) 2019; 7 Yuan (10.1016/j.ccr.2022.214563_b0415) 2019; 48 Xie (10.1016/j.ccr.2022.214563_b0605) 2020; 112 Lv (10.1016/j.ccr.2022.214563_b0610) 2020; 63 Zhang (10.1016/j.ccr.2022.214563_b0780) 2017; 9 Ren (10.1016/j.ccr.2022.214563_b0690) 2012; 24 Yang (10.1016/j.ccr.2022.214563_b0220) 2021; 40 Yue (10.1016/j.ccr.2022.214563_b0895) 2021; 57 Li (10.1016/j.ccr.2022.214563_b0370) 2020; 25 Yu (10.1016/j.ccr.2022.214563_b0900) 2022; 38 Zhou (10.1016/j.ccr.2022.214563_b0505) 2019; 58 Huang (10.1016/j.ccr.2022.214563_b0245) 2019; 141 Song (10.1016/j.ccr.2022.214563_b0210) 2020; 32 Zheng (10.1016/j.ccr.2022.214563_b0840) 2015; 54 Gole (10.1016/j.ccr.2022.214563_b0655) 2018; 57 Zhou (10.1016/j.ccr.2022.214563_b0080) 2020; 13 Cong (10.1016/j.ccr.2022.214563_b0835) 2021; 27 Sahabudeen (10.1016/j.ccr.2022.214563_b0595) 2020; 59 Li (10.1016/j.ccr.2022.214563_b0045) 2020; 49 Yao (10.1016/j.ccr.2022.214563_b0720) 2018; 24 Dong (10.1016/j.ccr.2022.214563_b0810) 2022; 303 She (10.1016/j.ccr.2022.214563_b0010) 2017; 355 Birdja (10.1016/j.ccr.2022.214563_b0095) 2019; 4 Wang (10.1016/j.ccr.2022.214563_b0425) 2019; 378 Liu (10.1016/j.ccr.2022.214563_b0420) 2019; 95 Wang (10.1016/j.ccr.2022.214563_b0455) 2021; 291 Laha (10.1016/j.ccr.2022.214563_b0140) 2019; 9 Cui (10.1016/j.ccr.2022.214563_b0360) 2021; 9 Chu (10.1016/j.ccr.2022.214563_b0005) 2012; 488 Han (10.1016/j.ccr.2022.214563_b0800) 2021; 143 Yusran (10.1016/j.ccr.2022.214563_b0350) 2020; 32 Ding (10.1016/j.ccr.2022.214563_b0725) 2011; 133 Wu (10.1016/j.ccr.2022.214563_b0070) 2020; 56 Chen (10.1016/j.ccr.2022.214563_b0770) 2015; 5 Lan (10.1016/j.ccr.2022.214563_b0830) 2022; 61 Li (10.1016/j.ccr.2022.214563_b0235) 2020; 59 Wu (10.1016/j.ccr.2022.214563_b0020) 2018; 5 Lu (10.1016/j.ccr.2022.214563_b0450) 2020; 12 Yi (10.1016/j.ccr.2022.214563_b0925) 2018; 3 Waller (10.1016/j.ccr.2022.214563_b0330) 2015; 48 10.1016/j.ccr.2022.214563_b0640 Jin (10.1016/j.ccr.2022.214563_b0745) 2015; 137 Zhang (10.1016/j.ccr.2022.214563_b0135) 2018; 8 Han (10.1016/j.ccr.2022.214563_b0815) 2021; 5 Hou (10.1016/j.ccr.2022.214563_b0680) 2019; 1 Ding (10.1016/j.ccr.2022.214563_b0320) 2013; 42 Li (10.1016/j.ccr.2022.214563_b0205) 2020; 2 Xiang (10.1016/j.ccr.2022.214563_b0305) 2013; 1 Ursúa (10.1016/j.ccr.2022.214563_b0110) 2012; 100 Ding (10.1016/j.ccr.2022.214563_b0345) 2011; 133 Liu (10.1016/j.ccr.2022.214563_b0630) 2019; 141 Mota (10.1016/j.ccr.2022.214563_b0175) 2019; 48 Feng (10.1016/j.ccr.2022.214563_b0535) 2021; 5 Kuhn (10.1016/j.ccr.2022.214563_b0340) 2008; 47 Shinde (10.1016/j.ccr.2022.214563_b0545) 2015; 51 Ding (10.1016/j.ccr.2022.214563_b0335) 2016; 52 Wang (10.1016/j.ccr.2022.214563_b0775) 2021; 143 Liu (10.1016/j.ccr.2022.214563_b0270) 2018; 28 Singh (10.1016/j.ccr.2022.214563_b0660) 2018; 54 Geng (10.1016/j.ccr.2022.214563_b0290) 2020; 120 Xu (10.1016/j.ccr.2022.214563_b0860) 2019; 55 Aykanat (10.1016/j.ccr.2022.214563_b0430) 2020; 32 Jin (10.1016/j.ccr.2022.214563_b0755) 2013; 52 Wang (10.1016/j.ccr.2022.214563_b0405) 2016; 27 Wang (10.1016/j.ccr.2022.214563_b0200) 2018; 2 Cave (10.1016/j.ccr.2022.214563_b0250) 2017; 19 Meng (10.1016/j.ccr.2022.214563_b0790) 1937; 141 You (10.1016/j.ccr.2022.214563_b0085) 2018; 51 Xu (10.1016/j.ccr.2022.214563_b0180) 1996; 10 Hao (10.1016/j.ccr.2022.214563_b0590) 2019; 31 Feng (10.1016/j.ccr.2022.214563_b0695) 2012; 51 Cui (10.1016/j.ccr.2022.214563_b0355) 2020; 70 Zhang (10.1016/j.ccr.2022.214563_b0905) 2022; 435 Kang (10.1016/j.ccr.2022.214563_b0265) 2019; 12 Xu (10.1016/j.ccr.2022.214563_b0550) 2014; 50 Anantharaj (10.1016/j.ccr.2022.214563_b0075) 2020; 10 Jia (10.1016/j.ccr.2022.214563_b0920) 2016; 3 Diercks (10.1016/j.ccr.2022.214563_b0525) 2018; 140 10.1016/j.ccr.2022.214563_b0675 Steele (10.1016/j.ccr.2022.214563_b0040) 2001; 414 Han (10.1016/j.ccr.2022.214563_b0820) 2022; 134 Huang (10.1016/j.ccr.2022.214563_b0670) 2020; 59 Spitler (10.1016/j.ccr.2022.214563_b0710) 2010; 2 Sun (10.1016/j.ccr.2022.214563_b0240) 2020; 13 Han (10.1016/j.ccr.2022.214563_b0285) 2017; 3 Wang (10.1016/j.ccr.2022.214563_b0575) 2020; 579 Neti (10.1016/j.ccr.2022.214563_b0390) 2013; 15 Lei (10.1016/j.ccr.2022.214563_b0795) 2021; 32 Liu (10.1016/j.ccr.2022.214563_b0485) 2019; 48 Lu (10.1016/j.ccr.2022.214563_b0435) 2021; 60 Liu (10.1016/j.ccr.2022.214563_b0685) 2013; 4 Nagai (10.1016/j.ccr.2022.214563_b0735) 2011; 2 Yi (10.1016/j.ccr.2022.214563_b0480) 2019; 7 Ranjeesh (10.1016/j.ccr.2022.214563_b0855) 2018; 1 Bonnett (10.1016/j.ccr.2022.214563_b0375) 1995; 24 Bhunia (10.1016/j.ccr.2022.214563_b0510) 2019; 11 Guo (10.1016/j.ccr.2022.214563_b0055) 2020; 56 Brüller (10.1016/j.ccr.2022.214563_b0930) 2015; 3 Wu (10.1016/j.ccr.2022.214563_b0560) 2021; 17 Windle (10.1016/j.ccr.2022.214563_b0195) 2012; 256 Sahabudeen (10.1016/j.ccr.2022.214563_b0445) 2016; 7 Lu (10.1016/j.ccr.2022.214563_b0475) 2019; 29 Goodenough (10.1016/j.ccr.2022.214563_b0035) 2014; 7 Yue (10.1016/j.ccr.2022.214563_b0805) 2021; 143 Solomon (10.1016/j.ccr.2022.214563_b0155) 2009; 106 Zhang (10.1016/j.ccr.2022.214563_b0385) 2018; 57 Chen (10.1016/j.ccr.2022.214563_b0395) 2021; 435 Yang (10.1016/j.ccr.2022.214563_b0280) 2020; 16 Liu (10.1016/j.ccr.2022.214563_b0120) 2018; 4 Liu (10.1016/j.ccr.2022.214563_b0625) 2019; 43 Patra (10.1016/j.ccr.2022.214563_b0635) 2017; 7 Gan (10.1016/j.ccr.2022.214563_b0875) 2021; 415 Sun (10.1016/j.ccr.2022.214563_b0615) 2016; 120 Côté (10.1016/j.ccr.2022.214563_b0295) 2005; 310 Davis (10.1016/j.ccr.2022.214563_b0160) 2010; 329 Jia (10.1016/j.ccr.2022.214563_b0870) 2015; 27 Guan (10.1016/j.ccr.2022.214563_b0325) 2020; 49 Nagai (10.1016/j.ccr.2022.214563_b0785) 2013; 52 Ding (10.1016/j.ccr.2022.214563_b0730) 2021; 50 Ding (10.1016/j.ccr.2022.214563_b0740) 2012; 48 Yang (10.1016/j.ccr.2022.214563_b0890) 2021; 50 Zhu (10.1016/j.ccr.2022.214563_b0440) 2020; 11 Chi (10.1016/j.ccr.2022.214563_b0825) 2022; 10 Calik (10.1016/j.ccr.2022.214563_b0705) 2014; 136 Lu (10.1016/j.ccr.2022.214563_b0540) 2019; 7 Rodríguez-San-Miguel (10.1016/j.ccr.2022.214563_b0490) 2020; 49 An (10.1016/j.ccr.2022.214563_b0555) 2021; 6 Park (10.1016/j.ccr.2022.214563_b0700) 2020; 59 Wang (10.1016/j.ccr.2022.214563_b0105) 2019; 48 Li (10.1016/j.ccr.2022.214563_b0230) 2021; 57 Zou (10.1016/j.ccr.2022.214563_b0125) 2015; 44 Benson (10.1016/j.ccr.2022.214563_b0050) 2009; 38 Spitler (10.1016/j.ccr.2022.214563_b0715) 2011; 2 Yella (10.1016/j.ccr.2022.214563_b0380) 2011; 334 Liu (10.1016/j.ccr.2022.214563_b0910) 2019; 7 Nikolaou (10.1016/j.ccr.2022.214563_b0845) 2021; 57 Wu (10.1016/j.ccr.2022.214563_b0600) 2020; 5 Roger (10.1016/j.ccr.2022.214563_b0060) 2017; 1 Lu (10.1016/j.ccr.2022.214563_b0880) 2017; 60 Xu (10.1016/j.ccr.2022.214563_b0620) 2020; 12 Ma (10.1016/j.ccr.2022.214563_b0255) 2017; 42 Wang (10.1016/j.ccr.2022.214563_b0570) 2020; 396 Walter (10.1016/j.ccr.2022.214563_b0030) 2010; 110 |
References_xml | – volume: 27 start-page: 4586 year: 2015 end-page: 4593 ident: b0870 publication-title: Chem. Mater. – volume: 57 start-page: 846 year: 2018 end-page: 850 ident: b0655 publication-title: Angew. Chem., Int. Ed. – volume: 134 year: 2022 ident: b0820 publication-title: Angew. Chem. – volume: 120 start-page: 8814 year: 2020 end-page: 8933 ident: b0290 publication-title: Chem. Rev. – volume: 2 start-page: 1588 year: 2011 end-page: 1593 ident: b0715 publication-title: Chem. Sci. – volume: 334 start-page: 629 year: 2011 end-page: 634 ident: b0380 publication-title: Science – volume: 48 start-page: 3053 year: 2015 end-page: 3063 ident: b0330 publication-title: Acc. Chem. Res. – volume: 112 year: 2020 ident: b0605 publication-title: Mater. Sci. Eng.: C – volume: 32 start-page: 3799 year: 2021 end-page: 3802 ident: b0795 publication-title: Chin. Chem. Lett. – volume: 38 start-page: 89 year: 2009 end-page: 99 ident: b0050 publication-title: Chem. Soc. Rev. – volume: 378 start-page: 188 year: 2019 end-page: 206 ident: b0425 publication-title: Coordin. Chem. Rev. – volume: 32 start-page: 5372 year: 2020 end-page: 5409 ident: b0430 publication-title: Chem. Mater. – volume: 2 start-page: 825 year: 2020 end-page: 836 ident: b0215 publication-title: Trends Chem. – volume: 7 start-page: 5575 year: 2019 end-page: 5582 ident: b0865 publication-title: J. Mater. Chem. A – volume: 60 start-page: 999 year: 2017 end-page: 1006 ident: b0880 publication-title: Sci. China Chem. – volume: 1 start-page: 2691 year: 2013 end-page: 2718 ident: b0305 publication-title: J. Mater. Chem. A – volume: 57 start-page: 6987 year: 2021 end-page: 6990 ident: b0230 publication-title: Chem. Commun. – volume: 52 start-page: 3770 year: 2013 end-page: 3774 ident: b0785 publication-title: Angew. Chem., Int. Ed. – volume: 303 year: 2022 ident: b0810 publication-title: Appl. Catal. B – volume: 57 start-page: 16339 year: 2018 end-page: 16342 ident: b0385 publication-title: Angew. Chem., Int. Ed. – volume: 29 start-page: 1806884 year: 2019 ident: b0475 publication-title: Adv. Funct. Mater. – volume: 143 start-page: 15011 year: 2021 end-page: 15016 ident: b0775 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 732 year: 2019 end-page: 745 ident: b0095 publication-title: Nat. Energy – volume: 40 start-page: 1412 year: 2021 end-page: 1430 ident: b0220 publication-title: Rare Met. – volume: 5 start-page: 2100102 year: 2021 ident: b0815 publication-title: Small Methods – volume: 50 start-page: 2540 year: 2021 end-page: 2581 ident: b0225 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 3081 year: 2019 end-page: 3091 ident: b0260 publication-title: ACS Appl. Energy Mater. – volume: 32 start-page: 1903796 year: 2020 ident: b0210 publication-title: Adv. Mater. – volume: 41 start-page: 898 year: 2002 end-page: 952 ident: b0500 publication-title: Angew. Chem., Int. Ed. – volume: 70 year: 2020 ident: b0355 publication-title: Nano Energy – volume: 143 start-page: 18052 year: 2021 end-page: 18060 ident: b0805 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 4041 year: 2019 end-page: 4045 ident: b0275 publication-title: Angew. Chem., Int. Ed. – volume: 24 start-page: 19 year: 1995 end-page: 33 ident: b0375 publication-title: Chem. Soc. Rev. – volume: 343 start-page: 1210 year: 2014 end-page: 1211 ident: b0015 publication-title: Science – volume: 47 start-page: 3450 year: 2008 end-page: 3453 ident: b0340 publication-title: Angew. Chem., Int. Ed. – volume: 46 start-page: 9344 year: 2017 end-page: 9348 ident: b0460 publication-title: Dalton Trans. – volume: 54 start-page: 52 year: 2015 end-page: 65 ident: b0840 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 652 year: 2017 end-page: 664 ident: b0285 publication-title: Chem – volume: 17 start-page: 2004933 year: 2021 ident: b0560 publication-title: Small – volume: 3 start-page: 399 year: 2012 end-page: 404 ident: b0150 publication-title: J. Phys. Chem. Lett. – volume: 141 start-page: 2490 year: 2019 end-page: 2499 ident: b0245 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 3185 year: 2020 end-page: 3206 ident: b0080 publication-title: Energy Environ. Sci. – volume: 8 start-page: 1703597 year: 2018 ident: b0135 publication-title: Adv. Energy Mater. – volume: 3 start-page: 883 year: 2018 end-page: 889 ident: b0925 publication-title: ACS Energy Lett. – volume: 107 start-page: 1692 year: 2007 end-page: 1744 ident: b0090 publication-title: Chem. Rev. – volume: 141 start-page: 11929 year: 1937 end-page: 11931 ident: b0790 publication-title: J. Am. Chem. Soc. – volume: 396 year: 2020 ident: b0570 publication-title: Chem. Eng. J. – volume: 12 start-page: 37427 year: 2020 end-page: 37434 ident: b0620 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 12567 year: 2018 end-page: 12572 ident: b0465 publication-title: Angew. Chem., Int. Ed. – volume: 310 start-page: 1166 year: 2005 end-page: 1170 ident: b0295 publication-title: Science – volume: 48 start-page: 5310 year: 2019 end-page: 5349 ident: b0105 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 20985 year: 2021 end-page: 21004 ident: b0360 publication-title: J. Mater. Chem. A – volume: 100 start-page: 410 year: 2012 end-page: 426 ident: b0110 publication-title: Proc. IEEE – volume: 31 start-page: 8100 year: 2019 end-page: 8105 ident: b0590 publication-title: Chem. Mater. – volume: 349 start-page: 1208 year: 2015 end-page: 1213 ident: b0410 publication-title: Science – volume: 12 start-page: 37986 year: 2020 end-page: 37992 ident: b0450 publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 3565 year: 2020 end-page: 3604 ident: b0310 publication-title: Chem. Soc. Rev. – volume: 19 start-page: 15856 year: 2017 end-page: 15863 ident: b0250 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 497 year: 2020 ident: b0440 publication-title: Nat. Commun. – volume: 63 start-page: 1289 year: 2020 end-page: 1294 ident: b0610 publication-title: Sci. China Chem. – volume: 31 start-page: 1908 year: 2019 end-page: 1919 ident: b0585 publication-title: Chem. Mater. – volume: 15 start-page: 6892 year: 2013 end-page: 6895 ident: b0390 publication-title: CrystEngComm – volume: 291 year: 2021 ident: b0455 publication-title: Appl. Catal. B – volume: 439 year: 2021 ident: b0400 publication-title: Coord. Chem. Rev. – volume: 6 start-page: 3195 year: 2018 end-page: 3201 ident: b0650 publication-title: J. Mater. Chem. A – volume: 38 start-page: 167 year: 2022 end-page: 172 ident: b0900 publication-title: Chem. Res. Chin. Univ. – volume: 52 start-page: 4706 year: 2016 end-page: 4709 ident: b0335 publication-title: Chem. Commun. – volume: 3 start-page: 23799 year: 2015 end-page: 23808 ident: b0930 publication-title: J. Mater. Chem. A – volume: 58 start-page: 1376 year: 2019 end-page: 1381 ident: b0505 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 2445 year: 2013 end-page: 2448 ident: b0685 publication-title: Polym. Chem. – volume: 49 start-page: 9028 year: 2020 end-page: 9056 ident: b0045 publication-title: Chem. Soc. Rev. – volume: 42 start-page: 51 year: 2017 end-page: 57 ident: b0255 publication-title: Nano Energy – volume: 60 start-page: 4864 year: 2021 end-page: 4871 ident: b0435 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 13415 year: 2017 end-page: 13421 ident: b0780 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 3112 year: 2019 end-page: 3119 ident: b0910 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1005 year: 2020 end-page: 1012 ident: b0600 publication-title: ACS Energy Lett. – volume: 136 start-page: 9806 year: 2014 end-page: 9809 ident: b0760 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 277 year: 2022 end-page: 288 ident: b0885 publication-title: Nanoscale – volume: 59 start-page: 16587 year: 2020 end-page: 16593 ident: b0670 publication-title: Angew. Chem., Int. Ed. – volume: 24 start-page: 2357 year: 2012 end-page: 2361 ident: b0690 publication-title: Adv. Mater. – volume: 59 start-page: 8218 year: 2020 end-page: 8224 ident: b0700 publication-title: Angew. Chem., Int. Ed. – volume: 414 start-page: 345 year: 2001 end-page: 352 ident: b0040 publication-title: Nature – volume: 14 start-page: 961 year: 2021 end-page: 970 ident: b0850 publication-title: ChemSusChem – volume: 3 start-page: 821 year: 2016 end-page: 827 ident: b0920 publication-title: Inorg. Chem. Front. – volume: 2 start-page: 648 year: 2019 end-page: 658 ident: b0100 publication-title: Nat. Catal. – volume: 7 start-page: 14 year: 2014 end-page: 18 ident: b0035 publication-title: Energy Environ. Sci. – volume: 488 start-page: 294 year: 2012 end-page: 303 ident: b0005 publication-title: Nature – volume: 27 start-page: 1383 year: 2016 end-page: 1394 ident: b0300 publication-title: Chin. Chem. Lett. – volume: 56 start-page: 7849 year: 2020 end-page: 7852 ident: b0055 publication-title: Chem. Commun. – volume: 7 start-page: 1469 year: 2019 end-page: 1474 ident: b0540 publication-title: J. Mater. Chem. B – volume: 44 start-page: 5148 year: 2015 end-page: 5180 ident: b0125 publication-title: Chem. Soc. Rev. – volume: 95 start-page: 1 year: 2019 end-page: 15 ident: b0420 publication-title: J. Inclusion Phenom. Macrocyclic Chem. – reference: L.j. Wang, R.l. Wang, X. Zhang, J.l. Mu, Z.y. Zhou, Z.m. Su, ChemSusChem 13 (2020) 2973–2980. – volume: 28 start-page: 1800499 year: 2018 ident: b0270 publication-title: Adv. Funct. Mater. – volume: 106 start-page: 1704 year: 2009 end-page: 1709 ident: b0155 publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 445 year: 2019 end-page: 459 ident: b0145 publication-title: Chem – volume: 48 start-page: 5266 year: 2019 end-page: 5302 ident: b0485 publication-title: Chem. Soc. Rev. – volume: 51 start-page: 2618 year: 2012 end-page: 2622 ident: b0695 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 305 year: 1996 end-page: 325 ident: b0180 publication-title: Energy Fuels – volume: 133 start-page: 14510 year: 2011 end-page: 14513 ident: b0725 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 12647 year: 2019 end-page: 12650 ident: b0860 publication-title: Chem. Commun. – volume: 5 start-page: 2255 year: 2021 end-page: 2260 ident: b0535 publication-title: Mater. Chem. Front. – volume: 6 start-page: 14431 year: 2018 end-page: 14439 ident: b0025 publication-title: J. Mater. Chem. A – volume: 32 start-page: 1806326 year: 2020 ident: b0115 publication-title: Adv. Mater. – volume: 9 start-page: 23843 year: 2017 end-page: 23851 ident: b0580 publication-title: ACS Appl. Mater. Interfaces – volume: 56 start-page: 15496 year: 2020 end-page: 15512 ident: b0070 publication-title: Chem. Commun. – volume: 50 start-page: 1289 year: 2021 end-page: 1293 ident: b0730 publication-title: Angew. Chem., Int. Ed. – volume: 54 start-page: 4465 year: 2018 end-page: 4468 ident: b0660 publication-title: Chem. Commun. – volume: 137 start-page: 7817 year: 2015 end-page: 7827 ident: b0745 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1700684 year: 2018 ident: b0020 publication-title: Adv. Sci. – volume: 2 start-page: 2551 year: 2018 end-page: 2582 ident: b0200 publication-title: Joule – volume: 8 start-page: 3572 year: 2018 end-page: 3579 ident: b0665 publication-title: Catal. Sci. Technol. – volume: 51 start-page: 2623 year: 2012 end-page: 2627 ident: b0750 publication-title: Angew. Chem., Int. Ed. – volume: 110 start-page: 6446 year: 2010 end-page: 6473 ident: b0030 publication-title: Chem. Rev. – volume: 30 start-page: 2000793 year: 2020 ident: b0130 publication-title: Adv. Funct. Mater. – volume: 140 start-page: 1116 year: 2018 end-page: 1122 ident: b0525 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 310 year: 2015 end-page: 313 ident: b0545 publication-title: Chem. Commun. – volume: 579 start-page: 598 year: 2020 end-page: 606 ident: b0575 publication-title: J. Colloid Interface Sci. – volume: 5 start-page: 1700275 year: 2018 ident: b0190 publication-title: Adv. Sci. – volume: 16 start-page: 2001847 year: 2020 ident: b0280 publication-title: Small – volume: 4 start-page: 1263 year: 2018 end-page: 1283 ident: b0120 publication-title: Chem – volume: 415 year: 2021 ident: b0875 publication-title: Chem. Eng. J. – volume: 9 start-page: 1803795 year: 2019 ident: b0140 publication-title: Adv. Energy Mater. – volume: 7 start-page: 6120 year: 2017 end-page: 6127 ident: b0635 publication-title: ACS Catal. – volume: 27 start-page: 1376 year: 2016 end-page: 1382 ident: b0405 publication-title: Chin. Chem. Lett. – volume: 133 start-page: 12881 year: 2011 end-page: 12898 ident: b0170 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 17802 year: 2014 end-page: 17807 ident: b0705 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 2665 year: 2019 end-page: 2681 ident: b0415 publication-title: Chem. Soc. Rev. – volume: 355 start-page: 126 year: 2017 end-page: 129 ident: b0165 publication-title: Science – volume: 48 start-page: 205 year: 2019 end-page: 259 ident: b0175 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 11051 year: 2018 end-page: 11058 ident: b0720 publication-title: Chem. - Eur. J. – volume: 11 start-page: 9809 year: 2021 end-page: 9824 ident: b0365 publication-title: ACS Catal. – volume: 32 start-page: 2002038 year: 2020 ident: b0350 publication-title: Adv. Mater. – volume: 2 year: 2020 ident: b0205 publication-title: EnergyChem – volume: 49 start-page: 2291 year: 2020 end-page: 2302 ident: b0490 publication-title: Chem. Soc. Rev. – volume: 27 start-page: 15866 year: 2021 end-page: 15888 ident: b0835 publication-title: Chem. - Eur. J. – volume: 12 start-page: 2671 year: 2019 end-page: 2678 ident: b0265 publication-title: ChemSusChem – volume: 7 start-page: 12325 year: 2016 ident: b0765 publication-title: Nat. Commun. – volume: 435 year: 2021 ident: b0395 publication-title: Coord. Chem. Rev. – volume: 7 start-page: 1252 year: 2019 end-page: 1259 ident: b0480 publication-title: J. Mater. Chem. A – volume: 6 start-page: 3496 year: 2021 end-page: 3502 ident: b0555 publication-title: ACS Energy Lett. – volume: 141 start-page: 17431 year: 2019 end-page: 17440 ident: b0630 publication-title: J. Am. Chem. Soc. – volume: 61 year: 2022 ident: b0830 publication-title: Angew. Chem., Int. Ed. – volume: 57 start-page: 12619 year: 2021 end-page: 12622 ident: b0895 publication-title: Chem. Commun. – volume: 10 start-page: 1902666 year: 2020 ident: b0075 publication-title: Adv. Energy Mater. – volume: 25 start-page: 2425 year: 2020 ident: b0370 publication-title: Molecules – volume: 1 start-page: 0003 year: 2017 ident: b0060 publication-title: Nat. Rev. Chem. – volume: 3 start-page: 4954 year: 2015 end-page: 4959 ident: b0515 publication-title: J. Mater. Chem. A – volume: 329 start-page: 1330 year: 2010 end-page: 1333 ident: b0160 publication-title: Science – volume: 43 start-page: 16907 year: 2019 end-page: 16914 ident: b0625 publication-title: New J. Chem. – volume: 2 start-page: 672 year: 2010 end-page: 677 ident: b0710 publication-title: Nat. Chem. – volume: 52 start-page: 2017 year: 2013 end-page: 2021 ident: b0755 publication-title: Angew. Chem., Int. Ed. – volume: 41 start-page: 6010 year: 2012 end-page: 6022 ident: b0315 publication-title: Chem. Soc. Rev. – volume: 50 start-page: 12985 year: 2021 end-page: 13011 ident: b0890 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 13461 year: 2016 ident: b0445 publication-title: Nat. Commun. – reference: R. Chen, Y. Wang, Yuan. Ma, A. Mal, X.Y. Gao, L. Gao, L. Qiao, X.B. Li, L.Z. Wu, C. Wang, Nat. Commun. 12 (2021) 1354. – volume: 2 start-page: 536 year: 2011 ident: b0735 publication-title: Nat. Commun. – volume: 143 start-page: 7104 year: 2021 end-page: 7113 ident: b0800 publication-title: J. Am. Chem. Soc. – volume: 364 start-page: 1091 year: 2019 end-page: 1094 ident: b0065 publication-title: Science – volume: 10 start-page: 4653 year: 2022 end-page: 4659 ident: b0825 publication-title: J. Mater. Chem. A – volume: 11 start-page: 1520 year: 2019 end-page: 1528 ident: b0510 publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 1357 year: 2020 end-page: 1384 ident: b0325 publication-title: Chem. Soc. Rev. – volume: 37 start-page: 485 year: 2013 end-page: 499 ident: b0185 publication-title: Int. J. Energy Res. – volume: 5 start-page: eaaw2322 year: 2019 ident: b0915 publication-title: Sci. Adv. – volume: 48 start-page: 8952 year: 2012 end-page: 8954 ident: b0740 publication-title: Chem. Commun. – volume: 10 start-page: 37919 year: 2018 end-page: 37927 ident: b0565 publication-title: ACS Appl. Mater. Interfaces – volume: 355 start-page: eaad4998 year: 2017 ident: b0010 publication-title: Science – volume: 57 start-page: 4055 year: 2021 end-page: 4058 ident: b0845 publication-title: Chem. Commun. – volume: 59 start-page: 6028 year: 2020 end-page: 6036 ident: b0595 publication-title: Angew. Chem., Int. Ed. – volume: 59 start-page: 14184 year: 2020 end-page: 14192 ident: b0235 publication-title: Inorg. Chem. – volume: 51 start-page: 1571 year: 2018 end-page: 1580 ident: b0085 publication-title: Acc. Chem. Res. – volume: 256 start-page: 2562 year: 2012 end-page: 2570 ident: b0195 publication-title: Coord. Chem. Rev. – volume: 15 start-page: 1970 year: 2020 end-page: 1975 ident: b0645 publication-title: Chem. - Asian J. – volume: 139 start-page: 8705 year: 2017 end-page: 8709 ident: b0530 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 374 year: 2020 end-page: 403 ident: b0240 publication-title: Energy Environ. Sci. – volume: 270 year: 2020 ident: b0470 publication-title: Appl. Catal. B – volume: 50 start-page: 1292 year: 2014 end-page: 1294 ident: b0550 publication-title: Chem. Commun. – volume: 43 start-page: 1948 year: 2014 end-page: 1962 ident: b0495 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 6442 year: 2018 end-page: 6450 ident: b0855 publication-title: ACS Appl. Energy Mater. – volume: 133 start-page: 19816 year: 2011 end-page: 19822 ident: b0345 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 4094 year: 2011 end-page: 4097 ident: b0520 publication-title: Chem. Mater. – volume: 120 start-page: 14706 year: 2016 end-page: 14711 ident: b0615 publication-title: J. Phys. Chem. C – volume: 435 year: 2022 ident: b0905 publication-title: Chem. Eng. J. – volume: 1 start-page: 384 year: 2019 end-page: 395 ident: b0680 publication-title: CCS Chem. – volume: 5 start-page: 14650 year: 2015 ident: b0770 publication-title: Sci. Rep. – volume: 42 start-page: 548 year: 2013 end-page: 568 ident: b0320 publication-title: Chem. Soc. Rev. – volume: 133 start-page: 12881 year: 2011 ident: 10.1016/j.ccr.2022.214563_b0170 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja202642y – volume: 61 year: 2022 ident: 10.1016/j.ccr.2022.214563_b0830 publication-title: Angew. Chem., Int. Ed. – volume: 1 start-page: 6442 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0855 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01381 – volume: 7 start-page: 13461 year: 2016 ident: 10.1016/j.ccr.2022.214563_b0445 publication-title: Nat. Commun. doi: 10.1038/ncomms13461 – volume: 7 start-page: 12325 year: 2016 ident: 10.1016/j.ccr.2022.214563_b0765 publication-title: Nat. Commun. doi: 10.1038/ncomms12325 – volume: 7 start-page: 3112 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0910 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11044A – volume: 7 start-page: 6120 year: 2017 ident: 10.1016/j.ccr.2022.214563_b0635 publication-title: ACS Catal. doi: 10.1021/acscatal.7b01067 – volume: 14 start-page: 961 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0850 publication-title: ChemSusChem doi: 10.1002/cssc.202002761 – volume: 54 start-page: 4465 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0660 publication-title: Chem. Commun. doi: 10.1039/C8CC01291A – volume: 58 start-page: 1376 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0505 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201811399 – volume: 143 start-page: 15011 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0775 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c08351 – volume: 57 start-page: 4055 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0845 publication-title: Chem. Commun. doi: 10.1039/D0CC08359C – volume: 42 start-page: 51 year: 2017 ident: 10.1016/j.ccr.2022.214563_b0255 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.09.043 – volume: 59 start-page: 14184 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0235 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c01977 – volume: 51 start-page: 310 year: 2015 ident: 10.1016/j.ccr.2022.214563_b0545 publication-title: Chem. Commun. doi: 10.1039/C4CC07104B – volume: 51 start-page: 1571 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0085 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00002 – volume: 32 start-page: 1806326 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0115 publication-title: Adv. Mater. doi: 10.1002/adma.201806326 – volume: 13 start-page: 374 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0240 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03660A – volume: 6 start-page: 14431 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0025 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03120G – volume: 16 start-page: 2001847 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0280 publication-title: Small doi: 10.1002/smll.202001847 – volume: 47 start-page: 3450 year: 2008 ident: 10.1016/j.ccr.2022.214563_b0340 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200705710 – volume: 3 start-page: 821 year: 2016 ident: 10.1016/j.ccr.2022.214563_b0920 publication-title: Inorg. Chem. Front. doi: 10.1039/C5QI00198F – volume: 5 start-page: 445 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0145 publication-title: Chem doi: 10.1016/j.chempr.2018.11.010 – volume: 12 start-page: 37986 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0450 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c06537 – volume: 23 start-page: 4094 year: 2011 ident: 10.1016/j.ccr.2022.214563_b0520 publication-title: Chem. Mater. doi: 10.1021/cm201140r – volume: 5 start-page: 1700275 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0190 publication-title: Adv. Sci. doi: 10.1002/advs.201700275 – volume: 256 start-page: 2562 year: 2012 ident: 10.1016/j.ccr.2022.214563_b0195 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2012.03.010 – volume: 43 start-page: 16907 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0625 publication-title: New J. Chem. doi: 10.1039/C9NJ04017J – volume: 5 start-page: 14650 year: 2015 ident: 10.1016/j.ccr.2022.214563_b0770 publication-title: Sci. Rep. doi: 10.1038/srep14650 – volume: 310 start-page: 1166 year: 2005 ident: 10.1016/j.ccr.2022.214563_b0295 publication-title: Science doi: 10.1126/science.1120411 – volume: 59 start-page: 6028 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0595 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201915217 – volume: 2 start-page: 2551 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0200 publication-title: Joule doi: 10.1016/j.joule.2018.09.021 – volume: 28 start-page: 1800499 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0270 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800499 – volume: 24 start-page: 2357 year: 2012 ident: 10.1016/j.ccr.2022.214563_b0690 publication-title: Adv. Mater. doi: 10.1002/adma.201200751 – volume: 3 start-page: 883 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0925 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00245 – volume: 3 start-page: 399 year: 2012 ident: 10.1016/j.ccr.2022.214563_b0150 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz2016507 – volume: 31 start-page: 1908 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0585 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04370 – volume: 70 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0355 publication-title: Nano Energy – volume: 291 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0455 publication-title: Appl. Catal. B – volume: 12 start-page: 2671 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0265 publication-title: ChemSusChem doi: 10.1002/cssc.201900779 – volume: 349 start-page: 1208 year: 2015 ident: 10.1016/j.ccr.2022.214563_b0410 publication-title: Science doi: 10.1126/science.aac8343 – volume: 48 start-page: 5310 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0105 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00163H – volume: 51 start-page: 2618 year: 2012 ident: 10.1016/j.ccr.2022.214563_b0695 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201106203 – volume: 396 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0570 publication-title: Chem. Eng. J. – volume: 5 start-page: 1005 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0600 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02756 – volume: 9 start-page: 1803795 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0140 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803795 – volume: 2 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0205 publication-title: EnergyChem – volume: 49 start-page: 1357 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0325 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00911F – volume: 60 start-page: 4864 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0435 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202011722 – volume: 414 start-page: 345 year: 2001 ident: 10.1016/j.ccr.2022.214563_b0040 publication-title: Nature doi: 10.1038/35104620 – volume: 4 start-page: 732 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0095 publication-title: Nat. Energy doi: 10.1038/s41560-019-0450-y – volume: 19 start-page: 15856 year: 2017 ident: 10.1016/j.ccr.2022.214563_b0250 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP02855E – volume: 32 start-page: 1903796 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0210 publication-title: Adv. Mater. doi: 10.1002/adma.201903796 – volume: 10 start-page: 305 year: 1996 ident: 10.1016/j.ccr.2022.214563_b0180 publication-title: Energy Fuels doi: 10.1021/ef9600265 – volume: 58 start-page: 4041 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0275 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201814711 – volume: 3 start-page: 652 year: 2017 ident: 10.1016/j.ccr.2022.214563_b0285 publication-title: Chem doi: 10.1016/j.chempr.2017.08.002 – volume: 11 start-page: 497 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0440 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14237-4 – volume: 43 start-page: 1948 year: 2014 ident: 10.1016/j.ccr.2022.214563_b0495 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60342C – volume: 100 start-page: 410 year: 2012 ident: 10.1016/j.ccr.2022.214563_b0110 publication-title: Proc. IEEE doi: 10.1109/JPROC.2011.2156750 – volume: 141 start-page: 17431 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0630 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09502 – volume: 364 start-page: 1091 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0065 publication-title: Science doi: 10.1126/science.aaw7515 – volume: 29 start-page: 1806884 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0475 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806884 – volume: 31 start-page: 8100 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0590 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02718 – volume: 9 start-page: 13415 year: 2017 ident: 10.1016/j.ccr.2022.214563_b0780 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16423 – volume: 106 start-page: 1704 year: 2009 ident: 10.1016/j.ccr.2022.214563_b0155 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0812721106 – volume: 140 start-page: 1116 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0525 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11940 – volume: 7 start-page: 5575 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0865 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00040B – volume: 343 start-page: 1210 year: 2014 ident: 10.1016/j.ccr.2022.214563_b0015 publication-title: Science doi: 10.1126/science.1249625 – volume: 57 start-page: 846 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0655 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201708526 – volume: 30 start-page: 2000793 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0130 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000793 – volume: 27 start-page: 1376 year: 2016 ident: 10.1016/j.ccr.2022.214563_b0405 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2016.05.020 – volume: 14 start-page: 277 year: 2022 ident: 10.1016/j.ccr.2022.214563_b0885 publication-title: Nanoscale doi: 10.1039/D1NR06197F – volume: 57 start-page: 6987 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0230 publication-title: Chem. Commun. doi: 10.1039/D1CC02468J – volume: 2 start-page: 672 year: 2010 ident: 10.1016/j.ccr.2022.214563_b0710 publication-title: Nat. Chem. doi: 10.1038/nchem.695 – volume: 1 start-page: 0003 year: 2017 ident: 10.1016/j.ccr.2022.214563_b0060 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0003 – volume: 8 start-page: 1703597 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0135 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703597 – volume: 60 start-page: 999 year: 2017 ident: 10.1016/j.ccr.2022.214563_b0880 publication-title: Sci. China Chem. doi: 10.1007/s11426-017-9078-7 – volume: 133 start-page: 14510 year: 2011 ident: 10.1016/j.ccr.2022.214563_b0725 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2052396 – volume: 38 start-page: 89 year: 2009 ident: 10.1016/j.ccr.2022.214563_b0050 publication-title: Chem. Soc. Rev. doi: 10.1039/B804323J – volume: 5 start-page: eaaw2322 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0915 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw2322 – volume: 355 start-page: 126 year: 2017 ident: 10.1016/j.ccr.2022.214563_b0165 publication-title: Science doi: 10.1126/science.aam6284 – volume: 59 start-page: 8218 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0700 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916595 – volume: 378 start-page: 188 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0425 publication-title: Coordin. Chem. Rev. doi: 10.1016/j.ccr.2017.08.023 – volume: 3 start-page: 4954 year: 2015 ident: 10.1016/j.ccr.2022.214563_b0515 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06231K – volume: 2 start-page: 536 year: 2011 ident: 10.1016/j.ccr.2022.214563_b0735 publication-title: Nat. Commun. doi: 10.1038/ncomms1542 – volume: 95 start-page: 1 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0420 publication-title: J. Inclusion Phenom. Macrocyclic Chem. doi: 10.1007/s10847-019-00924-8 – volume: 41 start-page: 6010 year: 2012 ident: 10.1016/j.ccr.2022.214563_b0315 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35157a – volume: 46 start-page: 9344 year: 2017 ident: 10.1016/j.ccr.2022.214563_b0460 publication-title: Dalton Trans. doi: 10.1039/C7DT01694H – volume: 49 start-page: 3565 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0310 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00017E – volume: 51 start-page: 2623 year: 2012 ident: 10.1016/j.ccr.2022.214563_b0750 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201107070 – volume: 141 start-page: 2490 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0245 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b12381 – volume: 27 start-page: 1383 year: 2016 ident: 10.1016/j.ccr.2022.214563_b0300 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2016.06.046 – volume: 52 start-page: 3770 year: 2013 ident: 10.1016/j.ccr.2022.214563_b0785 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201300256 – volume: 329 start-page: 1330 year: 2010 ident: 10.1016/j.ccr.2022.214563_b0160 publication-title: Science doi: 10.1126/science.1188566 – volume: 2 start-page: 825 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0215 publication-title: Trends Chem. doi: 10.1016/j.trechm.2020.06.007 – volume: 10 start-page: 37919 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0565 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07795 – volume: 40 start-page: 1412 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0220 publication-title: Rare Met. doi: 10.1007/s12598-020-01600-4 – volume: 48 start-page: 8952 year: 2012 ident: 10.1016/j.ccr.2022.214563_b0740 publication-title: Chem. Commun. doi: 10.1039/c2cc33929c – volume: 415 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0875 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127850 – volume: 5 start-page: 1700684 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0020 publication-title: Adv. Sci. doi: 10.1002/advs.201700684 – volume: 48 start-page: 5266 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0485 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00299E – volume: 27 start-page: 15866 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0835 publication-title: Chem. - Eur. J. doi: 10.1002/chem.202102209 – volume: 24 start-page: 19 year: 1995 ident: 10.1016/j.ccr.2022.214563_b0375 publication-title: Chem. Soc. Rev. doi: 10.1039/cs9952400019 – volume: 11 start-page: 1520 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0510 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20142 – volume: 11 start-page: 9809 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0365 publication-title: ACS Catal. doi: 10.1021/acscatal.1c02459 – volume: 120 start-page: 14706 year: 2016 ident: 10.1016/j.ccr.2022.214563_b0615 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b04410 – volume: 2 start-page: 648 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0100 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0306-7 – volume: 8 start-page: 3572 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0665 publication-title: Catal. Sci. Technol. doi: 10.1039/C8CY00483H – volume: 143 start-page: 18052 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0805 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c06238 – volume: 57 start-page: 12567 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0465 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808226 – volume: 41 start-page: 898 year: 2002 ident: 10.1016/j.ccr.2022.214563_b0500 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E – volume: 6 start-page: 3496 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0555 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c01681 – volume: 2 start-page: 1588 year: 2011 ident: 10.1016/j.ccr.2022.214563_b0715 publication-title: Chem. Sci. doi: 10.1039/C1SC00260K – volume: 4 start-page: 1263 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0120 publication-title: Chem doi: 10.1016/j.chempr.2018.02.006 – volume: 63 start-page: 1289 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0610 publication-title: Sci. China Chem. doi: 10.1007/s11426-020-9801-3 – volume: 50 start-page: 12985 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0890 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01605E – volume: 12 start-page: 37427 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0620 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c06022 – volume: 4 start-page: 2445 year: 2013 ident: 10.1016/j.ccr.2022.214563_b0685 publication-title: Polym. Chem. doi: 10.1039/c3py00083d – volume: 134 year: 2022 ident: 10.1016/j.ccr.2022.214563_b0820 publication-title: Angew. Chem. – volume: 42 start-page: 548 year: 2013 ident: 10.1016/j.ccr.2022.214563_b0320 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35072F – volume: 303 year: 2022 ident: 10.1016/j.ccr.2022.214563_b0810 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2021.120897 – volume: 27 start-page: 4586 year: 2015 ident: 10.1016/j.ccr.2022.214563_b0870 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b00882 – volume: 136 start-page: 9806 year: 2014 ident: 10.1016/j.ccr.2022.214563_b0760 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502692w – volume: 59 start-page: 16587 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0670 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005274 – ident: 10.1016/j.ccr.2022.214563_b0675 doi: 10.1002/cssc.202000103 – volume: 32 start-page: 2002038 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0350 publication-title: Adv. Mater. doi: 10.1002/adma.202002038 – volume: 435 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0395 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213778 – volume: 13 start-page: 3185 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0080 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01856B – volume: 24 start-page: 11051 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0720 publication-title: Chem. - Eur. J. doi: 10.1002/chem.201800363 – volume: 107 start-page: 1692 year: 2007 ident: 10.1016/j.ccr.2022.214563_b0090 publication-title: Chem. Rev. doi: 10.1021/cr050972v – volume: 9 start-page: 23843 year: 2017 ident: 10.1016/j.ccr.2022.214563_b0580 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b06968 – volume: 48 start-page: 205 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0175 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00527C – volume: 435 year: 2022 ident: 10.1016/j.ccr.2022.214563_b0905 publication-title: Chem. Eng. J. – ident: 10.1016/j.ccr.2022.214563_b0640 doi: 10.1038/s41467-021-21527-3 – volume: 25 start-page: 2425 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0370 publication-title: Molecules doi: 10.3390/molecules25102425 – volume: 15 start-page: 6892 year: 2013 ident: 10.1016/j.ccr.2022.214563_b0390 publication-title: CrystEngComm doi: 10.1039/c3ce40706c – volume: 488 start-page: 294 year: 2012 ident: 10.1016/j.ccr.2022.214563_b0005 publication-title: Nature doi: 10.1038/nature11475 – volume: 10 start-page: 1902666 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0075 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902666 – volume: 49 start-page: 2291 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0490 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00890J – volume: 120 start-page: 8814 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0290 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00550 – volume: 56 start-page: 15496 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0070 publication-title: Chem. Commun. doi: 10.1039/D0CC05870J – volume: 48 start-page: 3053 year: 2015 ident: 10.1016/j.ccr.2022.214563_b0330 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00369 – volume: 270 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0470 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118908 – volume: 52 start-page: 4706 year: 2016 ident: 10.1016/j.ccr.2022.214563_b0335 publication-title: Chem. Commun. doi: 10.1039/C6CC01171C – volume: 54 start-page: 52 year: 2015 ident: 10.1016/j.ccr.2022.214563_b0840 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201407031 – volume: 52 start-page: 2017 year: 2013 ident: 10.1016/j.ccr.2022.214563_b0755 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201209513 – volume: 15 start-page: 1970 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0645 publication-title: Chem. - Asian J. doi: 10.1002/asia.202000438 – volume: 139 start-page: 8705 year: 2017 ident: 10.1016/j.ccr.2022.214563_b0530 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04141 – volume: 6 start-page: 3195 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0650 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA09785A – volume: 1 start-page: 2691 year: 2013 ident: 10.1016/j.ccr.2022.214563_b0305 publication-title: J. Mater. Chem. A doi: 10.1039/C2TA00063F – volume: 50 start-page: 1289 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0730 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201005919 – volume: 57 start-page: 16339 year: 2018 ident: 10.1016/j.ccr.2022.214563_b0385 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201808593 – volume: 5 start-page: 2100102 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0815 publication-title: Small Methods doi: 10.1002/smtd.202100102 – volume: 55 start-page: 12647 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0860 publication-title: Chem. Commun. doi: 10.1039/C9CC06916J – volume: 2 start-page: 3081 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0260 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b02048 – volume: 9 start-page: 20985 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0360 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02795F – volume: 137 start-page: 7817 year: 2015 ident: 10.1016/j.ccr.2022.214563_b0745 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03553 – volume: 10 start-page: 4653 year: 2022 ident: 10.1016/j.ccr.2022.214563_b0825 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA10991J – volume: 5 start-page: 2255 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0535 publication-title: Mater. Chem. Front. doi: 10.1039/D0QM01076F – volume: 48 start-page: 2665 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0415 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00919H – volume: 334 start-page: 629 year: 2011 ident: 10.1016/j.ccr.2022.214563_b0380 publication-title: Science doi: 10.1126/science.1209688 – volume: 38 start-page: 167 year: 2022 ident: 10.1016/j.ccr.2022.214563_b0900 publication-title: Chem. Res. Chin. Univ. doi: 10.1007/s40242-021-1374-1 – volume: 49 start-page: 9028 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0045 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00930J – volume: 355 start-page: eaad4998 year: 2017 ident: 10.1016/j.ccr.2022.214563_b0010 publication-title: Science doi: 10.1126/science.aad4998 – volume: 44 start-page: 5148 year: 2015 ident: 10.1016/j.ccr.2022.214563_b0125 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 7 start-page: 14 year: 2014 ident: 10.1016/j.ccr.2022.214563_b0035 publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42613K – volume: 17 start-page: 2004933 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0560 publication-title: Small doi: 10.1002/smll.202004933 – volume: 32 start-page: 5372 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0430 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b05289 – volume: 57 start-page: 12619 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0895 publication-title: Chem. Commun. doi: 10.1039/D1CC04928C – volume: 7 start-page: 1252 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0480 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA09490J – volume: 1 start-page: 384 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0680 publication-title: CCS Chem. doi: 10.31635/ccschem.019.20190011 – volume: 439 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0400 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213875 – volume: 7 start-page: 1469 year: 2019 ident: 10.1016/j.ccr.2022.214563_b0540 publication-title: J. Mater. Chem. B doi: 10.1039/C8TB02870B – volume: 143 start-page: 7104 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0800 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c02145 – volume: 141 start-page: 11929 issue: 2019 year: 1937 ident: 10.1016/j.ccr.2022.214563_b0790 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 2540 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0225 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01482F – volume: 112 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0605 publication-title: Mater. Sci. Eng.: C doi: 10.1016/j.msec.2020.110864 – volume: 133 start-page: 19816 year: 2011 ident: 10.1016/j.ccr.2022.214563_b0345 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206846p – volume: 3 start-page: 23799 year: 2015 ident: 10.1016/j.ccr.2022.214563_b0930 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA06309D – volume: 56 start-page: 7849 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0055 publication-title: Chem. Commun. doi: 10.1039/D0CC01091J – volume: 32 start-page: 3799 year: 2021 ident: 10.1016/j.ccr.2022.214563_b0795 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.04.047 – volume: 136 start-page: 17802 year: 2014 ident: 10.1016/j.ccr.2022.214563_b0705 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja509551m – volume: 110 start-page: 6446 year: 2010 ident: 10.1016/j.ccr.2022.214563_b0030 publication-title: Chem. Rev. doi: 10.1021/cr1002326 – volume: 37 start-page: 485 year: 2013 ident: 10.1016/j.ccr.2022.214563_b0185 publication-title: Int. J. Energy Res. doi: 10.1002/er.3021 – volume: 579 start-page: 598 year: 2020 ident: 10.1016/j.ccr.2022.214563_b0575 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.06.109 – volume: 50 start-page: 1292 year: 2014 ident: 10.1016/j.ccr.2022.214563_b0550 publication-title: Chem. Commun. doi: 10.1039/C3CC48813F |
SSID | ssj0016992 |
Score | 2.6752658 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Creative and representative works for porphyrin and phthalocyanine based COFs electrocatalysts are summarized.•The synthetic strategies for... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 214563 |
SubjectTerms | Covalent organic frameworks Electrocatalysis Phthalocyanine Porphyrin |
Title | Porphyrin and phthalocyanine based covalent organic frameworks for electrocatalysis |
URI | https://dx.doi.org/10.1016/j.ccr.2022.214563 |
Volume | 464 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lHvQifmL9KDl4ErbdJtlkcyzFUhWLoIXelnzSimxLXQ9e_O1murtFQT143CUDy2OYN9m8vEHoUvd6xngWR454ETFpeKQtIxHl0jnwj9EOTnTvx3w0YbfTZNpAg_ouDMgqq9pf1vR1ta7edCs0u8v5HO74gnIeHMGB-FO48MuYgCzvfGxkHj0uZekYHuoNrK5PNtcaL2PAEpSQDvh1c_ozN33hm-Ee2q0aRdwvv2UfNVx-gLYH9Xy2Q_T4sACMVvMcq9zi5ayYqcBM7yoPjSMGdrLYLEIiBVrB5fAmg32txXrFoVvF1RCc9T8csCY5QpPh9dNgFFUjEiJDpCgiRbk3gfEtjV2qHPWWJbH10qeaJtzz1NJEhD2JEmHfk1gLFkuEu8SLRGgVa3qMmvkidycIExXYXljKQjSTjmgedkIypqnzyljmWiiuwclM5R8OYyxesloo9pwFPDPAMyvxbKGrTciyNM_4azGrEc--ZUAWivvvYaf_CztDO_BUSvnOUbNYvbmL0F4Uur3Onzba6t_cjcaf8n_PNQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe6gX8Yn1uQdPQmya3WySYymW1D4QbKG3sNkHViQtNR789-40SVFQD16TDCwfw3wzmdlvAG7STkdKw1xHeyZwWCS5kyrmOZRHWqN-TKqxozue8HjGHub-vAa96i4MjlWWsb-I6ZtoXT5pl2i2V4sF3vHFyXlUBEfiD8MdaKA6lV-HRncwjCfbZgKPokI03IYcNKiam5sxLylRFdTz7lCym9Of6ekL5fT3Ya_MFUm3OM4B1HR2CM1etaLtCJ4elwjTepERkSmyes6fhSWnD5HZ3JEgQSkil9aXLLOQYn-TJKYax3ojNmEl5R6czW8cVCc5hln_ftqLnXJLgiO9KMgdQbmRlvQVdXUoNDWK-a4ykQlT6nPDQ0X9wJYlIrClj68Uqix5XPsm8INUuCk9gXq2zPQpEE9Ywg8UZdaaRdpLuS2GIpeG2gipmG6BW4GTyFJCHDdZvCbVrNhLYvFMEM-kwLMFt1uTVaGf8dfHrEI8-eYEiY3vv5ud_c_sGprxdDxKRoPJ8Bx28U0x2XcB9Xz9ri9ttpGnV6U3fQIeANHm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Porphyrin+and+phthalocyanine+based+covalent+organic+frameworks+for+electrocatalysis&rft.jtitle=Coordination+chemistry+reviews&rft.au=Huang%2C+Shengsheng&rft.au=Chen%2C+Kai&rft.au=Li%2C+Ting-Ting&rft.date=2022-08-01&rft.pub=Elsevier+B.V&rft.issn=0010-8545&rft.eissn=1873-3840&rft.volume=464&rft_id=info:doi/10.1016%2Fj.ccr.2022.214563&rft.externalDocID=S0010854522001588 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon |