Bimetallic metal–organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications

[Display omitted] •The advantages of BMOFs and their composites are summarized and discussed.•BMOFs and their composites exhibit high electro/photoelectrocatalytic properties.•We investigated the current problems and future solutions of BMOFs.•The challenges of BMOFs for electro/photoelectrocatalyst...

Full description

Saved in:
Bibliographic Details
Published inCoordination chemistry reviews Vol. 451; p. 214264
Main Authors Zhou, Yingtang, Abazari, Reza, Chen, Jing, Tahir, Muhammad, Kumar, Anuj, Ikreedeegh, Riyadh Ramadhan, Rani, Ekta, Singh, Harishchandra, Kirillov, Alexander M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The advantages of BMOFs and their composites are summarized and discussed.•BMOFs and their composites exhibit high electro/photoelectrocatalytic properties.•We investigated the current problems and future solutions of BMOFs.•The challenges of BMOFs for electro/photoelectrocatalysts are summarized.•This is the first review dedicated to BMOFs for electro/photoelectrocatalysts. Owing to the growing demand in areas such as energy, environmental science, electro- and photoelectrocatalysis, different reactions such as HER (hydrogen evolution), OER (oxygen evolution), ORR (oxygen reduction), and CO2RR (CO2 reduction) represent attractive strategies to overcome the challenges in sustainable energy conversion and usage. The competition for introducing catalysts with higher performance and cost-efficiency in comparison to the previous systems based on noble metals is one of the most interesting directions in this field. By merging the advantages of inorganic and organic materials, MOFs (metal–organic frameworks) have gained an ample attention as highly versatile electro- and photoelectrocatalytic platforms. This is governed by the intricate features of MOFs including extraordinary surface area, exceptional porosity, tailorable pore size, vast structural and chemical tunability, and pre- and post-synthesis structural modifiability. In contrast to monometallic compounds, bimetallic MOFs (BMOFs) and their composites offer many advantages, including improved electrical conductivity, extended active sites, high charge capacity, and adjustable electrochemical activity. Metal-organic frameworks can also be combined with other electrochemically active materials, resulting in advanced composites with large specific area, increased electrical conductivity, and superiour dispersion. Besides, some BMOFs show an enhanced electrocatalytic activity under light irradiation, thus permitting their application as photoelectrocatalysts. The present review summarizes the state-of-the-art on bimetallic MOFs and derived composites for the main current types of electro- and photoelectrocatalytic applications. The study also aims to highlight the challenges and opportunities in this area, with a focus on future perspectives of such multimetallic compounds and materials, with a particular emphasis in the field of energy and electrophotocatalysis.
AbstractList [Display omitted] •The advantages of BMOFs and their composites are summarized and discussed.•BMOFs and their composites exhibit high electro/photoelectrocatalytic properties.•We investigated the current problems and future solutions of BMOFs.•The challenges of BMOFs for electro/photoelectrocatalysts are summarized.•This is the first review dedicated to BMOFs for electro/photoelectrocatalysts. Owing to the growing demand in areas such as energy, environmental science, electro- and photoelectrocatalysis, different reactions such as HER (hydrogen evolution), OER (oxygen evolution), ORR (oxygen reduction), and CO2RR (CO2 reduction) represent attractive strategies to overcome the challenges in sustainable energy conversion and usage. The competition for introducing catalysts with higher performance and cost-efficiency in comparison to the previous systems based on noble metals is one of the most interesting directions in this field. By merging the advantages of inorganic and organic materials, MOFs (metal–organic frameworks) have gained an ample attention as highly versatile electro- and photoelectrocatalytic platforms. This is governed by the intricate features of MOFs including extraordinary surface area, exceptional porosity, tailorable pore size, vast structural and chemical tunability, and pre- and post-synthesis structural modifiability. In contrast to monometallic compounds, bimetallic MOFs (BMOFs) and their composites offer many advantages, including improved electrical conductivity, extended active sites, high charge capacity, and adjustable electrochemical activity. Metal-organic frameworks can also be combined with other electrochemically active materials, resulting in advanced composites with large specific area, increased electrical conductivity, and superiour dispersion. Besides, some BMOFs show an enhanced electrocatalytic activity under light irradiation, thus permitting their application as photoelectrocatalysts. The present review summarizes the state-of-the-art on bimetallic MOFs and derived composites for the main current types of electro- and photoelectrocatalytic applications. The study also aims to highlight the challenges and opportunities in this area, with a focus on future perspectives of such multimetallic compounds and materials, with a particular emphasis in the field of energy and electrophotocatalysis.
ArticleNumber 214264
Author Abazari, Reza
Ikreedeegh, Riyadh Ramadhan
Tahir, Muhammad
Singh, Harishchandra
Kirillov, Alexander M.
Rani, Ekta
Zhou, Yingtang
Kumar, Anuj
Chen, Jing
Author_xml – sequence: 1
  givenname: Yingtang
  orcidid: 0000-0002-8678-295X
  surname: Zhou
  fullname: Zhou, Yingtang
  email: zhouyingtang@zjou.edu.cn
  organization: National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
– sequence: 2
  givenname: Reza
  surname: Abazari
  fullname: Abazari, Reza
  email: reza.abazari@modares.ac.ir
  organization: National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
– sequence: 3
  givenname: Jing
  surname: Chen
  fullname: Chen, Jing
  organization: National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China
– sequence: 4
  givenname: Muhammad
  orcidid: 0000-0002-2937-5645
  surname: Tahir
  fullname: Tahir, Muhammad
  email: muhammad.tahir@uaeu.ac.ae
  organization: Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
– sequence: 5
  givenname: Anuj
  surname: Kumar
  fullname: Kumar, Anuj
  email: anuj.kumar@gla.ac.in
  organization: Department of Chemistry, Institute of Humanities and Applied Science, GLA University, Mathura 281406, India
– sequence: 6
  givenname: Riyadh Ramadhan
  surname: Ikreedeegh
  fullname: Ikreedeegh, Riyadh Ramadhan
  organization: Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
– sequence: 7
  givenname: Ekta
  orcidid: 0000-0002-6933-9892
  surname: Rani
  fullname: Rani, Ekta
  email: Ekta.Rani@oulu.fi
  organization: Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland
– sequence: 8
  givenname: Harishchandra
  orcidid: 0000-0001-7754-5648
  surname: Singh
  fullname: Singh, Harishchandra
  organization: Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland
– sequence: 9
  givenname: Alexander M.
  surname: Kirillov
  fullname: Kirillov, Alexander M.
  email: kirillov@tecnico.ulisboa.pt
  organization: Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
BookMark eNp9kMtOAjEUQBuDiYB-gLv5gcG286DVlRJREwyJ0XVT2lssDtNJ22DYufAP_EO_xAKuXLi6j-TcxxmgXutaQOic4BHBpL5YjZTyI4opGVFS0ro8Qn3CxkVesBL3UB9jgnNWldUJGoSwSmXNOe2jzxu7hiibxqpsn3x_fDm_lG2qjZdreHf-LWSy1dnjfJpr8HYDOlNu3blgI4TL7AkUtDHrvFt6CCFzbQYNqOhdvue6Vxfdb0fJtGIb03DZdWmnjNa14RQdG9kEOPuNQ_QyvX2e3Oez-d3D5HqWK8rHMeemNIpwZggsKC1ZoSum-KKimhtT11waVfCiAK5lyVg9Bi01MZVWuiKMYSiGiBzmKu9C8GBE5-1a-q0gWOw0ipVIGsVOozhoTMz4D6Ns3J8dvbTNv-TVgYT00saCF0FZaBVo65MMoZ39h_4B0daT7g
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_156553
crossref_primary_10_1016_j_ccr_2023_215302
crossref_primary_10_1021_acs_energyfuels_2c01350
crossref_primary_10_1039_D4NR04108A
crossref_primary_10_1016_j_ccr_2024_216231
crossref_primary_10_1002_cssc_202200184
crossref_primary_10_1016_j_ccr_2024_216113
crossref_primary_10_1039_D1CY02346B
crossref_primary_10_1002_aenm_202404057
crossref_primary_10_3390_bios12090769
crossref_primary_10_1007_s10854_023_10644_y
crossref_primary_10_1021_acsami_4c04342
crossref_primary_10_1016_j_ccr_2022_214969
crossref_primary_10_1002_cctc_202200994
crossref_primary_10_1016_j_jallcom_2024_176950
crossref_primary_10_1016_j_mtchem_2024_102107
crossref_primary_10_1021_acsami_3c18654
crossref_primary_10_3390_catal12030258
crossref_primary_10_1002_cnl2_153
crossref_primary_10_1016_j_cis_2025_103483
crossref_primary_10_1016_j_ijhydene_2024_11_435
crossref_primary_10_1016_j_mtcomm_2022_104945
crossref_primary_10_1016_j_ica_2024_122282
crossref_primary_10_1016_j_inoche_2022_110280
crossref_primary_10_1016_j_ijbiomac_2024_138215
crossref_primary_10_1016_j_apcatb_2024_124715
crossref_primary_10_1016_j_inoche_2025_114349
crossref_primary_10_1021_acsami_4c11560
crossref_primary_10_1039_D4CC02519A
crossref_primary_10_1002_aesr_202200004
crossref_primary_10_1016_j_mtchem_2022_101366
crossref_primary_10_1016_j_cclet_2024_110049
crossref_primary_10_1142_S1793984422500076
crossref_primary_10_1021_acsaem_3c00780
crossref_primary_10_1016_j_jcis_2024_09_175
crossref_primary_10_1016_j_ccr_2025_216539
crossref_primary_10_1016_j_cej_2023_142891
crossref_primary_10_1016_j_jcis_2022_05_060
crossref_primary_10_1039_D3CE00166K
crossref_primary_10_57634_RCR5064
crossref_primary_10_1016_j_chphma_2023_11_001
crossref_primary_10_1039_D3TA03500J
crossref_primary_10_1021_acs_inorgchem_2c01936
crossref_primary_10_1016_j_ccr_2024_216256
crossref_primary_10_1016_j_nxener_2024_100191
crossref_primary_10_1016_j_cej_2024_156664
crossref_primary_10_1016_j_inoche_2024_112915
crossref_primary_10_1039_D2NJ00970F
crossref_primary_10_1021_acs_energyfuels_4c03022
crossref_primary_10_1039_D2CC02865D
crossref_primary_10_1016_j_ccr_2024_215959
crossref_primary_10_1016_j_cej_2025_161299
crossref_primary_10_1016_j_jallcom_2025_179844
crossref_primary_10_1021_acs_energyfuels_3c01533
crossref_primary_10_1016_j_molstruc_2022_134389
crossref_primary_10_1002_slct_202300985
crossref_primary_10_1021_acs_inorgchem_2c01488
crossref_primary_10_1016_j_ccr_2025_216547
crossref_primary_10_1016_j_ccr_2024_215834
crossref_primary_10_1016_j_jece_2024_114088
crossref_primary_10_1039_D3CY00408B
crossref_primary_10_1016_j_ccr_2023_215538
crossref_primary_10_1016_j_cej_2023_146448
crossref_primary_10_1021_acs_energyfuels_3c01657
crossref_primary_10_1007_s10904_022_02297_x
crossref_primary_10_1039_D2ME00221C
crossref_primary_10_1016_j_cej_2022_137396
crossref_primary_10_1186_s11671_023_03890_w
crossref_primary_10_1016_j_ccr_2022_214817
crossref_primary_10_1007_s13738_024_03086_8
crossref_primary_10_2139_ssrn_4070250
crossref_primary_10_1002_adfm_202411904
crossref_primary_10_1016_j_colsurfa_2022_129477
crossref_primary_10_1016_j_jece_2023_110192
crossref_primary_10_1016_j_molstruc_2022_134598
crossref_primary_10_1021_acs_inorgchem_2c00542
crossref_primary_10_1002_ejic_202200316
crossref_primary_10_1016_j_jechem_2024_08_068
crossref_primary_10_1021_acs_inorgchem_2c02723
crossref_primary_10_1021_acs_inorgchem_4c01254
crossref_primary_10_1016_j_jece_2024_115007
crossref_primary_10_1016_j_watres_2024_121614
crossref_primary_10_1016_j_cclet_2023_108318
crossref_primary_10_1016_j_jclepro_2022_135685
crossref_primary_10_3762_bjoc_20_257
crossref_primary_10_1002_adfm_202210717
crossref_primary_10_1016_j_snb_2023_134951
crossref_primary_10_1016_j_jcis_2025_01_181
crossref_primary_10_1016_j_jece_2023_109408
crossref_primary_10_3390_coatings13081456
crossref_primary_10_3390_pr11030838
crossref_primary_10_1016_j_cej_2023_145453
crossref_primary_10_1021_acs_inorgchem_3c00764
crossref_primary_10_1016_j_ijhydene_2023_11_295
crossref_primary_10_1021_acsomega_2c01171
crossref_primary_10_1016_j_ijhydene_2023_08_039
crossref_primary_10_1016_j_rechem_2023_101078
crossref_primary_10_3389_fbioe_2023_1251713
crossref_primary_10_1016_j_est_2024_110583
crossref_primary_10_1016_j_inoche_2022_109342
crossref_primary_10_1016_j_molstruc_2024_140478
crossref_primary_10_1149_1945_7111_acc362
crossref_primary_10_1039_D4QI01613K
crossref_primary_10_1007_s10904_022_02392_z
crossref_primary_10_1039_D4YA00477A
crossref_primary_10_1021_acs_inorgchem_1c03216
crossref_primary_10_1021_acsmaterialslett_2c01065
crossref_primary_10_1142_S0218625X22300064
crossref_primary_10_1016_j_ijhydene_2024_11_247
crossref_primary_10_1016_j_ijhydene_2025_02_242
crossref_primary_10_1016_j_inoche_2025_114135
crossref_primary_10_1021_acs_inorgchem_2c01855
crossref_primary_10_1016_j_jechem_2023_06_038
crossref_primary_10_1016_j_ccr_2023_215042
crossref_primary_10_1016_j_apsusc_2025_162659
crossref_primary_10_1016_j_jssc_2022_123559
crossref_primary_10_1016_j_foodchem_2023_137631
crossref_primary_10_1016_j_jhazmat_2022_128271
crossref_primary_10_1002_cssc_202300377
crossref_primary_10_1016_j_apcatb_2023_122446
crossref_primary_10_1016_j_chemosphere_2023_138514
crossref_primary_10_1002_cplu_202200420
crossref_primary_10_1016_j_jece_2025_116076
crossref_primary_10_1016_j_poly_2023_116750
crossref_primary_10_1016_j_ijhydene_2025_01_206
crossref_primary_10_1016_j_est_2023_108557
crossref_primary_10_1016_j_jfca_2024_107086
crossref_primary_10_1002_smll_202207735
crossref_primary_10_1016_j_jssc_2022_123202
crossref_primary_10_1002_adma_202402184
crossref_primary_10_1039_D4TA05956E
crossref_primary_10_1016_j_molstruc_2022_133814
crossref_primary_10_1039_D1EE03614A
crossref_primary_10_1021_acsomega_2c07137
crossref_primary_10_3390_nano12183248
crossref_primary_10_1039_D2NR04063H
crossref_primary_10_1039_D4QI01732C
crossref_primary_10_3390_nano13152194
crossref_primary_10_1016_j_jelechem_2022_117041
crossref_primary_10_1039_D3TA00580A
crossref_primary_10_20964_2022_08_54
crossref_primary_10_1002_adfm_202303958
crossref_primary_10_1039_D3CC00451A
crossref_primary_10_1016_j_nanoen_2024_109897
crossref_primary_10_1039_D4TA00736K
crossref_primary_10_1016_j_fuel_2023_130561
crossref_primary_10_1016_j_cej_2023_147601
crossref_primary_10_1016_j_arabjc_2022_103906
crossref_primary_10_1021_acsenergylett_3c01626
crossref_primary_10_1016_j_seppur_2023_124903
crossref_primary_10_1093_rb_rbad115
crossref_primary_10_1016_j_fuel_2024_132539
crossref_primary_10_1016_j_ccr_2022_214699
crossref_primary_10_1021_acsami_4c15634
crossref_primary_10_1002_adsu_202400225
crossref_primary_10_1007_s12274_023_5935_0
crossref_primary_10_1016_j_fuel_2023_129760
crossref_primary_10_1016_j_cej_2022_140804
crossref_primary_10_20517_energymater_2024_215
crossref_primary_10_1016_j_seppur_2025_132539
crossref_primary_10_1016_j_jcis_2023_02_079
crossref_primary_10_1016_j_jcis_2022_11_039
crossref_primary_10_1098_rsos_240380
crossref_primary_10_1016_j_seppur_2023_125437
crossref_primary_10_1016_j_crcon_2025_100308
crossref_primary_10_1016_j_ensm_2023_02_030
crossref_primary_10_1002_jctb_7199
crossref_primary_10_3390_en16145404
crossref_primary_10_1016_j_ijhydene_2023_11_098
crossref_primary_10_1016_j_ccr_2024_215658
crossref_primary_10_1021_acsanm_4c02224
crossref_primary_10_1016_j_ccr_2023_215030
crossref_primary_10_1016_j_jallcom_2022_166750
crossref_primary_10_1016_j_colsurfa_2023_132398
crossref_primary_10_1007_s12274_024_6973_y
crossref_primary_10_1016_j_electacta_2024_145416
crossref_primary_10_1016_j_rechem_2023_101276
crossref_primary_10_1002_smll_202205736
crossref_primary_10_1039_D2CS00843B
crossref_primary_10_1016_j_cej_2022_138065
crossref_primary_10_1016_j_inoche_2022_110202
crossref_primary_10_1039_D3RA08174E
crossref_primary_10_1002_aenm_202400875
crossref_primary_10_1016_j_ica_2022_121236
crossref_primary_10_1016_j_ijhydene_2022_06_112
crossref_primary_10_1016_j_ccr_2024_216061
crossref_primary_10_1016_j_jssc_2024_124648
crossref_primary_10_1016_j_ccr_2022_214670
crossref_primary_10_1088_1361_6528_ad2481
crossref_primary_10_3390_molecules27175736
crossref_primary_10_1039_D4NH00140K
crossref_primary_10_1039_D4AY01217H
crossref_primary_10_1007_s40089_021_00361_x
crossref_primary_10_1039_D2CC01114J
crossref_primary_10_1007_s10008_024_06137_5
crossref_primary_10_1016_j_apenergy_2023_121755
crossref_primary_10_12677_hjcet_2024_143019
crossref_primary_10_1016_j_scitotenv_2022_157206
crossref_primary_10_1021_acsomega_1c07196
crossref_primary_10_1016_j_jcou_2024_102941
crossref_primary_10_1016_j_ccr_2022_214782
crossref_primary_10_1016_j_apsusc_2022_155792
crossref_primary_10_1039_D4CY01507J
crossref_primary_10_1016_j_ccr_2022_214667
crossref_primary_10_1016_j_jpowsour_2024_234593
crossref_primary_10_1016_j_ccr_2022_214664
crossref_primary_10_1016_j_jcis_2023_12_029
crossref_primary_10_1016_j_jallcom_2023_172465
crossref_primary_10_1016_j_micromeso_2022_112407
crossref_primary_10_1039_D4NR04236K
crossref_primary_10_1039_D2CE00726F
crossref_primary_10_1016_j_ijhydene_2023_12_225
crossref_primary_10_1007_s40843_024_3165_6
crossref_primary_10_1002_cey2_708
crossref_primary_10_1186_s13065_024_01247_7
crossref_primary_10_1016_j_ccr_2024_216395
crossref_primary_10_1016_j_jssc_2022_123615
crossref_primary_10_1007_s12274_023_6334_2
crossref_primary_10_1021_acs_inorgchem_3c03742
crossref_primary_10_1039_D2QI00382A
crossref_primary_10_1016_j_seppur_2024_129952
crossref_primary_10_1002_adfm_202409069
crossref_primary_10_1016_j_jece_2024_112925
crossref_primary_10_1016_j_seppur_2023_125231
crossref_primary_10_1016_j_jmst_2023_04_006
crossref_primary_10_1039_D2NJ01994A
crossref_primary_10_1039_D2TA09987J
crossref_primary_10_1016_j_jallcom_2025_179106
crossref_primary_10_1016_j_microc_2024_112363
crossref_primary_10_1039_D4TA00131A
crossref_primary_10_1002_adma_202301011
crossref_primary_10_1002_adfm_202312175
crossref_primary_10_1007_s11015_023_01589_y
crossref_primary_10_1016_j_ccr_2023_215117
crossref_primary_10_1021_acsanm_4c00481
crossref_primary_10_1002_smll_202306353
crossref_primary_10_1002_adfm_202415174
crossref_primary_10_1016_j_ccr_2022_214646
crossref_primary_10_1016_j_cej_2023_146707
crossref_primary_10_1016_j_matlet_2023_135469
crossref_primary_10_1016_j_molstruc_2022_133439
crossref_primary_10_1039_D4TA01330A
crossref_primary_10_1002_cssc_202202395
crossref_primary_10_1002_smtd_202401689
crossref_primary_10_1016_j_ccr_2022_214761
crossref_primary_10_1016_j_mcat_2024_114628
crossref_primary_10_1007_s00226_022_01430_w
crossref_primary_10_1016_j_jelechem_2023_117760
crossref_primary_10_2139_ssrn_4136968
crossref_primary_10_1016_j_molstruc_2023_137058
crossref_primary_10_1039_D3EY00018D
crossref_primary_10_1039_D4DT00739E
crossref_primary_10_1016_j_molstruc_2022_133790
crossref_primary_10_1002_ente_202400178
crossref_primary_10_1021_acsami_3c10682
crossref_primary_10_1021_acs_inorgchem_3c02875
crossref_primary_10_1016_j_jwpe_2023_104297
crossref_primary_10_1016_j_ccr_2024_215765
crossref_primary_10_1016_j_ijhydene_2024_07_143
crossref_primary_10_1016_j_apsusc_2022_154553
crossref_primary_10_1016_j_crcon_2023_100211
crossref_primary_10_1007_s11356_023_30026_5
crossref_primary_10_1002_smll_202205168
crossref_primary_10_1039_D1NJ06107K
crossref_primary_10_1186_s12951_023_01884_5
crossref_primary_10_1016_j_ccr_2025_216577
crossref_primary_10_1016_j_foodcont_2023_109965
crossref_primary_10_1016_j_jechem_2023_08_042
crossref_primary_10_1039_D1CE01636A
crossref_primary_10_1007_s10904_021_02205_9
crossref_primary_10_1007_s11783_024_1911_5
crossref_primary_10_1016_j_rechem_2024_101782
crossref_primary_10_1016_j_jssc_2022_123713
crossref_primary_10_1016_j_jmst_2022_10_041
crossref_primary_10_1016_j_rser_2022_112967
crossref_primary_10_1002_tcr_202300158
crossref_primary_10_12677_japc_2024_133041
crossref_primary_10_1016_j_ccr_2022_214505
crossref_primary_10_1016_j_inoche_2022_109533
crossref_primary_10_1016_j_cej_2022_140079
crossref_primary_10_1016_j_inoche_2024_113246
crossref_primary_10_3390_molecules30020208
crossref_primary_10_3390_molecules27134241
crossref_primary_10_1186_s11671_024_04066_w
crossref_primary_10_1016_j_ccr_2023_215333
crossref_primary_10_1039_D3NJ05571J
crossref_primary_10_1021_acs_jpcc_2c03083
crossref_primary_10_1016_j_talanta_2024_127177
crossref_primary_10_1039_D3EN00340J
crossref_primary_10_1016_j_mtcomm_2022_103874
crossref_primary_10_1007_s10876_022_02364_w
crossref_primary_10_1039_D2CE00722C
crossref_primary_10_1016_j_seppur_2023_125147
crossref_primary_10_1016_j_molstruc_2023_136661
crossref_primary_10_1016_j_microc_2023_108956
Cites_doi 10.1021/ja5116937
10.1021/acscatal.7b00687
10.1002/adma.201702891
10.1002/adfm.201300510
10.1039/C8TA08508K
10.1016/j.carbon.2016.10.046
10.1002/anie.201813634
10.1007/s10008-011-1394-8
10.1016/j.apcatb.2019.118513
10.1016/j.jcou.2020.101299
10.1039/D0SC01432J
10.1002/cssc.201801162
10.1021/acsami.7b01547
10.1126/science.aad4998
10.1016/j.apcatb.2017.12.013
10.1021/acs.inorgchem.1c00951
10.1021/acssuschemeng.0c08147
10.1021/cm5038183
10.1039/C5TA03900B
10.1002/anie.202007672
10.1002/adma.201804740
10.1016/0010-8545(95)01226-5
10.1021/jacs.5b11986
10.1021/acscentsci.8b00073
10.1016/j.nanoen.2016.04.041
10.1002/aenm.202001561
10.1002/anie.201803262
10.1039/D0TA05038E
10.1016/j.ccr.2018.08.010
10.1016/j.wasman.2019.03.043
10.1021/acsnano.9b07826
10.1016/j.cej.2020.126385
10.1039/D0DT04397D
10.1016/j.ccr.2011.03.008
10.1039/C6TA05877A
10.1021/acsami.6b05375
10.1016/j.ccr.2012.03.010
10.1016/j.elecom.2012.09.018
10.1016/j.jcou.2019.05.025
10.1021/acs.jpcc.1c03239
10.1016/j.jallcom.2021.158795
10.1039/C3CS60323G
10.1016/j.ijhydene.2015.06.027
10.1039/C5CC09127F
10.1016/j.jssc.2019.01.023
10.1039/C5EE02474A
10.1002/advs.201600371
10.1016/j.bios.2018.06.050
10.1016/j.ccr.2021.213954
10.1021/ic3018858
10.1039/C4TA04622F
10.1039/c2ee22550f
10.1002/adfm.201806419
10.1002/anie.201803587
10.1002/ange.202008129
10.1021/acs.inorgchem.0c03634
10.1021/acscatal.6b02479
10.1021/acscentsci.0c01150
10.1016/j.ccr.2021.214122
10.3390/app9122427
10.1039/C5TA04723D
10.1021/acscatal.5b02325
10.1021/acs.accounts.6b00635
10.1039/C7CC02113E
10.1039/C9TA13473E
10.1016/j.ccr.2020.213660
10.1016/j.jhazmat.2017.12.015
10.1039/C7NR09081A
10.1021/jacs.9b09298
10.1021/acs.chemrev.9b00766
10.1021/ar400001n
10.1002/advs.201500265
10.1016/j.renene.2017.11.084
10.1039/D0TA08094B
10.1002/cssc.201600693
10.1016/j.ccr.2019.213047
10.1039/C9NR06354D
10.1021/acscatal.7b03429
10.1021/acsenergylett.8b02345
10.1039/C6CS00362A
10.1039/D0NR06396G
10.1021/acs.accounts.8b00521
10.1021/jacs.5b02688
10.1021/acs.chemmater.5b02877
10.1039/c2ee03590a
10.1021/jacs.7b06459
10.1039/C4CS00015C
10.1002/cssc.201600761
10.1016/j.apcatb.2020.119582
10.1016/j.apsusc.2017.07.133
10.1016/j.fuel.2021.121420
10.1016/j.ccr.2018.07.020
10.1039/D1TA00900A
10.1021/jacs.9b11355
10.3762/bjnano.5.96
10.1021/acs.inorgchem.1c00997
10.1021/acssuschemeng.0c04682
10.1039/C8CC06918B
10.1039/D0NA00112K
10.3389/fchem.2019.00747
10.1002/advs.201500243
10.1007/s12274-020-2751-7
10.1039/C5NR03810C
10.1002/anie.201604311
10.1039/D0NR05072E
10.1039/C7TA07464F
10.1039/D0CC01146K
10.1039/C8FD00194D
10.1039/C9CS00906J
10.1002/aenm.201700544
10.1021/jacs.6b12353
10.1002/anie.202102632
10.1002/adma.201704303
10.1021/jacs.5b10484
10.1039/b807080f
10.1021/acscatal.5b01767
10.1038/s41467-019-13092-7
10.1002/adma.201502315
10.1002/anie.201509382
10.1039/D1SC00095K
10.1016/j.ccr.2017.08.010
10.1016/j.ccr.2021.213946
10.1039/C6NR07009D
10.1002/anie.201916520
10.1002/aesr.202100033
10.1016/S1872-2067(20)63731-7
10.1002/smtd.201800337
10.1038/nenergy.2016.184
10.1002/ange.201907002
10.1002/advs.201800064
10.1021/acs.inorgchem.5b02108
10.1039/C9NR10511E
10.1016/j.ccr.2020.213483
10.1016/j.enchem.2020.100027
10.1002/aenm.202003970
10.1021/ja409267p
10.1021/jacs.0c06329
10.1039/D0CS01482F
10.1039/D0EE03697H
10.1016/j.inoche.2021.108518
10.1002/adfm.201702324
10.1039/c4ee00517a
10.1021/acs.analchem.6b04184
10.1039/C9TA02926E
10.1039/C7TA00339K
10.1016/j.ijhydene.2019.06.102
10.1021/acssuschemeng.9b01131
10.1002/adfm.201802596
10.1016/j.ccr.2020.213435
10.1038/ncomms3390
10.1016/j.ccr.2017.09.001
10.1021/jp306172k
10.1016/j.ccr.2020.213619
10.1039/D1TA01224J
10.1021/acs.chemmater.0c02438
10.1016/j.elecom.2010.02.017
10.1039/C6CS00328A
10.1142/S1088424616500826
10.1126/science.1190672
10.1016/j.ccr.2020.213234
10.1021/acsanm.0c03310
10.1007/BF02836187
10.1038/ncomms9304
10.1016/S1872-2067(12)60729-3
10.1016/j.ccr.2010.05.001
10.1021/ja311085e
10.1039/C5NR06626C
10.1038/s41563-020-0610-2
10.1038/s41467-020-19236-4
10.1007/s12598-020-01440-2
10.1039/C7QI00780A
10.1039/C9EE03660A
10.1021/jacs.8b07472
10.1021/jacs.9b03811
10.1039/D0CS01191F
10.1002/chem.201803083
10.1002/adma.201802091
10.1002/chem.201902203
10.1039/D0NA00184H
10.1002/adma.201701463
10.1149/2.001204eel
10.1039/D0DT04133E
10.1039/C5CS00665A
10.1039/D0TA04977H
10.1002/adfm.202010052
10.1088/2515-7655/ab6429
10.1021/ar300227e
10.1039/C4NR02399D
10.1016/j.jcis.2020.05.098
10.1002/aenm.202003291
10.1002/anie.201803136
10.1103/PhysRevB.101.054302
10.1002/adfm.201704158
10.1021/acsaem.8b00797
10.1021/ja205647m
10.1016/j.ccr.2019.05.006
10.1039/C9CS00778D
10.1016/j.jcis.2019.08.005
10.1038/ncomms15341
10.1039/C3CS60472A
10.1021/acsenergylett.8b01540
10.1002/anie.201907674
10.1021/acssuschemeng.9b03952
10.1039/C4EE03869J
10.1021/nn5027092
10.1038/s41467-019-13051-2
10.1021/acssuschemeng.0c02271
10.1021/acs.nanolett.6b05004
10.1021/jacs.1c01096
10.1016/j.ccr.2006.01.011
10.1016/j.ccr.2020.213374
10.1002/jrs.4832
10.1021/cr9003924
10.1016/j.ccr.2012.05.002
10.1039/C9NH00380K
10.1002/anie.201403842
10.1039/C9TA09975A
10.1002/smll.201805232
10.1039/D0CE01747G
10.1002/ange.201301327
10.1002/anie.201902229
10.1039/D0TA05628F
10.1038/nmat1368
10.1039/c2ee22989g
10.1016/j.scriptamat.2021.113791
10.1039/C4RA15680C
10.1021/jacs.5b08212
10.1002/ange.201901409
10.1039/C9NR06883J
10.1002/anie.201202471
10.1039/C5RA17427A
10.1002/anie.201711376
10.1021/acsami.9b07100
10.1021/acsami.0c11722
10.1016/j.ijhydene.2013.12.120
10.1039/C4CS00470A
10.1021/ja5082553
10.1016/j.ccr.2021.213915
10.1039/D0CC90530E
10.1039/C4EE01760A
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ccr.2021.214264
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3840
ExternalDocumentID 10_1016_j_ccr_2021_214264
S0010854521005385
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
6J9
6P2
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M23
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
TN5
TWZ
UPT
WH7
XPP
YK3
ZMT
~G-
29F
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMH
HVGLF
HZ~
H~9
NDZJH
OHT
R2-
RIG
SCB
SEW
SIC
SSH
UQL
VH1
WUQ
XJT
ZKB
ZY4
ID FETCH-LOGICAL-c297t-9f4fc198f1eb22483d58c9b52d9ff669afc3933e9da48867edad1f5dcd51880e3
IEDL.DBID .~1
ISSN 0010-8545
IngestDate Tue Jul 01 02:43:52 EDT 2025
Thu Apr 24 23:10:11 EDT 2025
Fri Feb 23 02:45:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electrocatalysis
Photoelectrocatalysis
Composites
Oxygen evolution reaction
Metal-organic frameworks
Synergic effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-9f4fc198f1eb22483d58c9b52d9ff669afc3933e9da48867edad1f5dcd51880e3
ORCID 0000-0001-7754-5648
0000-0002-6933-9892
0000-0002-2937-5645
0000-0002-8678-295X
ParticipantIDs crossref_primary_10_1016_j_ccr_2021_214264
crossref_citationtrail_10_1016_j_ccr_2021_214264
elsevier_sciencedirect_doi_10_1016_j_ccr_2021_214264
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-15
PublicationDateYYYYMMDD 2022-01-15
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Coordination chemistry reviews
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References X. Chen, B. Shao, M.-J. Tang, X.-L. He, F. Yang, Z.-P. Guo, Z. Zhang, C.-T. He, F.-P. Huang, J. Huang, Accurately metal-modulated bimetallic metal-organic frameworks as an advanced trifunctional electrocatalyst, J. Mater. Chem. A (2021) doi.org/10.1039/D1TA01224J.
Wang, Xu, Zhou, Shao (b1230) 2017; 4
Zhou, Su, Shen, Li, Zhang, Liu, Zhao, Cheng, Yao, Liu (b0770) 2020; 8
Yuan, Qin, Lollar, Zhou (b0475) 2018; 4
Choi, Jeong, Park, Zhang, Kang, Yaghi (b0540) 2014; 8
Lu, Li, He, Cong, Chen, Wang, Wu, Xu, Gao, Yao (b0605) 2019; 272
Nepal, Das (b1235) 2013; 125
Tian, Ai, Jiang (b1080) 2015; 5
Zhang, Ai, Jiang (b1250) 2015; 3
Song, Wang, Wang, Li, Huang, Yin (b0985) 2014; 35
Liao, Shen, Zhang (b0405) 2018; 373
Khalil, Xue, Liu, Li, Shen, Li, Zhang, Huo (b1160) 2021; 31
Li, Wang, Chen, Kung (b0455) 2019; 9
Zhao, Xue, Chen, Bai, Shi, Mu (b0925) 2019
Zhang, Cui, Yang, Chen, Xiao, Guo, Liu, Zhang, Huo, Liu (b0395) 2016; 3
Li, Zhu (b1140) 2020; 2
Fang, Wu, Yu, Li, Zhu, Ferreira, Liu, Yu (b0120) 2019; 13
Jahan, Liu, Loh (b1000) 2013; 23
Xu, Zhao, Li, Liang, Lu, Chen, Gao, Asiri, Qi, Sun (b0080) 2020; 8
Gao, Huang, Wu, Lan, Chen (b0400) 2021; 2
Yu, Zhu, Song, McElhenny, Wang, Wu, Qin, Bao, Yu, Chen, Ren (b0075) 2019; 10
Sun, Reddu, Fisher, Wang (b0150) 2020; 13
Luo, Li, Zhang, Luo, Luo (b1175) 2019; 11
Cardoso, Stulp, De Brito, Flor, Frem, Zanoni (b1225) 2018; 225
Wang, Hou, Lin, Wang (b0980) 2014; 6
Duan, Chen, Zhao (b0315) 2017; 8
Lee, Farha, Roberts, Scheidt, Nguyen, Hupp (b0490) 2009; 38
Kumar, Vashistha, Sharma (b0875) 2021; 127
Khalid, Hassan, Honorato, Crespilho, Varela (b0590) 2018; 54
Gupt, Vittal (b0190) 2021; 435
Raza, Kumar, Singh, Kim (b0270) 2021; 430
Wurster, Grumelli, Hötger, Gutzler, Kern (b0620) 2016; 138
Zhang, Luo, Wan, Plessers, Sels, Song, Chen, Zhang, Tang, Morante, Arbiol, Fransaer (b0555) 2019; 7
You, Jiang, Sheng, Gu, Yano, Sun (b1015) 2015; 27
Chen, Jiang, Hou, Gong, Liu, Cui (b0485) 2017; 139
Chen, Zhu, Zhang, Zhou, Ostrikov (b0710) 2021; 9
Modak (b1155) 2002; 7
You, Jiang, Sheng, Drisdell, Yano, Sun (b0750) 2015; 5
Fantacci, Angelis (b0815) 2011; 255
Wang, Yin, Li, Chen, Wang (b0990) 2014; 39
Hong, Risch, Stoerzinger, Grimaud, Suntivich, Shao-Horn (b0040) 2015; 8
Li, Gao, Li, Ge, Bu, Feng (b0385) 2021; 14
Morozan, Jaouen (b0450) 2012; 5
Ge, Sun, Zhao, Yang, Wang, Zhang, Cao, Yang, Zhang, Pan, Zhu (b0645) 2021; 60
Abazari, Esrafili, Morsali, Wu, Gao (b0210) 2021; 283
Xie, Ma, Lin, Xu, Xie, Zeng (b0640) 2020; 12
Lions, Tommasino, Chattot, Abeykoon, Guillou, Devic, Demessence, Cardenas, Maillard, Fateeva (b0530) 2017; 53
Zhao, Pattengale, Fan, Zou, Zhao, Du, Huang, Xu (b0630) 2018; 3
Clough, Yoo, Mechlenburg, Marinescu (b1065) 2015; 137
Liu, Thoi (b0370) 2020; 32
Abazari, Yazdani, Nadafan, Kirillov, Gao, Slawin, Carpenter-Warren (b0175) 2021; 60
Liang, Qu, Guo, Zou, Xu (b0535) 2018; 30
He, Zhang, Zhang, Zhao, Yuan, Zhang, Ma, Hu (b0155) 2020; 59
Liu, Zhou, Ding, Wang, Yang (b1070) 2015; 7
Zheng, Xiang, Li, Zhang, Du, Zhuang, Li, Chen (b0665) 2019; 7
Zheng, Zhang, Xiang, Li, Du, Zhuang, Li, Chen (b0660) 2019; 555
Han, Zhai, Zhang, Dong (b0550) 2016; 8
Dhakshinamoorthy, Asiri, Garcia (b0500) 2016; 6
Yang, Wang, Han, Li (b0345) 2013; 46
Zhao, Nie, Wang, Chen, Quan, Yu, Choi, Zhang, Kim, Chen (b1115) 2020; 11
Yang, Li, Li, Zhu, Pang (b0110) 2019; 31
Abazari, Sanati, Morsali, Kirillov, Slawin, Carpenter-Warren (b0195) 2021; 60
Qi, Su, Xu, Zhang, Liu, Liu, Hensen, Lin (b0715) 2020; 8
Faustini, Nicole, Ruiz-Hitzky, Sanchez (b0130) 2018; 28
Meier, Katsounaros, Galeano, Bongard, Topalov, Kostka, Karschin, Schüth, Mayrhofer (b0065) 2012; 5
Rani, Ingale, Chaturvedi, Kamal, Phase, Joshi, Chakrabarti, Banerjee, Kukreja (b0790) 2016; 47
Li, Li, Ai, Jiang (b1075) 2015; 5
Li, Yang, Xue, Pang, Xu (b0185) 2020; 2
Yin, Zhu, Li, Zhang, Zhang, Chen (b0735) 2016; 8
Li, Zhu (b0020) 2020; 2
He, Wang, Jiang, Lu (b0835) 2016; 45
Monama, Mdluli, Mashao, Makhafola, Ramohlola, Molapo, Hato, Makgopa, Iwuoha, Modibane (b1040) 2018; 119
Shrivastav, Sundriyal, Goel, Kaur, Tuteja, Vikrant, Kim, Tiwari, Deep (b0335) 2019; 393
Liu, Jiao, Zheng, Jaroniec (b1185) 2019; 141
Sigurnjak, Brienza, Snauwaert, De Dobbelaere, De Mey, Vaneeckhaute, Michels, Schoumans, Adani, Meers (b1150) 2019; 89
Alfonso-Herrera, Torres-Martínez, Mora-Hernandez (b0365) 2021; 23
Li, Fang, Lin, Tian, An, Fu, Li, Jin, Ma (b1020) 2015; 3
Zhang, Li, Zhao, Chen, Law, Zhou (b1240) 2018; 11
Cheng, Liang, Yin, Wang, Yan, Zhang (b0900) 2020; 39
Quaino, Juarez, Santos, Schmickler (b1100) 2014; 5
Yuan, Feng, Wang, Pang, Bosch, Lollar, Sun, Qin, Yang, Zhang (b0465) 2018; 30
Wang, Kumar, Ma, Jia, Wang, Zhang, Zhang, Sun, Yan (b0885) 2020; 13
Shao, Wang, Huang (b0300) 2018; 29
Dong, Qian, Bu, Wu, Feng, Teng, Liu, Li (b0510) 2018; 1
He, Yin, Li (b1005) 2015; 40
Chen, Ren, Zhang, Cheng, Luo, Zhu, Ding, Wang (b1145) 2019; 3
Chen, Wu, Zhao (b1165) 2020; 2
Ding, Shi, Guo, Leong, Baji, Yang (b0290) 2017; 5
Zhong, Ghorbani-Asl, Ly, Zhang, Ge, Wang, Liao, Makarov, Zschech, Brunner, Weidinger, Zhang, Krasheninnikov, Kaskel, Dong, Feng (b0785) 2020; 11
Faber, Jin (b0115) 2014; 7
Baumann, Burns, Liu, Thoi (b0570) 2019; 2
Higgins, Zamani, Yu, Chen (b0055) 2016; 9
Nam, De Luna, Rosas-Hernández, Thevenon, Li, Agapie, Peters, Shekhah, Eddaoudi, Sargent (b0145) 2020; 19
Lyu, Bai, Li, Xu, Wang, Mao, Wang, Zhang, Yin (b0240) 2017; 27
Wang, Jin, Meng, Liao, Meng, Yang, He, Xiong, Mu (b0305) 2018; 28
Tian, Liu, Cheng, Asiri, Sun (b0435) 2014; 53
Abazari, Sanati, Morsali, Dubal (b0180) 2021; 9
Li, Xu, Jiao, Jiang (b0170) 2019; 1
Li, Zhang, Chen, Li, Sun, Zhu, Wang, Fu (b0255) 2021; 13
Albo, Vallejo, Beobide, Castillo, Castano, Irabien (b1125) 2017; 10
Corma, García, Llabres, Xamena (b0445) 2010; 110
Wu, Yan, Zhang, Feng, Wei, Sun, Du, Wei (b1260) 2018; 117
Li, Song, Zhu, Zhuang, Du, Tian (b0200) 2021; 439
Yoon, Lee, Oh, Park, Choi, Oh (b0740) 2019; 15
Zhang, Li, Tan, Lu, Wang, Wu (b1195) 2018; 24
Sanati, Abazari, Albero, Morsali, García, Liang, Zou (b0285) 2020; 660
Xue, Liu, Liu, Li, Li, Su, Ogiwara, Kobayashi, Kitagava, Liu, Li (b0970) 2019; 10
Ma, Dai, Jaroniec, Qiao (b1010) 2014; 136
Rebber, Willa, Koziej (b0135) 2020; 5
Zhou, Chen, Huang, Wang, Zhang, Bai, Liu, Wang (b1205) 2020; 266
Feaster, Shi, Cave, Hatsukade, Abram, Kuhl, Hahn, Nørskov, Jaramillo (b1105) 2017; 7
Tang, Cai, Xie, Wang, Tong, Pan, Lu (b0310) 2016; 3
Hinogami, Yotsuhashi, Deguchi, Zenitani, Hashiba, Yamada (b1120) 2012; 1
Li, Shao, Huang, Lang (b0320) 2018; 57
Albo, Perfecto-Irigaray, Beobide, Irabien (b0780) 2019; 33
Li, Fang, Wu, Dinh, Ren, Zhao, Liu, Yan (b1210) 2020; 8
Liang, Wang, Zheng, Zhang, Cao (b0015) 2021; 50
Ying, Tang, Yang, Liang, Yang, Pan, Liao, Huang (b0675) 2021; 4
Xia, Qu, Liang, Zhao, Dai, Qiu, Jiao, Zhang, Huang, Guo, Dang, Zou, Xia, Xu, Liu (b0950) 2017; 17
Liu, Lu, Xiao, Wang, Lou (b0160) 2019; 58
Kang, Li, Sheveleva, Han, Li, Liu, Tuna, McInnes, Han, Yang, Schröder (b0845) 2020; 11
Inglis, MacLean, Pryce, Vos (b1110) 2012; 256
Usov, Huffman, Epley, Kessinger, Zhu, Maza, Morris (b0520) 2017; 9
Mena, Cotillas, Díaz, Sáez, Mohedano, Rodrigo (b0340) 2019; 372
da Silva, Fernandes, Ticianelli (b0440) 2018; 8
Huang, Wang, Peng, Jung, Fisher, Wang (b0830) 2017; 7
N.-T. Suen, S.-Fu Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem. Soc. Rev. 46 (2017) 337−365.
Du, Li, Sun (b0380) 2021; 50
Thangasamy, Shanmuganathan, Subramanian (b0615) 2020; 2
Wang, Liu, Keser Demir, Chen, Li (b0460) 2016; 45
Zhong, Yamin Xi, Chen, Chen (b0355) 2020; 12
Anantharaj, Ede, Sakthikumar, Karthick, Mishra, Kundu (b0085) 2016; 6
Masoomi, Morsali, Dhakshinamoorthy, Garcia (b0260) 2019; 58
Hayden (b0430) 2013; 46
Dey, Houle, Lubner, Sevilla, Shaw (b0350) 2021; 57
Gerken, McAlpin, Chen, Rigsby, Casey, Britt, Stahl (b0690) 2011; 133
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355 (2017) eaad4998.
Babu, Kulandainathan, Katsounaros, Rassaei, Burrows, Raithby, Marken (b0975) 2010; 12
Ling, Niu, Li, Du, Wang (b1180) 2018; 140
Wang, Dong, Qiao, Tang, Liu, Li, Li, Su, Lan (b0655) 2018; 57
Ma, Zhu (b0225) 2020; 422
Chen, Wang, Wu, Xiong, Xu, Yu, Jiang (b0755) 2015; 27
Chen, Zhang, Cheng, Xie, Kuang, Zheng (b0330) 2020; 2
Tian, Cheng, Liu, Sun, He, Asiri (b0730) 2015; 3
Li, Gao, Feng, Deng, Xiao, Zheng, Zhao, Luo, Liu, Zhang, Wang, Li, Li, Wang, Chen (b0245) 2021; 11
Masa, Andronescu, Schuhmann (b0070) 2020; 59
Lv, Liu, Yang, Xing, Wang, Chen, Gao, Huang, Lu, Wang (b0725) 2020; 12
Cao, Wang (b0390) 2020; 6
Cui, Wang, Huang, He, Zhang, Zhang, Du (b0700) 2020; 578
Beyene, Hung (b1030) 2020; 410
Xu, Shang, Wang, Du (b0955) 2020; 418
Cichocka, Liang, Feng, Back, Siahrostami, Wang, Samperisi, Sun, Xu, Hedin, Zheng, Zou, Zhou, Huang (b0910) 2020; 142
Xie, Skorupskii, Dincă (b0250) 2020; 120
Hod, Deria, Bury, Mondloch, Kung, So, Sampson, Peters, Kubiak, Farha, Hupp (b1050) 2015; 6
Sun, Zhang, Li, Xu, Li (b0095) 2020; 8
Lin, Zhao, Wang, Gong (b0670) 2021; 50
Zagal, Koper (b0825) 2016; 55
Wang, Serre (b0480) 2019; 7
Gonen, Lori, Cohen-Taguri, Elbaz (b0945) 2018; 10
Song, Zhang, Doyle-Davis, Fu, Luo, Sun (b0855) 2020; 10
Li, Dai (b1025) 2014; 43
Zhao, Pachfule, Li, Simke, Schmidt (b0545) 2018; 57
Chaudhari, Kim, Han, Tan (b0585) 2017; 29
Xu, Li, Xue, Pang (b0125) 2018; 376
Kumar, Zhang, Liu, Sun (b0890) 2020; 402
Zhao, Nakamura, Kamiya, Nakanishi, Hashimoto (b0105) 2013; 4
Zhang, Jin, Zhang, Bai, Zhu, Pang (b0165) 2021; 439
Stephens, Bondarenko, Grønbjerg, Rossmeisl, Chorkendorff (b0415) 2012; 5
Arico, Bruce, Scrosati, Tarascon, Van Schalkwijk (b0420) 2005; 4
Zhong, Xi, Wu, Liu, Zhao, Bai (b0360) 2020; 8
Geis, Schneider, Schlettwein (b0965) 2016; 20
Shen, Liao, Zhou, He, Wu, Zhang, Zhang, Chen (b0625) 2017; 139
Sanati, Abazari, Morsali (b0050) 2020; 56
Kumar, Vashistha, Das, Ibraheem, Yasin, Iqbal, Nguyen, Gupta, Islam (b0870) 2021; 304
Liu, Li, Yao, Cheng, Chen, Luo, Yin (b1035) 2019; 131
Zhan, Kuang, Zhou, Kong, Xie, Zheng (b1265) 2013; 135
Windle, Robin (b1085) 2012; 256
Appleby, Zagal (b0820) 2011
He (10.1016/j.ccr.2021.214264_b0155) 2020; 59
Zhang (10.1016/j.ccr.2021.214264_b1240) 2018; 11
Yu (10.1016/j.ccr.2021.214264_b0075) 2019; 10
Yoon (10.1016/j.ccr.2021.214264_b0740) 2019; 15
Zhao (10.1016/j.ccr.2021.214264_b0925) 2019
Singh (10.1016/j.ccr.2021.214264_b0810) 2018; 2
Babu (10.1016/j.ccr.2021.214264_b0975) 2010; 12
Faustini (10.1016/j.ccr.2021.214264_b0130) 2018; 28
Ge (10.1016/j.ccr.2021.214264_b0645) 2021; 60
W., Leitner (10.1016/j.ccr.2021.214264_b1090) 1996; 153
Dey (10.1016/j.ccr.2021.214264_b0350) 2021; 57
10.1016/j.ccr.2021.214264_b0030
Cheng (10.1016/j.ccr.2021.214264_b0900) 2020; 39
Yang (10.1016/j.ccr.2021.214264_b0110) 2019; 31
Jiao (10.1016/j.ccr.2021.214264_b0035) 2015; 44
Sun (10.1016/j.ccr.2021.214264_b0095) 2020; 8
Xu (10.1016/j.ccr.2021.214264_b0125) 2018; 376
Hinogami (10.1016/j.ccr.2021.214264_b1120) 2012; 1
Xiao (10.1016/j.ccr.2021.214264_b0930) 2018; 52
Zhang (10.1016/j.ccr.2021.214264_b0165) 2021; 439
Geis (10.1016/j.ccr.2021.214264_b0965) 2016; 20
Krap (10.1016/j.ccr.2021.214264_b0495) 2016; 55
Han (10.1016/j.ccr.2021.214264_b0550) 2016; 8
Matheu (10.1016/j.ccr.2021.214264_b1135) 2019; 141
Ying (10.1016/j.ccr.2021.214264_b0675) 2021; 4
Zhang (10.1016/j.ccr.2021.214264_b0695) 2014; 136
Kumar (10.1016/j.ccr.2021.214264_b0870) 2021; 304
Jiao (10.1016/j.ccr.2021.214264_b1245) 2016; 9
Lu (10.1016/j.ccr.2021.214264_b0605) 2019; 272
Chen (10.1016/j.ccr.2021.214264_b0710) 2021; 9
Hayden (10.1016/j.ccr.2021.214264_b0430) 2013; 46
Liang (10.1016/j.ccr.2021.214264_b0535) 2018; 30
He (10.1016/j.ccr.2021.214264_b0835) 2016; 45
Li (10.1016/j.ccr.2021.214264_b0255) 2021; 13
Wang (10.1016/j.ccr.2021.214264_b0265) 2020; 49
Chaudhari (10.1016/j.ccr.2021.214264_b0585) 2017; 29
Li (10.1016/j.ccr.2021.214264_b0170) 2019; 1
Rabone (10.1016/j.ccr.2021.214264_b0215) 2010; 329
Raza (10.1016/j.ccr.2021.214264_b0270) 2021; 430
Li (10.1016/j.ccr.2021.214264_b0455) 2019; 9
Gao (10.1016/j.ccr.2021.214264_b0400) 2021; 2
Tian (10.1016/j.ccr.2021.214264_b0730) 2015; 3
Corma (10.1016/j.ccr.2021.214264_b0445) 2010; 110
Zhong (10.1016/j.ccr.2021.214264_b0785) 2020; 11
Albo (10.1016/j.ccr.2021.214264_b1125) 2017; 10
Chen (10.1016/j.ccr.2021.214264_b0280) 2020; 11
Abazari (10.1016/j.ccr.2021.214264_b0180) 2021; 9
Kornienko (10.1016/j.ccr.2021.214264_b0525) 2015; 137
Hod (10.1016/j.ccr.2021.214264_b0505) 2015; 5
Chen (10.1016/j.ccr.2021.214264_b0330) 2020; 2
You (10.1016/j.ccr.2021.214264_b0750) 2015; 5
Gonen (10.1016/j.ccr.2021.214264_b0945) 2018; 10
10.1016/j.ccr.2021.214264_b1220
Li (10.1016/j.ccr.2021.214264_b0185) 2020; 2
Sanati (10.1016/j.ccr.2021.214264_b0050) 2020; 56
Khalil (10.1016/j.ccr.2021.214264_b1160) 2021; 31
Nam (10.1016/j.ccr.2021.214264_b0145) 2020; 19
Sanad (10.1016/j.ccr.2021.214264_b0745) 2021; 143
Rebber (10.1016/j.ccr.2021.214264_b0135) 2020; 5
Albo (10.1016/j.ccr.2021.214264_b0780) 2019; 33
Yang (10.1016/j.ccr.2021.214264_b0230) 2021; 428
Xue (10.1016/j.ccr.2021.214264_b0970) 2019; 10
Qin (10.1016/j.ccr.2021.214264_b1060) 2015; 137
Shrivastav (10.1016/j.ccr.2021.214264_b0335) 2019; 393
Huang (10.1016/j.ccr.2021.214264_b0830) 2017; 7
Jin (10.1016/j.ccr.2021.214264_b0010) 2017; 349
Lv (10.1016/j.ccr.2021.214264_b0725) 2020; 12
Zhao (10.1016/j.ccr.2021.214264_b1115) 2020; 11
Wan (10.1016/j.ccr.2021.214264_b0060) 2020; 12
Shao (10.1016/j.ccr.2021.214264_b0300) 2018; 29
10.1016/j.ccr.2021.214264_b0005
Li (10.1016/j.ccr.2021.214264_b0680) 2019; 4
Tripkovic (10.1016/j.ccr.2021.214264_b1095) 2013; 117
Cao (10.1016/j.ccr.2021.214264_b0390) 2020; 6
Singh (10.1016/j.ccr.2021.214264_b0805) 2021; 197
Xu (10.1016/j.ccr.2021.214264_b0425) 2018; 30
Wurster (10.1016/j.ccr.2021.214264_b0620) 2016; 138
Inglis (10.1016/j.ccr.2021.214264_b1110) 2012; 256
Shaikh (10.1016/j.ccr.2021.214264_b0920) 2019; 216
Gong (10.1016/j.ccr.2021.214264_b1055) 2013; 52
Yin (10.1016/j.ccr.2021.214264_b0735) 2016; 8
Windle (10.1016/j.ccr.2021.214264_b1085) 2012; 256
Zhou (10.1016/j.ccr.2021.214264_b0610) 2019; 58
Rani (10.1016/j.ccr.2021.214264_b0795) 2017; 425
Xie (10.1016/j.ccr.2021.214264_b0250) 2020; 120
Kumar (10.1016/j.ccr.2021.214264_b0890) 2020; 402
Wang (10.1016/j.ccr.2021.214264_b0305) 2018; 28
Chen (10.1016/j.ccr.2021.214264_b0375) 2021; 125
Wang (10.1016/j.ccr.2021.214264_b1230) 2017; 4
Zhang (10.1016/j.ccr.2021.214264_b0140) 2019; 11
Li (10.1016/j.ccr.2021.214264_b0245) 2021; 11
Dong (10.1016/j.ccr.2021.214264_b0510) 2018; 1
Huang (10.1016/j.ccr.2021.214264_b0595) 2016; 138
Shen (10.1016/j.ccr.2021.214264_b0625) 2017; 139
Zhao (10.1016/j.ccr.2021.214264_b0105) 2013; 4
Chen (10.1016/j.ccr.2021.214264_b0485) 2017; 139
Liu (10.1016/j.ccr.2021.214264_b1070) 2015; 7
Zhong (10.1016/j.ccr.2021.214264_b0360) 2020; 8
Li (10.1016/j.ccr.2021.214264_b1075) 2015; 5
Wang (10.1016/j.ccr.2021.214264_b0480) 2019; 7
Abazari (10.1016/j.ccr.2021.214264_b0210) 2021; 283
Meier (10.1016/j.ccr.2021.214264_b0065) 2012; 5
Duan (10.1016/j.ccr.2021.214264_b0315) 2017; 8
Zhu (10.1016/j.ccr.2021.214264_b0025) 2018; 376
Anantharaj (10.1016/j.ccr.2021.214264_b0085) 2016; 6
Quaino (10.1016/j.ccr.2021.214264_b1100) 2014; 5
Sanati (10.1016/j.ccr.2021.214264_b0285) 2020; 660
Qi (10.1016/j.ccr.2021.214264_b0715) 2020; 8
Zhang (10.1016/j.ccr.2021.214264_b1195) 2018; 24
Wang (10.1016/j.ccr.2021.214264_b0460) 2016; 45
Liao (10.1016/j.ccr.2021.214264_b0405) 2018; 373
Xu (10.1016/j.ccr.2021.214264_b0955) 2020; 418
Jiao (10.1016/j.ccr.2021.214264_b0940) 2018; 57
Yuan (10.1016/j.ccr.2021.214264_b0465) 2018; 30
Lions (10.1016/j.ccr.2021.214264_b0530) 2017; 53
Yang (10.1016/j.ccr.2021.214264_b0345) 2013; 46
Chen (10.1016/j.ccr.2021.214264_b0720) 2021; 865
Li (10.1016/j.ccr.2021.214264_b0320) 2018; 57
Ma (10.1016/j.ccr.2021.214264_b0225) 2020; 422
Kang (10.1016/j.ccr.2021.214264_b0845) 2020; 11
Zhan (10.1016/j.ccr.2021.214264_b1265) 2013; 135
Yuan (10.1016/j.ccr.2021.214264_b0475) 2018; 4
He (10.1016/j.ccr.2021.214264_b1005) 2015; 40
Xie (10.1016/j.ccr.2021.214264_b0640) 2020; 12
Usov (10.1016/j.ccr.2021.214264_b0515) 2016; 4
Xu (10.1016/j.ccr.2021.214264_b0635) 2019; 7
Kumar (10.1016/j.ccr.2021.214264_b0860) 2021; 446
Liberman (10.1016/j.ccr.2021.214264_b0580) 2020; 142
Wang (10.1016/j.ccr.2021.214264_b0650) 2016; 8
Liu (10.1016/j.ccr.2021.214264_b0370) 2020; 32
Feaster (10.1016/j.ccr.2021.214264_b1105) 2017; 7
Qiao (10.1016/j.ccr.2021.214264_b1200) 2014; 43
Kumar (10.1016/j.ccr.2021.214264_b0880) 2020; 431
Cheng (10.1016/j.ccr.2021.214264_b0685) 2020; 132
Wang (10.1016/j.ccr.2021.214264_b0960) 2018; 5
Kumar (10.1016/j.ccr.2021.214264_b0875) 2021; 127
da Silva (10.1016/j.ccr.2021.214264_b0440) 2018; 8
You (10.1016/j.ccr.2021.214264_b1015) 2015; 27
Kumar (10.1016/j.ccr.2021.214264_b1130) 2012; 25
Zhou (10.1016/j.ccr.2021.214264_b0760) 2019; 7
Monama (10.1016/j.ccr.2021.214264_b1040) 2018; 119
Hong (10.1016/j.ccr.2021.214264_b0040) 2015; 8
Tan (10.1016/j.ccr.2021.214264_b0995) 2014; 26
Li (10.1016/j.ccr.2021.214264_b1045) 2016; 52
Cheng (10.1016/j.ccr.2021.214264_b1215) 2019; 44
Zhang (10.1016/j.ccr.2021.214264_b0560) 2021; 50
Song (10.1016/j.ccr.2021.214264_b0855) 2020; 10
Lin (10.1016/j.ccr.2021.214264_b0670) 2021; 50
Zhou (10.1016/j.ccr.2021.214264_b0770) 2020; 8
Du (10.1016/j.ccr.2021.214264_b0380) 2021; 50
Chen (10.1016/j.ccr.2021.214264_b1145) 2019; 3
Zhou (10.1016/j.ccr.2021.214264_b1205) 2020; 266
Zagal (10.1016/j.ccr.2021.214264_b0840) 2010; 254
Cardoso (10.1016/j.ccr.2021.214264_b1225) 2018; 225
Li (10.1016/j.ccr.2021.214264_b0220) 2020; 49
Clough (10.1016/j.ccr.2021.214264_b1065) 2015; 137
Beyene (10.1016/j.ccr.2021.214264_b1030) 2020; 410
Rani (10.1016/j.ccr.2021.214264_b0790) 2016; 47
Afzali (10.1016/j.ccr.2021.214264_b0575) 2020; 8
Gerken (10.1016/j.ccr.2021.214264_b0690) 2011; 133
Li (10.1016/j.ccr.2021.214264_b1025) 2014; 43
Li (10.1016/j.ccr.2021.214264_b0385) 2021; 14
Zhang (10.1016/j.ccr.2021.214264_b1250) 2015; 3
Zhong (10.1016/j.ccr.2021.214264_b0905) 2019; 131
Fang (10.1016/j.ccr.2021.214264_b0120) 2019; 13
10.1016/j.ccr.2021.214264_b1190
Abazari (10.1016/j.ccr.2021.214264_b0205) 2021; 60
Song (10.1016/j.ccr.2021.214264_b0985) 2014; 35
Liu (10.1016/j.ccr.2021.214264_b1035) 2019; 131
Lyu (10.1016/j.ccr.2021.214264_b0240) 2017; 27
Wang (10.1016/j.ccr.2021.214264_b0980) 2014; 6
Mikuriya (10.1016/j.ccr.2021.214264_b0470) 2006; 250
Li (10.1016/j.ccr.2021.214264_b0020) 2020; 2
Dhakshinamoorthy (10.1016/j.ccr.2021.214264_b0500) 2016; 6
Morozan (10.1016/j.ccr.2021.214264_b0450) 2012; 5
10.1016/j.ccr.2021.214264_b0410
Hod (10.1016/j.ccr.2021.214264_b1050) 2015; 6
Wang (10.1016/j.ccr.2021.214264_b0655) 2018; 57
10.1016/j.ccr.2021.214264_b0775
Sigurnjak (10.1016/j.ccr.2021.214264_b1150) 2019; 89
Jahan (10.1016/j.ccr.2021.214264_b1000) 2013; 23
Xia (10.1016/j.ccr.2021.214264_b0950) 2017; 17
Ling (10.1016/j.ccr.2021.214264_b1180) 2018; 140
Zagal (10.1016/j.ccr.2021.214264_b0825) 2016; 55
Wang (10.1016/j.ccr.2021.214264_b0565) 2021; 12
Mena (10.1016/j.ccr.2021.214264_b0340) 2019; 372
Wu (10.1016/j.ccr.2021.214264_b1260) 2018; 117
Wang (10.1016/j.ccr.2021.214264_b0090) 2018; 5
Nepal (10.1016/j.ccr.2021.214264_b1235) 2013; 125
Lee (10.1016/j.ccr.2021.214264_b0490) 2009; 38
Fantacci (10.1016/j.ccr.2021.214264_b0815) 2011; 255
Zheng (10.1016/j.ccr.2021.214264_b0660) 2019; 555
Zhang (10.1016/j.ccr.2021.214264_b0395) 2016; 3
Tang (10.1016/j.ccr.2021.214264_b0310) 2016; 3
Zheng (10.1016/j.ccr.2021.214264_b0665) 2019; 7
Modak (10.1016/j.ccr.2021.214264_b1155) 2002; 7
Lv (10.1016/j.ccr.2021.214264_b0895) 2020; 422
Stephens (10.1016/j.ccr.2021.214264_b0415) 2012; 5
Liang (10.1016/j.ccr.2021.214264_b0015) 2021; 50
Zhang (10.1016/j.ccr.2021.214264_b0555) 2019; 7
Chen (10.1016/j.ccr.2021.214264_b0755) 2015; 27
10.1016/j.ccr.2021.214264_b1170
Kiani (10.1016/j.ccr.2021.214264_b0100) 2021; 441
Sun (10.1016/j.ccr.2021.214264_b0150) 2020; 13
Alfonso-Herrera (10.1016/j.ccr.2021.214264_b0365) 2021; 23
Masa (10.1016/j.ccr.2021.214264_b0070) 2020; 59
Ma (10.1016/j.ccr.2021.214264_b1010) 2014; 136
Li (10.1016/j.ccr.2021.214264_b1255) 2017; 89
Arico (10.1016/j.ccr.2021.214264_b0420) 2005; 4
Zhu (10.1016/j.ccr.2021.214264_b0325) 2014; 43
Yan (10.1016/j.ccr.2021.214264_b0850) 2021; 403
Khalid (10.1016/j.ccr.2021.214264_b0590) 2018; 54
Chen (10.1016/j.ccr.2021.214264_b1165) 2020; 2
Abazari
References_xml – volume: 27
  start-page: 5010
  year: 2015
  end-page: 5016
  ident: b0755
  article-title: From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis
  publication-title: Adv. Mater.
– volume: 197
  year: 2021
  ident: b0805
  article-title: Unveiling interactions of non-metallic inclusions within advanced ultra-high-strength steel: A spectro-microscopic determination and first-principles elucidation
  publication-title: Scr. Mater.
– volume: 8
  start-page: 7451
  year: 2014
  end-page: 7457
  ident: b0540
  article-title: Supercapacitors of nanocrystalline metal–organic frameworks
  publication-title: ACS Nano
– volume: 11
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0785
  article-title: Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks
  publication-title: Nat. Commun.
– reference: Q. Wang, Y. Zhang, H. Lin, J. Zhu, Recent advances in metal–organic frameworks for photo-/electrocatalytic CO2 reduction, Chem. Eur. J. 25 (2019) 14026–1403. [cited as ref. 239].
– volume: 410
  year: 2020
  ident: b1030
  article-title: Recent progress on metalloporphyrin-based hydrogen evolution catalysis
  publication-title: Coord. Chem. Rev.
– volume: 15
  start-page: 1811
  year: 2011
  end-page: 1832
  ident: b0820
  article-title: Free energy relationships in electrochemistry: a history that started in 1935
  publication-title: J. Solid State Electrochem.
– volume: 3
  start-page: 17392
  year: 2015
  end-page: 17402
  ident: b1020
  article-title: MOF derived Co
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 11048
  year: 2018
  end-page: 11051
  ident: b0590
  article-title: Nano-flocks of a bimetallic organic framework for efficient hydrogen evolution electrocatalysis
  publication-title: Chem. Commun.
– volume: 141
  start-page: 17081
  year: 2019
  end-page: 17085
  ident: b1135
  article-title: Three-dimensional phthalocyanine metal-catecholates for high electrochemical carbon dioxide reduction
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 8450
  year: 2020
  end-page: 8459
  ident: b0370
  article-title: Improving charge transfer in metal–organic frameworks through open site functionalization and porosity selection for Li–S batteries
  publication-title: Chem. Mater.
– volume: 35
  start-page: 185
  year: 2014
  end-page: 195
  ident: b0985
  article-title: Preparation of MOF (Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte
  publication-title: Chin. J. Catal.
– volume: 8
  start-page: 14863
  year: 2020
  end-page: 14894
  ident: b0360
  article-title: Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis
  publication-title: J. Mater. Chem. A
– volume: 57
  start-page: 9660
  year: 2018
  end-page: 9664
  ident: b0655
  article-title: Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal–organic framework system
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 6364
  year: 2020
  end-page: 6401
  ident: b0220
  article-title: Functional metal–organic frameworks as effective sensors of gases and volatile compounds
  publication-title: Chem. Soc. Rev.
– volume: 56
  start-page: 6652
  year: 2020
  end-page: 6655
  ident: b0050
  article-title: Enhanced electrochemical oxygen and hydrogen evolution reactions using an NU-1000@NiMn-LDHS composite electrode in alkaline electrolyte
  publication-title: Chem. Commun.
– volume: 9
  start-page: 2427
  year: 2019
  ident: b0455
  article-title: Metal–organic frameworks toward electrocatalytic applications
  publication-title: Appl. Sci.
– volume: 20
  start-page: 1166
  year: 2016
  end-page: 1172
  ident: b0965
  article-title: Polymeric phthalocyanine sheets as electrocatalytic electrodes for water-oxidation
  publication-title: J. Porphyrins Phthalocyanines
– volume: 60
  start-page: 2056
  year: 2021
  end-page: 2067
  ident: b0195
  article-title: Simultaneous presence of open metal sites and amine groups on a 3D Dy(III)-metal–organic framework catalyst for mild and solvent-free conversion of CO
  publication-title: Inorg. Chem.
– volume: 5
  start-page: 846
  year: 2014
  end-page: 854
  ident: b1100
  article-title: Volcano plots in hydrogen electrocatalysis – uses and abuses
  publication-title: Beilstein J. nanotechnol.
– reference: N.-T. Suen, S.-Fu Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem. Soc. Rev. 46 (2017) 337−365.
– volume: 5
  start-page: 6744
  year: 2012
  end-page: 6762
  ident: b0415
  article-title: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys
  publication-title: Energy Environ. Sci.
– volume: 58
  start-page: 4227
  year: 2019
  end-page: 4231
  ident: b0610
  article-title: Stable hierarchical bimetal–organic nanostructures as high Performance electrocatalysts for the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 1
  year: 2018
  end-page: 8
  ident: b0810
  article-title: Identification of dopant site and its effect on electrochemical activity in Mn-doped lithium titanate
  publication-title: Phys. Rev. Mater.
– volume: 135
  start-page: 1926
  year: 2013
  end-page: 1933
  ident: b1265
  article-title: Semiconductor@metal–organic framework core–shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response
  publication-title: J. Am. Chem. Soc.
– start-page: 26238
  year: 2019
  end-page: 26242
  ident: b0925
  article-title: Ambient fast, large-scale synthesis of entropy-stabilized metal–organic framework nanosheets for electrocatalytic oxygen evolution
  publication-title: J. Mater. Chem. A
– volume: 25
  start-page: 100
  year: 2016
  end-page: 109
  ident: b0765
  article-title: Carbon-based electrocatalyst derived from bimetallic metal-organic framework arrays for high performance oxygen reduction
  publication-title: Nano Energy
– volume: 19
  start-page: 266
  year: 2020
  end-page: 276
  ident: b0145
  article-title: Molecular enhancement of heterogeneous CO
  publication-title: Nat. Mater.
– volume: 89
  start-page: 2369
  year: 2017
  end-page: 2376
  ident: b1255
  article-title: Enhanced photoelectrochemical method for sensitive detection of protein kinase A activity using TiO2/g-C3N4, PAMAM dendrimer, and alkaline phosphatase
  publication-title: J. Anal. Chem.
– volume: 53
  start-page: 9577
  year: 2014
  end-page: 9581
  ident: b0435
  article-title: Self-supported Cu
  publication-title: Angew. Chem. Int. Ed.
– volume: 45
  start-page: 5107
  year: 2016
  end-page: 5134
  ident: b0460
  article-title: Applications of water stable metal-organic frameworks
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 7068
  year: 2015
  end-page: 7076
  ident: b0750
  article-title: Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction
  publication-title: ACS Catal.
– volume: 5
  start-page: 6113
  year: 2017
  end-page: 6121
  ident: b0290
  article-title: Bimetallic metal–organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination
  publication-title: J. Mater. Chem. A
– volume: 133
  start-page: 14431
  year: 2011
  end-page: 14442
  ident: b0690
  article-title: Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 11001
  year: 2021
  end-page: 11012
  ident: b0180
  article-title: High specific capacitance of a 3D-metal–organic framework-confined growth in CoMn
  publication-title: J. Mater. Chem. A
– volume: 422
  year: 2020
  ident: b0225
  article-title: MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications
  publication-title: Coord. Chem. Rev.
– volume: 9
  start-page: 33539
  year: 2017
  end-page: 33543
  ident: b0520
  article-title: Study of electrocatalytic properties of metal–organic framework PCN-223 for the oxygen reduction reaction
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 3658
  year: 2020
  end-page: 3666
  ident: b1210
  article-title: Bimetal–MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction
  publication-title: J. Mater. Chem. A
– volume: 2
  year: 2020
  ident: b1165
  article-title: Two-dimensional metal-organic frameworks for energy-related electrocatalytic applications
  publication-title: J. Phys. Energy
– volume: 11
  start-page: 5369
  year: 2020
  end-page: 5403
  ident: b0280
  article-title: Bimetallic metal–organic frameworks and their derivatives
  publication-title: Chem. Sci.
– volume: 8
  start-page: 15341
  year: 2017
  ident: b0315
  article-title: Ultrathin metal-organic framework array for efficient electrocatalytic water splitting
  publication-title: Nat. Commun.
– volume: 7
  start-page: 4822
  year: 2017
  end-page: 4827
  ident: b1105
  article-title: Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes
  publication-title: ACS Catal.
– volume: 13
  start-page: 485
  year: 2021
  end-page: 509
  ident: b0255
  article-title: Recent development and applications of electrical conductive MOFs
  publication-title: Nanoscale
– volume: 5
  start-page: 6302
  year: 2015
  end-page: 6309
  ident: b0505
  article-title: Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO
  publication-title: ACS Catal.
– volume: 137
  start-page: 7169
  year: 2015
  end-page: 7177
  ident: b1060
  article-title: Ultrastable polymolybdate-based metal–organic frameworks as highly active electrocatalysts for hydrogen generation from water
  publication-title: J. Am. Chem. Soc.
– volume: 393
  start-page: 48
  year: 2019
  end-page: 78
  ident: b0335
  article-title: Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage
  publication-title: Coord. Chem. Rev.
– volume: 9
  start-page: 357
  year: 2016
  end-page: 390
  ident: b0055
  article-title: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress
  publication-title: Energy Environ. Sci.
– volume: 660
  start-page: 11048
  year: 2020
  end-page: 11067
  ident: b0285
  article-title: Metal-organic framework derived bimetallic materials for electrochemical energy storage
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 285
  year: 2019
  end-page: 292
  ident: b0680
  article-title: Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution
  publication-title: ACS Energy Lett.
– volume: 42
  start-page: 1404
  year: 2021
  end-page: 1412
  ident: b0865
  article-title: Redox chemistry of N
  publication-title: Chin. J. Catal.
– volume: 4
  start-page: 1600371
  year: 2017
  ident: b1230
  article-title: Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting
  publication-title: Adv. Sci.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 9
  ident: b1050
  article-title: A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution
  publication-title: Nat. Commun.
– volume: 23
  start-page: 2982
  year: 2021
  end-page: 2991
  ident: b0365
  article-title: A novel Co-based MOF/Pd composite: synergy of charge-transfer towards the electrocatalytic oxygen evolution reaction
  publication-title: CrystEngComm
– volume: 46
  start-page: 1900
  year: 2013
  end-page: 1909
  ident: b0345
  article-title: Roles of cocatalysts in photocatalysis and photoelectrocatalysis
  publication-title: Acc. Chem. Res.
– volume: 12
  start-page: 5764
  year: 2020
  end-page: 5791
  ident: b0355
  article-title: Bridge engineering in photocatalysis and photoelectrocatalysis
  publication-title: Nanoscale
– volume: 439
  year: 2021
  ident: b0200
  article-title: MOF-derived hollow structures for advanced electrocatalysis
  publication-title: Coord. Chem. Rev.
– volume: 52
  start-page: 777
  year: 2013
  end-page: 784
  ident: b1055
  article-title: Octamolybdate-based metal–organic framework with unsaturated coordinated metal center as electrocatalyst for generating hydrogen from water
  publication-title: Inorg. Chem.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 8
  ident: b0970
  article-title: Missing-linker metal-organic frameworks for oxygen evolution reaction
  publication-title: Nat. Commun.
– volume: 1
  start-page: H17
  year: 2012
  ident: b1120
  article-title: Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework
  publication-title: ECS Electrochem. Lett.
– volume: 38
  start-page: 1450
  year: 2009
  end-page: 1459
  ident: b0490
  article-title: Metal−organic framework materials as catalysts
  publication-title: Chem. Soc. Rev.
– reference: Q. Cui, G. Qin, W. Wang, G. K. R, A. Du, Q. Sun, Mo-based 2D MOF as a highly efficient electrocatalyst for reduction of N2 to NH3: a density functional theory study, J. Mater. Chem. A 7 (2019) 14510-14518.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0600
  article-title: Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution
  publication-title: Nat. Energy.
– volume: 3
  start-page: 20056
  year: 2015
  end-page: 20059
  ident: b0730
  article-title: Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting
  publication-title: J. Mater. Chem. A
– volume: 138
  start-page: 3623
  year: 2016
  end-page: 3626
  ident: b0620
  article-title: Driving the oxygen evolution reaction by nonlinear cooperativity in bimetallic coordination catalysts
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1702891
  year: 2018
  ident: b0535
  article-title: Pristine metal–organic frameworks and their composites for energy storage and conversion
  publication-title: Adv. Mater.
– reference: Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355 (2017) eaad4998.
– volume: 9
  start-page: 1826
  year: 2021
  end-page: 1836
  ident: b0710
  article-title: Bimetal–organic frameworks from in situ-activated NiFe foam for highly efficient water splitting
  publication-title: ACS Sustain. Chem. Eng.
– volume: 256
  start-page: 2562
  year: 2012
  end-page: 2570
  ident: b1085
  article-title: Advances in molecular photocatalytic and electrocatalytic CO
  publication-title: Coord. Chem. Rev.
– volume: 136
  start-page: 273
  year: 2014
  end-page: 281
  ident: b0695
  article-title: A biomimetic copper water oxidation catalyst with low overpotential
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1033
  year: 2016
  end-page: 1039
  ident: b0550
  article-title: Direct carbonization of cobalt-doped NH
  publication-title: Nanoscale
– volume: 1
  start-page: 4662
  year: 2018
  end-page: 4669
  ident: b0510
  article-title: Electrochemical reduction of CO
  publication-title: ACS Appl. Energy Mater.
– volume: 5
  start-page: 10290
  year: 2015
  end-page: 10295
  ident: b1080
  article-title: Metal–organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting
  publication-title: RSC Adv.
– volume: 12
  start-page: 21479
  year: 2020
  end-page: 21496
  ident: b0060
  article-title: Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction
  publication-title: Nanoscale
– volume: 139
  start-page: 1778
  year: 2017
  end-page: 1781
  ident: b0625
  article-title: Modular and stepwise synthesis of a hybrid metal–organic framework for efficient electrocatalytic oxygen evolution
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 9319
  year: 2012
  end-page: 9330
  ident: b0065
  article-title: Stability investigations of electrocatalysts on the nanoscale
  publication-title: Energy Environ. Sci.
– volume: 59
  start-page: 15298
  year: 2020
  end-page: 15312
  ident: b0070
  article-title: Electrocatalysis as the nexus for sustainable renewable energy: The gordian knot of activity, stability, and selectivity
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  start-page: 1802091
  year: 2018
  ident: b0425
  article-title: Surface Engineering of nanostructured energy materials
  publication-title: Adv Mater.
– volume: 25
  start-page: 70
  year: 2012
  end-page: 73
  ident: b1130
  article-title: Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst
  publication-title: Electrochem. Commun.
– volume: 7
  start-page: 69
  year: 2002
  end-page: 77
  ident: b1155
  article-title: Haber process for ammonia synthesis
  publication-title: Resonance
– volume: 272
  start-page: 32
  year: 2019
  end-page: 37
  ident: b0605
  article-title: Bimetallic metal-organic framework nanosheets as efficient electrocatalysts for oxygen evolution reaction
  publication-title: J. Solid State Chem.
– volume: 5
  start-page: 1800064
  year: 2018
  ident: b0090
  article-title: Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting
  publication-title: Adv. Sci.
– volume: 60
  start-page: 9660
  year: 2021
  end-page: 9672
  ident: b0205
  article-title: Instantaneous sonophotocatalytic degradation of tetracycline over NU-1000@ZnIn
  publication-title: Inorg. Chem.
– volume: 283
  year: 2021
  ident: b0210
  article-title: PMo
  publication-title: Appl. Catal., B
– volume: 29
  start-page: 1701463
  year: 2017
  ident: b0585
  article-title: Optochemically responsive 2D nanosheets of a 3D metal–organic framework material
  publication-title: Adv. Mater.
– volume: 373
  start-page: 22
  year: 2018
  end-page: 48
  ident: b0405
  article-title: Metal–organic frameworks for electrocatalysis
  publication-title: Coord. Chem. Rev.
– volume: 141
  start-page: 9664
  year: 2019
  end-page: 9672
  ident: b1185
  article-title: Qiao, Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 16818
  year: 2016
  end-page: 16823
  ident: b0515
  article-title: Cooperative electrochemical water oxidation by Zr nodes and Ni–porphyrin linkers of a PCN-224 MOF thin film
  publication-title: J. Mater. Chem. A
– volume: 403
  year: 2021
  ident: b0850
  article-title: Formation of mesoporous Co/CoS/Metal-NC@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting
  publication-title: Chem. Eng. J.
– volume: 31
  start-page: 1804740
  year: 2019
  ident: b0110
  article-title: Applications of metal–organic-framework-derived carbon materials
  publication-title: Adv. Mater.
– volume: 51
  start-page: 7440
  year: 2012
  end-page: 7444
  ident: b0915
  article-title: A water-stable porphyrin-based metal–organic framework active for visible-light photocatalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 55
  start-page: 4087
  year: 2016
  end-page: 4091
  ident: b0235
  article-title: Co@Co
  publication-title: Angew. Chem., Int. Ed.
– volume: 50
  start-page: 2663
  year: 2021
  end-page: 2695
  ident: b0380
  article-title: Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 2003291
  year: 2021
  ident: b0245
  article-title: Modulating metal–organic frameworks as advanced oxygen electrocatalysts
  publication-title: Adv. Energy Mater.
– volume: 435
  year: 2021
  ident: b0190
  article-title: Control of interpenetration and structural transformations in the interpenetrated MOFs
  publication-title: Coord. Chem. Rev.
– volume: 329
  start-page: 1053
  year: 2010
  end-page: 1057
  ident: b0215
  article-title: An adaptable peptide-based porous material
  publication-title: Science
– volume: 142
  start-page: 15386
  year: 2020
  end-page: 15395
  ident: b0910
  article-title: A porphyrinic zirconium metal–organic framework for oxygen reduction reaction: Tailoring the spacing between active-sites through chain-based inorganic building units
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 4720
  year: 2021
  end-page: 4726
  ident: b0560
  article-title: assembly of bimetallic MOF composites on IF as efficient electrocatalysts for the oxygen evolution reaction
  publication-title: Dalton Trans.
– volume: 5
  start-page: 521
  year: 2018
  end-page: 534
  ident: b0960
  article-title: A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis
  publication-title: Inorg. Chem. Front.
– volume: 119
  start-page: 62
  year: 2018
  end-page: 72
  ident: b1040
  article-title: Palladium deposition on copper (II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction
  publication-title: Renewable Energy
– volume: 120
  start-page: 8536
  year: 2020
  end-page: 8580
  ident: b0250
  article-title: Electrically conductive metal–organic frameworks
  publication-title: Chem. Rev.
– volume: 9
  start-page: 2824
  year: 2016
  end-page: 2831
  ident: b1245
  article-title: Fe/W Co-doped BiVO
  publication-title: ChemSusChem
– volume: 11
  start-page: 18715
  year: 2019
  end-page: 18722
  ident: b0140
  article-title: Intentional construction of high-performance SnO
  publication-title: Nanoscale
– volume: 10
  start-page: 9634
  year: 2018
  end-page: 9641
  ident: b0945
  article-title: Metal organic frameworks as a catalyst for oxygen reduction: an unexpected outcome of a highly active Mn-MOF-based catalyst incorporated in activated carbon
  publication-title: Nanoscale
– volume: 7
  start-page: 11911
  year: 2019
  end-page: 11927
  ident: b0480
  article-title: Toward green production of water-stable metal–organic frameworks based on high-valence metals with low toxicities
  publication-title: ACS Sustainable Chem. Eng.
– volume: 430
  year: 2021
  ident: b0270
  article-title: Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material
  publication-title: Coord. Chem. Rev.
– volume: 4
  start-page: 1967
  year: 2021
  end-page: 1975
  ident: b0675
  article-title: Tailoring electronegativity of bimetallic Ni/Fe metal-organic framework nanosheets for electrocatalytic water oxidation
  publication-title: ACS Appl. Nano Mater.
– volume: 52
  start-page: 356
  year: 2018
  end-page: 366
  ident: b0930
  article-title: Metal–organic frameworks for photocatalysis and photothermal catalysis
  publication-title: Acc. Chem. Res.
– volume: 89
  start-page: 265
  year: 2019
  end-page: 274
  ident: b1150
  article-title: Production and performance of bio-based mineral fertilizers from agricultural waste using ammonia (stripping-) scrubbing technology
  publication-title: Waste Management
– volume: 402
  year: 2020
  ident: b0890
  article-title: The chemistry, recent advancements and activity descriptors for macrocycles based electrocatalysts in oxygen reduction reaction
  publication-title: Coord. Chem. Rev.
– volume: 137
  start-page: 118
  year: 2015
  end-page: 121
  ident: b1065
  article-title: Two-dimensional metal–organic surfaces for efficient hydrogen evolution from water
  publication-title: J. Am. Chem. Soc.
– volume: 101
  start-page: 54302
  year: 2020
  ident: b0800
  article-title: Origin of the anomalous Pb-Br bond dynamics in formamidinium lead bromide perovskites
  publication-title: Phys. Rev. B
– volume: 57
  start-page: 8525
  year: 2018
  end-page: 8529
  ident: b0940
  article-title: From metal–organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 8069
  year: 2016
  end-page: 8097
  ident: b0085
  article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: A review
  publication-title: ACS Catal.
– volume: 1
  year: 2019
  ident: b0170
  article-title: Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities
  publication-title: EnergyChem
– volume: 131
  start-page: 10787
  year: 2019
  end-page: 10792
  ident: b0905
  article-title: A Phthalocyanine-based layered two-dimensional conjugated metal–organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 4280
  year: 2021
  end-page: 4287
  ident: b0670
  article-title: Ruthenium-doped NiFe-based metal-organic framework nanoparticles as highly efficient catalysts for the oxygen evolution reaction
  publication-title: Dalton. Trans.
– volume: 256
  start-page: 2571
  year: 2012
  end-page: 2600
  ident: b1110
  article-title: Electrocatalytic pathways towards sustainable fuel production from water and CO
  publication-title: Coord. Chem. Rev.
– volume: 2
  start-page: 2628
  year: 2020
  end-page: 2647
  ident: b0330
  article-title: The function of metal–organic frameworks in the application of MOF-based composites
  publication-title: Nanoscale Adv.
– volume: 349
  start-page: 84
  year: 2017
  end-page: 101
  ident: b0010
  article-title: Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis
  publication-title: Coord. Chem. Rev.
– volume: 7
  start-page: 1
  year: 2019
  end-page: 9
  ident: b0760
  article-title: Bimetallic metal-organic framework derived metal-carbon hybrid for efficient reversible oxygen electrocatalysis
  publication-title: Front. Chem.
– volume: 7
  start-page: 9743
  year: 2019
  end-page: 9749
  ident: b0665
  article-title: Highly conductive bimetallic Ni-Fe metal organic framework as a novel electrocatalyst for water oxidation
  publication-title: ACS Sustain. Chem. Eng.
– volume: 58
  start-page: 13828
  year: 2019
  end-page: 13833
  ident: b0160
  article-title: Bi
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 48495
  year: 2020
  end-page: 48510
  ident: b0725
  article-title: 3D hydrangea macrophylla-like nickel−vanadium metal−organic frameworks formed by self-assembly of ultrathin 2D nanosheets for overall water splitting
  publication-title: ACS Appl. Mater. Interfaces
– volume: 153
  start-page: 257
  year: 1996
  end-page: 284
  ident: b1090
  article-title: The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey
  publication-title: Coord. Chem. Rev.
– volume: 441
  year: 2021
  ident: b0100
  article-title: Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives
  publication-title: Coord. Chem. Rev.
– volume: 43
  start-page: 5257
  year: 2014
  end-page: 5275
  ident: b1025
  article-title: Recent advances in zinc–air batteries
  publication-title: Chem. Soc. Rev.
– volume: 31
  start-page: 2010052
  year: 2021
  ident: b1160
  article-title: The role of defects in metal–organic frameworks for nitrogen reduction reaction: when defects switch to features
  publication-title: Adv. Funct. Mater.
– volume: 47
  start-page: 457
  year: 2016
  end-page: 467
  ident: b0790
  article-title: Correlation of size and oxygen bonding at the interface of Si nanocrystal in Si-SiO2 nanocomposite: A Raman mapping study
  publication-title: J. Raman Spectrosc.
– volume: 3
  start-page: 1500243
  year: 2016
  ident: b0395
  article-title: Metal–organic frameworks as promising photosensitizers for photoelectrochemical water splitting
  publication-title: Adv. Sci.
– volume: 11
  start-page: 26891
  year: 2019
  end-page: 26897
  ident: b1175
  article-title: MOF-derived Co
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 9930
  year: 2014
  end-page: 9934
  ident: b0980
  article-title: Water oxidation electrocatalysis by a zeolitic imidazolate framework
  publication-title: Nanoscale
– volume: 4
  start-page: 2390
  year: 2013
  ident: b0105
  article-title: Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation
  publication-title: Nat. Commun.
– volume: 59
  start-page: 4914
  year: 2020
  end-page: 4919
  ident: b0155
  article-title: Molecular evidence for metallic cobalt boosting CO
  publication-title: Angew. Chem., Int. Ed.
– reference: B. C. e Silva, K. Irikura, J. B. S. Flor, R. M. M. dos Santos, A. Lachgar, R. C. G. Frem, M. V.B. Zanoni, Electrochemical preparation of Cu/Cu2 O-Cu (BDC) metal-organic framework electrodes for photoelectrocatalytic reduction of CO2, J. CO2 Util. 42 (2020) 101299.
– volume: 372
  start-page: 77
  year: 2019
  end-page: 84
  ident: b0340
  article-title: Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation
  publication-title: J. Hazard. Mater.
– volume: 4
  start-page: 440
  year: 2018
  end-page: 450
  ident: b0475
  article-title: Stable metal–organic frameworks with group 4 metals: Current status and trends
  publication-title: ACS Cent. Sci.
– volume: 17
  start-page: 2788
  year: 2017
  end-page: 2795
  ident: b0950
  article-title: High-performance energy storage and conversion materials derived from a single metal–organic framework/graphene aerogel composite
  publication-title: Nano lett.
– volume: 44
  start-page: 21597
  year: 2019
  end-page: 21606
  ident: b1215
  article-title: Enhanced photoelectrochemical hydrogenation of green-house gas CO
  publication-title: Int. J. Hydrog. Energy
– volume: 137
  start-page: 14129
  year: 2015
  end-page: 14135
  ident: b0525
  article-title: Metal–organic frameworks for electrocatalytic reduction of carbon dioxide
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 14368
  year: 2019
  end-page: 14376
  ident: b0120
  article-title: Hybrid organic–inorganic gel electrocatalyst for stable acidic water oxidation
  publication-title: ACS Nano
– volume: 7
  start-page: 2071
  year: 2014
  end-page: 2100
  ident: b0275
  article-title: Qiang Xu, Functional materials derived from open framework templates/precursors: synthesis and applications
  publication-title: Energy Environ. Sci.
– volume: 425
  start-page: 1089
  year: 2017
  end-page: 1094
  ident: b0795
  article-title: Band gap tuning in Si-SiO
  publication-title: Appl. Surf. Sci.
– volume: 33
  start-page: 157
  year: 2019
  end-page: 165
  ident: b0780
  article-title: Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO
  publication-title: J. CO
– volume: 3
  start-page: 1800337
  year: 2019
  ident: b1145
  article-title: Advances in electrocatalytic N
  publication-title: Small Methods
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  ident: b0035
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
– volume: 578
  start-page: 10
  year: 2020
  end-page: 23
  ident: b0700
  article-title: Efficient multifunctional electrocatalyst based on 2D semiconductive bimetallic metal-organic framework toward non-Pt methanol oxidation and overall water splitting
  publication-title: J. Colloid Interface Sci.
– volume: 12
  start-page: 5737
  year: 2021
  end-page: 5766
  ident: b0565
  article-title: Recent progress in metal–organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application
  publication-title: Chem. Sci.
– volume: 2
  start-page: 2100033
  year: 2021
  ident: b0400
  article-title: Metal–organic frameworks for photo/electrocatalysis
  publication-title: Adv. Energy Sustainability Res.
– volume: 117
  start-page: 575
  year: 2018
  end-page: 582
  ident: b1260
  article-title: A competitive photoelectrochemical immunosensor for the detection of diethylstilbestrol based on an Au/UiO-66(NH
  publication-title: Biosens. Bioelectron.
– volume: 7
  start-page: 3519
  year: 2014
  end-page: 3542
  ident: b0115
  article-title: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 13476
  year: 2017
  end-page: 13482
  ident: b0485
  article-title: Boosting chemical stability, catalytic activity, and enantioselectivity of metal-organic frameworks for batch and flow reactions
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 815
  year: 2020
  end-page: 823
  ident: b0900
  article-title: Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery
  publication-title: Rare Met.
– volume: 11
  start-page: 2710
  year: 2018
  end-page: 2716
  ident: b1240
  article-title: A cobalt-based metal–organic framework as cocatalyst on BiVO
  publication-title: ChemSusChem
– volume: 2
  start-page: 2073
  year: 2020
  end-page: 2079
  ident: b0615
  article-title: A NiCo-MOF nanosheet array based electrocatalyst for the oxygen evolution reaction
  publication-title: Nanoscale Adv.
– volume: 10
  start-page: 5106
  year: 2019
  ident: b0075
  article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis
  publication-title: Nat. Commun.
– volume: 8
  start-page: 22974
  year: 2020
  end-page: 22982
  ident: b0715
  article-title: Hierarchical 2D yarn-ball like metal-organic framework NiFe(dobpdc) as bifunctional electrocatalyst for efficient overall electrocatalytic water splitting
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1404
  year: 2015
  end-page: 1427
  ident: b0040
  article-title: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 86
  year: 2019
  ident: b0570
  article-title: Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices, commun
  publication-title: Chem.
– volume: 27
  start-page: 1702324
  year: 2017
  ident: b0240
  article-title: Self-templated fabrication of CoO–MoO
  publication-title: Adv. Funct. Mater.
– volume: 45
  start-page: 2396
  year: 2016
  end-page: 2409
  ident: b0835
  article-title: Structural effects of a carbon matrix in non-precious metal O
  publication-title: Chem. Soc. Rev.
– volume: 254
  start-page: 2755
  year: 2010
  end-page: 2791
  ident: b0840
  article-title: Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions
  publication-title: Coord. Chem. Rev.
– volume: 5
  start-page: 431
  year: 2020
  end-page: 453
  ident: b0135
  article-title: Organic–inorganic hybrids for CO
  publication-title: Nanoscale Horiz.
– volume: 7
  start-page: 16629
  year: 2019
  end-page: 16639
  ident: b0635
  article-title: From low-to high-crystallinity bimetal-organic framework nanosheet with highly exposed boundaries: An efficient and stable electrocatalyst for oxygen evolution reaction
  publication-title: ACS Sustain. Chem. Eng.
– volume: 2
  year: 2020
  ident: b0185
  article-title: Metal–organic frameworks as a platform for clean energy applications
  publication-title: EnergyChem
– reference: Y.-S. Wei, L. Zou, H.-F. Wang, Y. Wang, Q. Xu, Micro/nano-scaled metal-organic frameworks and their derivatives for energy applications, Adv. Energy Mater. 2021, 2003970.
– reference: X. Chen, B. Shao, M.-J. Tang, X.-L. He, F. Yang, Z.-P. Guo, Z. Zhang, C.-T. He, F.-P. Huang, J. Huang, Accurately metal-modulated bimetallic metal-organic frameworks as an advanced trifunctional electrocatalyst, J. Mater. Chem. A (2021) doi.org/10.1039/D1TA01224J.
– volume: 5
  start-page: 23744
  year: 2017
  end-page: 23752
  ident: b0295
  article-title: Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage
  publication-title: J. Mater. Chem. A
– volume: 418
  year: 2020
  ident: b0955
  article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting
  publication-title: Coord. Chem. Rev.
– volume: 14
  start-page: 1897
  year: 2021
  end-page: 1927
  ident: b0385
  article-title: Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 1100
  year: 2017
  end-page: 1109
  ident: b1125
  article-title: Copper-based metal–Organic porous materials for CO
  publication-title: ChemSusChem
– volume: 7
  start-page: 18004
  year: 2015
  end-page: 18009
  ident: b1070
  article-title: 3D architecture constructed via the confined growth of MoS
  publication-title: Nanoscale
– volume: 428
  year: 2021
  ident: b0230
  article-title: Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation
  publication-title: Coord. Chem. Rev.
– volume: 57
  start-page: 1888
  year: 2018
  end-page: 1892
  ident: b0320
  article-title: Nanoscale trimetallic metal–organic frameworks enable efficient oxygen evolution electrocatalysis
  publication-title: Angew. Chem., Int. Ed.
– volume: 117
  start-page: 9187
  year: 2013
  end-page: 9195
  ident: b1095
  article-title: Electrochemical CO
  publication-title: J. Phys. Chem. C
– volume: 8
  start-page: 16736
  year: 2016
  end-page: 16743
  ident: b0650
  article-title: Fe/Ni Metal-organic frameworks and their bnder-free thin films for efficient oxygen evolution with low overpotential
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 5468
  year: 2014
  end-page: 5512
  ident: b0325
  article-title: Metal–organic framework composites
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 18137
  year: 2018
  end-page: 18157
  ident: b1195
  article-title: Metal–organic frameworks and their derived materials as electrocatalysts and photocatalysts for CO
  publication-title: Chem. Eur. J.
– volume: 431
  year: 2020
  ident: b0880
  article-title: Recent development on metal phthalocyanines based materials for energy conversion and storage applications
  publication-title: Coord. Chem. Rev.
– volume: 8
  start-page: 19129
  year: 2016
  end-page: 19138
  ident: b0735
  article-title: Hierarchical nickel-cobalt phosphide yolk-shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting
  publication-title: Nanoscale
– volume: 12
  start-page: 67
  year: 2020
  end-page: 71
  ident: b0640
  article-title: Bimetal-organic framework MIL-53(Co-Fe): An efficient and robust electrocatalyst for the oxygen evolution reaction
  publication-title: Nanoscale
– volume: 446
  year: 2021
  ident: b0860
  article-title: Molecular-MN
  publication-title: Coord. Chem. Rev.
– volume: 26
  start-page: 6886
  year: 2014
  end-page: 6895
  ident: b0995
  article-title: Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74
  publication-title: Chem. Mater.
– volume: 11
  start-page: 1
  year: 2020
  end-page: 10
  ident: b1115
  article-title: Selective electroreduction of CO
  publication-title: Nat. Commun.
– volume: 60
  start-page: 9700
  year: 2021
  end-page: 9708
  ident: b0175
  article-title: Third-order nonlinear optical behavior of an amide-tricarboxylate zinc(II) metal–organic framework with two-fold 3D+3D interpenetration
  publication-title: Inorg. Chem.
– volume: 57
  start-page: 1540
  year: 2021
  end-page: 1542
  ident: b0350
  article-title: Introduction to (photo)electrocatalysis for renewable energy
  publication-title: Chem. Commun.
– volume: 8
  start-page: 18366
  year: 2020
  end-page: 18376
  ident: b0575
  article-title: Hierarchical Ti-based MOF with embedded RuO
  publication-title: ACS Sustainable Chem. Eng.
– volume: 8
  start-page: 13415
  year: 2020
  end-page: 13436
  ident: b0095
  article-title: Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting
  publication-title: J. Mater. Chem. A
– volume: 2
  year: 2020
  ident: b1140
  article-title: MOF-based materials for photo-and electrocatalytic CO
  publication-title: Energy Chem.
– volume: 376
  start-page: 292
  year: 2018
  end-page: 318
  ident: b0125
  article-title: Metal-organic frameworks for direct electrochemical applications
  publication-title: Coord. Chem. Rev.
– volume: 266
  year: 2020
  ident: b1205
  article-title: Preparation of heterometallic CoNi-MOFs-modified BiVO
  publication-title: Appl. Catal., B
– volume: 55
  start-page: 1076
  year: 2016
  end-page: 1088
  ident: b0495
  article-title: Enhancement of CO
  publication-title: Inorg. Chem.
– volume: 30
  start-page: 1704303
  year: 2018
  ident: b0465
  article-title: Stable metal-organic frameworks: design, synthesis, and applications
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1700544
  year: 2017
  ident: b0830
  article-title: Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: Recent advances and perspectives
  publication-title: Adv. Energy Mater.
– volume: 23
  start-page: 5363
  year: 2013
  end-page: 5372
  ident: b1000
  article-title: A Graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR
  publication-title: Adv. Funct. Mater.
– volume: 132
  start-page: 18391
  year: 2020
  end-page: 18396
  ident: b0685
  article-title: NiMn-based bimetal–organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 2540
  year: 2021
  end-page: 2581
  ident: b0015
  article-title: Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide
  publication-title: Chem. Soc. Rev.
– volume: 865
  year: 2021
  ident: b0720
  article-title: Tuning the morphology and electron structure of metal-organic framework-74 as bifunctional electrocatalyst for OER and HER using bimetallic collaboration strategy
  publication-title: J. Alloys Compd.
– volume: 142
  start-page: 1933
  year: 2020
  end-page: 1940
  ident: b0580
  article-title: Active-site modulation in an Fe-porphyrin-based metal–organic framework through ligand axial coordination: accelerating electrocatalysis and charge-transport kinetics
  publication-title: J. Am. Chem. Soc.
– volume: 216
  start-page: 174
  year: 2019
  end-page: 190
  ident: b0920
  article-title: Light harvesting and energy transfer in a porphyrin-based metal organic framework
  publication-title: Faraday Discuss.
– volume: 3
  start-page: 3074
  year: 2015
  end-page: 3081
  ident: b1250
  article-title: Solvothermal synthesis of MIL–53 (Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light
  publication-title: J. Mater. Chem. A
– volume: 53
  start-page: 6496
  year: 2017
  end-page: 6499
  ident: b0530
  article-title: Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework
  publication-title: Chem. Commun.
– volume: 140
  start-page: 14161
  year: 2018
  end-page: 14168
  ident: b1180
  article-title: Metal-free single atom catalyst for N
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 1555
  year: 2016
  end-page: 1562
  ident: b1045
  article-title: Preparation and applications of novel composites composed of metal–organic frameworks and two-dimensional materials
  publication-title: Chem. Commun.
– volume: 13
  start-page: 374
  year: 2020
  end-page: 403
  ident: b0150
  article-title: Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts
  publication-title: Energy Environ. Sci.
– volume: 58
  start-page: 15188
  year: 2019
  end-page: 15205
  ident: b0260
  article-title: Mixed-metal MOFs: Unique opportunities in metal–organic framework (MOF) functionality and design
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 1414
  year: 2020
  end-page: 1448
  ident: b0265
  article-title: MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions
  publication-title: Chem. Soc. Rev.
– volume: 57
  start-page: 8921
  year: 2018
  end-page: 8926
  ident: b0545
  article-title: Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 2149
  year: 2020
  end-page: 2158
  ident: b0390
  article-title: Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction
  publication-title: ACS Cent. Sci.
– volume: 8
  start-page: 2081
  year: 2018
  end-page: 2092
  ident: b0440
  article-title: Activity and stability of Pt/IrO
  publication-title: ACS Catal.
– volume: 60
  start-page: 12097
  year: 2021
  end-page: 12102
  ident: b0645
  article-title: Facile synthesis of two-dimensional iron/cobalt metal–organic framework for efficient oxygen evolution electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 225
  start-page: 563
  year: 2018
  end-page: 573
  ident: b1225
  article-title: MOFs based on ZIF-8 deposited on TiO
  publication-title: Appl. Catal. B
– volume: 439
  year: 2021
  ident: b0165
  article-title: Recent advances in the development of electronically and ionically conductive metal-organic frameworks
  publication-title: Coord. Chem. Rev.
– volume: 11
  start-page: 5464
  year: 2020
  ident: b0845
  article-title: Electro-reduction of carbon dioxide at low over-potential at a metal–organic framework decorated cathode
  publication-title: Nat. Commun.
– volume: 111
  start-page: 641
  year: 2017
  end-page: 650
  ident: b0935
  article-title: A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries
  publication-title: Carbon
– volume: 304
  year: 2021
  ident: b0870
  article-title: MNC-based single-atom catalysts for H
  publication-title: Fuel
– volume: 8
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0705
  article-title: In Situ Grown Bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 14510
  year: 2016
  end-page: 14521
  ident: b0825
  article-title: Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 125
  start-page: 9200
  year: 2021
  end-page: 9209
  ident: b0375
  article-title: Fine-tuning the metal oxo cluster composition and phase structure of Ni/Ti bimetallic MOFs for efficient CO
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 366
  year: 2005
  end-page: 377
  ident: b0420
  article-title: Nanostructured materials for advanced energy conversion and storage devices
  publication-title: Nat. Mater.
– volume: 15
  start-page: 1
  year: 2019
  end-page: 9
  ident: b0740
  article-title: Synthesis of bimetallic conductive 2D metal–organic framework (Co
  publication-title: Small
– volume: 5
  start-page: 9269
  year: 2012
  end-page: 9290
  ident: b0450
  article-title: Metal organic frameworks for electrochemical applications
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 5238
  year: 2016
  end-page: 5261
  ident: b0500
  article-title: Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts, Catal
  publication-title: Sci. Technol.
– volume: 422
  year: 2020
  ident: b0895
  article-title: Transition metal macrocycles for heterogeneous electrochemical CO
  publication-title: Coord. Chem. Rev.
– volume: 13
  start-page: 1090
  year: 2020
  end-page: 1099
  ident: b0885
  article-title: Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery
  publication-title: Nano Res.
– volume: 8
  start-page: 6898
  year: 2020
  end-page: 6904
  ident: b0770
  article-title: Co-Ni nanoalloy-organic framework electrocatalysts with ultrahigh electron transfer kinetics for efficient oxygen reduction
  publication-title: ACS Sustain. Chem. Eng.
– volume: 138
  start-page: 1359
  year: 2016
  end-page: 1365
  ident: b0595
  article-title: Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution
  publication-title: J. Am. Chem. Soc.
– volume: 250
  start-page: 2194
  year: 2006
  end-page: 2211
  ident: b0470
  article-title: Magnetic interactions in one-, two-, and three-dimensional assemblies of dinuclear ruthenium carboxylates
  publication-title: Coord. Chem. Rev.
– volume: 46
  start-page: 1858
  year: 2013
  end-page: 1866
  ident: b0430
  article-title: Particle size and support effects in electrocatalysis
  publication-title: Acc. Chem. Res.
– volume: 143
  start-page: 4064
  year: 2021
  end-page: 4073
  ident: b0745
  article-title: Co-Cu bimetallic metal organic framework catalyst outperforms the Pt/C benchmark for oxygen reduction
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 16179
  year: 2014
  end-page: 16186
  ident: b0990
  article-title: Preparation, characterization and bifunctional catalytic properties of MOF (Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte
  publication-title: Int. J. Hydrogen Energy
– volume: 136
  start-page: 13925
  year: 2014
  end-page: 13931
  ident: b1010
  article-title: Metal–organic framework derived hybrid Co
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 1802596
  year: 2018
  ident: b0305
  article-title: Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and Zinc-Air batteries
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 1500265
  year: 2016
  ident: b0310
  article-title: Metal–organic-framework-derived dual metal- and nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells
  publication-title: Adv. Sci.
– volume: 12
  start-page: 632
  year: 2010
  end-page: 635
  ident: b0975
  article-title: Electrocatalytic activity of BasoliteTM F300 metal-organic-framework structures
  publication-title: Electrochem. Commun.
– volume: 50
  start-page: 915
  year: 2017
  end-page: 923
  ident: b0045
  article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes
  publication-title: Acc. Chem. Res.
– volume: 125
  start-page: 7365
  year: 2013
  end-page: 7368
  ident: b1235
  article-title: Sustained water oxidation by a catalyst cage-isolated in a metal–organic framework
  publication-title: Angew. Chem. Int. Ed.
– volume: 28
  start-page: 1704158
  year: 2018
  ident: b0130
  article-title: History of organic–inorganic hybrid materials: Prehistory, art, science, and advanced applications
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 2520
  year: 2018
  end-page: 2526
  ident: b0630
  article-title: Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution Rreaction
  publication-title: ACS Energy Lett.
– volume: 43
  start-page: 631
  year: 2014
  end-page: 675
  ident: b1200
  article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
  publication-title: Chem. Soc. Rev.
– volume: 110
  start-page: 4606
  year: 2010
  end-page: 4655
  ident: b0445
  article-title: Engineering metal organic frameworks for heterogeneous catalysis
  publication-title: Chem. Rev.
– volume: 40
  start-page: 9713
  year: 2015
  end-page: 9722
  ident: b1005
  article-title: A Co/metal–organic-framework bifunctional electrocatalyst: the effect of the surface cobalt oxidation state on oxygen evolution/reduction reactions in an alkaline electrolyte
  publication-title: Int. J. Hydrogen Energy
– volume: 27
  start-page: 7636
  year: 2015
  end-page: 7642
  ident: b1015
  article-title: High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks
  publication-title: Chem. Mater.
– volume: 8
  start-page: 19729
  year: 2020
  end-page: 19745
  ident: b0080
  article-title: Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects
  publication-title: J. Mater. Chem. A
– volume: 555
  start-page: 541
  year: 2019
  end-page: 547
  ident: b0660
  article-title: Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 1616
  year: 2019
  end-page: 1628
  ident: b0555
  article-title: From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts
  publication-title: J. Mater. Chem. A
– volume: 2
  year: 2020
  ident: b0020
  article-title: MOF-based materials for photo- and electrocatalytic CO
  publication-title: EnergyChem.
– volume: 376
  start-page: 430
  year: 2018
  end-page: 448
  ident: b0025
  article-title: Metal-organic frameworks and their derivatives as bifunctional electrocatalysts
  publication-title: Coord. Chem. Rev.
– volume: 255
  start-page: 2704
  year: 2011
  end-page: 2726
  ident: b0815
  article-title: A computational approach to the electronic and optical properties of Ru(II) and Ir(III) polypyridyl complexes: Applications to DSC, OLED and NLO
  publication-title: Coord. Chem. Rev.
– volume: 127
  year: 2021
  ident: b0875
  article-title: Substituent effect on catalytic activity of Co phthalocyanines for oxygen reduction reactions
  publication-title: Inorg. Chem. Commun.
– volume: 5
  start-page: 90265
  year: 2015
  end-page: 90271
  ident: b1075
  article-title: MOF-derived nanostructured cobalt phosphide assemblies for efficient hydrogen evolution reaction
  publication-title: RSC Adv.
– volume: 29
  start-page: 1806419
  year: 2018
  ident: b0300
  article-title: Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis
  publication-title: Adv. Funct. Mater.
– volume: 131
  start-page: 4727
  year: 2019
  end-page: 4732
  ident: b1035
  article-title: CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 2001561
  year: 2020
  ident: b0855
  article-title: Recent advances in MOF-derived single atom catalysts for electrochemical applications
  publication-title: Adv. Energy Mater.
– volume: 137
  start-page: 118
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b1065
  article-title: Two-dimensional metal–organic surfaces for efficient hydrogen evolution from water
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5116937
– volume: 7
  start-page: 4822
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b1105
  article-title: Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b00687
– volume: 30
  start-page: 1702891
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0535
  article-title: Pristine metal–organic frameworks and their composites for energy storage and conversion
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702891
– volume: 23
  start-page: 5363
  year: 2013
  ident: 10.1016/j.ccr.2021.214264_b1000
  article-title: A Graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201300510
– volume: 7
  start-page: 1616
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0555
  article-title: From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08508K
– volume: 111
  start-page: 641
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0935
  article-title: A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.10.046
– volume: 58
  start-page: 4227
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0610
  article-title: Stable hierarchical bimetal–organic nanostructures as high Performance electrocatalysts for the oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201813634
– volume: 15
  start-page: 1811
  year: 2011
  ident: 10.1016/j.ccr.2021.214264_b0820
  article-title: Free energy relationships in electrochemistry: a history that started in 1935
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-011-1394-8
– volume: 266
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b1205
  article-title: Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118513
– ident: 10.1016/j.ccr.2021.214264_b1220
  doi: 10.1016/j.jcou.2020.101299
– volume: 11
  start-page: 5369
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0280
  article-title: Bimetallic metal–organic frameworks and their derivatives
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC01432J
– volume: 11
  start-page: 2710
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b1240
  article-title: A cobalt-based metal–organic framework as cocatalyst on BiVO4 photoanode for enhanced photoelectrochemical water oxidation
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201801162
– volume: 9
  start-page: 33539
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0520
  article-title: Study of electrocatalytic properties of metal–organic framework PCN-223 for the oxygen reduction reaction
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01547
– ident: 10.1016/j.ccr.2021.214264_b0030
  doi: 10.1126/science.aad4998
– volume: 225
  start-page: 563
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b1225
  article-title: MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.12.013
– volume: 60
  start-page: 9660
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0205
  article-title: Instantaneous sonophotocatalytic degradation of tetracycline over NU-1000@ZnIn2S4 core–shell nanorods as a robust and eco-friendly catalyst
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c00951
– volume: 9
  start-page: 1826
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0710
  article-title: Bimetal–organic frameworks from in situ-activated NiFe foam for highly efficient water splitting
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c08147
– volume: 26
  start-page: 6886
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b0995
  article-title: Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74
  publication-title: Chem. Mater.
  doi: 10.1021/cm5038183
– volume: 3
  start-page: 17392
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b1020
  article-title: MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03900B
– volume: 2
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b1140
  article-title: MOF-based materials for photo-and electrocatalytic CO2 reduction
  publication-title: Energy Chem.
– volume: 59
  start-page: 15298
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0070
  article-title: Electrocatalysis as the nexus for sustainable renewable energy: The gordian knot of activity, stability, and selectivity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202007672
– volume: 31
  start-page: 1804740
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0110
  article-title: Applications of metal–organic-framework-derived carbon materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804740
– volume: 153
  start-page: 257
  year: 1996
  ident: 10.1016/j.ccr.2021.214264_b1090
  article-title: The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/0010-8545(95)01226-5
– volume: 138
  start-page: 1359
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0595
  article-title: Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11986
– volume: 4
  start-page: 440
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0475
  article-title: Stable metal–organic frameworks with group 4 metals: Current status and trends
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.8b00073
– volume: 25
  start-page: 100
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0765
  article-title: Carbon-based electrocatalyst derived from bimetallic metal-organic framework arrays for high performance oxygen reduction
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.041
– volume: 10
  start-page: 2001561
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0855
  article-title: Recent advances in MOF-derived single atom catalysts for electrochemical applications
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001561
– volume: 57
  start-page: 8525
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0940
  article-title: From metal–organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803262
– volume: 8
  start-page: 13415
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0095
  article-title: Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05038E
– volume: 376
  start-page: 292
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0125
  article-title: Metal-organic frameworks for direct electrochemical applications
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.08.010
– volume: 89
  start-page: 265
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b1150
  article-title: Production and performance of bio-based mineral fertilizers from agricultural waste using ammonia (stripping-) scrubbing technology
  publication-title: Waste Management
  doi: 10.1016/j.wasman.2019.03.043
– volume: 13
  start-page: 14368
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0120
  article-title: Hybrid organic–inorganic gel electrocatalyst for stable acidic water oxidation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07826
– volume: 403
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0850
  article-title: Formation of mesoporous Co/CoS/Metal-NC@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126385
– volume: 50
  start-page: 4720
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0560
  article-title: In situ assembly of bimetallic MOF composites on IF as efficient electrocatalysts for the oxygen evolution reaction
  publication-title: Dalton Trans.
  doi: 10.1039/D0DT04397D
– volume: 255
  start-page: 2704
  year: 2011
  ident: 10.1016/j.ccr.2021.214264_b0815
  article-title: A computational approach to the electronic and optical properties of Ru(II) and Ir(III) polypyridyl complexes: Applications to DSC, OLED and NLO
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2011.03.008
– volume: 4
  start-page: 16818
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0515
  article-title: Cooperative electrochemical water oxidation by Zr nodes and Ni–porphyrin linkers of a PCN-224 MOF thin film
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05877A
– volume: 8
  start-page: 16736
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0650
  article-title: Fe/Ni Metal-organic frameworks and their bnder-free thin films for efficient oxygen evolution with low overpotential
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05375
– volume: 256
  start-page: 2562
  year: 2012
  ident: 10.1016/j.ccr.2021.214264_b1085
  article-title: Advances in molecular photocatalytic and electrocatalytic CO2 reduction
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2012.03.010
– volume: 25
  start-page: 70
  year: 2012
  ident: 10.1016/j.ccr.2021.214264_b1130
  article-title: Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.09.018
– volume: 33
  start-page: 157
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0780
  article-title: Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2019.05.025
– volume: 125
  start-page: 9200
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0375
  article-title: Fine-tuning the metal oxo cluster composition and phase structure of Ni/Ti bimetallic MOFs for efficient CO2 reduction
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c03239
– volume: 865
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0720
  article-title: Tuning the morphology and electron structure of metal-organic framework-74 as bifunctional electrocatalyst for OER and HER using bimetallic collaboration strategy
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.158795
– volume: 43
  start-page: 631
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b1200
  article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60323G
– volume: 40
  start-page: 9713
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b1005
  article-title: A Co/metal–organic-framework bifunctional electrocatalyst: the effect of the surface cobalt oxidation state on oxygen evolution/reduction reactions in an alkaline electrolyte
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.06.027
– volume: 52
  start-page: 1555
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b1045
  article-title: Preparation and applications of novel composites composed of metal–organic frameworks and two-dimensional materials
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC09127F
– volume: 272
  start-page: 32
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0605
  article-title: Bimetallic metal-organic framework nanosheets as efficient electrocatalysts for oxygen evolution reaction
  publication-title: J. Solid State Chem.
  doi: 10.1016/j.jssc.2019.01.023
– volume: 9
  start-page: 357
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0055
  article-title: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE02474A
– volume: 4
  start-page: 1600371
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b1230
  article-title: Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600371
– volume: 117
  start-page: 575
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b1260
  article-title: A competitive photoelectrochemical immunosensor for the detection of diethylstilbestrol based on an Au/UiO-66(NH2)/CdS matrix and a direct Z-scheme Melem/CdTe heterojunction as labels
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.06.050
– volume: 441
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0100
  article-title: Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213954
– volume: 52
  start-page: 777
  year: 2013
  ident: 10.1016/j.ccr.2021.214264_b1055
  article-title: Octamolybdate-based metal–organic framework with unsaturated coordinated metal center as electrocatalyst for generating hydrogen from water
  publication-title: Inorg. Chem.
  doi: 10.1021/ic3018858
– volume: 3
  start-page: 3074
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b1250
  article-title: Solvothermal synthesis of MIL–53 (Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04622F
– volume: 5
  start-page: 9319
  year: 2012
  ident: 10.1016/j.ccr.2021.214264_b0065
  article-title: Stability investigations of electrocatalysts on the nanoscale
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22550f
– volume: 29
  start-page: 1806419
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0300
  article-title: Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201806419
– volume: 57
  start-page: 9660
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0655
  article-title: Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal–organic framework system
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803587
– volume: 132
  start-page: 18391
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0685
  article-title: NiMn-based bimetal–organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202008129
– volume: 60
  start-page: 2056
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0195
  article-title: Simultaneous presence of open metal sites and amine groups on a 3D Dy(III)-metal–organic framework catalyst for mild and solvent-free conversion of CO2 to cyclic carbonates
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c03634
– volume: 6
  start-page: 8069
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0085
  article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: A review
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02479
– volume: 6
  start-page: 2149
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0390
  article-title: Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c01150
– volume: 446
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0860
  article-title: Molecular-MN4 vs atomically dispersed M−N4−C electrocatalysts for oxygen reduction reaction
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.214122
– volume: 9
  start-page: 2427
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0455
  article-title: Metal–organic frameworks toward electrocatalytic applications
  publication-title: Appl. Sci.
  doi: 10.3390/app9122427
– volume: 3
  start-page: 20056
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b0730
  article-title: Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04723D
– volume: 5
  start-page: 7068
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b0750
  article-title: Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b02325
– volume: 50
  start-page: 915
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0045
  article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00635
– volume: 53
  start-page: 6496
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0530
  article-title: Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC02113E
– volume: 8
  start-page: 3658
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b1210
  article-title: Bimetal–MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13473E
– volume: 430
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0270
  article-title: Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213660
– volume: 372
  start-page: 77
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0340
  article-title: Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.12.015
– volume: 10
  start-page: 9634
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0945
  article-title: Metal organic frameworks as a catalyst for oxygen reduction: an unexpected outcome of a highly active Mn-MOF-based catalyst incorporated in activated carbon
  publication-title: Nanoscale
  doi: 10.1039/C7NR09081A
– volume: 6
  start-page: 5238
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0500
  article-title: Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts, Catal
  publication-title: Sci. Technol.
– volume: 141
  start-page: 17081
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b1135
  article-title: Three-dimensional phthalocyanine metal-catecholates for high electrochemical carbon dioxide reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09298
– volume: 120
  start-page: 8536
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0250
  article-title: Electrically conductive metal–organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00766
– volume: 46
  start-page: 1858
  year: 2013
  ident: 10.1016/j.ccr.2021.214264_b0430
  article-title: Particle size and support effects in electrocatalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400001n
– volume: 3
  start-page: 1500265
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0310
  article-title: Metal–organic-framework-derived dual metal- and nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500265
– volume: 119
  start-page: 62
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b1040
  article-title: Palladium deposition on copper (II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.11.084
– volume: 8
  start-page: 22974
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0715
  article-title: Hierarchical 2D yarn-ball like metal-organic framework NiFe(dobpdc) as bifunctional electrocatalyst for efficient overall electrocatalytic water splitting
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA08094B
– volume: 10
  start-page: 1100
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b1125
  article-title: Copper-based metal–Organic porous materials for CO2 electrocatalytic reduction to alcohols
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600693
– volume: 2
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0020
  article-title: MOF-based materials for photo- and electrocatalytic CO2 reduction
  publication-title: EnergyChem.
– volume: 402
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0890
  article-title: The chemistry, recent advancements and activity descriptors for macrocycles based electrocatalysts in oxygen reduction reaction
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.213047
– volume: 11
  start-page: 18715
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0140
  article-title: Intentional construction of high-performance SnO2 catalysts with a 3D porous structure for electrochemical reduction of CO2
  publication-title: Nanoscale
  doi: 10.1039/C9NR06354D
– volume: 8
  start-page: 2081
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0440
  article-title: Activity and stability of Pt/IrO2 bifunctional materials as catalysts for the oxygen evolution/reduction reactions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03429
– volume: 4
  start-page: 285
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0680
  article-title: Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b02345
– volume: 45
  start-page: 5107
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0460
  article-title: Applications of water stable metal-organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00362A
– volume: 13
  start-page: 485
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0255
  article-title: Recent development and applications of electrical conductive MOFs
  publication-title: Nanoscale
  doi: 10.1039/D0NR06396G
– volume: 52
  start-page: 356
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0930
  article-title: Metal–organic frameworks for photocatalysis and photothermal catalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00521
– volume: 137
  start-page: 7169
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b1060
  article-title: Ultrastable polymolybdate-based metal–organic frameworks as highly active electrocatalysts for hydrogen generation from water
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b02688
– volume: 27
  start-page: 7636
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b1015
  article-title: High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02877
– volume: 5
  start-page: 6744
  year: 2012
  ident: 10.1016/j.ccr.2021.214264_b0415
  article-title: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03590a
– volume: 139
  start-page: 13476
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0485
  article-title: Boosting chemical stability, catalytic activity, and enantioselectivity of metal-organic frameworks for batch and flow reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06459
– volume: 43
  start-page: 5257
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b1025
  article-title: Recent advances in zinc–air batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00015C
– volume: 9
  start-page: 2824
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b1245
  article-title: Fe/W Co-doped BiVO4 photoanodes with a metal–organic framework cocatalyst for improved photoelectrochemical stability and activity
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600761
– volume: 283
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0210
  article-title: PMo12@UiO-67 nanocomposite as a novel non-leaching catalyst with enhanced performance durability for sulfur removal from liquid fuels with exceptionally diluted oxidant
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119582
– volume: 425
  start-page: 1089
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0795
  article-title: Band gap tuning in Si-SiO2 nanocomposite: Interplay of confinement effect and surface/interface bonding
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.133
– volume: 304
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0870
  article-title: MNC-based single-atom catalysts for H2, O2 & CO2 electrocatalysis: activity descriptors, active sites identification, challenges and prospects
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121420
– volume: 376
  start-page: 430
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0025
  article-title: Metal-organic frameworks and their derivatives as bifunctional electrocatalysts
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2018.07.020
– volume: 9
  start-page: 11001
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0180
  article-title: High specific capacitance of a 3D-metal–organic framework-confined growth in CoMn2O4 nanostars as advanced supercapacitor electrode materials
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA00900A
– volume: 142
  start-page: 1933
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0580
  article-title: Active-site modulation in an Fe-porphyrin-based metal–organic framework through ligand axial coordination: accelerating electrocatalysis and charge-transport kinetics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11355
– volume: 5
  start-page: 846
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b1100
  article-title: Volcano plots in hydrogen electrocatalysis – uses and abuses
  publication-title: Beilstein J. nanotechnol.
  doi: 10.3762/bjnano.5.96
– volume: 60
  start-page: 9700
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0175
  article-title: Third-order nonlinear optical behavior of an amide-tricarboxylate zinc(II) metal–organic framework with two-fold 3D+3D interpenetration
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c00997
– volume: 8
  start-page: 18366
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0575
  article-title: Hierarchical Ti-based MOF with embedded RuO2 nanoparticles: a highly efficient photoelectrode for visible light water oxidation
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c04682
– volume: 54
  start-page: 11048
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0590
  article-title: Nano-flocks of a bimetallic organic framework for efficient hydrogen evolution electrocatalysis
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC06918B
– volume: 2
  start-page: 2073
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0615
  article-title: A NiCo-MOF nanosheet array based electrocatalyst for the oxygen evolution reaction
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00112K
– volume: 7
  start-page: 1
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0760
  article-title: Bimetallic metal-organic framework derived metal-carbon hybrid for efficient reversible oxygen electrocatalysis
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00747
– volume: 3
  start-page: 1500243
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0395
  article-title: Metal–organic frameworks as promising photosensitizers for photoelectrochemical water splitting
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500243
– volume: 2
  start-page: 1
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0810
  article-title: Identification of dopant site and its effect on electrochemical activity in Mn-doped lithium titanate
  publication-title: Phys. Rev. Mater.
– volume: 431
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0880
  article-title: Recent development on metal phthalocyanines based materials for energy conversion and storage applications
  publication-title: Coord. Chem. Rev.
– volume: 13
  start-page: 1090
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0885
  article-title: Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2751-7
– volume: 7
  start-page: 18004
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b1070
  article-title: 3D architecture constructed via the confined growth of MoS2 nanosheets in nanoporous carbon derived from metal–organic frameworks for efficient hydrogen production
  publication-title: Nanoscale
  doi: 10.1039/C5NR03810C
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0785
  article-title: Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks
  publication-title: Nat. Commun.
– volume: 55
  start-page: 14510
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0825
  article-title: Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604311
– volume: 12
  start-page: 21479
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0060
  article-title: Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction
  publication-title: Nanoscale
  doi: 10.1039/D0NR05072E
– volume: 5
  start-page: 23744
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0295
  article-title: Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA07464F
– volume: 56
  start-page: 6652
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0050
  article-title: Enhanced electrochemical oxygen and hydrogen evolution reactions using an NU-1000@NiMn-LDHS composite electrode in alkaline electrolyte
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC01146K
– volume: 216
  start-page: 174
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0920
  article-title: Light harvesting and energy transfer in a porphyrin-based metal organic framework
  publication-title: Faraday Discuss.
  doi: 10.1039/C8FD00194D
– volume: 49
  start-page: 1414
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0265
  article-title: MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00906J
– volume: 7
  start-page: 1700544
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0830
  article-title: Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: Recent advances and perspectives
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700544
– volume: 139
  start-page: 1778
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0625
  article-title: Modular and stepwise synthesis of a hybrid metal–organic framework for efficient electrocatalytic oxygen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12353
– volume: 60
  start-page: 12097
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0645
  article-title: Facile synthesis of two-dimensional iron/cobalt metal–organic framework for efficient oxygen evolution electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202102632
– volume: 30
  start-page: 1704303
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0465
  article-title: Stable metal-organic frameworks: design, synthesis, and applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704303
– volume: 138
  start-page: 3623
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0620
  article-title: Driving the oxygen evolution reaction by nonlinear cooperativity in bimetallic coordination catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10484
– volume: 38
  start-page: 1450
  year: 2009
  ident: 10.1016/j.ccr.2021.214264_b0490
  article-title: Metal−organic framework materials as catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807080f
– volume: 5
  start-page: 6302
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b0505
  article-title: Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01767
– volume: 10
  start-page: 5106
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0075
  article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13092-7
– volume: 27
  start-page: 5010
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b0755
  article-title: From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502315
– volume: 55
  start-page: 4087
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0235
  article-title: Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201509382
– volume: 12
  start-page: 5737
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0565
  article-title: Recent progress in metal–organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC00095K
– volume: 349
  start-page: 84
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0010
  article-title: Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.08.010
– volume: 439
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0200
  article-title: MOF-derived hollow structures for advanced electrocatalysis
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213946
– volume: 8
  start-page: 19129
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0735
  article-title: Hierarchical nickel-cobalt phosphide yolk-shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting
  publication-title: Nanoscale
  doi: 10.1039/C6NR07009D
– volume: 59
  start-page: 4914
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0155
  article-title: Molecular evidence for metallic cobalt boosting CO2 electroreduction on pyridinic nitrogen
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201916520
– volume: 2
  start-page: 2100033
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0400
  article-title: Metal–organic frameworks for photo/electrocatalysis
  publication-title: Adv. Energy Sustainability Res.
  doi: 10.1002/aesr.202100033
– volume: 42
  start-page: 1404
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0865
  article-title: Redox chemistry of N4-Fe2+ in iron phthalocyanines for oxygen reduction reaction
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63731-7
– volume: 3
  start-page: 1800337
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b1145
  article-title: Advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge
  publication-title: Small Methods
  doi: 10.1002/smtd.201800337
– volume: 1
  start-page: 1
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0600
  article-title: Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution
  publication-title: Nat. Energy.
  doi: 10.1038/nenergy.2016.184
– volume: 131
  start-page: 10787
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0905
  article-title: A Phthalocyanine-based layered two-dimensional conjugated metal–organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201907002
– volume: 5
  start-page: 1800064
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0090
  article-title: Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201800064
– volume: 55
  start-page: 1076
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0495
  article-title: Enhancement of CO2 adsorption and catalytic properties by Fe-doping of [Ga2(OH)2(L)] (H4L = biphenyl-3,3′,5,5′-tetracarboxylic Acid), MFM-300(Ga2)
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b02108
– volume: 12
  start-page: 5764
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0355
  article-title: Bridge engineering in photocatalysis and photoelectrocatalysis
  publication-title: Nanoscale
  doi: 10.1039/C9NR10511E
– volume: 422
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0225
  article-title: MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213483
– volume: 2
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0185
  article-title: Metal–organic frameworks as a platform for clean energy applications
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2020.100027
– ident: 10.1016/j.ccr.2021.214264_b0410
  doi: 10.1002/aenm.202003970
– volume: 136
  start-page: 273
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b0695
  article-title: A biomimetic copper water oxidation catalyst with low overpotential
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409267p
– volume: 142
  start-page: 15386
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0910
  article-title: A porphyrinic zirconium metal–organic framework for oxygen reduction reaction: Tailoring the spacing between active-sites through chain-based inorganic building units
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c06329
– volume: 50
  start-page: 2540
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0015
  article-title: Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01482F
– volume: 14
  start-page: 1897
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0385
  article-title: Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03697H
– volume: 127
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0875
  article-title: Substituent effect on catalytic activity of Co phthalocyanines for oxygen reduction reactions
  publication-title: Inorg. Chem. Commun.
  doi: 10.1016/j.inoche.2021.108518
– volume: 27
  start-page: 1702324
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0240
  article-title: Self-templated fabrication of CoO–MoO2 nanocages for enhanced oxygen evolution
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702324
– volume: 7
  start-page: 2071
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b0275
  article-title: Qiang Xu, Functional materials derived from open framework templates/precursors: synthesis and applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c4ee00517a
– volume: 89
  start-page: 2369
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b1255
  article-title: Enhanced photoelectrochemical method for sensitive detection of protein kinase A activity using TiO2/g-C3N4, PAMAM dendrimer, and alkaline phosphatase
  publication-title: J. Anal. Chem.
  doi: 10.1021/acs.analchem.6b04184
– ident: 10.1016/j.ccr.2021.214264_b1170
  doi: 10.1039/C9TA02926E
– volume: 5
  start-page: 6113
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0290
  article-title: Bimetallic metal–organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00339K
– volume: 44
  start-page: 21597
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b1215
  article-title: Enhanced photoelectrochemical hydrogenation of green-house gas CO2 to high-order solar fuel on coordinatively unsaturated metal-N sites containing carbonized Zn/Co ZIFs
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.06.102
– volume: 7
  start-page: 9743
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0665
  article-title: Highly conductive bimetallic Ni-Fe metal organic framework as a novel electrocatalyst for water oxidation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b01131
– volume: 28
  start-page: 1802596
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0305
  article-title: Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and Zinc-Air batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802596
– volume: 422
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0895
  article-title: Transition metal macrocycles for heterogeneous electrochemical CO2 reduction
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213435
– volume: 4
  start-page: 2390
  year: 2013
  ident: 10.1016/j.ccr.2021.214264_b0105
  article-title: Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3390
– volume: 373
  start-page: 22
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0405
  article-title: Metal–organic frameworks for electrocatalysis
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.09.001
– volume: 117
  start-page: 9187
  year: 2013
  ident: 10.1016/j.ccr.2021.214264_b1095
  article-title: Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp306172k
– volume: 428
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0230
  article-title: Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213619
– ident: 10.1016/j.ccr.2021.214264_b0775
  doi: 10.1039/D1TA01224J
– volume: 32
  start-page: 8450
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0370
  article-title: Improving charge transfer in metal–organic frameworks through open site functionalization and porosity selection for Li–S batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c02438
– volume: 12
  start-page: 632
  year: 2010
  ident: 10.1016/j.ccr.2021.214264_b0975
  article-title: Electrocatalytic activity of BasoliteTM F300 metal-organic-framework structures
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2010.02.017
– ident: 10.1016/j.ccr.2021.214264_b0005
  doi: 10.1039/C6CS00328A
– volume: 2
  start-page: 86
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0570
  article-title: Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices, commun
  publication-title: Chem.
– volume: 20
  start-page: 1166
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0965
  article-title: Polymeric phthalocyanine sheets as electrocatalytic electrodes for water-oxidation
  publication-title: J. Porphyrins Phthalocyanines
  doi: 10.1142/S1088424616500826
– volume: 329
  start-page: 1053
  year: 2010
  ident: 10.1016/j.ccr.2021.214264_b0215
  article-title: An adaptable peptide-based porous material
  publication-title: Science
  doi: 10.1126/science.1190672
– volume: 410
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b1030
  article-title: Recent progress on metalloporphyrin-based hydrogen evolution catalysis
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213234
– volume: 4
  start-page: 1967
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0675
  article-title: Tailoring electronegativity of bimetallic Ni/Fe metal-organic framework nanosheets for electrocatalytic water oxidation
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c03310
– volume: 1
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0170
  article-title: Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities
  publication-title: EnergyChem
– volume: 7
  start-page: 69
  year: 2002
  ident: 10.1016/j.ccr.2021.214264_b1155
  article-title: Haber process for ammonia synthesis
  publication-title: Resonance
  doi: 10.1007/BF02836187
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b1050
  article-title: A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9304
– volume: 35
  start-page: 185
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b0985
  article-title: Preparation of MOF (Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(12)60729-3
– volume: 254
  start-page: 2755
  year: 2010
  ident: 10.1016/j.ccr.2021.214264_b0840
  article-title: Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2010.05.001
– volume: 135
  start-page: 1926
  year: 2013
  ident: 10.1016/j.ccr.2021.214264_b1265
  article-title: Semiconductor@metal–organic framework core–shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja311085e
– volume: 8
  start-page: 1033
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0550
  article-title: Direct carbonization of cobalt-doped NH2-MIL-53(Fe) for electrocatalysis of oxygen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C5NR06626C
– volume: 19
  start-page: 266
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0145
  article-title: Molecular enhancement of heterogeneous CO2 reduction
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0610-2
– volume: 11
  start-page: 5464
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0845
  article-title: Electro-reduction of carbon dioxide at low over-potential at a metal–organic framework decorated cathode
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19236-4
– volume: 39
  start-page: 815
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0900
  article-title: Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery
  publication-title: Rare Met.
  doi: 10.1007/s12598-020-01440-2
– volume: 5
  start-page: 521
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0960
  article-title: A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C7QI00780A
– volume: 13
  start-page: 374
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0150
  article-title: Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03660A
– volume: 140
  start-page: 14161
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b1180
  article-title: Metal-free single atom catalyst for N2 fixation driven by visible light
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07472
– volume: 141
  start-page: 9664
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b1185
  article-title: Qiao, Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03811
– volume: 50
  start-page: 2663
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0380
  article-title: Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01191F
– volume: 24
  start-page: 18137
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b1195
  article-title: Metal–organic frameworks and their derived materials as electrocatalysts and photocatalysts for CO2 reduction: Progress, challenges, and perspectives
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201803083
– volume: 30
  start-page: 1802091
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0425
  article-title: Surface Engineering of nanostructured energy materials
  publication-title: Adv Mater.
  doi: 10.1002/adma.201802091
– ident: 10.1016/j.ccr.2021.214264_b1190
  doi: 10.1002/chem.201902203
– volume: 2
  start-page: 2628
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0330
  article-title: The function of metal–organic frameworks in the application of MOF-based composites
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00184H
– volume: 29
  start-page: 1701463
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0585
  article-title: Optochemically responsive 2D nanosheets of a 3D metal–organic framework material
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701463
– volume: 1
  start-page: H17
  year: 2012
  ident: 10.1016/j.ccr.2021.214264_b1120
  article-title: Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework
  publication-title: ECS Electrochem. Lett.
  doi: 10.1149/2.001204eel
– volume: 50
  start-page: 4280
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0670
  article-title: Ruthenium-doped NiFe-based metal-organic framework nanoparticles as highly efficient catalysts for the oxygen evolution reaction
  publication-title: Dalton. Trans.
  doi: 10.1039/D0DT04133E
– volume: 45
  start-page: 2396
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0835
  article-title: Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00665A
– volume: 8
  start-page: 14863
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0360
  article-title: Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04977H
– volume: 31
  start-page: 2010052
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b1160
  article-title: The role of defects in metal–organic frameworks for nitrogen reduction reaction: when defects switch to features
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010052
– volume: 435
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0190
  article-title: Control of interpenetration and structural transformations in the interpenetrated MOFs
  publication-title: Coord. Chem. Rev.
– volume: 8
  start-page: 1
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0705
  article-title: In Situ Grown Bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities
  publication-title: Adv. Energy Mater.
– volume: 2
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b1165
  article-title: Two-dimensional metal-organic frameworks for energy-related electrocatalytic applications
  publication-title: J. Phys. Energy
  doi: 10.1088/2515-7655/ab6429
– volume: 46
  start-page: 1900
  year: 2013
  ident: 10.1016/j.ccr.2021.214264_b0345
  article-title: Roles of cocatalysts in photocatalysis and photoelectrocatalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300227e
– volume: 6
  start-page: 9930
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b0980
  article-title: Water oxidation electrocatalysis by a zeolitic imidazolate framework
  publication-title: Nanoscale
  doi: 10.1039/C4NR02399D
– volume: 578
  start-page: 10
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0700
  article-title: Efficient multifunctional electrocatalyst based on 2D semiconductive bimetallic metal-organic framework toward non-Pt methanol oxidation and overall water splitting
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.05.098
– volume: 11
  start-page: 2003291
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0245
  article-title: Modulating metal–organic frameworks as advanced oxygen electrocatalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003291
– volume: 57
  start-page: 8921
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0545
  article-title: Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803136
– volume: 11
  start-page: 1
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b1115
  article-title: Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon
  publication-title: Nat. Commun.
– volume: 101
  start-page: 54302
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0800
  article-title: Origin of the anomalous Pb-Br bond dynamics in formamidinium lead bromide perovskites
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.054302
– volume: 28
  start-page: 1704158
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0130
  article-title: History of organic–inorganic hybrid materials: Prehistory, art, science, and advanced applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704158
– volume: 1
  start-page: 4662
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0510
  article-title: Electrochemical reduction of CO2 to CO by a heterogeneous catalyst of Fe–porphyrin-based metal–organic framework
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00797
– volume: 133
  start-page: 14431
  year: 2011
  ident: 10.1016/j.ccr.2021.214264_b0690
  article-title: Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja205647m
– volume: 393
  start-page: 48
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0335
  article-title: Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.05.006
– volume: 49
  start-page: 6364
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0220
  article-title: Functional metal–organic frameworks as effective sensors of gases and volatile compounds
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00778D
– volume: 555
  start-page: 541
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0660
  article-title: Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.08.005
– volume: 8
  start-page: 15341
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0315
  article-title: Ultrathin metal-organic framework array for efficient electrocatalytic water splitting
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15341
– volume: 43
  start-page: 5468
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b0325
  article-title: Metal–organic framework composites
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60472A
– volume: 3
  start-page: 2520
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0630
  article-title: Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution Rreaction
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b01540
– volume: 58
  start-page: 13828
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0160
  article-title: Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907674
– volume: 7
  start-page: 16629
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0635
  article-title: From low-to high-crystallinity bimetal-organic framework nanosheet with highly exposed boundaries: An efficient and stable electrocatalyst for oxygen evolution reaction
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03952
– volume: 8
  start-page: 1404
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b0040
  article-title: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03869J
– volume: 8
  start-page: 7451
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b0540
  article-title: Supercapacitors of nanocrystalline metal–organic frameworks
  publication-title: ACS Nano
  doi: 10.1021/nn5027092
– volume: 10
  start-page: 1
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0970
  article-title: Missing-linker metal-organic frameworks for oxygen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13051-2
– volume: 8
  start-page: 6898
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0770
  article-title: Co-Ni nanoalloy-organic framework electrocatalysts with ultrahigh electron transfer kinetics for efficient oxygen reduction
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c02271
– volume: 17
  start-page: 2788
  year: 2017
  ident: 10.1016/j.ccr.2021.214264_b0950
  article-title: High-performance energy storage and conversion materials derived from a single metal–organic framework/graphene aerogel composite
  publication-title: Nano lett.
  doi: 10.1021/acs.nanolett.6b05004
– volume: 143
  start-page: 4064
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0745
  article-title: Co-Cu bimetallic metal organic framework catalyst outperforms the Pt/C benchmark for oxygen reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c01096
– volume: 250
  start-page: 2194
  year: 2006
  ident: 10.1016/j.ccr.2021.214264_b0470
  article-title: Magnetic interactions in one-, two-, and three-dimensional assemblies of dinuclear ruthenium carboxylates
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2006.01.011
– volume: 418
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0955
  article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213374
– volume: 47
  start-page: 457
  year: 2016
  ident: 10.1016/j.ccr.2021.214264_b0790
  article-title: Correlation of size and oxygen bonding at the interface of Si nanocrystal in Si-SiO2 nanocomposite: A Raman mapping study
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4832
– volume: 110
  start-page: 4606
  year: 2010
  ident: 10.1016/j.ccr.2021.214264_b0445
  article-title: Engineering metal organic frameworks for heterogeneous catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr9003924
– volume: 256
  start-page: 2571
  year: 2012
  ident: 10.1016/j.ccr.2021.214264_b1110
  article-title: Electrocatalytic pathways towards sustainable fuel production from water and CO2
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2012.05.002
– volume: 660
  start-page: 11048
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0285
  article-title: Metal-organic framework derived bimetallic materials for electrochemical energy storage
  publication-title: Angew. Chem. Int. Ed.
– volume: 5
  start-page: 431
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0135
  article-title: Organic–inorganic hybrids for CO2 sensing, separation and conversion
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00380K
– volume: 53
  start-page: 9577
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b0435
  article-title: Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201403842
– volume: 7
  start-page: 11911
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0480
  article-title: Toward green production of water-stable metal–organic frameworks based on high-valence metals with low toxicities
  publication-title: ACS Sustainable Chem. Eng.
– start-page: 26238
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0925
  article-title: Ambient fast, large-scale synthesis of entropy-stabilized metal–organic framework nanosheets for electrocatalytic oxygen evolution
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA09975A
– volume: 15
  start-page: 1
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0740
  article-title: Synthesis of bimetallic conductive 2D metal–organic framework (CoxNiy-CAT) and its mass production: enhanced electrochemical oxygen reduction activity
  publication-title: Small
  doi: 10.1002/smll.201805232
– volume: 23
  start-page: 2982
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0365
  article-title: A novel Co-based MOF/Pd composite: synergy of charge-transfer towards the electrocatalytic oxygen evolution reaction
  publication-title: CrystEngComm
  doi: 10.1039/D0CE01747G
– volume: 125
  start-page: 7365
  year: 2013
  ident: 10.1016/j.ccr.2021.214264_b1235
  article-title: Sustained water oxidation by a catalyst cage-isolated in a metal–organic framework
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201301327
– volume: 58
  start-page: 15188
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b0260
  article-title: Mixed-metal MOFs: Unique opportunities in metal–organic framework (MOF) functionality and design
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201902229
– volume: 8
  start-page: 19729
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0080
  article-title: Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA05628F
– volume: 4
  start-page: 366
  year: 2005
  ident: 10.1016/j.ccr.2021.214264_b0420
  article-title: Nanostructured materials for advanced energy conversion and storage devices
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1368
– volume: 5
  start-page: 9269
  year: 2012
  ident: 10.1016/j.ccr.2021.214264_b0450
  article-title: Metal organic frameworks for electrochemical applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22989g
– volume: 197
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0805
  article-title: Unveiling interactions of non-metallic inclusions within advanced ultra-high-strength steel: A spectro-microscopic determination and first-principles elucidation
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.113791
– volume: 5
  start-page: 10290
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b1080
  article-title: Metal–organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting
  publication-title: RSC Adv.
  doi: 10.1039/C4RA15680C
– volume: 137
  start-page: 14129
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b0525
  article-title: Metal–organic frameworks for electrocatalytic reduction of carbon dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08212
– volume: 131
  start-page: 4727
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b1035
  article-title: CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201901409
– volume: 12
  start-page: 67
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0640
  article-title: Bimetal-organic framework MIL-53(Co-Fe): An efficient and robust electrocatalyst for the oxygen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C9NR06883J
– volume: 51
  start-page: 7440
  year: 2012
  ident: 10.1016/j.ccr.2021.214264_b0915
  article-title: A water-stable porphyrin-based metal–organic framework active for visible-light photocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201202471
– volume: 5
  start-page: 90265
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b1075
  article-title: MOF-derived nanostructured cobalt phosphide assemblies for efficient hydrogen evolution reaction
  publication-title: RSC Adv.
  doi: 10.1039/C5RA17427A
– volume: 57
  start-page: 1888
  year: 2018
  ident: 10.1016/j.ccr.2021.214264_b0320
  article-title: Nanoscale trimetallic metal–organic frameworks enable efficient oxygen evolution electrocatalysis
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201711376
– volume: 11
  start-page: 26891
  year: 2019
  ident: 10.1016/j.ccr.2021.214264_b1175
  article-title: MOF-derived Co3O4@NC with Core-Shell structures for N2 electrochemical reduction under ambient conditions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07100
– volume: 12
  start-page: 48495
  year: 2020
  ident: 10.1016/j.ccr.2021.214264_b0725
  article-title: 3D hydrangea macrophylla-like nickel−vanadium metal−organic frameworks formed by self-assembly of ultrathin 2D nanosheets for overall water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c11722
– volume: 39
  start-page: 16179
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b0990
  article-title: Preparation, characterization and bifunctional catalytic properties of MOF (Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.12.120
– volume: 44
  start-page: 2060
  year: 2015
  ident: 10.1016/j.ccr.2021.214264_b0035
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 136
  start-page: 13925
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b1010
  article-title: Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5082553
– volume: 439
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0165
  article-title: Recent advances in the development of electronically and ionically conductive metal-organic frameworks
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213915
– volume: 57
  start-page: 1540
  year: 2021
  ident: 10.1016/j.ccr.2021.214264_b0350
  article-title: Introduction to (photo)electrocatalysis for renewable energy
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC90530E
– volume: 7
  start-page: 3519
  year: 2014
  ident: 10.1016/j.ccr.2021.214264_b0115
  article-title: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01760A
SSID ssj0016992
Score 2.7077212
SecondaryResourceType review_article
Snippet [Display omitted] •The advantages of BMOFs and their composites are summarized and discussed.•BMOFs and their composites exhibit high...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 214264
SubjectTerms Composites
Electrocatalysis
Metal-organic frameworks
Oxygen evolution reaction
Photoelectrocatalysis
Synergic effect
Title Bimetallic metal–organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications
URI https://dx.doi.org/10.1016/j.ccr.2021.214264
Volume 451
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPehFfOKz7MGTsLZJNo_1VoulKtaLhd7CZh8YqUmxUfAiHvwH_kN_ibObpFRQD97CsgPLzuw8Mt_MIHRE3cSXQgniUqEIKDxFIhYqIpyQRxziZ61st89hMBjRy7E_bqBeXQtjYJWV7i91utXW1Uq7us32NE1Nja9BzlOwP0aSIlNoTmlopPzkdQ7zcALGyo7hoG_M7jqzaTFeQpiWoC7EiY7xDH62TQv2pr-GVitHEXfLs6yjhso20HKvns-2id7P0gcFrvMkFdh-fL59lDOaBNY15GqGeSbx9U2fSBC1ZyWxwZAboJaanWLwGcHmYIvRAo2H8wxXY3GIpZve5UVerdj_PC9wGLyY895Co_75bW9AqpkKRLgsLAjTVAuHRdqBkNqlkSf9SLDEdyXTOggY18JjnqeY5PC0g1BJLh0N7JS2c5vytlEzyzO1gzB4CgLYWmZuQ5GwQOrI1RHX0lc88XZRp77NWFQNx83ci0lcI8vuY2BAbBgQlwzYRcdzkmnZbeOvzbRmUfxNZGKwBr-T7f2PbB-tuKbyoeMQxz9AzeLxSR2CP1IkLStwLbTUvbgaDL8AezHjcA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60HvQiPvFtDp6EoPtOvGmxtPbhpYXelt08sKLbolXw5sF_4D_0lzjJZqWCevC2hB0ImdmZyc433wAchX4eSaEE9UOhKDo8RRlPFBVekrEM789aWbbPXtwchFfDaDgH9aoXxsAqne8vfbr11m7lxJ3myWQ0Mj2-BjkfYvwxlsSieVgw7FRRDRbOW-1m76uYEHNekoajyzECVXHTwryEMKygPl4VPZMc_ByeZkJOYwWWXa5IzsvtrMKcKtZgsV6NaFuHt4vRvcLs-W4kiH34eH0vxzQJoivU1SPJCkm61w0q0dqelSQGRm6wWurxjGDaiGGHWJgWOj0yLoibjEOt3ORmPB27Ffur5wU3Q2bL3hswaFz2603qxipQ4fNkSrkOtfA40x7eqv2QBTJigueRL7nWccwzLQIeBIrLDL_uOFEyk55GjUpL3qaCTagV40JtAcFkQaBmy-JtInIeS818zTItI5XlwTacVqeZCsc5bkZf3KUVuOw2RQWkRgFpqYBtOP4SmZSEG3-9HFYqSr9ZTYoB4Xexnf-JHcJis9_tpJ1Wr70LS75phDj1qBftQW368KT2MT2Z5gfO_D4BRnrmIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimetallic+metal%E2%80%93organic+frameworks+and+MOF-derived+composites%3A+Recent+progress+on+electro-+and+photoelectrocatalytic+applications&rft.jtitle=Coordination+chemistry+reviews&rft.au=Zhou%2C+Yingtang&rft.au=Abazari%2C+Reza&rft.au=Chen%2C+Jing&rft.au=Tahir%2C+Muhammad&rft.date=2022-01-15&rft.issn=0010-8545&rft.volume=451&rft.spage=214264&rft_id=info:doi/10.1016%2Fj.ccr.2021.214264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ccr_2021_214264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon