Development and Validation of an EEG-Based Real-Time Emotion Recognition System Using Edge AI Computing Platform With Convolutional Neural Network System-on-Chip Design
This study proposed an electroencephalogram (EEG)-based real-time emotion recognition hardware system architecture based on multiphase convolutional neural network (CNN) algorithm implemented on a 28-nm technology chip and on field programmable gate array (FPGA) for binary and quaternary classificat...
Saved in:
Published in | IEEE journal on emerging and selected topics in circuits and systems Vol. 9; no. 4; pp. 645 - 657 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study proposed an electroencephalogram (EEG)-based real-time emotion recognition hardware system architecture based on multiphase convolutional neural network (CNN) algorithm implemented on a 28-nm technology chip and on field programmable gate array (FPGA) for binary and quaternary classification. Sample entropy, differential asymmetry, short-time Fourier transform, and a channel reconstruction method were used for emotion feature extraction. In this work, six EEG channels were selected (FP1, FP2, F3, F4, F7, and F8), and EEG images were generated from spectrogram fusions. The complete CNN architecture included training and acceleration for efficient artificial intelligence (AI) edge application, and we proposed a multiphase CNN execution method to accommodate hardware resource constraints. Datasets of 32 subjects from the DEAP database were used to validate the proposed design, exhibiting mean accuracies for valance binary classification and valance-arousal quaternary classification of 83.36% and 76.67%, respectively. The core area and total power consumption of the CNN chip were 1.83 x 1.83 mm 2 , respectively, and 76.61 mW. The chip operation was validated using ADVANTEST V93000 PS1600, and the training process and real-time classification processing time took 0.12495 ms and 0.02634 ms for each EEG image, respectively. The proposed EEG-based realtime emotion recognition system included a dry electrode EEG headset, feature extraction processor, CNN chip platform, and graphical user interface, and the execution time costed 450 ms for each emotional state recognition. |
---|---|
AbstractList | This study proposed an electroencephalogram (EEG)-based real-time emotion recognition hardware system architecture based on multiphase convolutional neural network (CNN) algorithm implemented on a 28-nm technology chip and on field programmable gate array (FPGA) for binary and quaternary classification. Sample entropy, differential asymmetry, short-time Fourier transform, and a channel reconstruction method were used for emotion feature extraction. In this work, six EEG channels were selected (FP1, FP2, F3, F4, F7, and F8), and EEG images were generated from spectrogram fusions. The complete CNN architecture included training and acceleration for efficient artificial intelligence (AI) edge application, and we proposed a multiphase CNN execution method to accommodate hardware resource constraints. Datasets of 32 subjects from the DEAP database were used to validate the proposed design, exhibiting mean accuracies for valance binary classification and valance-arousal quaternary classification of 83.36% and 76.67%, respectively. The core area and total power consumption of the CNN chip were [Formula Omitted], respectively, and [Formula Omitted]. The chip operation was validated using ADVANTEST V93000 PS1600, and the training process and real-time classification processing time took 0.12495 ms and 0.02634 ms for each EEG image, respectively. The proposed EEG-based real-time emotion recognition system included a dry electrode EEG headset, feature extraction processor, CNN chip platform, and graphical user interface, and the execution time costed [Formula Omitted] for each emotional state recognition. This study proposed an electroencephalogram (EEG)-based real-time emotion recognition hardware system architecture based on multiphase convolutional neural network (CNN) algorithm implemented on a 28-nm technology chip and on field programmable gate array (FPGA) for binary and quaternary classification. Sample entropy, differential asymmetry, short-time Fourier transform, and a channel reconstruction method were used for emotion feature extraction. In this work, six EEG channels were selected (FP1, FP2, F3, F4, F7, and F8), and EEG images were generated from spectrogram fusions. The complete CNN architecture included training and acceleration for efficient artificial intelligence (AI) edge application, and we proposed a multiphase CNN execution method to accommodate hardware resource constraints. Datasets of 32 subjects from the DEAP database were used to validate the proposed design, exhibiting mean accuracies for valance binary classification and valance-arousal quaternary classification of 83.36% and 76.67%, respectively. The core area and total power consumption of the CNN chip were 1.83 x 1.83 mm 2 , respectively, and 76.61 mW. The chip operation was validated using ADVANTEST V93000 PS1600, and the training process and real-time classification processing time took 0.12495 ms and 0.02634 ms for each EEG image, respectively. The proposed EEG-based realtime emotion recognition system included a dry electrode EEG headset, feature extraction processor, CNN chip platform, and graphical user interface, and the execution time costed 450 ms for each emotional state recognition. |
Author | Fang, Wai-Chi Ho, Yun-Lung Fahier, Nicolas Huang, Yu-De Wang, Kai-Yen |
Author_xml | – sequence: 1 givenname: Wai-Chi surname: Fang fullname: Fang, Wai-Chi organization: Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan – sequence: 2 givenname: Kai-Yen orcidid: 0000-0003-3406-016X surname: Wang fullname: Wang, Kai-Yen email: zanmo8371.ee05g@g2.nctu.edu.tw organization: Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan – sequence: 3 givenname: Nicolas surname: Fahier fullname: Fahier, Nicolas organization: Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan – sequence: 4 givenname: Yun-Lung surname: Ho fullname: Ho, Yun-Lung organization: Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan – sequence: 5 givenname: Yu-De surname: Huang fullname: Huang, Yu-De organization: Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan |
BookMark | eNqFkctO5DAQRa0RSMPrC9hYmnUaO7GdeNnThAaEYMRjZhm5nUpjSOxgOyD-iM8k_RALNuNNla7uKdt199GOdRYQOqZkQimRJ5fl_Wx6N0kJlZNUcppm6Q-0l1IukiwTfOer5_lPdBTCExkPF1Qwtoc-TuEVWtd3YCNWtsZ_VWtqFY2z2DWjgstynvxWAWp8C6pN7k0HuOzc2nEL2i2tWfd37yFChx-CsUtc1kvA0ws8c10_xJXyp1Wxcb7D_0x8HHX76tphBaoWX8Pg1yW-Of-8nZQ4m8weTY9PIZilPUS7jWoDHG3rAXo4Gz9-nlzdzC9m06tEpzKPiSJNJqRUdUo1k5oCk7LQJM9AL6Qo1KJe6BzIooFa0JxxYCoVjBOgTc1Vw7MD9Gszt_fuZYAQqyc3-PGVoRoXy2nBCClGV7Zxae9C8NBUvTed8u8VJdUqlWqTSrVKpdqmMlLyG6VNXO86emXa_7DHG9YAwNdtRSGJECz7BFpdnzM |
CODEN | IJESLY |
CitedBy_id | crossref_primary_10_1007_s12652_022_04495_4 crossref_primary_10_1007_s10916_020_01676_6 crossref_primary_10_1007_s11042_023_14354_9 crossref_primary_10_1155_2022_2114882 crossref_primary_10_1109_ACCESS_2024_3444607 crossref_primary_10_26599_BSA_2020_9050024 crossref_primary_10_3389_fnins_2022_844851 crossref_primary_10_1109_TBCAS_2021_3113613 crossref_primary_10_1109_ACCESS_2020_3021994 crossref_primary_10_3390_s24030877 crossref_primary_10_1016_j_bspc_2022_103877 crossref_primary_10_1109_TIM_2024_3509604 crossref_primary_10_3390_s23187853 crossref_primary_10_1155_2021_9967592 crossref_primary_10_3390_app12115413 crossref_primary_10_1145_3712259 crossref_primary_10_1109_ACCESS_2020_3012900 crossref_primary_10_3390_app132111854 crossref_primary_10_1016_j_micpro_2020_103384 crossref_primary_10_1109_TBCAS_2021_3089132 crossref_primary_10_3390_app14010405 crossref_primary_10_1016_j_iswa_2023_200212 crossref_primary_10_1109_JSSC_2021_3117260 crossref_primary_10_1109_TBCAS_2020_3008766 crossref_primary_10_3389_fnins_2021_667447 crossref_primary_10_3390_app122010273 crossref_primary_10_1109_JSSC_2020_3041288 crossref_primary_10_3390_a16030141 crossref_primary_10_1109_TBCAS_2021_3112756 crossref_primary_10_3389_fpsyg_2022_856409 crossref_primary_10_1109_ACCESS_2021_3132233 crossref_primary_10_1016_j_copbio_2021_10_012 crossref_primary_10_1016_j_aei_2025_103207 crossref_primary_10_1587_transele_2021FUS0005 crossref_primary_10_3390_s21165554 crossref_primary_10_35940_ijrte_B7808_0712223 crossref_primary_10_1109_JBHI_2022_3171918 crossref_primary_10_1161_STROKEAHA_120_033053 crossref_primary_10_1109_TBCAS_2020_2974154 crossref_primary_10_1109_TCSII_2023_3336831 crossref_primary_10_3390_s24175813 |
Cites_doi | 10.1109/TAFFC.2017.2702749 10.1109/BIBM.2018.8621185 10.1109/TCSVT.2016.2592330 10.1109/ACCESS.2019.2914872 10.1109/ACCESS.2019.2928691 10.1016/j.ijpsycho.2009.08.006 10.1109/ACCESS.2019.2908285 10.1109/TAFFC.2017.2714671 10.1109/TMM.2016.2598092 10.1109/ACCESS.2019.2926381 10.1109/TCYB.2017.2788081 10.1109/SPAC.2017.8304360 10.1109/APCCAS.2018.8605654 10.1109/TCDS.2017.2685338 10.1109/AICAS.2019.8771581 10.1049/el.2017.3538 10.1109/ACCESS.2019.2891579 10.1109/JSEN.2018.2883497 10.1109/TBME.2010.2048568 10.1109/NER.2013.6695876 10.1109/TAFFC.2017.2660485 10.1109/IJCNN.2012.6252390 10.1109/T-AFFC.2011.15 10.1017/S0954579405050340 10.1109/TASLP.2017.2759338 10.1007/978-3-642-22336-5_13 10.1109/ACCESS.2019.2904400 10.1109/JCSSE.2013.6567313 10.1109/IJCNN.2018.8489715 10.1109/ACII.2017.8273655 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JETCAS.2019.2951232 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2156-3365 |
EndPage | 657 |
ExternalDocumentID | 10_1109_JETCAS_2019_2951232 8890664 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan funderid: 10.13039/501100004663 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c297t-a0f3699ad21c49c1e4998c073ecb968abdbc7e0bfed61745e4a26450e1fd5af53 |
IEDL.DBID | RIE |
ISSN | 2156-3357 |
IngestDate | Mon Jun 30 06:22:46 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 Tue Jul 01 00:41:35 EDT 2025 Wed Aug 27 06:30:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-a0f3699ad21c49c1e4998c073ecb968abdbc7e0bfed61745e4a26450e1fd5af53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3406-016X |
PQID | 2325184008 |
PQPubID | 2040416 |
PageCount | 13 |
ParticipantIDs | ieee_primary_8890664 crossref_primary_10_1109_JETCAS_2019_2951232 proquest_journals_2325184008 crossref_citationtrail_10_1109_JETCAS_2019_2951232 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-01 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal on emerging and selected topics in circuits and systems |
PublicationTitleAbbrev | JETCAS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ding (ref18) 2019 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref17 ref16 liu (ref26) 2011 ref24 ref23 ref25 ref20 ref22 ref21 ref28 gilan (ref19) 0 ref27 lin (ref3) 2010; 57 ref29 ref8 ref7 ref9 ref4 ref6 ref5 |
References_xml | – ident: ref4 doi: 10.1109/TAFFC.2017.2702749 – ident: ref22 doi: 10.1109/BIBM.2018.8621185 – ident: ref29 doi: 10.1109/TCSVT.2016.2592330 – ident: ref8 doi: 10.1109/ACCESS.2019.2914872 – ident: ref13 doi: 10.1109/ACCESS.2019.2928691 – ident: ref25 doi: 10.1016/j.ijpsycho.2009.08.006 – year: 0 ident: ref19 article-title: FPGA-based implementation of a real-time object recognition system using convolutional neural network publication-title: IEEE Trans Circuits Syst II Express Briefs – ident: ref15 doi: 10.1109/ACCESS.2019.2908285 – start-page: 1 year: 2019 ident: ref18 article-title: A FPGA-based accelerator of convolutional neural network for face feature extraction publication-title: Proc IEEE Int Conf Electron Devices Solid-State Circuits – ident: ref9 doi: 10.1109/TAFFC.2017.2714671 – ident: ref1 doi: 10.1109/TMM.2016.2598092 – ident: ref17 doi: 10.1109/ACCESS.2019.2926381 – ident: ref20 doi: 10.1109/TCYB.2017.2788081 – ident: ref31 doi: 10.1109/SPAC.2017.8304360 – ident: ref30 doi: 10.1109/APCCAS.2018.8605654 – ident: ref21 doi: 10.1109/TCDS.2017.2685338 – ident: ref32 doi: 10.1109/AICAS.2019.8771581 – ident: ref16 doi: 10.1049/el.2017.3538 – ident: ref6 doi: 10.1109/ACCESS.2019.2891579 – ident: ref11 doi: 10.1109/JSEN.2018.2883497 – volume: 57 start-page: 1798 year: 2010 ident: ref3 article-title: EEG-based emotion recognition in music listening publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2048568 – ident: ref23 doi: 10.1109/NER.2013.6695876 – ident: ref10 doi: 10.1109/TAFFC.2017.2660485 – ident: ref28 doi: 10.1109/IJCNN.2012.6252390 – ident: ref5 doi: 10.1109/T-AFFC.2011.15 – ident: ref7 doi: 10.1017/S0954579405050340 – ident: ref2 doi: 10.1109/TASLP.2017.2759338 – start-page: 256 year: 2011 ident: ref26 article-title: Real-time EEG-based emotion recognition and its applications publication-title: Transactions on Computational Science XII doi: 10.1007/978-3-642-22336-5_13 – ident: ref12 doi: 10.1109/ACCESS.2019.2904400 – ident: ref27 doi: 10.1109/JCSSE.2013.6567313 – ident: ref14 doi: 10.1109/IJCNN.2018.8489715 – ident: ref24 doi: 10.1109/ACII.2017.8273655 |
SSID | ssj0000561644 |
Score | 2.4387875 |
Snippet | This study proposed an electroencephalogram (EEG)-based real-time emotion recognition hardware system architecture based on multiphase convolutional neural... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 645 |
SubjectTerms | Acceleration affective computing Algorithms Arousal Artificial intelligence Artificial neural networks Classification Computer architecture convolutional neural network (CNN) Convolutional neural networks Electroencephalography Emotion recognition Feature extraction Field programmable gate arrays Fourier transforms Graphical user interface Hardware Image reconstruction Microprocessors Multiphase Neural networks Object recognition Power consumption Real time Real-time systems System on chip Training |
Title | Development and Validation of an EEG-Based Real-Time Emotion Recognition System Using Edge AI Computing Platform With Convolutional Neural Network System-on-Chip Design |
URI | https://ieeexplore.ieee.org/document/8890664 https://www.proquest.com/docview/2325184008 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBV0EsFOQDx3qbOHHWPi4lpVQqQoVCb5Fjj9uKKltBlgO_iJ_J-LGr8hDiFMuyLSsz8Xwz-TwD8ELLXpReIMciRqtMxZWzkjdNIZz0BJgxxCGP3zaHp_XRmTzbgN31XRhEjOQznIZm_JfvFnYZQmV7SmmykPUmbJLjlu5qreMpAQk3sXYrGbGGV5Wc5SRDZaH3jtoP-_P3gcmlp4JAhajEL4YoVlb54ziONubgLhyvdpeoJZ-ny7Gf2u-_JW783-3fgzsZbLJ50o77sIHDA7h9IwXhNvy4wRpiZnDsIwHzVGeJLTz1sLZ9zV-SrXPshEAlD3dGWJuK_7CTFf2I2in3OYscBNa6c2TzNywVjQg9767MGAAy-3Q5XlD_8C0rPW0wZAiJj0hJzyvxxcD3Ly6v2atIMnkIpwf0eg95rt7ArdCzkZvCV43WxonS1tqWSL6VsnSioO11o0zvejvDovfoCEXVEmtD4EwWWHonjZfVI9gaFgM-BibrSlnvtK3R1qXzypuS5mnlUFW9EhMQK1F2Nqc2DxU2rrro4hS6S_Lvgvy7LP8J7K4nXafMHv8evh0kuh6ahTmBnZXOdPnr_9rRcBk850I9-fusp3ArrJ1oMTuwNX5Z4jMCN2P_PGr1T4CQ96E |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFLWqsgAWvApi2gJewA5PEyfO2AsWQ5sy05dQaaG7NLGvaUWVqWgGBN_CB_AT_BvXjxmVh9hVYhXLshPLOc49vjm-l5CnSjQ8tRwYJN5bVWdMGi1YUSTcCIuEGZwfcnevGB3mW0fiaIF8m5-FAQAvPoO-K_p_-Waip85VtialQguZRwnlNnz5jBu0ixfjDXybzzjfLA_WRyzmEGCaq0HH6sRmhVK14anOlU4BGb7UiGvQjSpk3ZhGDyBpLBi05bmAvEaKIBJIrRG1dTkh8AN_DXmG4OF02NyD47h34bPFotksWJaJQQxrlCZqbQsHM3zjtGOqz5HG8Iz_Yvp8Lpc_DIC3apu3yY_ZfAQxy4f-tGv6-utvoSL_1wm7Q25FOk2HAf93yQK098jNS0EWl8j3S7ooWreGvsWtR8gkRScWa2hZvmIv0Zobuo-0mblTMbQM6Y3o_kxgheUQ3Z16lQUtzXugwzENaTFczeuzunNbAPrutDvB-vZTXNY4QBcDxV-86D7eiU1atn5yek43vIzmPjm8kql6QBbbSQsPCRV5JrU1Sueg89RYaesU-ylpQGaN5D3CZ9CpdAze7nKInFV-E5eoKuCtcnirIt565Pm803mIXfLv5ksOQfOmETw9sjrDaBW_bxcVNhfON5DI5b_3ekKujw52d6qd8d72CrnhnhNEQKtksfs4hUdI5brmsV9RlBxfNSJ_AoexVz8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Validation+of+an+EEG-Based+Real-Time+Emotion+Recognition+System+Using+Edge+AI+Computing+Platform+With+Convolutional+Neural+Network+System-on-Chip+Design&rft.jtitle=IEEE+journal+on+emerging+and+selected+topics+in+circuits+and+systems&rft.au=Wai-Chi%2C+Fang&rft.au=Kai-Yen%2C+Wang&rft.au=Fahier%2C+Nicolas&rft.au=Yun-Lung%2C+Ho&rft.date=2019-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2156-3357&rft.eissn=2156-3365&rft.volume=9&rft.issue=4&rft.spage=645&rft_id=info:doi/10.1109%2FJETCAS.2019.2951232&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-3357&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-3357&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-3357&client=summon |