A System Dynamics Model of Urban Rainstorm and Flood Resilience to Achieve the Sustainable Development Goals
•The urban flood resilience framework was established using SDGs as a guideline.•A system dynamics model used to develop urban flood resilience.•Sensitive factors affecting flood resilience in rainstorm scenarios were identified.•Six policy scenarios were set to find the drivers of flood resilience...
Saved in:
Published in | Sustainable cities and society Vol. 96; p. 104631 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The urban flood resilience framework was established using SDGs as a guideline.•A system dynamics model used to develop urban flood resilience.•Sensitive factors affecting flood resilience in rainstorm scenarios were identified.•Six policy scenarios were set to find the drivers of flood resilience in urban systems.•The results showed that the growth of flood resilience experienced three phases by 2035.
The combined effects of climate change and accelerated urbanization have increased the risk of urban rainstorm and flood disasters, which seriously affects the achievement of the Sustainable Development Goals (SDGs) in cities. Improving urban flood resilience is one of main ways to deal with flooding. This study established an urban rainstorm and flood resilience model to sort out the behavioral mechanisms of multiple subjects (government, flood control department, residents and media) and the internal action mechanisms from different dimensions (economic, social, natural, infrastructure and information) of urban rainstorm and flood resilience using system dynamics approach, and to investigate the urban rainstorm and flood resilience in Xi'an city. The results show that the damage losses rate reduced by 44.44%, 10.8%, 9.48% and 3.37% by improving flood resilience, resident engagement, government attention degree and information construction level, respectively. The degree of improvement of urban rainstorm and flood resilience varied for six development scenarios when predict flood resilience. The development pattern can be divided into the beginning phase, preparation phase and development phase, and three improvement strategies are proposed based on the development pattern of flood resilience. This study helps to provide refined strategies for urban rainstorm and flood resilience assessment construction. |
---|---|
AbstractList | •The urban flood resilience framework was established using SDGs as a guideline.•A system dynamics model used to develop urban flood resilience.•Sensitive factors affecting flood resilience in rainstorm scenarios were identified.•Six policy scenarios were set to find the drivers of flood resilience in urban systems.•The results showed that the growth of flood resilience experienced three phases by 2035.
The combined effects of climate change and accelerated urbanization have increased the risk of urban rainstorm and flood disasters, which seriously affects the achievement of the Sustainable Development Goals (SDGs) in cities. Improving urban flood resilience is one of main ways to deal with flooding. This study established an urban rainstorm and flood resilience model to sort out the behavioral mechanisms of multiple subjects (government, flood control department, residents and media) and the internal action mechanisms from different dimensions (economic, social, natural, infrastructure and information) of urban rainstorm and flood resilience using system dynamics approach, and to investigate the urban rainstorm and flood resilience in Xi'an city. The results show that the damage losses rate reduced by 44.44%, 10.8%, 9.48% and 3.37% by improving flood resilience, resident engagement, government attention degree and information construction level, respectively. The degree of improvement of urban rainstorm and flood resilience varied for six development scenarios when predict flood resilience. The development pattern can be divided into the beginning phase, preparation phase and development phase, and three improvement strategies are proposed based on the development pattern of flood resilience. This study helps to provide refined strategies for urban rainstorm and flood resilience assessment construction. |
ArticleNumber | 104631 |
Author | Wu, Hao Song, Yingxue Li, Fawen Jiang, Rengui Zhao, Yong Li, Wen Xie, Jiancang |
Author_xml | – sequence: 1 givenname: Wen surname: Li fullname: Li, Wen organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China – sequence: 2 givenname: Rengui surname: Jiang fullname: Jiang, Rengui email: jrengui@163.com organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China – sequence: 3 givenname: Hao surname: Wu fullname: Wu, Hao organization: School of Economics and Management, Xi'an University of Technology, Xi'an, 710054, China – sequence: 4 givenname: Jiancang surname: Xie fullname: Xie, Jiancang organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China – sequence: 5 givenname: Yong surname: Zhao fullname: Zhao, Yong organization: State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China – sequence: 6 givenname: Yingxue surname: Song fullname: Song, Yingxue organization: State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China – sequence: 7 givenname: Fawen surname: Li fullname: Li, Fawen organization: State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, China |
BookMark | eNp9kM1OAjEQgHvAREQewFtfAGy7S5eNJwKCJhgTkHPT7U5DSbclbSXh7S3iyQNzmZ_MN8l8D6jnvAOEnigZU0L582EcVRwzworcl7ygPdRnjJIRr0h1j4YxHkiOCad1OekjO8Pbc0zQ4cXZyc6oiD98CxZ7jXehkQ5vpHEx-dBh6Vq8tN63eAPRWANOAU4ez9TewCmXe8Db75gyIBsLeJGH1h87cAmvvLTxEd3pnGD4lwdot3z9mr-N1p-r9_lsPVKsrtJIUqbbstCUSFo2rNKa8nLayIZOWMHauixVradMMy5LDrJiHNqKEk4oKCU5LQaIXu-q4GMMoMUxmE6Gs6BEXCyJg8iWxMWSuFrKTPWPUSbJZLxLQRp7k3y5kpBfOhkIeePXTWsCqCRab27QP6jWhiI |
CitedBy_id | crossref_primary_10_1016_j_habitatint_2024_103187 crossref_primary_10_1016_j_tust_2024_105674 crossref_primary_10_3390_buildings14051274 crossref_primary_10_1016_j_ress_2024_110683 crossref_primary_10_1016_j_uclim_2025_102342 crossref_primary_10_1007_s00267_024_01983_5 crossref_primary_10_1016_j_jhydrol_2024_130962 crossref_primary_10_1016_j_envsci_2024_103938 crossref_primary_10_1016_j_jhydrol_2024_132283 crossref_primary_10_3390_w16060834 crossref_primary_10_1016_j_scs_2025_106279 crossref_primary_10_1016_j_scs_2024_105366 crossref_primary_10_1016_j_jclepro_2023_138955 crossref_primary_10_1016_j_scs_2024_105642 crossref_primary_10_1016_j_scs_2024_105645 crossref_primary_10_2166_bgs_2023_035 crossref_primary_10_1016_j_heliyon_2024_e28191 crossref_primary_10_3390_w16172366 crossref_primary_10_1016_j_scs_2023_104821 crossref_primary_10_1155_2024_6687438 crossref_primary_10_1016_j_ijhydene_2024_07_177 crossref_primary_10_1016_j_ijdrr_2024_104801 crossref_primary_10_1016_j_uclim_2025_102336 crossref_primary_10_3390_w16111614 crossref_primary_10_1016_j_buildenv_2023_110855 crossref_primary_10_1016_j_cities_2024_105466 crossref_primary_10_1016_j_spc_2024_03_024 crossref_primary_10_1108_IJDRBE_02_2024_0029 crossref_primary_10_3390_rs16244802 crossref_primary_10_1016_j_scs_2024_105474 crossref_primary_10_1016_j_jhydrol_2023_130230 crossref_primary_10_1016_j_scs_2024_105610 crossref_primary_10_1016_j_scs_2024_106029 |
Cites_doi | 10.1016/j.scs.2022.103853 10.1016/j.ecolind.2019.05.015 10.1016/j.scitotenv.2022.153673 10.1016/j.jenvman.2020.110951 10.1016/j.ssci.2011.07.006 10.1016/j.ecolind.2017.03.008 10.1146/annurev.es.04.110173.000245 10.1016/j.jhydrol.2022.128349 10.1016/j.ecolind.2022.108874 10.1016/j.jclepro.2022.131137 10.1016/j.scs.2021.102709 10.1016/S0301-4797(02)00205-0 10.1016/j.scs.2022.104184 10.1016/j.ijdrr.2021.102355 10.1016/j.ijdrr.2021.102442 10.1016/j.scs.2021.103579 10.1016/j.ecolind.2018.02.015 10.1016/j.jhydrol.2021.126601 10.1016/j.geoderma.2019.114158 10.1016/j.jhydrol.2021.126393 10.1016/j.cities.2020.102884 10.1016/j.scs.2021.103078 10.1126/science.1248222 10.1016/j.ijdrr.2021.102578 10.1016/j.scitotenv.2020.138384 10.1016/j.ijdrr.2019.101091 10.1016/j.ijdrr.2019.101069 10.1016/j.envres.2018.01.029 10.1007/s11069-016-2521-8 10.1016/j.egypro.2018.07.060 10.1016/j.resconrec.2020.104954 10.1016/j.scs.2019.101636 10.1016/j.scitotenv.2018.01.138 10.1016/j.scs.2022.103997 10.1016/j.cities.2020.102843 10.1002/sdr.4260100205 10.1016/j.jhydrol.2016.03.037 10.1016/j.ecolmodel.2021.109851 10.1109/ACCESS.2020.3032462 10.1016/j.cities.2020.102985 10.1016/j.proeng.2018.01.048 10.1016/j.cities.2017.10.004 10.1016/j.jhydrol.2021.126684 10.1016/j.scitotenv.2018.12.184 10.1016/j.ijdrr.2022.103205 10.1016/j.jhydrol.2018.06.052 10.1016/j.landurbplan.2016.01.014 10.1007/s00477-014-0939-7 10.1016/j.jclepro.2022.133562 10.1016/j.landurbplan.2015.11.011 10.1016/j.scs.2020.102485 10.1016/j.landusepol.2018.11.031 10.1016/j.jhydrol.2019.06.063 10.1016/j.buildenv.2019.05.004 10.1016/j.ijdrr.2019.101140 10.1016/j.ijdrr.2022.103167 10.1016/j.resconrec.2018.03.016 10.1016/j.scs.2022.104160 10.1016/j.crm.2021.100390 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.scs.2023.104631 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_scs_2023_104631 S2210670723002421 |
GroupedDBID | --K --M .~1 0R~ 1~. 4.4 457 4G. 5VS 7-5 8P~ AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AOMHK AVARZ AXJTR BELTK BJAXD BKOJK BLECG BLXMC EBS EFJIC EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W JARJE JJJVA KCYFY KOM M41 MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSB SSJ SSO SSR SST SSZ T5K ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-a12fd43f10a14b27ff1648bab15232d944c9f82f26a46ea726ed710601ecca613 |
IEDL.DBID | .~1 |
ISSN | 2210-6707 |
IngestDate | Thu Apr 24 23:02:57 EDT 2025 Tue Jul 01 04:14:17 EDT 2025 Sat Feb 22 15:43:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SD GDP System dynamics model Rainstorm and flood resilience assessment SDGs Sustainable Development Goals SDM Rainstorm scenarios MAS Urban rainstorm and flood disasters CNY |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-a12fd43f10a14b27ff1648bab15232d944c9f82f26a46ea726ed710601ecca613 |
ParticipantIDs | crossref_primary_10_1016_j_scs_2023_104631 crossref_citationtrail_10_1016_j_scs_2023_104631 elsevier_sciencedirect_doi_10_1016_j_scs_2023_104631 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2023 2023-09-00 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
PublicationDecade | 2020 |
PublicationTitle | Sustainable cities and society |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bao, Wang, Sun (bib0006) 2022; 138 Sharifi, Yamagata (bib0047) 2018 Arasteh, Farjami (bib0004) 2021; 72 Chen, Chen, Li (bib0010) 2012; 50 Wang, Li, Liu, Lian, Hong (bib0052) 2022; 371 Wu, Wu, Ge, Wang, Shen, Jiang (bib0054) 2021; 599 Büyüközkan, Ilıcak, Feyzioğlu (bib0008) 2022; 77 Liao, Le, Nguyen (bib0027) 2016; 155 Zhu, Li, Huang, Chhipi-Shrestha, Nahiduzzaman, Hewage, Sadiq (bib0066) 2021; 61 Accessed October 6, 2022. Yin, Ye, Yin, Xu (bib0058) 2015; 29 Dai, Sun, Lv, Hu, Zhang, Xu, Lei (bib0013) 2022; 344 The United Nations. (2015). Wu, Yu, Shao (bib0055) 2022; 613 Chelleri, Baravikova (bib0009) 2021; 108 Lyu, Sun, Shen, Arulrajah (bib0031) 2018; 626 Amirzadeh, Sobhaninia, Sharifi (bib0003) 2022; 81 Gravelsins, Bazbauers, Blumberga, Blumberga, Bolwig, Klitkou, Lund (bib0018) 2018; 147 Hu, Zhang, Ma, Liu, Yang, Yang (bib0020) 2020; 726 Jia, Wu (bib0023) 2020; 8 Lei, Chen, Panahi, Falah, Rahmati, Uuemaa, Kalantari, Ferreira, Rezaie, Tiefenbacher, Lee, Bian (bib0024) 2021; 601 Hudec, Reggiani, Šiserová (bib0022) 2018; 73 Ren, Hong, Li, Kang, Li (bib0042) 2020; 363 Samsuddin, Takim, Nawawi, Syed Alwee (bib0045) 2018; 212 Wang, Loo, Zhen, Xi (bib0051) 2020; 106 Li, Zhang, Ma, Feng, Hajiyev (bib0026) 2019; 36 Retrieved from Ruan, Chen, Yang (bib0043) 2021; 66 Yin, Yu, Yin, Liu, He (bib0059) 2016; 537 Miller, Hutchins (bib0033) 2017; 12 Yang, Gao, Xu, Guo (bib0056) 2018; 134 Sefton, Sharp, Quinn, Stovin, Pitcher (bib0046) 2022; 35 Holling (bib0019) 1973; 4 Stave (bib0048) 2003; 67 Lu, Zhang, Jiao, Wei, Zhang (bib0029) 2022; 79 Aerts, Botzen, Emanuel, Lin, de Moel, Michel-Kerjan (bib0002) 2014; 344 Moura Rezende, Ribeiro da Cruz de Franco, Beleño de Oliveira, Pitzer Jacob, Gomes Miguez (bib0035) 2019; 576 Zhang, Wu, Zhang, Dalla Fontana, Tarolli (bib0061) 2020; 271 O'Keeffe, Pluchinotta, De Stercke, Hinson, Puchol-Salort, Mijic, Zimmermann, Collins (bib0036) 2022; 824 Bala, Arshad, Noh (bib0005) 2017 Huang, Jin, Bai (bib0021) 2019; 36 Forrest, Trell, Woltjer (bib0016) 2020; 105 Dong, Xia, Li, Zhou (bib0015) 2022; 80 Bertilsson, Wiklund, de Moura Tebaldi, Rezende, Veról, Miguez (bib0007) 2019; 573 Rahman, Aldosary, Nahiduzzaman, Reza (bib0040) 2016; 84 Rana, Bhatti, Jamshed, Ahmad (bib0041) 2021; 63 Yang, Xu, Lian, Ma, Bin (bib0057) 2018; 89 Zhang, Zhang, Fang, Yang (bib0060) 2022; 87 Chen, Chen, Huang (bib0011) 2021; 601 Abebe, Adey, Tesfamariam (bib0001) 2021; 64 Pluchinotta, Pagano, Vilcan, Ahilan, Kapetas, Maskrey, Krivtsov, Thorne, O'Donnell (bib0039) 2021; 67 Datola, Bottero, De Angelis, Romagnoli (bib0014) 2022; 465 Cheng, Zhao, Zhao (bib0012) 2022; 84 Li, Kou, Wang, Yang (bib0025) 2020; 161 Lu, Qin, Chen, Yu, Xiao, Cheng, Guan (bib0028) 2019; 104 Moghadas, Asadzadeh, Vafeidis, Fekete, Kötter (bib0034) 2019; 35 Pejić-Bach, Čerić (bib0037) 2007; 31 Zhu, Li, Feng (bib0065) 2019; 50 Zhang, Steeneveld, Zhou, Duan, Holtslag (bib0062) 2019; 158 Meerow, Newell, Stults (bib0032) 2016; 147 Sado-Inamura, Fukushi (bib0044) 2019; 82 Su, Zheng, Hao, Chen, Chen, Chen, Xie (bib0049) 2018; 92 Wu, Ning (bib0053) 2018; 164 Peterson, Eberlein (bib0038) 1994; 10 Zhou, Leng, Su, Ren (bib0064) 2019; 658 Zhao, Fang, Liu, Zhang (bib0063) 2022; 86 Yang (10.1016/j.scs.2023.104631_bib0056) 2018; 134 Forrest (10.1016/j.scs.2023.104631_bib0016) 2020; 105 Rana (10.1016/j.scs.2023.104631_bib0041) 2021; 63 Lu (10.1016/j.scs.2023.104631_bib0028) 2019; 104 Lyu (10.1016/j.scs.2023.104631_bib0031) 2018; 626 Moghadas (10.1016/j.scs.2023.104631_bib0034) 2019; 35 Büyüközkan (10.1016/j.scs.2023.104631_bib0008) 2022; 77 Peterson (10.1016/j.scs.2023.104631_bib0038) 1994; 10 Pluchinotta (10.1016/j.scs.2023.104631_bib0039) 2021; 67 Yang (10.1016/j.scs.2023.104631_bib0057) 2018; 89 Arasteh (10.1016/j.scs.2023.104631_bib0004) 2021; 72 Amirzadeh (10.1016/j.scs.2023.104631_bib0003) 2022; 81 Bertilsson (10.1016/j.scs.2023.104631_bib0007) 2019; 573 Li (10.1016/j.scs.2023.104631_bib0025) 2020; 161 Chen (10.1016/j.scs.2023.104631_bib0010) 2012; 50 Zhu (10.1016/j.scs.2023.104631_bib0065) 2019; 50 Sharifi (10.1016/j.scs.2023.104631_bib0047) 2018 Yin (10.1016/j.scs.2023.104631_bib0058) 2015; 29 Dong (10.1016/j.scs.2023.104631_bib0015) 2022; 80 Chen (10.1016/j.scs.2023.104631_bib0011) 2021; 601 Lu (10.1016/j.scs.2023.104631_bib0029) 2022; 79 O'Keeffe (10.1016/j.scs.2023.104631_bib0036) 2022; 824 Liao (10.1016/j.scs.2023.104631_bib0027) 2016; 155 Zhao (10.1016/j.scs.2023.104631_bib0063) 2022; 86 Rahman (10.1016/j.scs.2023.104631_bib0040) 2016; 84 Jia (10.1016/j.scs.2023.104631_bib0023) 2020; 8 Su (10.1016/j.scs.2023.104631_bib0049) 2018; 92 Huang (10.1016/j.scs.2023.104631_bib0021) 2019; 36 Ruan (10.1016/j.scs.2023.104631_bib0043) 2021; 66 Zhou (10.1016/j.scs.2023.104631_bib0064) 2019; 658 Cheng (10.1016/j.scs.2023.104631_bib0012) 2022; 84 Hudec (10.1016/j.scs.2023.104631_bib0022) 2018; 73 10.1016/j.scs.2023.104631_bib0050 Lei (10.1016/j.scs.2023.104631_bib0024) 2021; 601 Wang (10.1016/j.scs.2023.104631_bib0052) 2022; 371 Wu (10.1016/j.scs.2023.104631_bib0055) 2022; 613 Zhang (10.1016/j.scs.2023.104631_bib0062) 2019; 158 Dai (10.1016/j.scs.2023.104631_bib0013) 2022; 344 Sefton (10.1016/j.scs.2023.104631_bib0046) 2022; 35 Zhang (10.1016/j.scs.2023.104631_bib0061) 2020; 271 Sado-Inamura (10.1016/j.scs.2023.104631_bib0044) 2019; 82 Wu (10.1016/j.scs.2023.104631_bib0053) 2018; 164 Miller (10.1016/j.scs.2023.104631_bib0033) 2017; 12 Li (10.1016/j.scs.2023.104631_bib0026) 2019; 36 Moura Rezende (10.1016/j.scs.2023.104631_bib0035) 2019; 576 Abebe (10.1016/j.scs.2023.104631_bib0001) 2021; 64 Chelleri (10.1016/j.scs.2023.104631_bib0009) 2021; 108 Meerow (10.1016/j.scs.2023.104631_bib0032) 2016; 147 Aerts (10.1016/j.scs.2023.104631_bib0002) 2014; 344 Ren (10.1016/j.scs.2023.104631_bib0042) 2020; 363 Wang (10.1016/j.scs.2023.104631_bib0051) 2020; 106 Datola (10.1016/j.scs.2023.104631_bib0014) 2022; 465 Stave (10.1016/j.scs.2023.104631_bib0048) 2003; 67 Pejić-Bach (10.1016/j.scs.2023.104631_bib0037) 2007; 31 Gravelsins (10.1016/j.scs.2023.104631_bib0018) 2018; 147 Wu (10.1016/j.scs.2023.104631_bib0054) 2021; 599 Zhang (10.1016/j.scs.2023.104631_bib0060) 2022; 87 Holling (10.1016/j.scs.2023.104631_bib0019) 1973; 4 Samsuddin (10.1016/j.scs.2023.104631_bib0045) 2018; 212 Bala (10.1016/j.scs.2023.104631_bib0005) 2017 Bao (10.1016/j.scs.2023.104631_bib0006) 2022; 138 Yin (10.1016/j.scs.2023.104631_bib0059) 2016; 537 Zhu (10.1016/j.scs.2023.104631_bib0066) 2021; 61 Hu (10.1016/j.scs.2023.104631_bib0020) 2020; 726 |
References_xml | – volume: 344 year: 2022 ident: bib0013 article-title: Comprehensive assessment of the water environment carrying capacity based on the spatial system dynamics model, a case study of Yongding River Basin in North China publication-title: Journal of Cleaner Production – volume: 8 start-page: 199646 year: 2020 end-page: 199653 ident: bib0023 article-title: Intelligent evaluation system of government emergency management based on BP neural network publication-title: IEEE Access – volume: 36 year: 2019 ident: bib0021 article-title: Vulnerability assessment of China's coastal cities based on DEA cross-efficiency model publication-title: International Journal of Disaster Risk Reduction – volume: 164 start-page: 70 year: 2018 end-page: 84 ident: bib0053 article-title: Dynamic assessment of urban economy-environment-energy system using system dynamics model: A case study in Beijing publication-title: Environmental Research – volume: 81 year: 2022 ident: bib0003 article-title: Urban resilience: A vague or an evolutionary concept? publication-title: Sustainable Cities and Society – volume: 726 year: 2020 ident: bib0020 article-title: The characteristics of rainfall runoff pollution and its driving factors in Northwest semiarid region of China—A case study of Xi'an publication-title: Science of The Total Environment – volume: 87 year: 2022 ident: bib0060 article-title: Urban flooding response to rainstorm scenarios under different return period types publication-title: Sustainable Cities and Society – volume: 63 year: 2021 ident: bib0041 article-title: An approach to understanding the intrinsic complexity of resilience against floods: Evidences from three urban communities of Pakistan publication-title: International Journal of Disaster Risk Reduction – volume: 658 start-page: 24 year: 2019 end-page: 33 ident: bib0064 article-title: Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation publication-title: Science of The Total Environment – volume: 61 year: 2021 ident: bib0066 article-title: Enhancing urban flood resilience: A holistic framework incorporating historic worst flood to Yangtze River Delta, China publication-title: International Journal of Disaster Risk Reduction – volume: 35 year: 2019 ident: bib0034 article-title: A multi-criteria approach for assessing urban flood resilience in Tehran, Iran publication-title: International Journal of Disaster Risk Reduction – volume: 626 start-page: 1012 year: 2018 end-page: 1025 ident: bib0031 article-title: Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach publication-title: Science of The Total Environment – volume: 50 start-page: 90 year: 2012 end-page: 102 ident: bib0010 article-title: During-incident process assessment in emergency management: Concept and strategy publication-title: Safety Science – volume: 84 year: 2022 ident: bib0012 article-title: Exploring the spatio-temporal evolution of economic resilience in Chinese cities during the COVID-19 crisis publication-title: Sustainable Cities and Society – volume: 106 year: 2020 ident: bib0051 article-title: Urban resilience from the lens of social media data: Responses to urban flooding in Nanjing, China publication-title: Cities – volume: 147 start-page: 38 year: 2016 end-page: 49 ident: bib0032 article-title: Defining urban resilience: A review publication-title: Landscape and Urban Planning – volume: 271 year: 2020 ident: bib0061 article-title: Identifying dominant factors of waterlogging events in metropolitan coastal cities: The case study of Guangzhou, China publication-title: Journal of Environmental Management – volume: 599 year: 2021 ident: bib0054 article-title: Identification of sensitivity indicators of urban rainstorm flood disasters: A case study in China publication-title: Journal of Hydrology – volume: 465 year: 2022 ident: bib0014 article-title: Operationalising resilience: A methodological framework for assessing urban resilience through System Dynamics Model publication-title: Ecological Modelling – volume: 66 year: 2021 ident: bib0043 article-title: Assessment of temporal and spatial progress of urban resilience in Guangzhou under rainstorm scenarios publication-title: International Journal of Disaster Risk Reduction – reference: . Retrieved from – volume: 31 start-page: 171 year: 2007 end-page: 185 ident: bib0037 article-title: Developing system dynamics models with“step-by-step”approach publication-title: Journal of Information and Organizational Sciences – volume: 576 start-page: 478 year: 2019 end-page: 493 ident: bib0035 article-title: A framework to introduce urban flood resilience into the design of flood control alternatives publication-title: Journal of Hydrology – volume: 50 year: 2019 ident: bib0065 article-title: Is smart city resilient? Evidence from China publication-title: Sustainable Cities and Society – volume: 92 start-page: 133 year: 2018 end-page: 140 ident: bib0049 article-title: The influence of landscape pattern on the risk of urban water-logging and flood disaster publication-title: Ecological Indicators – volume: 212 start-page: 371 year: 2018 end-page: 378 ident: bib0045 article-title: Disaster Preparedness Attributes and Hospital's Resilience in Malaysia publication-title: Procedia Engineering – volume: 77 year: 2022 ident: bib0008 article-title: A review of urban resilience literature publication-title: Sustainable Cities and Society – reference: The United Nations. (2015). – volume: 72 year: 2021 ident: bib0004 article-title: New hydro-economic system dynamics and agent-based modeling for sustainable urban groundwater management: A case study of Dehno, Yazd Province, Iran publication-title: Sustainable Cities and Society – reference: . Accessed October 6, 2022. – volume: 147 start-page: 503 year: 2018 end-page: 509 ident: bib0018 article-title: Modelling energy production flexibility: System dynamics approach publication-title: Energy Procedia – volume: 4 start-page: 1 year: 1973 end-page: 24 ident: bib0019 article-title: Resilience and stability of ecological systems publication-title: Annual Review of Ecology and Systematics – volume: 344 start-page: 473 year: 2014 end-page: 475 ident: bib0002 article-title: Evaluating Flood Resilience Strategies for Coastal Megacities publication-title: Science – volume: 67 start-page: 303 year: 2003 end-page: 313 ident: bib0048 article-title: A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada publication-title: Journal of Environmental Management – volume: 10 start-page: 159 year: 1994 end-page: 174 ident: bib0038 article-title: Reality check: A bridge between systems thinking and system dynamics publication-title: System Dynamics Review – volume: 613 year: 2022 ident: bib0055 article-title: Resilience benefit assessment for multi-scale urban flood control programs publication-title: Journal of Hydrology – volume: 573 start-page: 970 year: 2019 end-page: 982 ident: bib0007 article-title: Urban flood resilience – A multi-criteria index to integrate flood resilience into urban planning publication-title: Journal of Hydrology – volume: 67 year: 2021 ident: bib0039 article-title: A participatory system dynamics model to investigate sustainable urban water management in Ebbsfleet Garden City publication-title: Sustainable Cities and Society – volume: 104 start-page: 549 year: 2019 end-page: 558 ident: bib0028 article-title: Spatiotemporal differences in forest ecological security warning values in Beijing: Using an integrated evaluation index system and system dynamics model publication-title: Ecological Indicators – volume: 86 year: 2022 ident: bib0063 article-title: The evaluation and obstacle analysis of urban resilience from the multidimensional perspective in Chinese cities publication-title: Sustainable Cities and Society – volume: 35 year: 2022 ident: bib0046 article-title: The feasibility of domestic raintanks contributing to community-oriented urban flood resilience publication-title: Climate Risk Management – volume: 158 start-page: 39 year: 2019 end-page: 50 ident: bib0062 article-title: A diagnostic equation for the maximum urban heat island effect of a typical Chinese city: A case study for Xi'an publication-title: Building and Environment – volume: 601 year: 2021 ident: bib0011 article-title: Assessing urban pluvial flood resilience based on a novel grid-based quantification method that considers human risk perceptions publication-title: Journal of Hydrology – volume: 138 year: 2022 ident: bib0006 article-title: Comprehensive simulation of resources and environment carrying capacity for urban agglomeration: A system dynamics approach publication-title: Ecological Indicators – volume: 537 start-page: 138 year: 2016 end-page: 145 ident: bib0059 article-title: Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China publication-title: Journal of Hydrology – volume: 89 start-page: 269 year: 2018 end-page: 280 ident: bib0057 article-title: Integrated flood vulnerability assessment approach based on TOPSIS and Shannon entropy methods publication-title: Ecological Indicators – volume: 82 start-page: 13 year: 2019 end-page: 29 ident: bib0044 article-title: Empirical analysis of flood risk perception using historical data in Tokyo publication-title: Land Use Policy – volume: 601 year: 2021 ident: bib0024 article-title: Urban flood modeling using deep-learning approaches in Seoul, South Korea publication-title: Journal of Hydrology – volume: 36 year: 2019 ident: bib0026 article-title: A multi-criteria decision making method for urban flood resilience evaluation with hybrid uncertainties publication-title: International Journal of Disaster Risk Reduction – volume: 363 year: 2020 ident: bib0042 article-title: Effect of infiltration rate changes in urban soils on stormwater runoff process publication-title: Geoderma – volume: 80 year: 2022 ident: bib0015 article-title: Risk assessment for people and vehicles in an extreme urban flood: Case study of the “7.20” flood event in Zhengzhou, China publication-title: International Journal of Disaster Risk Reduction – year: 2017 ident: bib0005 article-title: System Dynamics: Modelling and Simulation – volume: 105 year: 2020 ident: bib0016 article-title: Socio-spatial inequalities in flood resilience: Rainfall flooding in the city of Arnhem publication-title: Cities – volume: 134 start-page: 196 year: 2018 end-page: 205 ident: bib0056 article-title: Constraint-adaptation challenges and resilience transitions of the industry–environmental system in a resource-dependent city publication-title: Resources, Conservation and Recycling – volume: 161 year: 2020 ident: bib0025 article-title: System dynamics modelling for improving urban resilience in Beijing, China publication-title: Resources, Conservation and Recycling – volume: 371 year: 2022 ident: bib0052 article-title: A system dynamics model analysis for policy impacts on green agriculture development: A case of the Sichuan Tibetan Area publication-title: Journal of Cleaner Production – volume: 155 start-page: 69 year: 2016 end-page: 78 ident: bib0027 article-title: Urban design principles for flood resilience: Learning from the ecological wisdom of living with floods in the Vietnamese Mekong Delta publication-title: Landscape and Urban Planning – volume: 79 year: 2022 ident: bib0029 article-title: Analysis on the spatial-temporal evolution of urban agglomeration resilience: A case study in Chengdu-Chongqing Urban Agglomeration, China publication-title: International Journal of Disaster Risk Reduction – volume: 73 start-page: 24 year: 2018 end-page: 35 ident: bib0022 article-title: Resilience capacity and vulnerability: A joint analysis with reference to Slovak urban districts publication-title: Cities – volume: 824 year: 2022 ident: bib0036 article-title: Evaluating natural capital performance of urban development through system dynamics: A case study from London publication-title: Science of The Total Environment – year: 2018 ident: bib0047 article-title: Lecture Notes in Energy – volume: 64 year: 2021 ident: bib0001 article-title: Sustainable funding strategies for stormwater infrastructure management: A system dynamics model publication-title: Sustainable Cities and Society – volume: 12 start-page: 345 year: 2017 end-page: 362 ident: bib0033 article-title: The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom publication-title: Journal of Hydrology: Regional Studies – volume: 108 year: 2021 ident: bib0009 article-title: Understandings of urban resilience meanings and principles across Europe publication-title: Cities – volume: 29 start-page: 1063 year: 2015 end-page: 1070 ident: bib0058 article-title: A review of advances in urban flood risk analysis over China publication-title: Stochastic Environmental Research and Risk Assessment – volume: 84 start-page: 1807 year: 2016 end-page: 1830 ident: bib0040 article-title: Vulnerability of flash flooding in riyadh, Saudi arabia publication-title: Natural Hazards – volume: 81 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0003 article-title: Urban resilience: A vague or an evolutionary concept? publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2022.103853 – volume: 104 start-page: 549 year: 2019 ident: 10.1016/j.scs.2023.104631_bib0028 article-title: Spatiotemporal differences in forest ecological security warning values in Beijing: Using an integrated evaluation index system and system dynamics model publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2019.05.015 – volume: 824 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0036 article-title: Evaluating natural capital performance of urban development through system dynamics: A case study from London publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2022.153673 – volume: 271 year: 2020 ident: 10.1016/j.scs.2023.104631_bib0061 article-title: Identifying dominant factors of waterlogging events in metropolitan coastal cities: The case study of Guangzhou, China publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2020.110951 – volume: 50 start-page: 90 issue: 1 year: 2012 ident: 10.1016/j.scs.2023.104631_bib0010 article-title: During-incident process assessment in emergency management: Concept and strategy publication-title: Safety Science doi: 10.1016/j.ssci.2011.07.006 – volume: 92 start-page: 133 year: 2018 ident: 10.1016/j.scs.2023.104631_bib0049 article-title: The influence of landscape pattern on the risk of urban water-logging and flood disaster publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2017.03.008 – volume: 4 start-page: 1 year: 1973 ident: 10.1016/j.scs.2023.104631_bib0019 article-title: Resilience and stability of ecological systems publication-title: Annual Review of Ecology and Systematics doi: 10.1146/annurev.es.04.110173.000245 – volume: 613 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0055 article-title: Resilience benefit assessment for multi-scale urban flood control programs publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2022.128349 – volume: 138 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0006 article-title: Comprehensive simulation of resources and environment carrying capacity for urban agglomeration: A system dynamics approach publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2022.108874 – volume: 344 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0013 article-title: Comprehensive assessment of the water environment carrying capacity based on the spatial system dynamics model, a case study of Yongding River Basin in North China publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2022.131137 – volume: 67 year: 2021 ident: 10.1016/j.scs.2023.104631_bib0039 article-title: A participatory system dynamics model to investigate sustainable urban water management in Ebbsfleet Garden City publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2021.102709 – volume: 67 start-page: 303 issue: 4 year: 2003 ident: 10.1016/j.scs.2023.104631_bib0048 article-title: A system dynamics model to facilitate public understanding of water management options in Las Vegas, Nevada publication-title: Journal of Environmental Management doi: 10.1016/S0301-4797(02)00205-0 – volume: 87 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0060 article-title: Urban flooding response to rainstorm scenarios under different return period types publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2022.104184 – volume: 61 year: 2021 ident: 10.1016/j.scs.2023.104631_bib0066 article-title: Enhancing urban flood resilience: A holistic framework incorporating historic worst flood to Yangtze River Delta, China publication-title: International Journal of Disaster Risk Reduction doi: 10.1016/j.ijdrr.2021.102355 – year: 2018 ident: 10.1016/j.scs.2023.104631_bib0047 – volume: 63 year: 2021 ident: 10.1016/j.scs.2023.104631_bib0041 article-title: An approach to understanding the intrinsic complexity of resilience against floods: Evidences from three urban communities of Pakistan publication-title: International Journal of Disaster Risk Reduction doi: 10.1016/j.ijdrr.2021.102442 – volume: 77 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0008 article-title: A review of urban resilience literature publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2021.103579 – volume: 89 start-page: 269 year: 2018 ident: 10.1016/j.scs.2023.104631_bib0057 article-title: Integrated flood vulnerability assessment approach based on TOPSIS and Shannon entropy methods publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2018.02.015 – volume: 601 year: 2021 ident: 10.1016/j.scs.2023.104631_bib0011 article-title: Assessing urban pluvial flood resilience based on a novel grid-based quantification method that considers human risk perceptions publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2021.126601 – volume: 363 year: 2020 ident: 10.1016/j.scs.2023.104631_bib0042 article-title: Effect of infiltration rate changes in urban soils on stormwater runoff process publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114158 – volume: 31 start-page: 171 issue: 1 year: 2007 ident: 10.1016/j.scs.2023.104631_bib0037 article-title: Developing system dynamics models with“step-by-step”approach publication-title: Journal of Information and Organizational Sciences – volume: 599 year: 2021 ident: 10.1016/j.scs.2023.104631_bib0054 article-title: Identification of sensitivity indicators of urban rainstorm flood disasters: A case study in China publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2021.126393 – volume: 106 year: 2020 ident: 10.1016/j.scs.2023.104631_bib0051 article-title: Urban resilience from the lens of social media data: Responses to urban flooding in Nanjing, China publication-title: Cities doi: 10.1016/j.cities.2020.102884 – volume: 72 year: 2021 ident: 10.1016/j.scs.2023.104631_bib0004 article-title: New hydro-economic system dynamics and agent-based modeling for sustainable urban groundwater management: A case study of Dehno, Yazd Province, Iran publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2021.103078 – ident: 10.1016/j.scs.2023.104631_bib0050 – volume: 344 start-page: 473 issue: 6183 year: 2014 ident: 10.1016/j.scs.2023.104631_bib0002 article-title: Evaluating Flood Resilience Strategies for Coastal Megacities publication-title: Science doi: 10.1126/science.1248222 – volume: 66 year: 2021 ident: 10.1016/j.scs.2023.104631_bib0043 article-title: Assessment of temporal and spatial progress of urban resilience in Guangzhou under rainstorm scenarios publication-title: International Journal of Disaster Risk Reduction doi: 10.1016/j.ijdrr.2021.102578 – volume: 726 year: 2020 ident: 10.1016/j.scs.2023.104631_bib0020 article-title: The characteristics of rainfall runoff pollution and its driving factors in Northwest semiarid region of China—A case study of Xi'an publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2020.138384 – volume: 36 year: 2019 ident: 10.1016/j.scs.2023.104631_bib0021 article-title: Vulnerability assessment of China's coastal cities based on DEA cross-efficiency model publication-title: International Journal of Disaster Risk Reduction doi: 10.1016/j.ijdrr.2019.101091 – volume: 35 year: 2019 ident: 10.1016/j.scs.2023.104631_bib0034 article-title: A multi-criteria approach for assessing urban flood resilience in Tehran, Iran publication-title: International Journal of Disaster Risk Reduction doi: 10.1016/j.ijdrr.2019.101069 – volume: 164 start-page: 70 year: 2018 ident: 10.1016/j.scs.2023.104631_bib0053 article-title: Dynamic assessment of urban economy-environment-energy system using system dynamics model: A case study in Beijing publication-title: Environmental Research doi: 10.1016/j.envres.2018.01.029 – volume: 84 start-page: 1807 issue: 3 year: 2016 ident: 10.1016/j.scs.2023.104631_bib0040 article-title: Vulnerability of flash flooding in riyadh, Saudi arabia publication-title: Natural Hazards doi: 10.1007/s11069-016-2521-8 – volume: 147 start-page: 503 year: 2018 ident: 10.1016/j.scs.2023.104631_bib0018 article-title: Modelling energy production flexibility: System dynamics approach publication-title: Energy Procedia doi: 10.1016/j.egypro.2018.07.060 – volume: 161 year: 2020 ident: 10.1016/j.scs.2023.104631_bib0025 article-title: System dynamics modelling for improving urban resilience in Beijing, China publication-title: Resources, Conservation and Recycling doi: 10.1016/j.resconrec.2020.104954 – volume: 50 year: 2019 ident: 10.1016/j.scs.2023.104631_bib0065 article-title: Is smart city resilient? Evidence from China publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2019.101636 – volume: 626 start-page: 1012 year: 2018 ident: 10.1016/j.scs.2023.104631_bib0031 article-title: Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2018.01.138 – volume: 84 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0012 article-title: Exploring the spatio-temporal evolution of economic resilience in Chinese cities during the COVID-19 crisis publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2022.103997 – volume: 105 year: 2020 ident: 10.1016/j.scs.2023.104631_bib0016 article-title: Socio-spatial inequalities in flood resilience: Rainfall flooding in the city of Arnhem publication-title: Cities doi: 10.1016/j.cities.2020.102843 – volume: 10 start-page: 159 issue: 2–3 year: 1994 ident: 10.1016/j.scs.2023.104631_bib0038 article-title: Reality check: A bridge between systems thinking and system dynamics publication-title: System Dynamics Review doi: 10.1002/sdr.4260100205 – volume: 537 start-page: 138 year: 2016 ident: 10.1016/j.scs.2023.104631_bib0059 article-title: Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2016.03.037 – volume: 465 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0014 article-title: Operationalising resilience: A methodological framework for assessing urban resilience through System Dynamics Model publication-title: Ecological Modelling doi: 10.1016/j.ecolmodel.2021.109851 – volume: 8 start-page: 199646 year: 2020 ident: 10.1016/j.scs.2023.104631_bib0023 article-title: Intelligent evaluation system of government emergency management based on BP neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3032462 – volume: 108 year: 2021 ident: 10.1016/j.scs.2023.104631_bib0009 article-title: Understandings of urban resilience meanings and principles across Europe publication-title: Cities doi: 10.1016/j.cities.2020.102985 – volume: 212 start-page: 371 year: 2018 ident: 10.1016/j.scs.2023.104631_bib0045 article-title: Disaster Preparedness Attributes and Hospital's Resilience in Malaysia publication-title: Procedia Engineering doi: 10.1016/j.proeng.2018.01.048 – volume: 73 start-page: 24 year: 2018 ident: 10.1016/j.scs.2023.104631_bib0022 article-title: Resilience capacity and vulnerability: A joint analysis with reference to Slovak urban districts publication-title: Cities doi: 10.1016/j.cities.2017.10.004 – volume: 601 year: 2021 ident: 10.1016/j.scs.2023.104631_bib0024 article-title: Urban flood modeling using deep-learning approaches in Seoul, South Korea publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2021.126684 – year: 2017 ident: 10.1016/j.scs.2023.104631_bib0005 – volume: 658 start-page: 24 year: 2019 ident: 10.1016/j.scs.2023.104631_bib0064 article-title: Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation publication-title: Science of The Total Environment doi: 10.1016/j.scitotenv.2018.12.184 – volume: 80 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0015 article-title: Risk assessment for people and vehicles in an extreme urban flood: Case study of the “7.20” flood event in Zhengzhou, China publication-title: International Journal of Disaster Risk Reduction doi: 10.1016/j.ijdrr.2022.103205 – volume: 573 start-page: 970 year: 2019 ident: 10.1016/j.scs.2023.104631_bib0007 article-title: Urban flood resilience – A multi-criteria index to integrate flood resilience into urban planning publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2018.06.052 – volume: 155 start-page: 69 year: 2016 ident: 10.1016/j.scs.2023.104631_bib0027 article-title: Urban design principles for flood resilience: Learning from the ecological wisdom of living with floods in the Vietnamese Mekong Delta publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2016.01.014 – volume: 29 start-page: 1063 issue: 3 year: 2015 ident: 10.1016/j.scs.2023.104631_bib0058 article-title: A review of advances in urban flood risk analysis over China publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/s00477-014-0939-7 – volume: 12 start-page: 345 year: 2017 ident: 10.1016/j.scs.2023.104631_bib0033 article-title: The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom publication-title: Journal of Hydrology: Regional Studies – volume: 371 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0052 article-title: A system dynamics model analysis for policy impacts on green agriculture development: A case of the Sichuan Tibetan Area publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2022.133562 – volume: 147 start-page: 38 year: 2016 ident: 10.1016/j.scs.2023.104631_bib0032 article-title: Defining urban resilience: A review publication-title: Landscape and Urban Planning doi: 10.1016/j.landurbplan.2015.11.011 – volume: 64 year: 2021 ident: 10.1016/j.scs.2023.104631_bib0001 article-title: Sustainable funding strategies for stormwater infrastructure management: A system dynamics model publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2020.102485 – volume: 82 start-page: 13 year: 2019 ident: 10.1016/j.scs.2023.104631_bib0044 article-title: Empirical analysis of flood risk perception using historical data in Tokyo publication-title: Land Use Policy doi: 10.1016/j.landusepol.2018.11.031 – volume: 576 start-page: 478 year: 2019 ident: 10.1016/j.scs.2023.104631_bib0035 article-title: A framework to introduce urban flood resilience into the design of flood control alternatives publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2019.06.063 – volume: 158 start-page: 39 year: 2019 ident: 10.1016/j.scs.2023.104631_bib0062 article-title: A diagnostic equation for the maximum urban heat island effect of a typical Chinese city: A case study for Xi'an publication-title: Building and Environment doi: 10.1016/j.buildenv.2019.05.004 – volume: 36 year: 2019 ident: 10.1016/j.scs.2023.104631_bib0026 article-title: A multi-criteria decision making method for urban flood resilience evaluation with hybrid uncertainties publication-title: International Journal of Disaster Risk Reduction doi: 10.1016/j.ijdrr.2019.101140 – volume: 79 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0029 article-title: Analysis on the spatial-temporal evolution of urban agglomeration resilience: A case study in Chengdu-Chongqing Urban Agglomeration, China publication-title: International Journal of Disaster Risk Reduction doi: 10.1016/j.ijdrr.2022.103167 – volume: 134 start-page: 196 year: 2018 ident: 10.1016/j.scs.2023.104631_bib0056 article-title: Constraint-adaptation challenges and resilience transitions of the industry–environmental system in a resource-dependent city publication-title: Resources, Conservation and Recycling doi: 10.1016/j.resconrec.2018.03.016 – volume: 86 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0063 article-title: The evaluation and obstacle analysis of urban resilience from the multidimensional perspective in Chinese cities publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2022.104160 – volume: 35 year: 2022 ident: 10.1016/j.scs.2023.104631_bib0046 article-title: The feasibility of domestic raintanks contributing to community-oriented urban flood resilience publication-title: Climate Risk Management doi: 10.1016/j.crm.2021.100390 |
SSID | ssj0000561945 |
Score | 2.5304747 |
Snippet | •The urban flood resilience framework was established using SDGs as a guideline.•A system dynamics model used to develop urban flood resilience.•Sensitive... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 104631 |
SubjectTerms | Rainstorm and flood resilience assessment Rainstorm scenarios Sustainable Development Goals System dynamics model Urban rainstorm and flood disasters |
Title | A System Dynamics Model of Urban Rainstorm and Flood Resilience to Achieve the Sustainable Development Goals |
URI | https://dx.doi.org/10.1016/j.scs.2023.104631 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEV5VB6YkEITx4mTMSqUAqIDpVK3yHZstSgkVRsY-e348ihFAga2JPJJyfl0d8599x1CF6EQScC5sPxAE4syW1qCetQSEDtDz6VhSZL0OPQHY3o_8SYt1Gt6YQBWWfv-yqeX3rp-0q212Z3PZt0RIUB_ZjOTREOgKTvYKQMrv_pwVv9ZIEMOy1nFsN4Cgaa4WcK8lhJIu4lbFjtd5-fwtBZy-rtop84VcVS9zh5qqWwfba8xCB6gNMIV5zi-rkbLLzFMN0txrvF4IXiGoYADCMhXzLME9wGnjp_UcpaW34qLHEdyOlPv5nKq8Oirnwqv4YnwbW7M9BCN-zfPvYFVD1CwJAlZYXGH6IS62rG5QwVhWpvDUSC4MEHbJUlIqQx1QDTxOfUVZ8RXick4zBkNNtYE-iO0keWZOkaYAS-PFIz7rqQJ4dwj5uwoqDbpn_aoaiO70Vssa3ZxGHKRxg2M7CU2qo5B1XGl6ja6XInMK2qNvxbTZjPib_YRG9f_u9jJ_8RO0RbcVViyM7RRLN7UuUk-CtEprauDNqO7h8HwE_c51vs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2F9gA9VLSAGj7n0F6QTOL12o4PHCJKSEibQ5NIuZlde1dJFZwoCa164U_xB5nxRwkScEDKzbK9lnd2PW_G-_YNwGmkddpSSjtBywpHhs3E0dKXjmbsjHxPRrlI0uUg6I7l54k_qcGPai8M0ypL31_49Nxbl2capTUby9msMRSC5c-aIQXRDDRuyazsm7tbytvW73vnNMhnQnQ-jj50nbK0gJOIKNw4yhU2lZ51m8qVWoTWUtrQ0koTnHkijaRMItsSVgRKBkaFIjApYTFlL9xlgkB67gPYl-QuuGzCu-_u_Y8dDsmjvDgyv6DDb1itpua8snXCKuHCy1dXPffPeLiFcZ3HcFgGp9gu-n8ENZMdw8GWZOETmLexEDnH86KW_Rq5nNocFxbHK60y5BUjplx-RZWl2GFiPF6Z9WyeGxc3C2wn05m5ocOpweGvDVy4RWDCTwv6Lp7CeCdmfQZ72SIzJ4AhCwElOlSBl8hUKOULSla1tBRvWl-aOjQru8VJKWfOVTXmccVbu47J1DGbOi5MXYe3902WhZbHv26W1WDEv03ImLDm782e_1-zN_CwO7q8iC96g_4LeMRXCiLbS9jbrL6ZVxT5bPTrfKYhfNn11P4Jz8ASQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+System+Dynamics+Model+of+Urban+Rainstorm+and+Flood+Resilience+to+Achieve+the+Sustainable+Development+Goals&rft.jtitle=Sustainable+cities+and+society&rft.au=Li%2C+Wen&rft.au=Jiang%2C+Rengui&rft.au=Wu%2C+Hao&rft.au=Xie%2C+Jiancang&rft.date=2023-09-01&rft.pub=Elsevier+Ltd&rft.issn=2210-6707&rft.volume=96&rft_id=info:doi/10.1016%2Fj.scs.2023.104631&rft.externalDocID=S2210670723002421 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6707&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6707&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6707&client=summon |