Bimetallic metal–organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications
[Display omitted] •The advantages of BMOFs and their composites are summarized and discussed.•BMOFs and their composites exhibit high electro/photoelectrocatalytic properties.•We investigated the current problems and future solutions of BMOFs.•The challenges of BMOFs for electro/photoelectrocatalyst...
Saved in:
Published in | Coordination chemistry reviews Vol. 451; p. 214264 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The advantages of BMOFs and their composites are summarized and discussed.•BMOFs and their composites exhibit high electro/photoelectrocatalytic properties.•We investigated the current problems and future solutions of BMOFs.•The challenges of BMOFs for electro/photoelectrocatalysts are summarized.•This is the first review dedicated to BMOFs for electro/photoelectrocatalysts.
Owing to the growing demand in areas such as energy, environmental science, electro- and photoelectrocatalysis, different reactions such as HER (hydrogen evolution), OER (oxygen evolution), ORR (oxygen reduction), and CO2RR (CO2 reduction) represent attractive strategies to overcome the challenges in sustainable energy conversion and usage. The competition for introducing catalysts with higher performance and cost-efficiency in comparison to the previous systems based on noble metals is one of the most interesting directions in this field. By merging the advantages of inorganic and organic materials, MOFs (metal–organic frameworks) have gained an ample attention as highly versatile electro- and photoelectrocatalytic platforms. This is governed by the intricate features of MOFs including extraordinary surface area, exceptional porosity, tailorable pore size, vast structural and chemical tunability, and pre- and post-synthesis structural modifiability. In contrast to monometallic compounds, bimetallic MOFs (BMOFs) and their composites offer many advantages, including improved electrical conductivity, extended active sites, high charge capacity, and adjustable electrochemical activity. Metal-organic frameworks can also be combined with other electrochemically active materials, resulting in advanced composites with large specific area, increased electrical conductivity, and superiour dispersion. Besides, some BMOFs show an enhanced electrocatalytic activity under light irradiation, thus permitting their application as photoelectrocatalysts. The present review summarizes the state-of-the-art on bimetallic MOFs and derived composites for the main current types of electro- and photoelectrocatalytic applications. The study also aims to highlight the challenges and opportunities in this area, with a focus on future perspectives of such multimetallic compounds and materials, with a particular emphasis in the field of energy and electrophotocatalysis. |
---|---|
AbstractList | [Display omitted]
•The advantages of BMOFs and their composites are summarized and discussed.•BMOFs and their composites exhibit high electro/photoelectrocatalytic properties.•We investigated the current problems and future solutions of BMOFs.•The challenges of BMOFs for electro/photoelectrocatalysts are summarized.•This is the first review dedicated to BMOFs for electro/photoelectrocatalysts.
Owing to the growing demand in areas such as energy, environmental science, electro- and photoelectrocatalysis, different reactions such as HER (hydrogen evolution), OER (oxygen evolution), ORR (oxygen reduction), and CO2RR (CO2 reduction) represent attractive strategies to overcome the challenges in sustainable energy conversion and usage. The competition for introducing catalysts with higher performance and cost-efficiency in comparison to the previous systems based on noble metals is one of the most interesting directions in this field. By merging the advantages of inorganic and organic materials, MOFs (metal–organic frameworks) have gained an ample attention as highly versatile electro- and photoelectrocatalytic platforms. This is governed by the intricate features of MOFs including extraordinary surface area, exceptional porosity, tailorable pore size, vast structural and chemical tunability, and pre- and post-synthesis structural modifiability. In contrast to monometallic compounds, bimetallic MOFs (BMOFs) and their composites offer many advantages, including improved electrical conductivity, extended active sites, high charge capacity, and adjustable electrochemical activity. Metal-organic frameworks can also be combined with other electrochemically active materials, resulting in advanced composites with large specific area, increased electrical conductivity, and superiour dispersion. Besides, some BMOFs show an enhanced electrocatalytic activity under light irradiation, thus permitting their application as photoelectrocatalysts. The present review summarizes the state-of-the-art on bimetallic MOFs and derived composites for the main current types of electro- and photoelectrocatalytic applications. The study also aims to highlight the challenges and opportunities in this area, with a focus on future perspectives of such multimetallic compounds and materials, with a particular emphasis in the field of energy and electrophotocatalysis. |
ArticleNumber | 214264 |
Author | Abazari, Reza Ikreedeegh, Riyadh Ramadhan Tahir, Muhammad Singh, Harishchandra Kirillov, Alexander M. Rani, Ekta Zhou, Yingtang Kumar, Anuj Chen, Jing |
Author_xml | – sequence: 1 givenname: Yingtang orcidid: 0000-0002-8678-295X surname: Zhou fullname: Zhou, Yingtang email: zhouyingtang@zjou.edu.cn organization: National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China – sequence: 2 givenname: Reza surname: Abazari fullname: Abazari, Reza email: reza.abazari@modares.ac.ir organization: National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China – sequence: 3 givenname: Jing surname: Chen fullname: Chen, Jing organization: National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316004, China – sequence: 4 givenname: Muhammad orcidid: 0000-0002-2937-5645 surname: Tahir fullname: Tahir, Muhammad email: muhammad.tahir@uaeu.ac.ae organization: Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia – sequence: 5 givenname: Anuj surname: Kumar fullname: Kumar, Anuj email: anuj.kumar@gla.ac.in organization: Department of Chemistry, Institute of Humanities and Applied Science, GLA University, Mathura 281406, India – sequence: 6 givenname: Riyadh Ramadhan surname: Ikreedeegh fullname: Ikreedeegh, Riyadh Ramadhan organization: Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia – sequence: 7 givenname: Ekta orcidid: 0000-0002-6933-9892 surname: Rani fullname: Rani, Ekta email: Ekta.Rani@oulu.fi organization: Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland – sequence: 8 givenname: Harishchandra orcidid: 0000-0001-7754-5648 surname: Singh fullname: Singh, Harishchandra organization: Nano and Molecular Systems Research Unit, University of Oulu, FIN-90014, Finland – sequence: 9 givenname: Alexander M. surname: Kirillov fullname: Kirillov, Alexander M. email: kirillov@tecnico.ulisboa.pt organization: Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal |
BookMark | eNp9kMtOAjEUQBuDiYB-gLv5gcG286DVlRJREwyJ0XVT2lssDtNJ22DYufAP_EO_xAKuXLi6j-TcxxmgXutaQOic4BHBpL5YjZTyI4opGVFS0ro8Qn3CxkVesBL3UB9jgnNWldUJGoSwSmXNOe2jzxu7hiibxqpsn3x_fDm_lG2qjZdreHf-LWSy1dnjfJpr8HYDOlNu3blgI4TL7AkUtDHrvFt6CCFzbQYNqOhdvue6Vxfdb0fJtGIb03DZdWmnjNa14RQdG9kEOPuNQ_QyvX2e3Oez-d3D5HqWK8rHMeemNIpwZggsKC1ZoSum-KKimhtT11waVfCiAK5lyVg9Bi01MZVWuiKMYSiGiBzmKu9C8GBE5-1a-q0gWOw0ipVIGsVOozhoTMz4D6Ns3J8dvbTNv-TVgYT00saCF0FZaBVo65MMoZ39h_4B0daT7g |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_156553 crossref_primary_10_1016_j_ccr_2023_215302 crossref_primary_10_1021_acs_energyfuels_2c01350 crossref_primary_10_1039_D4NR04108A crossref_primary_10_1016_j_ccr_2024_216231 crossref_primary_10_1002_cssc_202200184 crossref_primary_10_1016_j_ccr_2024_216113 crossref_primary_10_1039_D1CY02346B crossref_primary_10_1002_aenm_202404057 crossref_primary_10_3390_bios12090769 crossref_primary_10_1007_s10854_023_10644_y crossref_primary_10_1021_acsami_4c04342 crossref_primary_10_1016_j_ccr_2022_214969 crossref_primary_10_1002_cctc_202200994 crossref_primary_10_1016_j_jallcom_2024_176950 crossref_primary_10_1016_j_mtchem_2024_102107 crossref_primary_10_1021_acsami_3c18654 crossref_primary_10_3390_catal12030258 crossref_primary_10_1002_cnl2_153 crossref_primary_10_1016_j_cis_2025_103483 crossref_primary_10_1016_j_ijhydene_2024_11_435 crossref_primary_10_1016_j_mtcomm_2022_104945 crossref_primary_10_1016_j_ica_2024_122282 crossref_primary_10_1016_j_inoche_2022_110280 crossref_primary_10_1016_j_ijbiomac_2024_138215 crossref_primary_10_1016_j_apcatb_2024_124715 crossref_primary_10_1016_j_inoche_2025_114349 crossref_primary_10_1021_acsami_4c11560 crossref_primary_10_1039_D4CC02519A crossref_primary_10_1002_aesr_202200004 crossref_primary_10_1016_j_mtchem_2022_101366 crossref_primary_10_1016_j_cclet_2024_110049 crossref_primary_10_1142_S1793984422500076 crossref_primary_10_1021_acsaem_3c00780 crossref_primary_10_1016_j_jcis_2024_09_175 crossref_primary_10_1016_j_ccr_2025_216539 crossref_primary_10_1016_j_cej_2023_142891 crossref_primary_10_1016_j_jcis_2022_05_060 crossref_primary_10_1039_D3CE00166K crossref_primary_10_57634_RCR5064 crossref_primary_10_1016_j_chphma_2023_11_001 crossref_primary_10_1039_D3TA03500J crossref_primary_10_1021_acs_inorgchem_2c01936 crossref_primary_10_1016_j_ccr_2024_216256 crossref_primary_10_1016_j_nxener_2024_100191 crossref_primary_10_1016_j_cej_2024_156664 crossref_primary_10_1016_j_inoche_2024_112915 crossref_primary_10_1039_D2NJ00970F crossref_primary_10_1021_acs_energyfuels_4c03022 crossref_primary_10_1039_D2CC02865D crossref_primary_10_1016_j_ccr_2024_215959 crossref_primary_10_1016_j_cej_2025_161299 crossref_primary_10_1016_j_jallcom_2025_179844 crossref_primary_10_1021_acs_energyfuels_3c01533 crossref_primary_10_1016_j_molstruc_2022_134389 crossref_primary_10_1002_slct_202300985 crossref_primary_10_1021_acs_inorgchem_2c01488 crossref_primary_10_1016_j_ccr_2025_216547 crossref_primary_10_1016_j_ccr_2024_215834 crossref_primary_10_1016_j_jece_2024_114088 crossref_primary_10_1039_D3CY00408B crossref_primary_10_1016_j_ccr_2023_215538 crossref_primary_10_1016_j_cej_2023_146448 crossref_primary_10_1021_acs_energyfuels_3c01657 crossref_primary_10_1007_s10904_022_02297_x crossref_primary_10_1039_D2ME00221C crossref_primary_10_1016_j_cej_2022_137396 crossref_primary_10_1186_s11671_023_03890_w crossref_primary_10_1016_j_ccr_2022_214817 crossref_primary_10_1007_s13738_024_03086_8 crossref_primary_10_2139_ssrn_4070250 crossref_primary_10_1002_adfm_202411904 crossref_primary_10_1016_j_colsurfa_2022_129477 crossref_primary_10_1016_j_jece_2023_110192 crossref_primary_10_1016_j_molstruc_2022_134598 crossref_primary_10_1021_acs_inorgchem_2c00542 crossref_primary_10_1002_ejic_202200316 crossref_primary_10_1016_j_jechem_2024_08_068 crossref_primary_10_1021_acs_inorgchem_2c02723 crossref_primary_10_1021_acs_inorgchem_4c01254 crossref_primary_10_1016_j_jece_2024_115007 crossref_primary_10_1016_j_watres_2024_121614 crossref_primary_10_1016_j_cclet_2023_108318 crossref_primary_10_1016_j_jclepro_2022_135685 crossref_primary_10_3762_bjoc_20_257 crossref_primary_10_1002_adfm_202210717 crossref_primary_10_1016_j_snb_2023_134951 crossref_primary_10_1016_j_jcis_2025_01_181 crossref_primary_10_1016_j_jece_2023_109408 crossref_primary_10_3390_coatings13081456 crossref_primary_10_3390_pr11030838 crossref_primary_10_1016_j_cej_2023_145453 crossref_primary_10_1021_acs_inorgchem_3c00764 crossref_primary_10_1016_j_ijhydene_2023_11_295 crossref_primary_10_1021_acsomega_2c01171 crossref_primary_10_1016_j_ijhydene_2023_08_039 crossref_primary_10_1016_j_rechem_2023_101078 crossref_primary_10_3389_fbioe_2023_1251713 crossref_primary_10_1016_j_est_2024_110583 crossref_primary_10_1016_j_inoche_2022_109342 crossref_primary_10_1016_j_molstruc_2024_140478 crossref_primary_10_1149_1945_7111_acc362 crossref_primary_10_1039_D4QI01613K crossref_primary_10_1007_s10904_022_02392_z crossref_primary_10_1039_D4YA00477A crossref_primary_10_1021_acs_inorgchem_1c03216 crossref_primary_10_1021_acsmaterialslett_2c01065 crossref_primary_10_1142_S0218625X22300064 crossref_primary_10_1016_j_ijhydene_2024_11_247 crossref_primary_10_1016_j_ijhydene_2025_02_242 crossref_primary_10_1016_j_inoche_2025_114135 crossref_primary_10_1021_acs_inorgchem_2c01855 crossref_primary_10_1016_j_jechem_2023_06_038 crossref_primary_10_1016_j_ccr_2023_215042 crossref_primary_10_1016_j_apsusc_2025_162659 crossref_primary_10_1016_j_jssc_2022_123559 crossref_primary_10_1016_j_foodchem_2023_137631 crossref_primary_10_1016_j_jhazmat_2022_128271 crossref_primary_10_1002_cssc_202300377 crossref_primary_10_1016_j_apcatb_2023_122446 crossref_primary_10_1016_j_chemosphere_2023_138514 crossref_primary_10_1002_cplu_202200420 crossref_primary_10_1016_j_jece_2025_116076 crossref_primary_10_1016_j_poly_2023_116750 crossref_primary_10_1016_j_ijhydene_2025_01_206 crossref_primary_10_1016_j_est_2023_108557 crossref_primary_10_1016_j_jfca_2024_107086 crossref_primary_10_1002_smll_202207735 crossref_primary_10_1016_j_jssc_2022_123202 crossref_primary_10_1002_adma_202402184 crossref_primary_10_1039_D4TA05956E crossref_primary_10_1016_j_molstruc_2022_133814 crossref_primary_10_1039_D1EE03614A crossref_primary_10_1021_acsomega_2c07137 crossref_primary_10_3390_nano12183248 crossref_primary_10_1039_D2NR04063H crossref_primary_10_1039_D4QI01732C crossref_primary_10_3390_nano13152194 crossref_primary_10_1016_j_jelechem_2022_117041 crossref_primary_10_1039_D3TA00580A crossref_primary_10_20964_2022_08_54 crossref_primary_10_1002_adfm_202303958 crossref_primary_10_1039_D3CC00451A crossref_primary_10_1016_j_nanoen_2024_109897 crossref_primary_10_1039_D4TA00736K crossref_primary_10_1016_j_fuel_2023_130561 crossref_primary_10_1016_j_cej_2023_147601 crossref_primary_10_1016_j_arabjc_2022_103906 crossref_primary_10_1021_acsenergylett_3c01626 crossref_primary_10_1016_j_seppur_2023_124903 crossref_primary_10_1093_rb_rbad115 crossref_primary_10_1016_j_fuel_2024_132539 crossref_primary_10_1016_j_ccr_2022_214699 crossref_primary_10_1021_acsami_4c15634 crossref_primary_10_1002_adsu_202400225 crossref_primary_10_1007_s12274_023_5935_0 crossref_primary_10_1016_j_fuel_2023_129760 crossref_primary_10_1016_j_cej_2022_140804 crossref_primary_10_20517_energymater_2024_215 crossref_primary_10_1016_j_seppur_2025_132539 crossref_primary_10_1016_j_jcis_2023_02_079 crossref_primary_10_1016_j_jcis_2022_11_039 crossref_primary_10_1098_rsos_240380 crossref_primary_10_1016_j_seppur_2023_125437 crossref_primary_10_1016_j_crcon_2025_100308 crossref_primary_10_1016_j_ensm_2023_02_030 crossref_primary_10_1002_jctb_7199 crossref_primary_10_3390_en16145404 crossref_primary_10_1016_j_ijhydene_2023_11_098 crossref_primary_10_1016_j_ccr_2024_215658 crossref_primary_10_1021_acsanm_4c02224 crossref_primary_10_1016_j_ccr_2023_215030 crossref_primary_10_1016_j_jallcom_2022_166750 crossref_primary_10_1016_j_colsurfa_2023_132398 crossref_primary_10_1007_s12274_024_6973_y crossref_primary_10_1016_j_electacta_2024_145416 crossref_primary_10_1016_j_rechem_2023_101276 crossref_primary_10_1002_smll_202205736 crossref_primary_10_1039_D2CS00843B crossref_primary_10_1016_j_cej_2022_138065 crossref_primary_10_1016_j_inoche_2022_110202 crossref_primary_10_1039_D3RA08174E crossref_primary_10_1002_aenm_202400875 crossref_primary_10_1016_j_ica_2022_121236 crossref_primary_10_1016_j_ijhydene_2022_06_112 crossref_primary_10_1016_j_ccr_2024_216061 crossref_primary_10_1016_j_jssc_2024_124648 crossref_primary_10_1016_j_ccr_2022_214670 crossref_primary_10_1088_1361_6528_ad2481 crossref_primary_10_3390_molecules27175736 crossref_primary_10_1039_D4NH00140K crossref_primary_10_1039_D4AY01217H crossref_primary_10_1007_s40089_021_00361_x crossref_primary_10_1039_D2CC01114J crossref_primary_10_1007_s10008_024_06137_5 crossref_primary_10_1016_j_apenergy_2023_121755 crossref_primary_10_12677_hjcet_2024_143019 crossref_primary_10_1016_j_scitotenv_2022_157206 crossref_primary_10_1021_acsomega_1c07196 crossref_primary_10_1016_j_jcou_2024_102941 crossref_primary_10_1016_j_ccr_2022_214782 crossref_primary_10_1016_j_apsusc_2022_155792 crossref_primary_10_1039_D4CY01507J crossref_primary_10_1016_j_ccr_2022_214667 crossref_primary_10_1016_j_jpowsour_2024_234593 crossref_primary_10_1016_j_ccr_2022_214664 crossref_primary_10_1016_j_jcis_2023_12_029 crossref_primary_10_1016_j_jallcom_2023_172465 crossref_primary_10_1016_j_micromeso_2022_112407 crossref_primary_10_1039_D4NR04236K crossref_primary_10_1039_D2CE00726F crossref_primary_10_1016_j_ijhydene_2023_12_225 crossref_primary_10_1007_s40843_024_3165_6 crossref_primary_10_1002_cey2_708 crossref_primary_10_1186_s13065_024_01247_7 crossref_primary_10_1016_j_ccr_2024_216395 crossref_primary_10_1016_j_jssc_2022_123615 crossref_primary_10_1007_s12274_023_6334_2 crossref_primary_10_1021_acs_inorgchem_3c03742 crossref_primary_10_1039_D2QI00382A crossref_primary_10_1016_j_seppur_2024_129952 crossref_primary_10_1002_adfm_202409069 crossref_primary_10_1016_j_jece_2024_112925 crossref_primary_10_1016_j_seppur_2023_125231 crossref_primary_10_1016_j_jmst_2023_04_006 crossref_primary_10_1039_D2NJ01994A crossref_primary_10_1039_D2TA09987J crossref_primary_10_1016_j_jallcom_2025_179106 crossref_primary_10_1016_j_microc_2024_112363 crossref_primary_10_1039_D4TA00131A crossref_primary_10_1002_adma_202301011 crossref_primary_10_1002_adfm_202312175 crossref_primary_10_1007_s11015_023_01589_y crossref_primary_10_1016_j_ccr_2023_215117 crossref_primary_10_1021_acsanm_4c00481 crossref_primary_10_1002_smll_202306353 crossref_primary_10_1002_adfm_202415174 crossref_primary_10_1016_j_ccr_2022_214646 crossref_primary_10_1016_j_cej_2023_146707 crossref_primary_10_1016_j_matlet_2023_135469 crossref_primary_10_1016_j_molstruc_2022_133439 crossref_primary_10_1039_D4TA01330A crossref_primary_10_1002_cssc_202202395 crossref_primary_10_1002_smtd_202401689 crossref_primary_10_1016_j_ccr_2022_214761 crossref_primary_10_1016_j_mcat_2024_114628 crossref_primary_10_1007_s00226_022_01430_w crossref_primary_10_1016_j_jelechem_2023_117760 crossref_primary_10_2139_ssrn_4136968 crossref_primary_10_1016_j_molstruc_2023_137058 crossref_primary_10_1039_D3EY00018D crossref_primary_10_1039_D4DT00739E crossref_primary_10_1016_j_molstruc_2022_133790 crossref_primary_10_1002_ente_202400178 crossref_primary_10_1021_acsami_3c10682 crossref_primary_10_1021_acs_inorgchem_3c02875 crossref_primary_10_1016_j_jwpe_2023_104297 crossref_primary_10_1016_j_ccr_2024_215765 crossref_primary_10_1016_j_ijhydene_2024_07_143 crossref_primary_10_1016_j_apsusc_2022_154553 crossref_primary_10_1016_j_crcon_2023_100211 crossref_primary_10_1007_s11356_023_30026_5 crossref_primary_10_1002_smll_202205168 crossref_primary_10_1039_D1NJ06107K crossref_primary_10_1186_s12951_023_01884_5 crossref_primary_10_1016_j_ccr_2025_216577 crossref_primary_10_1016_j_foodcont_2023_109965 crossref_primary_10_1016_j_jechem_2023_08_042 crossref_primary_10_1039_D1CE01636A crossref_primary_10_1007_s10904_021_02205_9 crossref_primary_10_1007_s11783_024_1911_5 crossref_primary_10_1016_j_rechem_2024_101782 crossref_primary_10_1016_j_jssc_2022_123713 crossref_primary_10_1016_j_jmst_2022_10_041 crossref_primary_10_1016_j_rser_2022_112967 crossref_primary_10_1002_tcr_202300158 crossref_primary_10_12677_japc_2024_133041 crossref_primary_10_1016_j_ccr_2022_214505 crossref_primary_10_1016_j_inoche_2022_109533 crossref_primary_10_1016_j_cej_2022_140079 crossref_primary_10_1016_j_inoche_2024_113246 crossref_primary_10_3390_molecules30020208 crossref_primary_10_3390_molecules27134241 crossref_primary_10_1186_s11671_024_04066_w crossref_primary_10_1016_j_ccr_2023_215333 crossref_primary_10_1039_D3NJ05571J crossref_primary_10_1021_acs_jpcc_2c03083 crossref_primary_10_1016_j_talanta_2024_127177 crossref_primary_10_1039_D3EN00340J crossref_primary_10_1016_j_mtcomm_2022_103874 crossref_primary_10_1007_s10876_022_02364_w crossref_primary_10_1039_D2CE00722C crossref_primary_10_1016_j_seppur_2023_125147 crossref_primary_10_1016_j_molstruc_2023_136661 crossref_primary_10_1016_j_microc_2023_108956 |
Cites_doi | 10.1021/ja5116937 10.1021/acscatal.7b00687 10.1002/adma.201702891 10.1002/adfm.201300510 10.1039/C8TA08508K 10.1016/j.carbon.2016.10.046 10.1002/anie.201813634 10.1007/s10008-011-1394-8 10.1016/j.apcatb.2019.118513 10.1016/j.jcou.2020.101299 10.1039/D0SC01432J 10.1002/cssc.201801162 10.1021/acsami.7b01547 10.1126/science.aad4998 10.1016/j.apcatb.2017.12.013 10.1021/acs.inorgchem.1c00951 10.1021/acssuschemeng.0c08147 10.1021/cm5038183 10.1039/C5TA03900B 10.1002/anie.202007672 10.1002/adma.201804740 10.1016/0010-8545(95)01226-5 10.1021/jacs.5b11986 10.1021/acscentsci.8b00073 10.1016/j.nanoen.2016.04.041 10.1002/aenm.202001561 10.1002/anie.201803262 10.1039/D0TA05038E 10.1016/j.ccr.2018.08.010 10.1016/j.wasman.2019.03.043 10.1021/acsnano.9b07826 10.1016/j.cej.2020.126385 10.1039/D0DT04397D 10.1016/j.ccr.2011.03.008 10.1039/C6TA05877A 10.1021/acsami.6b05375 10.1016/j.ccr.2012.03.010 10.1016/j.elecom.2012.09.018 10.1016/j.jcou.2019.05.025 10.1021/acs.jpcc.1c03239 10.1016/j.jallcom.2021.158795 10.1039/C3CS60323G 10.1016/j.ijhydene.2015.06.027 10.1039/C5CC09127F 10.1016/j.jssc.2019.01.023 10.1039/C5EE02474A 10.1002/advs.201600371 10.1016/j.bios.2018.06.050 10.1016/j.ccr.2021.213954 10.1021/ic3018858 10.1039/C4TA04622F 10.1039/c2ee22550f 10.1002/adfm.201806419 10.1002/anie.201803587 10.1002/ange.202008129 10.1021/acs.inorgchem.0c03634 10.1021/acscatal.6b02479 10.1021/acscentsci.0c01150 10.1016/j.ccr.2021.214122 10.3390/app9122427 10.1039/C5TA04723D 10.1021/acscatal.5b02325 10.1021/acs.accounts.6b00635 10.1039/C7CC02113E 10.1039/C9TA13473E 10.1016/j.ccr.2020.213660 10.1016/j.jhazmat.2017.12.015 10.1039/C7NR09081A 10.1021/jacs.9b09298 10.1021/acs.chemrev.9b00766 10.1021/ar400001n 10.1002/advs.201500265 10.1016/j.renene.2017.11.084 10.1039/D0TA08094B 10.1002/cssc.201600693 10.1016/j.ccr.2019.213047 10.1039/C9NR06354D 10.1021/acscatal.7b03429 10.1021/acsenergylett.8b02345 10.1039/C6CS00362A 10.1039/D0NR06396G 10.1021/acs.accounts.8b00521 10.1021/jacs.5b02688 10.1021/acs.chemmater.5b02877 10.1039/c2ee03590a 10.1021/jacs.7b06459 10.1039/C4CS00015C 10.1002/cssc.201600761 10.1016/j.apcatb.2020.119582 10.1016/j.apsusc.2017.07.133 10.1016/j.fuel.2021.121420 10.1016/j.ccr.2018.07.020 10.1039/D1TA00900A 10.1021/jacs.9b11355 10.3762/bjnano.5.96 10.1021/acs.inorgchem.1c00997 10.1021/acssuschemeng.0c04682 10.1039/C8CC06918B 10.1039/D0NA00112K 10.3389/fchem.2019.00747 10.1002/advs.201500243 10.1007/s12274-020-2751-7 10.1039/C5NR03810C 10.1002/anie.201604311 10.1039/D0NR05072E 10.1039/C7TA07464F 10.1039/D0CC01146K 10.1039/C8FD00194D 10.1039/C9CS00906J 10.1002/aenm.201700544 10.1021/jacs.6b12353 10.1002/anie.202102632 10.1002/adma.201704303 10.1021/jacs.5b10484 10.1039/b807080f 10.1021/acscatal.5b01767 10.1038/s41467-019-13092-7 10.1002/adma.201502315 10.1002/anie.201509382 10.1039/D1SC00095K 10.1016/j.ccr.2017.08.010 10.1016/j.ccr.2021.213946 10.1039/C6NR07009D 10.1002/anie.201916520 10.1002/aesr.202100033 10.1016/S1872-2067(20)63731-7 10.1002/smtd.201800337 10.1038/nenergy.2016.184 10.1002/ange.201907002 10.1002/advs.201800064 10.1021/acs.inorgchem.5b02108 10.1039/C9NR10511E 10.1016/j.ccr.2020.213483 10.1016/j.enchem.2020.100027 10.1002/aenm.202003970 10.1021/ja409267p 10.1021/jacs.0c06329 10.1039/D0CS01482F 10.1039/D0EE03697H 10.1016/j.inoche.2021.108518 10.1002/adfm.201702324 10.1039/c4ee00517a 10.1021/acs.analchem.6b04184 10.1039/C9TA02926E 10.1039/C7TA00339K 10.1016/j.ijhydene.2019.06.102 10.1021/acssuschemeng.9b01131 10.1002/adfm.201802596 10.1016/j.ccr.2020.213435 10.1038/ncomms3390 10.1016/j.ccr.2017.09.001 10.1021/jp306172k 10.1016/j.ccr.2020.213619 10.1039/D1TA01224J 10.1021/acs.chemmater.0c02438 10.1016/j.elecom.2010.02.017 10.1039/C6CS00328A 10.1142/S1088424616500826 10.1126/science.1190672 10.1016/j.ccr.2020.213234 10.1021/acsanm.0c03310 10.1007/BF02836187 10.1038/ncomms9304 10.1016/S1872-2067(12)60729-3 10.1016/j.ccr.2010.05.001 10.1021/ja311085e 10.1039/C5NR06626C 10.1038/s41563-020-0610-2 10.1038/s41467-020-19236-4 10.1007/s12598-020-01440-2 10.1039/C7QI00780A 10.1039/C9EE03660A 10.1021/jacs.8b07472 10.1021/jacs.9b03811 10.1039/D0CS01191F 10.1002/chem.201803083 10.1002/adma.201802091 10.1002/chem.201902203 10.1039/D0NA00184H 10.1002/adma.201701463 10.1149/2.001204eel 10.1039/D0DT04133E 10.1039/C5CS00665A 10.1039/D0TA04977H 10.1002/adfm.202010052 10.1088/2515-7655/ab6429 10.1021/ar300227e 10.1039/C4NR02399D 10.1016/j.jcis.2020.05.098 10.1002/aenm.202003291 10.1002/anie.201803136 10.1103/PhysRevB.101.054302 10.1002/adfm.201704158 10.1021/acsaem.8b00797 10.1021/ja205647m 10.1016/j.ccr.2019.05.006 10.1039/C9CS00778D 10.1016/j.jcis.2019.08.005 10.1038/ncomms15341 10.1039/C3CS60472A 10.1021/acsenergylett.8b01540 10.1002/anie.201907674 10.1021/acssuschemeng.9b03952 10.1039/C4EE03869J 10.1021/nn5027092 10.1038/s41467-019-13051-2 10.1021/acssuschemeng.0c02271 10.1021/acs.nanolett.6b05004 10.1021/jacs.1c01096 10.1016/j.ccr.2006.01.011 10.1016/j.ccr.2020.213374 10.1002/jrs.4832 10.1021/cr9003924 10.1016/j.ccr.2012.05.002 10.1039/C9NH00380K 10.1002/anie.201403842 10.1039/C9TA09975A 10.1002/smll.201805232 10.1039/D0CE01747G 10.1002/ange.201301327 10.1002/anie.201902229 10.1039/D0TA05628F 10.1038/nmat1368 10.1039/c2ee22989g 10.1016/j.scriptamat.2021.113791 10.1039/C4RA15680C 10.1021/jacs.5b08212 10.1002/ange.201901409 10.1039/C9NR06883J 10.1002/anie.201202471 10.1039/C5RA17427A 10.1002/anie.201711376 10.1021/acsami.9b07100 10.1021/acsami.0c11722 10.1016/j.ijhydene.2013.12.120 10.1039/C4CS00470A 10.1021/ja5082553 10.1016/j.ccr.2021.213915 10.1039/D0CC90530E 10.1039/C4EE01760A |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ccr.2021.214264 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3840 |
ExternalDocumentID | 10_1016_j_ccr_2021_214264 S0010854521005385 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6J9 6P2 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M23 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSK SSZ T5K TN5 TWZ UPT WH7 XPP YK3 ZMT ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HMH HVGLF HZ~ H~9 NDZJH OHT R2- RIG SCB SEW SIC SSH UQL VH1 WUQ XJT ZKB ZY4 |
ID | FETCH-LOGICAL-c297t-9f4fc198f1eb22483d58c9b52d9ff669afc3933e9da48867edad1f5dcd51880e3 |
IEDL.DBID | .~1 |
ISSN | 0010-8545 |
IngestDate | Tue Jul 01 02:43:52 EDT 2025 Thu Apr 24 23:10:11 EDT 2025 Fri Feb 23 02:45:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrocatalysis Photoelectrocatalysis Composites Oxygen evolution reaction Metal-organic frameworks Synergic effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-9f4fc198f1eb22483d58c9b52d9ff669afc3933e9da48867edad1f5dcd51880e3 |
ORCID | 0000-0001-7754-5648 0000-0002-6933-9892 0000-0002-2937-5645 0000-0002-8678-295X |
ParticipantIDs | crossref_primary_10_1016_j_ccr_2021_214264 crossref_citationtrail_10_1016_j_ccr_2021_214264 elsevier_sciencedirect_doi_10_1016_j_ccr_2021_214264 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-15 |
PublicationDateYYYYMMDD | 2022-01-15 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Coordination chemistry reviews |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | X. Chen, B. Shao, M.-J. Tang, X.-L. He, F. Yang, Z.-P. Guo, Z. Zhang, C.-T. He, F.-P. Huang, J. Huang, Accurately metal-modulated bimetallic metal-organic frameworks as an advanced trifunctional electrocatalyst, J. Mater. Chem. A (2021) doi.org/10.1039/D1TA01224J. Wang, Xu, Zhou, Shao (b1230) 2017; 4 Zhou, Su, Shen, Li, Zhang, Liu, Zhao, Cheng, Yao, Liu (b0770) 2020; 8 Yuan, Qin, Lollar, Zhou (b0475) 2018; 4 Choi, Jeong, Park, Zhang, Kang, Yaghi (b0540) 2014; 8 Lu, Li, He, Cong, Chen, Wang, Wu, Xu, Gao, Yao (b0605) 2019; 272 Nepal, Das (b1235) 2013; 125 Tian, Ai, Jiang (b1080) 2015; 5 Zhang, Ai, Jiang (b1250) 2015; 3 Song, Wang, Wang, Li, Huang, Yin (b0985) 2014; 35 Liao, Shen, Zhang (b0405) 2018; 373 Khalil, Xue, Liu, Li, Shen, Li, Zhang, Huo (b1160) 2021; 31 Li, Wang, Chen, Kung (b0455) 2019; 9 Zhao, Xue, Chen, Bai, Shi, Mu (b0925) 2019 Zhang, Cui, Yang, Chen, Xiao, Guo, Liu, Zhang, Huo, Liu (b0395) 2016; 3 Li, Zhu (b1140) 2020; 2 Fang, Wu, Yu, Li, Zhu, Ferreira, Liu, Yu (b0120) 2019; 13 Jahan, Liu, Loh (b1000) 2013; 23 Xu, Zhao, Li, Liang, Lu, Chen, Gao, Asiri, Qi, Sun (b0080) 2020; 8 Gao, Huang, Wu, Lan, Chen (b0400) 2021; 2 Yu, Zhu, Song, McElhenny, Wang, Wu, Qin, Bao, Yu, Chen, Ren (b0075) 2019; 10 Sun, Reddu, Fisher, Wang (b0150) 2020; 13 Luo, Li, Zhang, Luo, Luo (b1175) 2019; 11 Cardoso, Stulp, De Brito, Flor, Frem, Zanoni (b1225) 2018; 225 Wang, Hou, Lin, Wang (b0980) 2014; 6 Duan, Chen, Zhao (b0315) 2017; 8 Lee, Farha, Roberts, Scheidt, Nguyen, Hupp (b0490) 2009; 38 Kumar, Vashistha, Sharma (b0875) 2021; 127 Khalid, Hassan, Honorato, Crespilho, Varela (b0590) 2018; 54 Gupt, Vittal (b0190) 2021; 435 Raza, Kumar, Singh, Kim (b0270) 2021; 430 Wurster, Grumelli, Hötger, Gutzler, Kern (b0620) 2016; 138 Zhang, Luo, Wan, Plessers, Sels, Song, Chen, Zhang, Tang, Morante, Arbiol, Fransaer (b0555) 2019; 7 You, Jiang, Sheng, Gu, Yano, Sun (b1015) 2015; 27 Chen, Jiang, Hou, Gong, Liu, Cui (b0485) 2017; 139 Chen, Zhu, Zhang, Zhou, Ostrikov (b0710) 2021; 9 Modak (b1155) 2002; 7 You, Jiang, Sheng, Drisdell, Yano, Sun (b0750) 2015; 5 Fantacci, Angelis (b0815) 2011; 255 Wang, Yin, Li, Chen, Wang (b0990) 2014; 39 Hong, Risch, Stoerzinger, Grimaud, Suntivich, Shao-Horn (b0040) 2015; 8 Li, Gao, Li, Ge, Bu, Feng (b0385) 2021; 14 Morozan, Jaouen (b0450) 2012; 5 Ge, Sun, Zhao, Yang, Wang, Zhang, Cao, Yang, Zhang, Pan, Zhu (b0645) 2021; 60 Abazari, Esrafili, Morsali, Wu, Gao (b0210) 2021; 283 Xie, Ma, Lin, Xu, Xie, Zeng (b0640) 2020; 12 Lions, Tommasino, Chattot, Abeykoon, Guillou, Devic, Demessence, Cardenas, Maillard, Fateeva (b0530) 2017; 53 Zhao, Pattengale, Fan, Zou, Zhao, Du, Huang, Xu (b0630) 2018; 3 Clough, Yoo, Mechlenburg, Marinescu (b1065) 2015; 137 Liu, Thoi (b0370) 2020; 32 Abazari, Yazdani, Nadafan, Kirillov, Gao, Slawin, Carpenter-Warren (b0175) 2021; 60 Liang, Qu, Guo, Zou, Xu (b0535) 2018; 30 He, Zhang, Zhang, Zhao, Yuan, Zhang, Ma, Hu (b0155) 2020; 59 Liu, Zhou, Ding, Wang, Yang (b1070) 2015; 7 Zheng, Xiang, Li, Zhang, Du, Zhuang, Li, Chen (b0665) 2019; 7 Zheng, Zhang, Xiang, Li, Du, Zhuang, Li, Chen (b0660) 2019; 555 Han, Zhai, Zhang, Dong (b0550) 2016; 8 Dhakshinamoorthy, Asiri, Garcia (b0500) 2016; 6 Yang, Wang, Han, Li (b0345) 2013; 46 Zhao, Nie, Wang, Chen, Quan, Yu, Choi, Zhang, Kim, Chen (b1115) 2020; 11 Yang, Li, Li, Zhu, Pang (b0110) 2019; 31 Abazari, Sanati, Morsali, Kirillov, Slawin, Carpenter-Warren (b0195) 2021; 60 Qi, Su, Xu, Zhang, Liu, Liu, Hensen, Lin (b0715) 2020; 8 Faustini, Nicole, Ruiz-Hitzky, Sanchez (b0130) 2018; 28 Meier, Katsounaros, Galeano, Bongard, Topalov, Kostka, Karschin, Schüth, Mayrhofer (b0065) 2012; 5 Rani, Ingale, Chaturvedi, Kamal, Phase, Joshi, Chakrabarti, Banerjee, Kukreja (b0790) 2016; 47 Li, Li, Ai, Jiang (b1075) 2015; 5 Li, Yang, Xue, Pang, Xu (b0185) 2020; 2 Yin, Zhu, Li, Zhang, Zhang, Chen (b0735) 2016; 8 Li, Zhu (b0020) 2020; 2 He, Wang, Jiang, Lu (b0835) 2016; 45 Monama, Mdluli, Mashao, Makhafola, Ramohlola, Molapo, Hato, Makgopa, Iwuoha, Modibane (b1040) 2018; 119 Shrivastav, Sundriyal, Goel, Kaur, Tuteja, Vikrant, Kim, Tiwari, Deep (b0335) 2019; 393 Liu, Jiao, Zheng, Jaroniec (b1185) 2019; 141 Sigurnjak, Brienza, Snauwaert, De Dobbelaere, De Mey, Vaneeckhaute, Michels, Schoumans, Adani, Meers (b1150) 2019; 89 Alfonso-Herrera, Torres-Martínez, Mora-Hernandez (b0365) 2021; 23 Li, Fang, Lin, Tian, An, Fu, Li, Jin, Ma (b1020) 2015; 3 Zhang, Li, Zhao, Chen, Law, Zhou (b1240) 2018; 11 Cheng, Liang, Yin, Wang, Yan, Zhang (b0900) 2020; 39 Quaino, Juarez, Santos, Schmickler (b1100) 2014; 5 Yuan, Feng, Wang, Pang, Bosch, Lollar, Sun, Qin, Yang, Zhang (b0465) 2018; 30 Wang, Kumar, Ma, Jia, Wang, Zhang, Zhang, Sun, Yan (b0885) 2020; 13 Shao, Wang, Huang (b0300) 2018; 29 Dong, Qian, Bu, Wu, Feng, Teng, Liu, Li (b0510) 2018; 1 He, Yin, Li (b1005) 2015; 40 Chen, Ren, Zhang, Cheng, Luo, Zhu, Ding, Wang (b1145) 2019; 3 Chen, Wu, Zhao (b1165) 2020; 2 Ding, Shi, Guo, Leong, Baji, Yang (b0290) 2017; 5 Zhong, Ghorbani-Asl, Ly, Zhang, Ge, Wang, Liao, Makarov, Zschech, Brunner, Weidinger, Zhang, Krasheninnikov, Kaskel, Dong, Feng (b0785) 2020; 11 Faber, Jin (b0115) 2014; 7 Baumann, Burns, Liu, Thoi (b0570) 2019; 2 Higgins, Zamani, Yu, Chen (b0055) 2016; 9 Nam, De Luna, Rosas-Hernández, Thevenon, Li, Agapie, Peters, Shekhah, Eddaoudi, Sargent (b0145) 2020; 19 Lyu, Bai, Li, Xu, Wang, Mao, Wang, Zhang, Yin (b0240) 2017; 27 Wang, Jin, Meng, Liao, Meng, Yang, He, Xiong, Mu (b0305) 2018; 28 Tian, Liu, Cheng, Asiri, Sun (b0435) 2014; 53 Abazari, Sanati, Morsali, Dubal (b0180) 2021; 9 Li, Xu, Jiao, Jiang (b0170) 2019; 1 Li, Zhang, Chen, Li, Sun, Zhu, Wang, Fu (b0255) 2021; 13 Albo, Vallejo, Beobide, Castillo, Castano, Irabien (b1125) 2017; 10 Corma, García, Llabres, Xamena (b0445) 2010; 110 Wu, Yan, Zhang, Feng, Wei, Sun, Du, Wei (b1260) 2018; 117 Li, Song, Zhu, Zhuang, Du, Tian (b0200) 2021; 439 Yoon, Lee, Oh, Park, Choi, Oh (b0740) 2019; 15 Zhang, Li, Tan, Lu, Wang, Wu (b1195) 2018; 24 Sanati, Abazari, Albero, Morsali, García, Liang, Zou (b0285) 2020; 660 Xue, Liu, Liu, Li, Li, Su, Ogiwara, Kobayashi, Kitagava, Liu, Li (b0970) 2019; 10 Ma, Dai, Jaroniec, Qiao (b1010) 2014; 136 Rebber, Willa, Koziej (b0135) 2020; 5 Zhou, Chen, Huang, Wang, Zhang, Bai, Liu, Wang (b1205) 2020; 266 Feaster, Shi, Cave, Hatsukade, Abram, Kuhl, Hahn, Nørskov, Jaramillo (b1105) 2017; 7 Tang, Cai, Xie, Wang, Tong, Pan, Lu (b0310) 2016; 3 Hinogami, Yotsuhashi, Deguchi, Zenitani, Hashiba, Yamada (b1120) 2012; 1 Li, Shao, Huang, Lang (b0320) 2018; 57 Albo, Perfecto-Irigaray, Beobide, Irabien (b0780) 2019; 33 Li, Fang, Wu, Dinh, Ren, Zhao, Liu, Yan (b1210) 2020; 8 Liang, Wang, Zheng, Zhang, Cao (b0015) 2021; 50 Ying, Tang, Yang, Liang, Yang, Pan, Liao, Huang (b0675) 2021; 4 Xia, Qu, Liang, Zhao, Dai, Qiu, Jiao, Zhang, Huang, Guo, Dang, Zou, Xia, Xu, Liu (b0950) 2017; 17 Liu, Lu, Xiao, Wang, Lou (b0160) 2019; 58 Kang, Li, Sheveleva, Han, Li, Liu, Tuna, McInnes, Han, Yang, Schröder (b0845) 2020; 11 Inglis, MacLean, Pryce, Vos (b1110) 2012; 256 Usov, Huffman, Epley, Kessinger, Zhu, Maza, Morris (b0520) 2017; 9 Mena, Cotillas, Díaz, Sáez, Mohedano, Rodrigo (b0340) 2019; 372 da Silva, Fernandes, Ticianelli (b0440) 2018; 8 Huang, Wang, Peng, Jung, Fisher, Wang (b0830) 2017; 7 N.-T. Suen, S.-Fu Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem. Soc. Rev. 46 (2017) 337−365. Du, Li, Sun (b0380) 2021; 50 Thangasamy, Shanmuganathan, Subramanian (b0615) 2020; 2 Wang, Liu, Keser Demir, Chen, Li (b0460) 2016; 45 Zhong, Yamin Xi, Chen, Chen (b0355) 2020; 12 Anantharaj, Ede, Sakthikumar, Karthick, Mishra, Kundu (b0085) 2016; 6 Masoomi, Morsali, Dhakshinamoorthy, Garcia (b0260) 2019; 58 Hayden (b0430) 2013; 46 Dey, Houle, Lubner, Sevilla, Shaw (b0350) 2021; 57 Gerken, McAlpin, Chen, Rigsby, Casey, Britt, Stahl (b0690) 2011; 133 Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355 (2017) eaad4998. Babu, Kulandainathan, Katsounaros, Rassaei, Burrows, Raithby, Marken (b0975) 2010; 12 Ling, Niu, Li, Du, Wang (b1180) 2018; 140 Wang, Dong, Qiao, Tang, Liu, Li, Li, Su, Lan (b0655) 2018; 57 Ma, Zhu (b0225) 2020; 422 Chen, Wang, Wu, Xiong, Xu, Yu, Jiang (b0755) 2015; 27 Chen, Zhang, Cheng, Xie, Kuang, Zheng (b0330) 2020; 2 Tian, Cheng, Liu, Sun, He, Asiri (b0730) 2015; 3 Li, Gao, Feng, Deng, Xiao, Zheng, Zhao, Luo, Liu, Zhang, Wang, Li, Li, Wang, Chen (b0245) 2021; 11 Masa, Andronescu, Schuhmann (b0070) 2020; 59 Lv, Liu, Yang, Xing, Wang, Chen, Gao, Huang, Lu, Wang (b0725) 2020; 12 Cao, Wang (b0390) 2020; 6 Cui, Wang, Huang, He, Zhang, Zhang, Du (b0700) 2020; 578 Beyene, Hung (b1030) 2020; 410 Xu, Shang, Wang, Du (b0955) 2020; 418 Cichocka, Liang, Feng, Back, Siahrostami, Wang, Samperisi, Sun, Xu, Hedin, Zheng, Zou, Zhou, Huang (b0910) 2020; 142 Xie, Skorupskii, Dincă (b0250) 2020; 120 Hod, Deria, Bury, Mondloch, Kung, So, Sampson, Peters, Kubiak, Farha, Hupp (b1050) 2015; 6 Sun, Zhang, Li, Xu, Li (b0095) 2020; 8 Lin, Zhao, Wang, Gong (b0670) 2021; 50 Zagal, Koper (b0825) 2016; 55 Wang, Serre (b0480) 2019; 7 Gonen, Lori, Cohen-Taguri, Elbaz (b0945) 2018; 10 Song, Zhang, Doyle-Davis, Fu, Luo, Sun (b0855) 2020; 10 Li, Dai (b1025) 2014; 43 Zhao, Pachfule, Li, Simke, Schmidt (b0545) 2018; 57 Chaudhari, Kim, Han, Tan (b0585) 2017; 29 Xu, Li, Xue, Pang (b0125) 2018; 376 Kumar, Zhang, Liu, Sun (b0890) 2020; 402 Zhao, Nakamura, Kamiya, Nakanishi, Hashimoto (b0105) 2013; 4 Zhang, Jin, Zhang, Bai, Zhu, Pang (b0165) 2021; 439 Stephens, Bondarenko, Grønbjerg, Rossmeisl, Chorkendorff (b0415) 2012; 5 Arico, Bruce, Scrosati, Tarascon, Van Schalkwijk (b0420) 2005; 4 Zhong, Xi, Wu, Liu, Zhao, Bai (b0360) 2020; 8 Geis, Schneider, Schlettwein (b0965) 2016; 20 Shen, Liao, Zhou, He, Wu, Zhang, Zhang, Chen (b0625) 2017; 139 Sanati, Abazari, Morsali (b0050) 2020; 56 Kumar, Vashistha, Das, Ibraheem, Yasin, Iqbal, Nguyen, Gupta, Islam (b0870) 2021; 304 Liu, Li, Yao, Cheng, Chen, Luo, Yin (b1035) 2019; 131 Zhan, Kuang, Zhou, Kong, Xie, Zheng (b1265) 2013; 135 Windle, Robin (b1085) 2012; 256 Appleby, Zagal (b0820) 2011 He (10.1016/j.ccr.2021.214264_b0155) 2020; 59 Zhang (10.1016/j.ccr.2021.214264_b1240) 2018; 11 Yu (10.1016/j.ccr.2021.214264_b0075) 2019; 10 Yoon (10.1016/j.ccr.2021.214264_b0740) 2019; 15 Zhao (10.1016/j.ccr.2021.214264_b0925) 2019 Singh (10.1016/j.ccr.2021.214264_b0810) 2018; 2 Babu (10.1016/j.ccr.2021.214264_b0975) 2010; 12 Faustini (10.1016/j.ccr.2021.214264_b0130) 2018; 28 Ge (10.1016/j.ccr.2021.214264_b0645) 2021; 60 W., Leitner (10.1016/j.ccr.2021.214264_b1090) 1996; 153 Dey (10.1016/j.ccr.2021.214264_b0350) 2021; 57 10.1016/j.ccr.2021.214264_b0030 Cheng (10.1016/j.ccr.2021.214264_b0900) 2020; 39 Yang (10.1016/j.ccr.2021.214264_b0110) 2019; 31 Jiao (10.1016/j.ccr.2021.214264_b0035) 2015; 44 Sun (10.1016/j.ccr.2021.214264_b0095) 2020; 8 Xu (10.1016/j.ccr.2021.214264_b0125) 2018; 376 Hinogami (10.1016/j.ccr.2021.214264_b1120) 2012; 1 Xiao (10.1016/j.ccr.2021.214264_b0930) 2018; 52 Zhang (10.1016/j.ccr.2021.214264_b0165) 2021; 439 Geis (10.1016/j.ccr.2021.214264_b0965) 2016; 20 Krap (10.1016/j.ccr.2021.214264_b0495) 2016; 55 Han (10.1016/j.ccr.2021.214264_b0550) 2016; 8 Matheu (10.1016/j.ccr.2021.214264_b1135) 2019; 141 Ying (10.1016/j.ccr.2021.214264_b0675) 2021; 4 Zhang (10.1016/j.ccr.2021.214264_b0695) 2014; 136 Kumar (10.1016/j.ccr.2021.214264_b0870) 2021; 304 Jiao (10.1016/j.ccr.2021.214264_b1245) 2016; 9 Lu (10.1016/j.ccr.2021.214264_b0605) 2019; 272 Chen (10.1016/j.ccr.2021.214264_b0710) 2021; 9 Hayden (10.1016/j.ccr.2021.214264_b0430) 2013; 46 Liang (10.1016/j.ccr.2021.214264_b0535) 2018; 30 He (10.1016/j.ccr.2021.214264_b0835) 2016; 45 Li (10.1016/j.ccr.2021.214264_b0255) 2021; 13 Wang (10.1016/j.ccr.2021.214264_b0265) 2020; 49 Chaudhari (10.1016/j.ccr.2021.214264_b0585) 2017; 29 Li (10.1016/j.ccr.2021.214264_b0170) 2019; 1 Rabone (10.1016/j.ccr.2021.214264_b0215) 2010; 329 Raza (10.1016/j.ccr.2021.214264_b0270) 2021; 430 Li (10.1016/j.ccr.2021.214264_b0455) 2019; 9 Gao (10.1016/j.ccr.2021.214264_b0400) 2021; 2 Tian (10.1016/j.ccr.2021.214264_b0730) 2015; 3 Corma (10.1016/j.ccr.2021.214264_b0445) 2010; 110 Zhong (10.1016/j.ccr.2021.214264_b0785) 2020; 11 Albo (10.1016/j.ccr.2021.214264_b1125) 2017; 10 Chen (10.1016/j.ccr.2021.214264_b0280) 2020; 11 Abazari (10.1016/j.ccr.2021.214264_b0180) 2021; 9 Kornienko (10.1016/j.ccr.2021.214264_b0525) 2015; 137 Hod (10.1016/j.ccr.2021.214264_b0505) 2015; 5 Chen (10.1016/j.ccr.2021.214264_b0330) 2020; 2 You (10.1016/j.ccr.2021.214264_b0750) 2015; 5 Gonen (10.1016/j.ccr.2021.214264_b0945) 2018; 10 10.1016/j.ccr.2021.214264_b1220 Li (10.1016/j.ccr.2021.214264_b0185) 2020; 2 Sanati (10.1016/j.ccr.2021.214264_b0050) 2020; 56 Khalil (10.1016/j.ccr.2021.214264_b1160) 2021; 31 Nam (10.1016/j.ccr.2021.214264_b0145) 2020; 19 Sanad (10.1016/j.ccr.2021.214264_b0745) 2021; 143 Rebber (10.1016/j.ccr.2021.214264_b0135) 2020; 5 Albo (10.1016/j.ccr.2021.214264_b0780) 2019; 33 Yang (10.1016/j.ccr.2021.214264_b0230) 2021; 428 Xue (10.1016/j.ccr.2021.214264_b0970) 2019; 10 Qin (10.1016/j.ccr.2021.214264_b1060) 2015; 137 Shrivastav (10.1016/j.ccr.2021.214264_b0335) 2019; 393 Huang (10.1016/j.ccr.2021.214264_b0830) 2017; 7 Jin (10.1016/j.ccr.2021.214264_b0010) 2017; 349 Lv (10.1016/j.ccr.2021.214264_b0725) 2020; 12 Zhao (10.1016/j.ccr.2021.214264_b1115) 2020; 11 Wan (10.1016/j.ccr.2021.214264_b0060) 2020; 12 Shao (10.1016/j.ccr.2021.214264_b0300) 2018; 29 10.1016/j.ccr.2021.214264_b0005 Li (10.1016/j.ccr.2021.214264_b0680) 2019; 4 Tripkovic (10.1016/j.ccr.2021.214264_b1095) 2013; 117 Cao (10.1016/j.ccr.2021.214264_b0390) 2020; 6 Singh (10.1016/j.ccr.2021.214264_b0805) 2021; 197 Xu (10.1016/j.ccr.2021.214264_b0425) 2018; 30 Wurster (10.1016/j.ccr.2021.214264_b0620) 2016; 138 Inglis (10.1016/j.ccr.2021.214264_b1110) 2012; 256 Shaikh (10.1016/j.ccr.2021.214264_b0920) 2019; 216 Gong (10.1016/j.ccr.2021.214264_b1055) 2013; 52 Yin (10.1016/j.ccr.2021.214264_b0735) 2016; 8 Windle (10.1016/j.ccr.2021.214264_b1085) 2012; 256 Zhou (10.1016/j.ccr.2021.214264_b0610) 2019; 58 Rani (10.1016/j.ccr.2021.214264_b0795) 2017; 425 Xie (10.1016/j.ccr.2021.214264_b0250) 2020; 120 Kumar (10.1016/j.ccr.2021.214264_b0890) 2020; 402 Wang (10.1016/j.ccr.2021.214264_b0305) 2018; 28 Chen (10.1016/j.ccr.2021.214264_b0375) 2021; 125 Wang (10.1016/j.ccr.2021.214264_b1230) 2017; 4 Zhang (10.1016/j.ccr.2021.214264_b0140) 2019; 11 Li (10.1016/j.ccr.2021.214264_b0245) 2021; 11 Dong (10.1016/j.ccr.2021.214264_b0510) 2018; 1 Huang (10.1016/j.ccr.2021.214264_b0595) 2016; 138 Shen (10.1016/j.ccr.2021.214264_b0625) 2017; 139 Zhao (10.1016/j.ccr.2021.214264_b0105) 2013; 4 Chen (10.1016/j.ccr.2021.214264_b0485) 2017; 139 Liu (10.1016/j.ccr.2021.214264_b1070) 2015; 7 Zhong (10.1016/j.ccr.2021.214264_b0360) 2020; 8 Li (10.1016/j.ccr.2021.214264_b1075) 2015; 5 Wang (10.1016/j.ccr.2021.214264_b0480) 2019; 7 Abazari (10.1016/j.ccr.2021.214264_b0210) 2021; 283 Meier (10.1016/j.ccr.2021.214264_b0065) 2012; 5 Duan (10.1016/j.ccr.2021.214264_b0315) 2017; 8 Zhu (10.1016/j.ccr.2021.214264_b0025) 2018; 376 Anantharaj (10.1016/j.ccr.2021.214264_b0085) 2016; 6 Quaino (10.1016/j.ccr.2021.214264_b1100) 2014; 5 Sanati (10.1016/j.ccr.2021.214264_b0285) 2020; 660 Qi (10.1016/j.ccr.2021.214264_b0715) 2020; 8 Zhang (10.1016/j.ccr.2021.214264_b1195) 2018; 24 Wang (10.1016/j.ccr.2021.214264_b0460) 2016; 45 Liao (10.1016/j.ccr.2021.214264_b0405) 2018; 373 Xu (10.1016/j.ccr.2021.214264_b0955) 2020; 418 Jiao (10.1016/j.ccr.2021.214264_b0940) 2018; 57 Yuan (10.1016/j.ccr.2021.214264_b0465) 2018; 30 Lions (10.1016/j.ccr.2021.214264_b0530) 2017; 53 Yang (10.1016/j.ccr.2021.214264_b0345) 2013; 46 Chen (10.1016/j.ccr.2021.214264_b0720) 2021; 865 Li (10.1016/j.ccr.2021.214264_b0320) 2018; 57 Ma (10.1016/j.ccr.2021.214264_b0225) 2020; 422 Kang (10.1016/j.ccr.2021.214264_b0845) 2020; 11 Zhan (10.1016/j.ccr.2021.214264_b1265) 2013; 135 Yuan (10.1016/j.ccr.2021.214264_b0475) 2018; 4 He (10.1016/j.ccr.2021.214264_b1005) 2015; 40 Xie (10.1016/j.ccr.2021.214264_b0640) 2020; 12 Usov (10.1016/j.ccr.2021.214264_b0515) 2016; 4 Xu (10.1016/j.ccr.2021.214264_b0635) 2019; 7 Kumar (10.1016/j.ccr.2021.214264_b0860) 2021; 446 Liberman (10.1016/j.ccr.2021.214264_b0580) 2020; 142 Wang (10.1016/j.ccr.2021.214264_b0650) 2016; 8 Liu (10.1016/j.ccr.2021.214264_b0370) 2020; 32 Feaster (10.1016/j.ccr.2021.214264_b1105) 2017; 7 Qiao (10.1016/j.ccr.2021.214264_b1200) 2014; 43 Kumar (10.1016/j.ccr.2021.214264_b0880) 2020; 431 Cheng (10.1016/j.ccr.2021.214264_b0685) 2020; 132 Wang (10.1016/j.ccr.2021.214264_b0960) 2018; 5 Kumar (10.1016/j.ccr.2021.214264_b0875) 2021; 127 da Silva (10.1016/j.ccr.2021.214264_b0440) 2018; 8 You (10.1016/j.ccr.2021.214264_b1015) 2015; 27 Kumar (10.1016/j.ccr.2021.214264_b1130) 2012; 25 Zhou (10.1016/j.ccr.2021.214264_b0760) 2019; 7 Monama (10.1016/j.ccr.2021.214264_b1040) 2018; 119 Hong (10.1016/j.ccr.2021.214264_b0040) 2015; 8 Tan (10.1016/j.ccr.2021.214264_b0995) 2014; 26 Li (10.1016/j.ccr.2021.214264_b1045) 2016; 52 Cheng (10.1016/j.ccr.2021.214264_b1215) 2019; 44 Zhang (10.1016/j.ccr.2021.214264_b0560) 2021; 50 Song (10.1016/j.ccr.2021.214264_b0855) 2020; 10 Lin (10.1016/j.ccr.2021.214264_b0670) 2021; 50 Zhou (10.1016/j.ccr.2021.214264_b0770) 2020; 8 Du (10.1016/j.ccr.2021.214264_b0380) 2021; 50 Chen (10.1016/j.ccr.2021.214264_b1145) 2019; 3 Zhou (10.1016/j.ccr.2021.214264_b1205) 2020; 266 Zagal (10.1016/j.ccr.2021.214264_b0840) 2010; 254 Cardoso (10.1016/j.ccr.2021.214264_b1225) 2018; 225 Li (10.1016/j.ccr.2021.214264_b0220) 2020; 49 Clough (10.1016/j.ccr.2021.214264_b1065) 2015; 137 Beyene (10.1016/j.ccr.2021.214264_b1030) 2020; 410 Rani (10.1016/j.ccr.2021.214264_b0790) 2016; 47 Afzali (10.1016/j.ccr.2021.214264_b0575) 2020; 8 Gerken (10.1016/j.ccr.2021.214264_b0690) 2011; 133 Li (10.1016/j.ccr.2021.214264_b1025) 2014; 43 Li (10.1016/j.ccr.2021.214264_b0385) 2021; 14 Zhang (10.1016/j.ccr.2021.214264_b1250) 2015; 3 Zhong (10.1016/j.ccr.2021.214264_b0905) 2019; 131 Fang (10.1016/j.ccr.2021.214264_b0120) 2019; 13 10.1016/j.ccr.2021.214264_b1190 Abazari (10.1016/j.ccr.2021.214264_b0205) 2021; 60 Song (10.1016/j.ccr.2021.214264_b0985) 2014; 35 Liu (10.1016/j.ccr.2021.214264_b1035) 2019; 131 Lyu (10.1016/j.ccr.2021.214264_b0240) 2017; 27 Wang (10.1016/j.ccr.2021.214264_b0980) 2014; 6 Mikuriya (10.1016/j.ccr.2021.214264_b0470) 2006; 250 Li (10.1016/j.ccr.2021.214264_b0020) 2020; 2 Dhakshinamoorthy (10.1016/j.ccr.2021.214264_b0500) 2016; 6 Morozan (10.1016/j.ccr.2021.214264_b0450) 2012; 5 10.1016/j.ccr.2021.214264_b0410 Hod (10.1016/j.ccr.2021.214264_b1050) 2015; 6 Wang (10.1016/j.ccr.2021.214264_b0655) 2018; 57 10.1016/j.ccr.2021.214264_b0775 Sigurnjak (10.1016/j.ccr.2021.214264_b1150) 2019; 89 Jahan (10.1016/j.ccr.2021.214264_b1000) 2013; 23 Xia (10.1016/j.ccr.2021.214264_b0950) 2017; 17 Ling (10.1016/j.ccr.2021.214264_b1180) 2018; 140 Zagal (10.1016/j.ccr.2021.214264_b0825) 2016; 55 Wang (10.1016/j.ccr.2021.214264_b0565) 2021; 12 Mena (10.1016/j.ccr.2021.214264_b0340) 2019; 372 Wu (10.1016/j.ccr.2021.214264_b1260) 2018; 117 Wang (10.1016/j.ccr.2021.214264_b0090) 2018; 5 Nepal (10.1016/j.ccr.2021.214264_b1235) 2013; 125 Lee (10.1016/j.ccr.2021.214264_b0490) 2009; 38 Fantacci (10.1016/j.ccr.2021.214264_b0815) 2011; 255 Zheng (10.1016/j.ccr.2021.214264_b0660) 2019; 555 Zhang (10.1016/j.ccr.2021.214264_b0395) 2016; 3 Tang (10.1016/j.ccr.2021.214264_b0310) 2016; 3 Zheng (10.1016/j.ccr.2021.214264_b0665) 2019; 7 Modak (10.1016/j.ccr.2021.214264_b1155) 2002; 7 Lv (10.1016/j.ccr.2021.214264_b0895) 2020; 422 Stephens (10.1016/j.ccr.2021.214264_b0415) 2012; 5 Liang (10.1016/j.ccr.2021.214264_b0015) 2021; 50 Zhang (10.1016/j.ccr.2021.214264_b0555) 2019; 7 Chen (10.1016/j.ccr.2021.214264_b0755) 2015; 27 10.1016/j.ccr.2021.214264_b1170 Kiani (10.1016/j.ccr.2021.214264_b0100) 2021; 441 Sun (10.1016/j.ccr.2021.214264_b0150) 2020; 13 Alfonso-Herrera (10.1016/j.ccr.2021.214264_b0365) 2021; 23 Masa (10.1016/j.ccr.2021.214264_b0070) 2020; 59 Ma (10.1016/j.ccr.2021.214264_b1010) 2014; 136 Li (10.1016/j.ccr.2021.214264_b1255) 2017; 89 Arico (10.1016/j.ccr.2021.214264_b0420) 2005; 4 Zhu (10.1016/j.ccr.2021.214264_b0325) 2014; 43 Yan (10.1016/j.ccr.2021.214264_b0850) 2021; 403 Khalid (10.1016/j.ccr.2021.214264_b0590) 2018; 54 Chen (10.1016/j.ccr.2021.214264_b1165) 2020; 2 Abazari |
References_xml | – volume: 27 start-page: 5010 year: 2015 end-page: 5016 ident: b0755 article-title: From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis publication-title: Adv. Mater. – volume: 197 year: 2021 ident: b0805 article-title: Unveiling interactions of non-metallic inclusions within advanced ultra-high-strength steel: A spectro-microscopic determination and first-principles elucidation publication-title: Scr. Mater. – volume: 8 start-page: 7451 year: 2014 end-page: 7457 ident: b0540 article-title: Supercapacitors of nanocrystalline metal–organic frameworks publication-title: ACS Nano – volume: 11 start-page: 1 year: 2020 end-page: 10 ident: b0785 article-title: Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks publication-title: Nat. Commun. – reference: Q. Wang, Y. Zhang, H. Lin, J. Zhu, Recent advances in metal–organic frameworks for photo-/electrocatalytic CO2 reduction, Chem. Eur. J. 25 (2019) 14026–1403. [cited as ref. 239]. – volume: 410 year: 2020 ident: b1030 article-title: Recent progress on metalloporphyrin-based hydrogen evolution catalysis publication-title: Coord. Chem. Rev. – volume: 15 start-page: 1811 year: 2011 end-page: 1832 ident: b0820 article-title: Free energy relationships in electrochemistry: a history that started in 1935 publication-title: J. Solid State Electrochem. – volume: 3 start-page: 17392 year: 2015 end-page: 17402 ident: b1020 article-title: MOF derived Co publication-title: J. Mater. Chem. A – volume: 54 start-page: 11048 year: 2018 end-page: 11051 ident: b0590 article-title: Nano-flocks of a bimetallic organic framework for efficient hydrogen evolution electrocatalysis publication-title: Chem. Commun. – volume: 141 start-page: 17081 year: 2019 end-page: 17085 ident: b1135 article-title: Three-dimensional phthalocyanine metal-catecholates for high electrochemical carbon dioxide reduction publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 8450 year: 2020 end-page: 8459 ident: b0370 article-title: Improving charge transfer in metal–organic frameworks through open site functionalization and porosity selection for Li–S batteries publication-title: Chem. Mater. – volume: 35 start-page: 185 year: 2014 end-page: 195 ident: b0985 article-title: Preparation of MOF (Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte publication-title: Chin. J. Catal. – volume: 8 start-page: 14863 year: 2020 end-page: 14894 ident: b0360 article-title: Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis publication-title: J. Mater. Chem. A – volume: 57 start-page: 9660 year: 2018 end-page: 9664 ident: b0655 article-title: Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal–organic framework system publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 6364 year: 2020 end-page: 6401 ident: b0220 article-title: Functional metal–organic frameworks as effective sensors of gases and volatile compounds publication-title: Chem. Soc. Rev. – volume: 56 start-page: 6652 year: 2020 end-page: 6655 ident: b0050 article-title: Enhanced electrochemical oxygen and hydrogen evolution reactions using an NU-1000@NiMn-LDHS composite electrode in alkaline electrolyte publication-title: Chem. Commun. – volume: 9 start-page: 2427 year: 2019 ident: b0455 article-title: Metal–organic frameworks toward electrocatalytic applications publication-title: Appl. Sci. – volume: 20 start-page: 1166 year: 2016 end-page: 1172 ident: b0965 article-title: Polymeric phthalocyanine sheets as electrocatalytic electrodes for water-oxidation publication-title: J. Porphyrins Phthalocyanines – volume: 60 start-page: 2056 year: 2021 end-page: 2067 ident: b0195 article-title: Simultaneous presence of open metal sites and amine groups on a 3D Dy(III)-metal–organic framework catalyst for mild and solvent-free conversion of CO publication-title: Inorg. Chem. – volume: 5 start-page: 846 year: 2014 end-page: 854 ident: b1100 article-title: Volcano plots in hydrogen electrocatalysis – uses and abuses publication-title: Beilstein J. nanotechnol. – reference: N.-T. Suen, S.-Fu Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives, Chem. Soc. Rev. 46 (2017) 337−365. – volume: 5 start-page: 6744 year: 2012 end-page: 6762 ident: b0415 article-title: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys publication-title: Energy Environ. Sci. – volume: 58 start-page: 4227 year: 2019 end-page: 4231 ident: b0610 article-title: Stable hierarchical bimetal–organic nanostructures as high Performance electrocatalysts for the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 1 year: 2018 end-page: 8 ident: b0810 article-title: Identification of dopant site and its effect on electrochemical activity in Mn-doped lithium titanate publication-title: Phys. Rev. Mater. – volume: 135 start-page: 1926 year: 2013 end-page: 1933 ident: b1265 article-title: Semiconductor@metal–organic framework core–shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response publication-title: J. Am. Chem. Soc. – start-page: 26238 year: 2019 end-page: 26242 ident: b0925 article-title: Ambient fast, large-scale synthesis of entropy-stabilized metal–organic framework nanosheets for electrocatalytic oxygen evolution publication-title: J. Mater. Chem. A – volume: 25 start-page: 100 year: 2016 end-page: 109 ident: b0765 article-title: Carbon-based electrocatalyst derived from bimetallic metal-organic framework arrays for high performance oxygen reduction publication-title: Nano Energy – volume: 19 start-page: 266 year: 2020 end-page: 276 ident: b0145 article-title: Molecular enhancement of heterogeneous CO publication-title: Nat. Mater. – volume: 89 start-page: 2369 year: 2017 end-page: 2376 ident: b1255 article-title: Enhanced photoelectrochemical method for sensitive detection of protein kinase A activity using TiO2/g-C3N4, PAMAM dendrimer, and alkaline phosphatase publication-title: J. Anal. Chem. – volume: 53 start-page: 9577 year: 2014 end-page: 9581 ident: b0435 article-title: Self-supported Cu publication-title: Angew. Chem. Int. Ed. – volume: 45 start-page: 5107 year: 2016 end-page: 5134 ident: b0460 article-title: Applications of water stable metal-organic frameworks publication-title: Chem. Soc. Rev. – volume: 5 start-page: 7068 year: 2015 end-page: 7076 ident: b0750 article-title: Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction publication-title: ACS Catal. – volume: 5 start-page: 6113 year: 2017 end-page: 6121 ident: b0290 article-title: Bimetallic metal–organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination publication-title: J. Mater. Chem. A – volume: 133 start-page: 14431 year: 2011 end-page: 14442 ident: b0690 article-title: Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 11001 year: 2021 end-page: 11012 ident: b0180 article-title: High specific capacitance of a 3D-metal–organic framework-confined growth in CoMn publication-title: J. Mater. Chem. A – volume: 422 year: 2020 ident: b0225 article-title: MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications publication-title: Coord. Chem. Rev. – volume: 9 start-page: 33539 year: 2017 end-page: 33543 ident: b0520 article-title: Study of electrocatalytic properties of metal–organic framework PCN-223 for the oxygen reduction reaction publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 3658 year: 2020 end-page: 3666 ident: b1210 article-title: Bimetal–MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction publication-title: J. Mater. Chem. A – volume: 2 year: 2020 ident: b1165 article-title: Two-dimensional metal-organic frameworks for energy-related electrocatalytic applications publication-title: J. Phys. Energy – volume: 11 start-page: 5369 year: 2020 end-page: 5403 ident: b0280 article-title: Bimetallic metal–organic frameworks and their derivatives publication-title: Chem. Sci. – volume: 8 start-page: 15341 year: 2017 ident: b0315 article-title: Ultrathin metal-organic framework array for efficient electrocatalytic water splitting publication-title: Nat. Commun. – volume: 7 start-page: 4822 year: 2017 end-page: 4827 ident: b1105 article-title: Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes publication-title: ACS Catal. – volume: 13 start-page: 485 year: 2021 end-page: 509 ident: b0255 article-title: Recent development and applications of electrical conductive MOFs publication-title: Nanoscale – volume: 5 start-page: 6302 year: 2015 end-page: 6309 ident: b0505 article-title: Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO publication-title: ACS Catal. – volume: 137 start-page: 7169 year: 2015 end-page: 7177 ident: b1060 article-title: Ultrastable polymolybdate-based metal–organic frameworks as highly active electrocatalysts for hydrogen generation from water publication-title: J. Am. Chem. Soc. – volume: 393 start-page: 48 year: 2019 end-page: 78 ident: b0335 article-title: Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage publication-title: Coord. Chem. Rev. – volume: 9 start-page: 357 year: 2016 end-page: 390 ident: b0055 article-title: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress publication-title: Energy Environ. Sci. – volume: 660 start-page: 11048 year: 2020 end-page: 11067 ident: b0285 article-title: Metal-organic framework derived bimetallic materials for electrochemical energy storage publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 285 year: 2019 end-page: 292 ident: b0680 article-title: Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution publication-title: ACS Energy Lett. – volume: 42 start-page: 1404 year: 2021 end-page: 1412 ident: b0865 article-title: Redox chemistry of N publication-title: Chin. J. Catal. – volume: 4 start-page: 1600371 year: 2017 ident: b1230 article-title: Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting publication-title: Adv. Sci. – volume: 6 start-page: 1 year: 2015 end-page: 9 ident: b1050 article-title: A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution publication-title: Nat. Commun. – volume: 23 start-page: 2982 year: 2021 end-page: 2991 ident: b0365 article-title: A novel Co-based MOF/Pd composite: synergy of charge-transfer towards the electrocatalytic oxygen evolution reaction publication-title: CrystEngComm – volume: 46 start-page: 1900 year: 2013 end-page: 1909 ident: b0345 article-title: Roles of cocatalysts in photocatalysis and photoelectrocatalysis publication-title: Acc. Chem. Res. – volume: 12 start-page: 5764 year: 2020 end-page: 5791 ident: b0355 article-title: Bridge engineering in photocatalysis and photoelectrocatalysis publication-title: Nanoscale – volume: 439 year: 2021 ident: b0200 article-title: MOF-derived hollow structures for advanced electrocatalysis publication-title: Coord. Chem. Rev. – volume: 52 start-page: 777 year: 2013 end-page: 784 ident: b1055 article-title: Octamolybdate-based metal–organic framework with unsaturated coordinated metal center as electrocatalyst for generating hydrogen from water publication-title: Inorg. Chem. – volume: 10 start-page: 1 year: 2019 end-page: 8 ident: b0970 article-title: Missing-linker metal-organic frameworks for oxygen evolution reaction publication-title: Nat. Commun. – volume: 1 start-page: H17 year: 2012 ident: b1120 article-title: Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework publication-title: ECS Electrochem. Lett. – volume: 38 start-page: 1450 year: 2009 end-page: 1459 ident: b0490 article-title: Metal−organic framework materials as catalysts publication-title: Chem. Soc. Rev. – reference: Q. Cui, G. Qin, W. Wang, G. K. R, A. Du, Q. Sun, Mo-based 2D MOF as a highly efficient electrocatalyst for reduction of N2 to NH3: a density functional theory study, J. Mater. Chem. A 7 (2019) 14510-14518. – volume: 1 start-page: 1 year: 2016 end-page: 10 ident: b0600 article-title: Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution publication-title: Nat. Energy. – volume: 3 start-page: 20056 year: 2015 end-page: 20059 ident: b0730 article-title: Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting publication-title: J. Mater. Chem. A – volume: 138 start-page: 3623 year: 2016 end-page: 3626 ident: b0620 article-title: Driving the oxygen evolution reaction by nonlinear cooperativity in bimetallic coordination catalysts publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1702891 year: 2018 ident: b0535 article-title: Pristine metal–organic frameworks and their composites for energy storage and conversion publication-title: Adv. Mater. – reference: Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355 (2017) eaad4998. – volume: 9 start-page: 1826 year: 2021 end-page: 1836 ident: b0710 article-title: Bimetal–organic frameworks from in situ-activated NiFe foam for highly efficient water splitting publication-title: ACS Sustain. Chem. Eng. – volume: 256 start-page: 2562 year: 2012 end-page: 2570 ident: b1085 article-title: Advances in molecular photocatalytic and electrocatalytic CO publication-title: Coord. Chem. Rev. – volume: 136 start-page: 273 year: 2014 end-page: 281 ident: b0695 article-title: A biomimetic copper water oxidation catalyst with low overpotential publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1033 year: 2016 end-page: 1039 ident: b0550 article-title: Direct carbonization of cobalt-doped NH publication-title: Nanoscale – volume: 1 start-page: 4662 year: 2018 end-page: 4669 ident: b0510 article-title: Electrochemical reduction of CO publication-title: ACS Appl. Energy Mater. – volume: 5 start-page: 10290 year: 2015 end-page: 10295 ident: b1080 article-title: Metal–organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting publication-title: RSC Adv. – volume: 12 start-page: 21479 year: 2020 end-page: 21496 ident: b0060 article-title: Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction publication-title: Nanoscale – volume: 139 start-page: 1778 year: 2017 end-page: 1781 ident: b0625 article-title: Modular and stepwise synthesis of a hybrid metal–organic framework for efficient electrocatalytic oxygen evolution publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 9319 year: 2012 end-page: 9330 ident: b0065 article-title: Stability investigations of electrocatalysts on the nanoscale publication-title: Energy Environ. Sci. – volume: 59 start-page: 15298 year: 2020 end-page: 15312 ident: b0070 article-title: Electrocatalysis as the nexus for sustainable renewable energy: The gordian knot of activity, stability, and selectivity publication-title: Angew. Chem. Int. Ed. – volume: 30 start-page: 1802091 year: 2018 ident: b0425 article-title: Surface Engineering of nanostructured energy materials publication-title: Adv Mater. – volume: 25 start-page: 70 year: 2012 end-page: 73 ident: b1130 article-title: Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst publication-title: Electrochem. Commun. – volume: 7 start-page: 69 year: 2002 end-page: 77 ident: b1155 article-title: Haber process for ammonia synthesis publication-title: Resonance – volume: 272 start-page: 32 year: 2019 end-page: 37 ident: b0605 article-title: Bimetallic metal-organic framework nanosheets as efficient electrocatalysts for oxygen evolution reaction publication-title: J. Solid State Chem. – volume: 5 start-page: 1800064 year: 2018 ident: b0090 article-title: Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting publication-title: Adv. Sci. – volume: 60 start-page: 9660 year: 2021 end-page: 9672 ident: b0205 article-title: Instantaneous sonophotocatalytic degradation of tetracycline over NU-1000@ZnIn publication-title: Inorg. Chem. – volume: 283 year: 2021 ident: b0210 article-title: PMo publication-title: Appl. Catal., B – volume: 29 start-page: 1701463 year: 2017 ident: b0585 article-title: Optochemically responsive 2D nanosheets of a 3D metal–organic framework material publication-title: Adv. Mater. – volume: 373 start-page: 22 year: 2018 end-page: 48 ident: b0405 article-title: Metal–organic frameworks for electrocatalysis publication-title: Coord. Chem. Rev. – volume: 141 start-page: 9664 year: 2019 end-page: 9672 ident: b1185 article-title: Qiao, Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 16818 year: 2016 end-page: 16823 ident: b0515 article-title: Cooperative electrochemical water oxidation by Zr nodes and Ni–porphyrin linkers of a PCN-224 MOF thin film publication-title: J. Mater. Chem. A – volume: 403 year: 2021 ident: b0850 article-title: Formation of mesoporous Co/CoS/Metal-NC@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting publication-title: Chem. Eng. J. – volume: 31 start-page: 1804740 year: 2019 ident: b0110 article-title: Applications of metal–organic-framework-derived carbon materials publication-title: Adv. Mater. – volume: 51 start-page: 7440 year: 2012 end-page: 7444 ident: b0915 article-title: A water-stable porphyrin-based metal–organic framework active for visible-light photocatalysis publication-title: Angew. Chem. Int. Ed. – volume: 55 start-page: 4087 year: 2016 end-page: 4091 ident: b0235 article-title: Co@Co publication-title: Angew. Chem., Int. Ed. – volume: 50 start-page: 2663 year: 2021 end-page: 2695 ident: b0380 article-title: Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction publication-title: Chem. Soc. Rev. – volume: 11 start-page: 2003291 year: 2021 ident: b0245 article-title: Modulating metal–organic frameworks as advanced oxygen electrocatalysts publication-title: Adv. Energy Mater. – volume: 435 year: 2021 ident: b0190 article-title: Control of interpenetration and structural transformations in the interpenetrated MOFs publication-title: Coord. Chem. Rev. – volume: 329 start-page: 1053 year: 2010 end-page: 1057 ident: b0215 article-title: An adaptable peptide-based porous material publication-title: Science – volume: 142 start-page: 15386 year: 2020 end-page: 15395 ident: b0910 article-title: A porphyrinic zirconium metal–organic framework for oxygen reduction reaction: Tailoring the spacing between active-sites through chain-based inorganic building units publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 4720 year: 2021 end-page: 4726 ident: b0560 article-title: assembly of bimetallic MOF composites on IF as efficient electrocatalysts for the oxygen evolution reaction publication-title: Dalton Trans. – volume: 5 start-page: 521 year: 2018 end-page: 534 ident: b0960 article-title: A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis publication-title: Inorg. Chem. Front. – volume: 119 start-page: 62 year: 2018 end-page: 72 ident: b1040 article-title: Palladium deposition on copper (II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction publication-title: Renewable Energy – volume: 120 start-page: 8536 year: 2020 end-page: 8580 ident: b0250 article-title: Electrically conductive metal–organic frameworks publication-title: Chem. Rev. – volume: 9 start-page: 2824 year: 2016 end-page: 2831 ident: b1245 article-title: Fe/W Co-doped BiVO publication-title: ChemSusChem – volume: 11 start-page: 18715 year: 2019 end-page: 18722 ident: b0140 article-title: Intentional construction of high-performance SnO publication-title: Nanoscale – volume: 10 start-page: 9634 year: 2018 end-page: 9641 ident: b0945 article-title: Metal organic frameworks as a catalyst for oxygen reduction: an unexpected outcome of a highly active Mn-MOF-based catalyst incorporated in activated carbon publication-title: Nanoscale – volume: 7 start-page: 11911 year: 2019 end-page: 11927 ident: b0480 article-title: Toward green production of water-stable metal–organic frameworks based on high-valence metals with low toxicities publication-title: ACS Sustainable Chem. Eng. – volume: 430 year: 2021 ident: b0270 article-title: Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material publication-title: Coord. Chem. Rev. – volume: 4 start-page: 1967 year: 2021 end-page: 1975 ident: b0675 article-title: Tailoring electronegativity of bimetallic Ni/Fe metal-organic framework nanosheets for electrocatalytic water oxidation publication-title: ACS Appl. Nano Mater. – volume: 52 start-page: 356 year: 2018 end-page: 366 ident: b0930 article-title: Metal–organic frameworks for photocatalysis and photothermal catalysis publication-title: Acc. Chem. Res. – volume: 89 start-page: 265 year: 2019 end-page: 274 ident: b1150 article-title: Production and performance of bio-based mineral fertilizers from agricultural waste using ammonia (stripping-) scrubbing technology publication-title: Waste Management – volume: 402 year: 2020 ident: b0890 article-title: The chemistry, recent advancements and activity descriptors for macrocycles based electrocatalysts in oxygen reduction reaction publication-title: Coord. Chem. Rev. – volume: 137 start-page: 118 year: 2015 end-page: 121 ident: b1065 article-title: Two-dimensional metal–organic surfaces for efficient hydrogen evolution from water publication-title: J. Am. Chem. Soc. – volume: 101 start-page: 54302 year: 2020 ident: b0800 article-title: Origin of the anomalous Pb-Br bond dynamics in formamidinium lead bromide perovskites publication-title: Phys. Rev. B – volume: 57 start-page: 8525 year: 2018 end-page: 8529 ident: b0940 article-title: From metal–organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 8069 year: 2016 end-page: 8097 ident: b0085 article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: A review publication-title: ACS Catal. – volume: 1 year: 2019 ident: b0170 article-title: Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities publication-title: EnergyChem – volume: 131 start-page: 10787 year: 2019 end-page: 10792 ident: b0905 article-title: A Phthalocyanine-based layered two-dimensional conjugated metal–organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 4280 year: 2021 end-page: 4287 ident: b0670 article-title: Ruthenium-doped NiFe-based metal-organic framework nanoparticles as highly efficient catalysts for the oxygen evolution reaction publication-title: Dalton. Trans. – volume: 256 start-page: 2571 year: 2012 end-page: 2600 ident: b1110 article-title: Electrocatalytic pathways towards sustainable fuel production from water and CO publication-title: Coord. Chem. Rev. – volume: 2 start-page: 2628 year: 2020 end-page: 2647 ident: b0330 article-title: The function of metal–organic frameworks in the application of MOF-based composites publication-title: Nanoscale Adv. – volume: 349 start-page: 84 year: 2017 end-page: 101 ident: b0010 article-title: Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis publication-title: Coord. Chem. Rev. – volume: 7 start-page: 1 year: 2019 end-page: 9 ident: b0760 article-title: Bimetallic metal-organic framework derived metal-carbon hybrid for efficient reversible oxygen electrocatalysis publication-title: Front. Chem. – volume: 7 start-page: 9743 year: 2019 end-page: 9749 ident: b0665 article-title: Highly conductive bimetallic Ni-Fe metal organic framework as a novel electrocatalyst for water oxidation publication-title: ACS Sustain. Chem. Eng. – volume: 58 start-page: 13828 year: 2019 end-page: 13833 ident: b0160 article-title: Bi publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 48495 year: 2020 end-page: 48510 ident: b0725 article-title: 3D hydrangea macrophylla-like nickel−vanadium metal−organic frameworks formed by self-assembly of ultrathin 2D nanosheets for overall water splitting publication-title: ACS Appl. Mater. Interfaces – volume: 153 start-page: 257 year: 1996 end-page: 284 ident: b1090 article-title: The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey publication-title: Coord. Chem. Rev. – volume: 441 year: 2021 ident: b0100 article-title: Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives publication-title: Coord. Chem. Rev. – volume: 43 start-page: 5257 year: 2014 end-page: 5275 ident: b1025 article-title: Recent advances in zinc–air batteries publication-title: Chem. Soc. Rev. – volume: 31 start-page: 2010052 year: 2021 ident: b1160 article-title: The role of defects in metal–organic frameworks for nitrogen reduction reaction: when defects switch to features publication-title: Adv. Funct. Mater. – volume: 47 start-page: 457 year: 2016 end-page: 467 ident: b0790 article-title: Correlation of size and oxygen bonding at the interface of Si nanocrystal in Si-SiO2 nanocomposite: A Raman mapping study publication-title: J. Raman Spectrosc. – volume: 3 start-page: 1500243 year: 2016 ident: b0395 article-title: Metal–organic frameworks as promising photosensitizers for photoelectrochemical water splitting publication-title: Adv. Sci. – volume: 11 start-page: 26891 year: 2019 end-page: 26897 ident: b1175 article-title: MOF-derived Co publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 9930 year: 2014 end-page: 9934 ident: b0980 article-title: Water oxidation electrocatalysis by a zeolitic imidazolate framework publication-title: Nanoscale – volume: 4 start-page: 2390 year: 2013 ident: b0105 article-title: Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation publication-title: Nat. Commun. – volume: 59 start-page: 4914 year: 2020 end-page: 4919 ident: b0155 article-title: Molecular evidence for metallic cobalt boosting CO publication-title: Angew. Chem., Int. Ed. – reference: B. C. e Silva, K. Irikura, J. B. S. Flor, R. M. M. dos Santos, A. Lachgar, R. C. G. Frem, M. V.B. Zanoni, Electrochemical preparation of Cu/Cu2 O-Cu (BDC) metal-organic framework electrodes for photoelectrocatalytic reduction of CO2, J. CO2 Util. 42 (2020) 101299. – volume: 372 start-page: 77 year: 2019 end-page: 84 ident: b0340 article-title: Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation publication-title: J. Hazard. Mater. – volume: 4 start-page: 440 year: 2018 end-page: 450 ident: b0475 article-title: Stable metal–organic frameworks with group 4 metals: Current status and trends publication-title: ACS Cent. Sci. – volume: 17 start-page: 2788 year: 2017 end-page: 2795 ident: b0950 article-title: High-performance energy storage and conversion materials derived from a single metal–organic framework/graphene aerogel composite publication-title: Nano lett. – volume: 44 start-page: 21597 year: 2019 end-page: 21606 ident: b1215 article-title: Enhanced photoelectrochemical hydrogenation of green-house gas CO publication-title: Int. J. Hydrog. Energy – volume: 137 start-page: 14129 year: 2015 end-page: 14135 ident: b0525 article-title: Metal–organic frameworks for electrocatalytic reduction of carbon dioxide publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 14368 year: 2019 end-page: 14376 ident: b0120 article-title: Hybrid organic–inorganic gel electrocatalyst for stable acidic water oxidation publication-title: ACS Nano – volume: 7 start-page: 2071 year: 2014 end-page: 2100 ident: b0275 article-title: Qiang Xu, Functional materials derived from open framework templates/precursors: synthesis and applications publication-title: Energy Environ. Sci. – volume: 425 start-page: 1089 year: 2017 end-page: 1094 ident: b0795 article-title: Band gap tuning in Si-SiO publication-title: Appl. Surf. Sci. – volume: 33 start-page: 157 year: 2019 end-page: 165 ident: b0780 article-title: Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO publication-title: J. CO – volume: 3 start-page: 1800337 year: 2019 ident: b1145 article-title: Advances in electrocatalytic N publication-title: Small Methods – volume: 44 start-page: 2060 year: 2015 end-page: 2086 ident: b0035 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. – volume: 578 start-page: 10 year: 2020 end-page: 23 ident: b0700 article-title: Efficient multifunctional electrocatalyst based on 2D semiconductive bimetallic metal-organic framework toward non-Pt methanol oxidation and overall water splitting publication-title: J. Colloid Interface Sci. – volume: 12 start-page: 5737 year: 2021 end-page: 5766 ident: b0565 article-title: Recent progress in metal–organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application publication-title: Chem. Sci. – volume: 2 start-page: 2100033 year: 2021 ident: b0400 article-title: Metal–organic frameworks for photo/electrocatalysis publication-title: Adv. Energy Sustainability Res. – volume: 117 start-page: 575 year: 2018 end-page: 582 ident: b1260 article-title: A competitive photoelectrochemical immunosensor for the detection of diethylstilbestrol based on an Au/UiO-66(NH publication-title: Biosens. Bioelectron. – volume: 7 start-page: 3519 year: 2014 end-page: 3542 ident: b0115 article-title: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications publication-title: Energy Environ. Sci. – volume: 139 start-page: 13476 year: 2017 end-page: 13482 ident: b0485 article-title: Boosting chemical stability, catalytic activity, and enantioselectivity of metal-organic frameworks for batch and flow reactions publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 815 year: 2020 end-page: 823 ident: b0900 article-title: Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery publication-title: Rare Met. – volume: 11 start-page: 2710 year: 2018 end-page: 2716 ident: b1240 article-title: A cobalt-based metal–organic framework as cocatalyst on BiVO publication-title: ChemSusChem – volume: 2 start-page: 2073 year: 2020 end-page: 2079 ident: b0615 article-title: A NiCo-MOF nanosheet array based electrocatalyst for the oxygen evolution reaction publication-title: Nanoscale Adv. – volume: 10 start-page: 5106 year: 2019 ident: b0075 article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis publication-title: Nat. Commun. – volume: 8 start-page: 22974 year: 2020 end-page: 22982 ident: b0715 article-title: Hierarchical 2D yarn-ball like metal-organic framework NiFe(dobpdc) as bifunctional electrocatalyst for efficient overall electrocatalytic water splitting publication-title: J. Mater. Chem. A – volume: 8 start-page: 1404 year: 2015 end-page: 1427 ident: b0040 article-title: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis publication-title: Energy Environ. Sci. – volume: 2 start-page: 86 year: 2019 ident: b0570 article-title: Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices, commun publication-title: Chem. – volume: 27 start-page: 1702324 year: 2017 ident: b0240 article-title: Self-templated fabrication of CoO–MoO publication-title: Adv. Funct. Mater. – volume: 45 start-page: 2396 year: 2016 end-page: 2409 ident: b0835 article-title: Structural effects of a carbon matrix in non-precious metal O publication-title: Chem. Soc. Rev. – volume: 254 start-page: 2755 year: 2010 end-page: 2791 ident: b0840 article-title: Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions publication-title: Coord. Chem. Rev. – volume: 5 start-page: 431 year: 2020 end-page: 453 ident: b0135 article-title: Organic–inorganic hybrids for CO publication-title: Nanoscale Horiz. – volume: 7 start-page: 16629 year: 2019 end-page: 16639 ident: b0635 article-title: From low-to high-crystallinity bimetal-organic framework nanosheet with highly exposed boundaries: An efficient and stable electrocatalyst for oxygen evolution reaction publication-title: ACS Sustain. Chem. Eng. – volume: 2 year: 2020 ident: b0185 article-title: Metal–organic frameworks as a platform for clean energy applications publication-title: EnergyChem – reference: Y.-S. Wei, L. Zou, H.-F. Wang, Y. Wang, Q. Xu, Micro/nano-scaled metal-organic frameworks and their derivatives for energy applications, Adv. Energy Mater. 2021, 2003970. – reference: X. Chen, B. Shao, M.-J. Tang, X.-L. He, F. Yang, Z.-P. Guo, Z. Zhang, C.-T. He, F.-P. Huang, J. Huang, Accurately metal-modulated bimetallic metal-organic frameworks as an advanced trifunctional electrocatalyst, J. Mater. Chem. A (2021) doi.org/10.1039/D1TA01224J. – volume: 5 start-page: 23744 year: 2017 end-page: 23752 ident: b0295 article-title: Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage publication-title: J. Mater. Chem. A – volume: 418 year: 2020 ident: b0955 article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting publication-title: Coord. Chem. Rev. – volume: 14 start-page: 1897 year: 2021 end-page: 1927 ident: b0385 article-title: Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction publication-title: Energy Environ. Sci. – volume: 10 start-page: 1100 year: 2017 end-page: 1109 ident: b1125 article-title: Copper-based metal–Organic porous materials for CO publication-title: ChemSusChem – volume: 7 start-page: 18004 year: 2015 end-page: 18009 ident: b1070 article-title: 3D architecture constructed via the confined growth of MoS publication-title: Nanoscale – volume: 428 year: 2021 ident: b0230 article-title: Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation publication-title: Coord. Chem. Rev. – volume: 57 start-page: 1888 year: 2018 end-page: 1892 ident: b0320 article-title: Nanoscale trimetallic metal–organic frameworks enable efficient oxygen evolution electrocatalysis publication-title: Angew. Chem., Int. Ed. – volume: 117 start-page: 9187 year: 2013 end-page: 9195 ident: b1095 article-title: Electrochemical CO publication-title: J. Phys. Chem. C – volume: 8 start-page: 16736 year: 2016 end-page: 16743 ident: b0650 article-title: Fe/Ni Metal-organic frameworks and their bnder-free thin films for efficient oxygen evolution with low overpotential publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 5468 year: 2014 end-page: 5512 ident: b0325 article-title: Metal–organic framework composites publication-title: Chem. Soc. Rev. – volume: 24 start-page: 18137 year: 2018 end-page: 18157 ident: b1195 article-title: Metal–organic frameworks and their derived materials as electrocatalysts and photocatalysts for CO publication-title: Chem. Eur. J. – volume: 431 year: 2020 ident: b0880 article-title: Recent development on metal phthalocyanines based materials for energy conversion and storage applications publication-title: Coord. Chem. Rev. – volume: 8 start-page: 19129 year: 2016 end-page: 19138 ident: b0735 article-title: Hierarchical nickel-cobalt phosphide yolk-shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting publication-title: Nanoscale – volume: 12 start-page: 67 year: 2020 end-page: 71 ident: b0640 article-title: Bimetal-organic framework MIL-53(Co-Fe): An efficient and robust electrocatalyst for the oxygen evolution reaction publication-title: Nanoscale – volume: 446 year: 2021 ident: b0860 article-title: Molecular-MN publication-title: Coord. Chem. Rev. – volume: 26 start-page: 6886 year: 2014 end-page: 6895 ident: b0995 article-title: Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74 publication-title: Chem. Mater. – volume: 11 start-page: 1 year: 2020 end-page: 10 ident: b1115 article-title: Selective electroreduction of CO publication-title: Nat. Commun. – volume: 60 start-page: 9700 year: 2021 end-page: 9708 ident: b0175 article-title: Third-order nonlinear optical behavior of an amide-tricarboxylate zinc(II) metal–organic framework with two-fold 3D+3D interpenetration publication-title: Inorg. Chem. – volume: 57 start-page: 1540 year: 2021 end-page: 1542 ident: b0350 article-title: Introduction to (photo)electrocatalysis for renewable energy publication-title: Chem. Commun. – volume: 8 start-page: 18366 year: 2020 end-page: 18376 ident: b0575 article-title: Hierarchical Ti-based MOF with embedded RuO publication-title: ACS Sustainable Chem. Eng. – volume: 8 start-page: 13415 year: 2020 end-page: 13436 ident: b0095 article-title: Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting publication-title: J. Mater. Chem. A – volume: 2 year: 2020 ident: b1140 article-title: MOF-based materials for photo-and electrocatalytic CO publication-title: Energy Chem. – volume: 376 start-page: 292 year: 2018 end-page: 318 ident: b0125 article-title: Metal-organic frameworks for direct electrochemical applications publication-title: Coord. Chem. Rev. – volume: 266 year: 2020 ident: b1205 article-title: Preparation of heterometallic CoNi-MOFs-modified BiVO publication-title: Appl. Catal., B – volume: 55 start-page: 1076 year: 2016 end-page: 1088 ident: b0495 article-title: Enhancement of CO publication-title: Inorg. Chem. – volume: 30 start-page: 1704303 year: 2018 ident: b0465 article-title: Stable metal-organic frameworks: design, synthesis, and applications publication-title: Adv. Mater. – volume: 7 start-page: 1700544 year: 2017 ident: b0830 article-title: Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: Recent advances and perspectives publication-title: Adv. Energy Mater. – volume: 23 start-page: 5363 year: 2013 end-page: 5372 ident: b1000 article-title: A Graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR publication-title: Adv. Funct. Mater. – volume: 132 start-page: 18391 year: 2020 end-page: 18396 ident: b0685 article-title: NiMn-based bimetal–organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 2540 year: 2021 end-page: 2581 ident: b0015 article-title: Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide publication-title: Chem. Soc. Rev. – volume: 865 year: 2021 ident: b0720 article-title: Tuning the morphology and electron structure of metal-organic framework-74 as bifunctional electrocatalyst for OER and HER using bimetallic collaboration strategy publication-title: J. Alloys Compd. – volume: 142 start-page: 1933 year: 2020 end-page: 1940 ident: b0580 article-title: Active-site modulation in an Fe-porphyrin-based metal–organic framework through ligand axial coordination: accelerating electrocatalysis and charge-transport kinetics publication-title: J. Am. Chem. Soc. – volume: 216 start-page: 174 year: 2019 end-page: 190 ident: b0920 article-title: Light harvesting and energy transfer in a porphyrin-based metal organic framework publication-title: Faraday Discuss. – volume: 3 start-page: 3074 year: 2015 end-page: 3081 ident: b1250 article-title: Solvothermal synthesis of MIL–53 (Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light publication-title: J. Mater. Chem. A – volume: 53 start-page: 6496 year: 2017 end-page: 6499 ident: b0530 article-title: Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework publication-title: Chem. Commun. – volume: 140 start-page: 14161 year: 2018 end-page: 14168 ident: b1180 article-title: Metal-free single atom catalyst for N publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 1555 year: 2016 end-page: 1562 ident: b1045 article-title: Preparation and applications of novel composites composed of metal–organic frameworks and two-dimensional materials publication-title: Chem. Commun. – volume: 13 start-page: 374 year: 2020 end-page: 403 ident: b0150 article-title: Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts publication-title: Energy Environ. Sci. – volume: 58 start-page: 15188 year: 2019 end-page: 15205 ident: b0260 article-title: Mixed-metal MOFs: Unique opportunities in metal–organic framework (MOF) functionality and design publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 1414 year: 2020 end-page: 1448 ident: b0265 article-title: MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions publication-title: Chem. Soc. Rev. – volume: 57 start-page: 8921 year: 2018 end-page: 8926 ident: b0545 article-title: Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 2149 year: 2020 end-page: 2158 ident: b0390 article-title: Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction publication-title: ACS Cent. Sci. – volume: 8 start-page: 2081 year: 2018 end-page: 2092 ident: b0440 article-title: Activity and stability of Pt/IrO publication-title: ACS Catal. – volume: 60 start-page: 12097 year: 2021 end-page: 12102 ident: b0645 article-title: Facile synthesis of two-dimensional iron/cobalt metal–organic framework for efficient oxygen evolution electrocatalysis publication-title: Angew. Chem. Int. Ed. – volume: 225 start-page: 563 year: 2018 end-page: 573 ident: b1225 article-title: MOFs based on ZIF-8 deposited on TiO publication-title: Appl. Catal. B – volume: 439 year: 2021 ident: b0165 article-title: Recent advances in the development of electronically and ionically conductive metal-organic frameworks publication-title: Coord. Chem. Rev. – volume: 11 start-page: 5464 year: 2020 ident: b0845 article-title: Electro-reduction of carbon dioxide at low over-potential at a metal–organic framework decorated cathode publication-title: Nat. Commun. – volume: 111 start-page: 641 year: 2017 end-page: 650 ident: b0935 article-title: A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries publication-title: Carbon – volume: 304 year: 2021 ident: b0870 article-title: MNC-based single-atom catalysts for H publication-title: Fuel – volume: 8 start-page: 1 year: 2018 end-page: 10 ident: b0705 article-title: In Situ Grown Bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities publication-title: Adv. Energy Mater. – volume: 55 start-page: 14510 year: 2016 end-page: 14521 ident: b0825 article-title: Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. – volume: 125 start-page: 9200 year: 2021 end-page: 9209 ident: b0375 article-title: Fine-tuning the metal oxo cluster composition and phase structure of Ni/Ti bimetallic MOFs for efficient CO publication-title: J. Phys. Chem. C – volume: 4 start-page: 366 year: 2005 end-page: 377 ident: b0420 article-title: Nanostructured materials for advanced energy conversion and storage devices publication-title: Nat. Mater. – volume: 15 start-page: 1 year: 2019 end-page: 9 ident: b0740 article-title: Synthesis of bimetallic conductive 2D metal–organic framework (Co publication-title: Small – volume: 5 start-page: 9269 year: 2012 end-page: 9290 ident: b0450 article-title: Metal organic frameworks for electrochemical applications publication-title: Energy Environ. Sci. – volume: 6 start-page: 5238 year: 2016 end-page: 5261 ident: b0500 article-title: Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts, Catal publication-title: Sci. Technol. – volume: 422 year: 2020 ident: b0895 article-title: Transition metal macrocycles for heterogeneous electrochemical CO publication-title: Coord. Chem. Rev. – volume: 13 start-page: 1090 year: 2020 end-page: 1099 ident: b0885 article-title: Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery publication-title: Nano Res. – volume: 8 start-page: 6898 year: 2020 end-page: 6904 ident: b0770 article-title: Co-Ni nanoalloy-organic framework electrocatalysts with ultrahigh electron transfer kinetics for efficient oxygen reduction publication-title: ACS Sustain. Chem. Eng. – volume: 138 start-page: 1359 year: 2016 end-page: 1365 ident: b0595 article-title: Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution publication-title: J. Am. Chem. Soc. – volume: 250 start-page: 2194 year: 2006 end-page: 2211 ident: b0470 article-title: Magnetic interactions in one-, two-, and three-dimensional assemblies of dinuclear ruthenium carboxylates publication-title: Coord. Chem. Rev. – volume: 46 start-page: 1858 year: 2013 end-page: 1866 ident: b0430 article-title: Particle size and support effects in electrocatalysis publication-title: Acc. Chem. Res. – volume: 143 start-page: 4064 year: 2021 end-page: 4073 ident: b0745 article-title: Co-Cu bimetallic metal organic framework catalyst outperforms the Pt/C benchmark for oxygen reduction publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 16179 year: 2014 end-page: 16186 ident: b0990 article-title: Preparation, characterization and bifunctional catalytic properties of MOF (Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte publication-title: Int. J. Hydrogen Energy – volume: 136 start-page: 13925 year: 2014 end-page: 13931 ident: b1010 article-title: Metal–organic framework derived hybrid Co publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 1802596 year: 2018 ident: b0305 article-title: Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and Zinc-Air batteries publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1500265 year: 2016 ident: b0310 article-title: Metal–organic-framework-derived dual metal- and nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells publication-title: Adv. Sci. – volume: 12 start-page: 632 year: 2010 end-page: 635 ident: b0975 article-title: Electrocatalytic activity of BasoliteTM F300 metal-organic-framework structures publication-title: Electrochem. Commun. – volume: 50 start-page: 915 year: 2017 end-page: 923 ident: b0045 article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes publication-title: Acc. Chem. Res. – volume: 125 start-page: 7365 year: 2013 end-page: 7368 ident: b1235 article-title: Sustained water oxidation by a catalyst cage-isolated in a metal–organic framework publication-title: Angew. Chem. Int. Ed. – volume: 28 start-page: 1704158 year: 2018 ident: b0130 article-title: History of organic–inorganic hybrid materials: Prehistory, art, science, and advanced applications publication-title: Adv. Funct. Mater. – volume: 3 start-page: 2520 year: 2018 end-page: 2526 ident: b0630 article-title: Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution Rreaction publication-title: ACS Energy Lett. – volume: 43 start-page: 631 year: 2014 end-page: 675 ident: b1200 article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels publication-title: Chem. Soc. Rev. – volume: 110 start-page: 4606 year: 2010 end-page: 4655 ident: b0445 article-title: Engineering metal organic frameworks for heterogeneous catalysis publication-title: Chem. Rev. – volume: 40 start-page: 9713 year: 2015 end-page: 9722 ident: b1005 article-title: A Co/metal–organic-framework bifunctional electrocatalyst: the effect of the surface cobalt oxidation state on oxygen evolution/reduction reactions in an alkaline electrolyte publication-title: Int. J. Hydrogen Energy – volume: 27 start-page: 7636 year: 2015 end-page: 7642 ident: b1015 article-title: High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks publication-title: Chem. Mater. – volume: 8 start-page: 19729 year: 2020 end-page: 19745 ident: b0080 article-title: Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects publication-title: J. Mater. Chem. A – volume: 555 start-page: 541 year: 2019 end-page: 547 ident: b0660 article-title: Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 1616 year: 2019 end-page: 1628 ident: b0555 article-title: From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts publication-title: J. Mater. Chem. A – volume: 2 year: 2020 ident: b0020 article-title: MOF-based materials for photo- and electrocatalytic CO publication-title: EnergyChem. – volume: 376 start-page: 430 year: 2018 end-page: 448 ident: b0025 article-title: Metal-organic frameworks and their derivatives as bifunctional electrocatalysts publication-title: Coord. Chem. Rev. – volume: 255 start-page: 2704 year: 2011 end-page: 2726 ident: b0815 article-title: A computational approach to the electronic and optical properties of Ru(II) and Ir(III) polypyridyl complexes: Applications to DSC, OLED and NLO publication-title: Coord. Chem. Rev. – volume: 127 year: 2021 ident: b0875 article-title: Substituent effect on catalytic activity of Co phthalocyanines for oxygen reduction reactions publication-title: Inorg. Chem. Commun. – volume: 5 start-page: 90265 year: 2015 end-page: 90271 ident: b1075 article-title: MOF-derived nanostructured cobalt phosphide assemblies for efficient hydrogen evolution reaction publication-title: RSC Adv. – volume: 29 start-page: 1806419 year: 2018 ident: b0300 article-title: Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis publication-title: Adv. Funct. Mater. – volume: 131 start-page: 4727 year: 2019 end-page: 4732 ident: b1035 article-title: CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 2001561 year: 2020 ident: b0855 article-title: Recent advances in MOF-derived single atom catalysts for electrochemical applications publication-title: Adv. Energy Mater. – volume: 137 start-page: 118 year: 2015 ident: 10.1016/j.ccr.2021.214264_b1065 article-title: Two-dimensional metal–organic surfaces for efficient hydrogen evolution from water publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5116937 – volume: 7 start-page: 4822 year: 2017 ident: 10.1016/j.ccr.2021.214264_b1105 article-title: Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes publication-title: ACS Catal. doi: 10.1021/acscatal.7b00687 – volume: 30 start-page: 1702891 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0535 article-title: Pristine metal–organic frameworks and their composites for energy storage and conversion publication-title: Adv. Mater. doi: 10.1002/adma.201702891 – volume: 23 start-page: 5363 year: 2013 ident: 10.1016/j.ccr.2021.214264_b1000 article-title: A Graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201300510 – volume: 7 start-page: 1616 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0555 article-title: From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08508K – volume: 111 start-page: 641 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0935 article-title: A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries publication-title: Carbon doi: 10.1016/j.carbon.2016.10.046 – volume: 58 start-page: 4227 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0610 article-title: Stable hierarchical bimetal–organic nanostructures as high Performance electrocatalysts for the oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201813634 – volume: 15 start-page: 1811 year: 2011 ident: 10.1016/j.ccr.2021.214264_b0820 article-title: Free energy relationships in electrochemistry: a history that started in 1935 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-011-1394-8 – volume: 266 year: 2020 ident: 10.1016/j.ccr.2021.214264_b1205 article-title: Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118513 – ident: 10.1016/j.ccr.2021.214264_b1220 doi: 10.1016/j.jcou.2020.101299 – volume: 11 start-page: 5369 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0280 article-title: Bimetallic metal–organic frameworks and their derivatives publication-title: Chem. Sci. doi: 10.1039/D0SC01432J – volume: 11 start-page: 2710 year: 2018 ident: 10.1016/j.ccr.2021.214264_b1240 article-title: A cobalt-based metal–organic framework as cocatalyst on BiVO4 photoanode for enhanced photoelectrochemical water oxidation publication-title: ChemSusChem doi: 10.1002/cssc.201801162 – volume: 9 start-page: 33539 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0520 article-title: Study of electrocatalytic properties of metal–organic framework PCN-223 for the oxygen reduction reaction publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01547 – ident: 10.1016/j.ccr.2021.214264_b0030 doi: 10.1126/science.aad4998 – volume: 225 start-page: 563 year: 2018 ident: 10.1016/j.ccr.2021.214264_b1225 article-title: MOFs based on ZIF-8 deposited on TiO2 nanotubes increase the surface adsorption of CO2 and its photoelectrocatalytic reduction to alcohols in aqueous media publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.12.013 – volume: 60 start-page: 9660 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0205 article-title: Instantaneous sonophotocatalytic degradation of tetracycline over NU-1000@ZnIn2S4 core–shell nanorods as a robust and eco-friendly catalyst publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c00951 – volume: 9 start-page: 1826 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0710 article-title: Bimetal–organic frameworks from in situ-activated NiFe foam for highly efficient water splitting publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c08147 – volume: 26 start-page: 6886 year: 2014 ident: 10.1016/j.ccr.2021.214264_b0995 article-title: Water reaction mechanism in metal organic frameworks with coordinatively unsaturated metal ions: MOF-74 publication-title: Chem. Mater. doi: 10.1021/cm5038183 – volume: 3 start-page: 17392 year: 2015 ident: 10.1016/j.ccr.2021.214264_b1020 article-title: MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: extraordinary bi-functional electrocatalysts for OER and ORR publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03900B – volume: 2 year: 2020 ident: 10.1016/j.ccr.2021.214264_b1140 article-title: MOF-based materials for photo-and electrocatalytic CO2 reduction publication-title: Energy Chem. – volume: 59 start-page: 15298 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0070 article-title: Electrocatalysis as the nexus for sustainable renewable energy: The gordian knot of activity, stability, and selectivity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202007672 – volume: 31 start-page: 1804740 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0110 article-title: Applications of metal–organic-framework-derived carbon materials publication-title: Adv. Mater. doi: 10.1002/adma.201804740 – volume: 153 start-page: 257 year: 1996 ident: 10.1016/j.ccr.2021.214264_b1090 article-title: The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey publication-title: Coord. Chem. Rev. doi: 10.1016/0010-8545(95)01226-5 – volume: 138 start-page: 1359 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0595 article-title: Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11986 – volume: 4 start-page: 440 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0475 article-title: Stable metal–organic frameworks with group 4 metals: Current status and trends publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.8b00073 – volume: 25 start-page: 100 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0765 article-title: Carbon-based electrocatalyst derived from bimetallic metal-organic framework arrays for high performance oxygen reduction publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.041 – volume: 10 start-page: 2001561 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0855 article-title: Recent advances in MOF-derived single atom catalysts for electrochemical applications publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001561 – volume: 57 start-page: 8525 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0940 article-title: From metal–organic frameworks to single-atom Fe implanted N-doped porous carbons: efficient oxygen reduction in both alkaline and acidic media publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803262 – volume: 8 start-page: 13415 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0095 article-title: Compositional engineering of sulfides, phosphides, carbides, nitrides, oxides, and hydroxides for water splitting publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05038E – volume: 376 start-page: 292 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0125 article-title: Metal-organic frameworks for direct electrochemical applications publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.08.010 – volume: 89 start-page: 265 year: 2019 ident: 10.1016/j.ccr.2021.214264_b1150 article-title: Production and performance of bio-based mineral fertilizers from agricultural waste using ammonia (stripping-) scrubbing technology publication-title: Waste Management doi: 10.1016/j.wasman.2019.03.043 – volume: 13 start-page: 14368 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0120 article-title: Hybrid organic–inorganic gel electrocatalyst for stable acidic water oxidation publication-title: ACS Nano doi: 10.1021/acsnano.9b07826 – volume: 403 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0850 article-title: Formation of mesoporous Co/CoS/Metal-NC@S, N-codoped hairy carbon polyhedrons as an efficient trifunctional electrocatalyst for Zn-air batteries and water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126385 – volume: 50 start-page: 4720 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0560 article-title: In situ assembly of bimetallic MOF composites on IF as efficient electrocatalysts for the oxygen evolution reaction publication-title: Dalton Trans. doi: 10.1039/D0DT04397D – volume: 255 start-page: 2704 year: 2011 ident: 10.1016/j.ccr.2021.214264_b0815 article-title: A computational approach to the electronic and optical properties of Ru(II) and Ir(III) polypyridyl complexes: Applications to DSC, OLED and NLO publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2011.03.008 – volume: 4 start-page: 16818 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0515 article-title: Cooperative electrochemical water oxidation by Zr nodes and Ni–porphyrin linkers of a PCN-224 MOF thin film publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05877A – volume: 8 start-page: 16736 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0650 article-title: Fe/Ni Metal-organic frameworks and their bnder-free thin films for efficient oxygen evolution with low overpotential publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05375 – volume: 256 start-page: 2562 year: 2012 ident: 10.1016/j.ccr.2021.214264_b1085 article-title: Advances in molecular photocatalytic and electrocatalytic CO2 reduction publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2012.03.010 – volume: 25 start-page: 70 year: 2012 ident: 10.1016/j.ccr.2021.214264_b1130 article-title: Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.09.018 – volume: 33 start-page: 157 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0780 article-title: Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2019.05.025 – volume: 125 start-page: 9200 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0375 article-title: Fine-tuning the metal oxo cluster composition and phase structure of Ni/Ti bimetallic MOFs for efficient CO2 reduction publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c03239 – volume: 865 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0720 article-title: Tuning the morphology and electron structure of metal-organic framework-74 as bifunctional electrocatalyst for OER and HER using bimetallic collaboration strategy publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.158795 – volume: 43 start-page: 631 year: 2014 ident: 10.1016/j.ccr.2021.214264_b1200 article-title: A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60323G – volume: 40 start-page: 9713 year: 2015 ident: 10.1016/j.ccr.2021.214264_b1005 article-title: A Co/metal–organic-framework bifunctional electrocatalyst: the effect of the surface cobalt oxidation state on oxygen evolution/reduction reactions in an alkaline electrolyte publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.06.027 – volume: 52 start-page: 1555 year: 2016 ident: 10.1016/j.ccr.2021.214264_b1045 article-title: Preparation and applications of novel composites composed of metal–organic frameworks and two-dimensional materials publication-title: Chem. Commun. doi: 10.1039/C5CC09127F – volume: 272 start-page: 32 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0605 article-title: Bimetallic metal-organic framework nanosheets as efficient electrocatalysts for oxygen evolution reaction publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2019.01.023 – volume: 9 start-page: 357 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0055 article-title: The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02474A – volume: 4 start-page: 1600371 year: 2017 ident: 10.1016/j.ccr.2021.214264_b1230 article-title: Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting publication-title: Adv. Sci. doi: 10.1002/advs.201600371 – volume: 117 start-page: 575 year: 2018 ident: 10.1016/j.ccr.2021.214264_b1260 article-title: A competitive photoelectrochemical immunosensor for the detection of diethylstilbestrol based on an Au/UiO-66(NH2)/CdS matrix and a direct Z-scheme Melem/CdTe heterojunction as labels publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.06.050 – volume: 441 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0100 article-title: Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213954 – volume: 52 start-page: 777 year: 2013 ident: 10.1016/j.ccr.2021.214264_b1055 article-title: Octamolybdate-based metal–organic framework with unsaturated coordinated metal center as electrocatalyst for generating hydrogen from water publication-title: Inorg. Chem. doi: 10.1021/ic3018858 – volume: 3 start-page: 3074 year: 2015 ident: 10.1016/j.ccr.2021.214264_b1250 article-title: Solvothermal synthesis of MIL–53 (Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04622F – volume: 5 start-page: 9319 year: 2012 ident: 10.1016/j.ccr.2021.214264_b0065 article-title: Stability investigations of electrocatalysts on the nanoscale publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22550f – volume: 29 start-page: 1806419 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0300 article-title: Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806419 – volume: 57 start-page: 9660 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0655 article-title: Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal–organic framework system publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803587 – volume: 132 start-page: 18391 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0685 article-title: NiMn-based bimetal–organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202008129 – volume: 60 start-page: 2056 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0195 article-title: Simultaneous presence of open metal sites and amine groups on a 3D Dy(III)-metal–organic framework catalyst for mild and solvent-free conversion of CO2 to cyclic carbonates publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c03634 – volume: 6 start-page: 8069 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0085 article-title: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: A review publication-title: ACS Catal. doi: 10.1021/acscatal.6b02479 – volume: 6 start-page: 2149 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0390 article-title: Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c01150 – volume: 446 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0860 article-title: Molecular-MN4 vs atomically dispersed M−N4−C electrocatalysts for oxygen reduction reaction publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.214122 – volume: 9 start-page: 2427 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0455 article-title: Metal–organic frameworks toward electrocatalytic applications publication-title: Appl. Sci. doi: 10.3390/app9122427 – volume: 3 start-page: 20056 year: 2015 ident: 10.1016/j.ccr.2021.214264_b0730 article-title: Self-supported NiMo hollow nanorod array: An efficient 3D bifunctional catalytic electrode for overall water splitting publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04723D – volume: 5 start-page: 7068 year: 2015 ident: 10.1016/j.ccr.2021.214264_b0750 article-title: Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction publication-title: ACS Catal. doi: 10.1021/acscatal.5b02325 – volume: 50 start-page: 915 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0045 article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00635 – volume: 53 start-page: 6496 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0530 article-title: Insights into the mechanism of electrocatalysis of the oxygen reduction reaction by a porphyrinic metal organic framework publication-title: Chem. Commun. doi: 10.1039/C7CC02113E – volume: 8 start-page: 3658 year: 2020 ident: 10.1016/j.ccr.2021.214264_b1210 article-title: Bimetal–MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13473E – volume: 430 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0270 article-title: Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213660 – volume: 372 start-page: 77 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0340 article-title: Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.12.015 – volume: 10 start-page: 9634 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0945 article-title: Metal organic frameworks as a catalyst for oxygen reduction: an unexpected outcome of a highly active Mn-MOF-based catalyst incorporated in activated carbon publication-title: Nanoscale doi: 10.1039/C7NR09081A – volume: 6 start-page: 5238 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0500 article-title: Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts, Catal publication-title: Sci. Technol. – volume: 141 start-page: 17081 year: 2019 ident: 10.1016/j.ccr.2021.214264_b1135 article-title: Three-dimensional phthalocyanine metal-catecholates for high electrochemical carbon dioxide reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09298 – volume: 120 start-page: 8536 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0250 article-title: Electrically conductive metal–organic frameworks publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00766 – volume: 46 start-page: 1858 year: 2013 ident: 10.1016/j.ccr.2021.214264_b0430 article-title: Particle size and support effects in electrocatalysis publication-title: Acc. Chem. Res. doi: 10.1021/ar400001n – volume: 3 start-page: 1500265 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0310 article-title: Metal–organic-framework-derived dual metal- and nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells publication-title: Adv. Sci. doi: 10.1002/advs.201500265 – volume: 119 start-page: 62 year: 2018 ident: 10.1016/j.ccr.2021.214264_b1040 article-title: Palladium deposition on copper (II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction publication-title: Renewable Energy doi: 10.1016/j.renene.2017.11.084 – volume: 8 start-page: 22974 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0715 article-title: Hierarchical 2D yarn-ball like metal-organic framework NiFe(dobpdc) as bifunctional electrocatalyst for efficient overall electrocatalytic water splitting publication-title: J. Mater. Chem. A doi: 10.1039/D0TA08094B – volume: 10 start-page: 1100 year: 2017 ident: 10.1016/j.ccr.2021.214264_b1125 article-title: Copper-based metal–Organic porous materials for CO2 electrocatalytic reduction to alcohols publication-title: ChemSusChem doi: 10.1002/cssc.201600693 – volume: 2 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0020 article-title: MOF-based materials for photo- and electrocatalytic CO2 reduction publication-title: EnergyChem. – volume: 402 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0890 article-title: The chemistry, recent advancements and activity descriptors for macrocycles based electrocatalysts in oxygen reduction reaction publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.213047 – volume: 11 start-page: 18715 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0140 article-title: Intentional construction of high-performance SnO2 catalysts with a 3D porous structure for electrochemical reduction of CO2 publication-title: Nanoscale doi: 10.1039/C9NR06354D – volume: 8 start-page: 2081 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0440 article-title: Activity and stability of Pt/IrO2 bifunctional materials as catalysts for the oxygen evolution/reduction reactions publication-title: ACS Catal. doi: 10.1021/acscatal.7b03429 – volume: 4 start-page: 285 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0680 article-title: Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b02345 – volume: 45 start-page: 5107 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0460 article-title: Applications of water stable metal-organic frameworks publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00362A – volume: 13 start-page: 485 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0255 article-title: Recent development and applications of electrical conductive MOFs publication-title: Nanoscale doi: 10.1039/D0NR06396G – volume: 52 start-page: 356 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0930 article-title: Metal–organic frameworks for photocatalysis and photothermal catalysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00521 – volume: 137 start-page: 7169 year: 2015 ident: 10.1016/j.ccr.2021.214264_b1060 article-title: Ultrastable polymolybdate-based metal–organic frameworks as highly active electrocatalysts for hydrogen generation from water publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b02688 – volume: 27 start-page: 7636 year: 2015 ident: 10.1016/j.ccr.2021.214264_b1015 article-title: High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02877 – volume: 5 start-page: 6744 year: 2012 ident: 10.1016/j.ccr.2021.214264_b0415 article-title: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03590a – volume: 139 start-page: 13476 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0485 article-title: Boosting chemical stability, catalytic activity, and enantioselectivity of metal-organic frameworks for batch and flow reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06459 – volume: 43 start-page: 5257 year: 2014 ident: 10.1016/j.ccr.2021.214264_b1025 article-title: Recent advances in zinc–air batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00015C – volume: 9 start-page: 2824 year: 2016 ident: 10.1016/j.ccr.2021.214264_b1245 article-title: Fe/W Co-doped BiVO4 photoanodes with a metal–organic framework cocatalyst for improved photoelectrochemical stability and activity publication-title: ChemSusChem doi: 10.1002/cssc.201600761 – volume: 283 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0210 article-title: PMo12@UiO-67 nanocomposite as a novel non-leaching catalyst with enhanced performance durability for sulfur removal from liquid fuels with exceptionally diluted oxidant publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119582 – volume: 425 start-page: 1089 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0795 article-title: Band gap tuning in Si-SiO2 nanocomposite: Interplay of confinement effect and surface/interface bonding publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.133 – volume: 304 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0870 article-title: MNC-based single-atom catalysts for H2, O2 & CO2 electrocatalysis: activity descriptors, active sites identification, challenges and prospects publication-title: Fuel doi: 10.1016/j.fuel.2021.121420 – volume: 376 start-page: 430 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0025 article-title: Metal-organic frameworks and their derivatives as bifunctional electrocatalysts publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2018.07.020 – volume: 9 start-page: 11001 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0180 article-title: High specific capacitance of a 3D-metal–organic framework-confined growth in CoMn2O4 nanostars as advanced supercapacitor electrode materials publication-title: J. Mater. Chem. A doi: 10.1039/D1TA00900A – volume: 142 start-page: 1933 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0580 article-title: Active-site modulation in an Fe-porphyrin-based metal–organic framework through ligand axial coordination: accelerating electrocatalysis and charge-transport kinetics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11355 – volume: 5 start-page: 846 year: 2014 ident: 10.1016/j.ccr.2021.214264_b1100 article-title: Volcano plots in hydrogen electrocatalysis – uses and abuses publication-title: Beilstein J. nanotechnol. doi: 10.3762/bjnano.5.96 – volume: 60 start-page: 9700 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0175 article-title: Third-order nonlinear optical behavior of an amide-tricarboxylate zinc(II) metal–organic framework with two-fold 3D+3D interpenetration publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c00997 – volume: 8 start-page: 18366 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0575 article-title: Hierarchical Ti-based MOF with embedded RuO2 nanoparticles: a highly efficient photoelectrode for visible light water oxidation publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c04682 – volume: 54 start-page: 11048 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0590 article-title: Nano-flocks of a bimetallic organic framework for efficient hydrogen evolution electrocatalysis publication-title: Chem. Commun. doi: 10.1039/C8CC06918B – volume: 2 start-page: 2073 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0615 article-title: A NiCo-MOF nanosheet array based electrocatalyst for the oxygen evolution reaction publication-title: Nanoscale Adv. doi: 10.1039/D0NA00112K – volume: 7 start-page: 1 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0760 article-title: Bimetallic metal-organic framework derived metal-carbon hybrid for efficient reversible oxygen electrocatalysis publication-title: Front. Chem. doi: 10.3389/fchem.2019.00747 – volume: 3 start-page: 1500243 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0395 article-title: Metal–organic frameworks as promising photosensitizers for photoelectrochemical water splitting publication-title: Adv. Sci. doi: 10.1002/advs.201500243 – volume: 2 start-page: 1 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0810 article-title: Identification of dopant site and its effect on electrochemical activity in Mn-doped lithium titanate publication-title: Phys. Rev. Mater. – volume: 431 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0880 article-title: Recent development on metal phthalocyanines based materials for energy conversion and storage applications publication-title: Coord. Chem. Rev. – volume: 13 start-page: 1090 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0885 article-title: Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery publication-title: Nano Res. doi: 10.1007/s12274-020-2751-7 – volume: 7 start-page: 18004 year: 2015 ident: 10.1016/j.ccr.2021.214264_b1070 article-title: 3D architecture constructed via the confined growth of MoS2 nanosheets in nanoporous carbon derived from metal–organic frameworks for efficient hydrogen production publication-title: Nanoscale doi: 10.1039/C5NR03810C – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0785 article-title: Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks publication-title: Nat. Commun. – volume: 55 start-page: 14510 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0825 article-title: Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604311 – volume: 12 start-page: 21479 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0060 article-title: Advanced electrocatalysts based on two-dimensional transition metal hydroxides and their composites for alkaline oxygen reduction reaction publication-title: Nanoscale doi: 10.1039/D0NR05072E – volume: 5 start-page: 23744 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0295 article-title: Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage publication-title: J. Mater. Chem. A doi: 10.1039/C7TA07464F – volume: 56 start-page: 6652 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0050 article-title: Enhanced electrochemical oxygen and hydrogen evolution reactions using an NU-1000@NiMn-LDHS composite electrode in alkaline electrolyte publication-title: Chem. Commun. doi: 10.1039/D0CC01146K – volume: 216 start-page: 174 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0920 article-title: Light harvesting and energy transfer in a porphyrin-based metal organic framework publication-title: Faraday Discuss. doi: 10.1039/C8FD00194D – volume: 49 start-page: 1414 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0265 article-title: MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00906J – volume: 7 start-page: 1700544 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0830 article-title: Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: Recent advances and perspectives publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700544 – volume: 139 start-page: 1778 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0625 article-title: Modular and stepwise synthesis of a hybrid metal–organic framework for efficient electrocatalytic oxygen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12353 – volume: 60 start-page: 12097 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0645 article-title: Facile synthesis of two-dimensional iron/cobalt metal–organic framework for efficient oxygen evolution electrocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202102632 – volume: 30 start-page: 1704303 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0465 article-title: Stable metal-organic frameworks: design, synthesis, and applications publication-title: Adv. Mater. doi: 10.1002/adma.201704303 – volume: 138 start-page: 3623 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0620 article-title: Driving the oxygen evolution reaction by nonlinear cooperativity in bimetallic coordination catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10484 – volume: 38 start-page: 1450 year: 2009 ident: 10.1016/j.ccr.2021.214264_b0490 article-title: Metal−organic framework materials as catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/b807080f – volume: 5 start-page: 6302 year: 2015 ident: 10.1016/j.ccr.2021.214264_b0505 article-title: Fe-porphyrin-based metal–organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01767 – volume: 10 start-page: 5106 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0075 article-title: Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis publication-title: Nat. Commun. doi: 10.1038/s41467-019-13092-7 – volume: 27 start-page: 5010 year: 2015 ident: 10.1016/j.ccr.2021.214264_b0755 article-title: From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201502315 – volume: 55 start-page: 4087 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0235 article-title: Co@Co3O4 encapsulated in carbon nanotube-grafted nitrogen-doped carbon polyhedra as an advanced bifunctional oxygen electrode publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201509382 – volume: 12 start-page: 5737 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0565 article-title: Recent progress in metal–organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application publication-title: Chem. Sci. doi: 10.1039/D1SC00095K – volume: 349 start-page: 84 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0010 article-title: Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.08.010 – volume: 439 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0200 article-title: MOF-derived hollow structures for advanced electrocatalysis publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213946 – volume: 8 start-page: 19129 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0735 article-title: Hierarchical nickel-cobalt phosphide yolk-shell spheres as highly active and stable bifunctional electrocatalysts for overall water splitting publication-title: Nanoscale doi: 10.1039/C6NR07009D – volume: 59 start-page: 4914 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0155 article-title: Molecular evidence for metallic cobalt boosting CO2 electroreduction on pyridinic nitrogen publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201916520 – volume: 2 start-page: 2100033 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0400 article-title: Metal–organic frameworks for photo/electrocatalysis publication-title: Adv. Energy Sustainability Res. doi: 10.1002/aesr.202100033 – volume: 42 start-page: 1404 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0865 article-title: Redox chemistry of N4-Fe2+ in iron phthalocyanines for oxygen reduction reaction publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63731-7 – volume: 3 start-page: 1800337 year: 2019 ident: 10.1016/j.ccr.2021.214264_b1145 article-title: Advances in electrocatalytic N2 reduction—strategies to tackle the selectivity challenge publication-title: Small Methods doi: 10.1002/smtd.201800337 – volume: 1 start-page: 1 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0600 article-title: Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution publication-title: Nat. Energy. doi: 10.1038/nenergy.2016.184 – volume: 131 start-page: 10787 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0905 article-title: A Phthalocyanine-based layered two-dimensional conjugated metal–organic framework as a highly efficient electrocatalyst for the oxygen reduction reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201907002 – volume: 5 start-page: 1800064 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0090 article-title: Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting publication-title: Adv. Sci. doi: 10.1002/advs.201800064 – volume: 55 start-page: 1076 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0495 article-title: Enhancement of CO2 adsorption and catalytic properties by Fe-doping of [Ga2(OH)2(L)] (H4L = biphenyl-3,3′,5,5′-tetracarboxylic Acid), MFM-300(Ga2) publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b02108 – volume: 12 start-page: 5764 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0355 article-title: Bridge engineering in photocatalysis and photoelectrocatalysis publication-title: Nanoscale doi: 10.1039/C9NR10511E – volume: 422 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0225 article-title: MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213483 – volume: 2 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0185 article-title: Metal–organic frameworks as a platform for clean energy applications publication-title: EnergyChem doi: 10.1016/j.enchem.2020.100027 – ident: 10.1016/j.ccr.2021.214264_b0410 doi: 10.1002/aenm.202003970 – volume: 136 start-page: 273 year: 2014 ident: 10.1016/j.ccr.2021.214264_b0695 article-title: A biomimetic copper water oxidation catalyst with low overpotential publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409267p – volume: 142 start-page: 15386 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0910 article-title: A porphyrinic zirconium metal–organic framework for oxygen reduction reaction: Tailoring the spacing between active-sites through chain-based inorganic building units publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c06329 – volume: 50 start-page: 2540 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0015 article-title: Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01482F – volume: 14 start-page: 1897 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0385 article-title: Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03697H – volume: 127 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0875 article-title: Substituent effect on catalytic activity of Co phthalocyanines for oxygen reduction reactions publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2021.108518 – volume: 27 start-page: 1702324 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0240 article-title: Self-templated fabrication of CoO–MoO2 nanocages for enhanced oxygen evolution publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702324 – volume: 7 start-page: 2071 year: 2014 ident: 10.1016/j.ccr.2021.214264_b0275 article-title: Qiang Xu, Functional materials derived from open framework templates/precursors: synthesis and applications publication-title: Energy Environ. Sci. doi: 10.1039/c4ee00517a – volume: 89 start-page: 2369 year: 2017 ident: 10.1016/j.ccr.2021.214264_b1255 article-title: Enhanced photoelectrochemical method for sensitive detection of protein kinase A activity using TiO2/g-C3N4, PAMAM dendrimer, and alkaline phosphatase publication-title: J. Anal. Chem. doi: 10.1021/acs.analchem.6b04184 – ident: 10.1016/j.ccr.2021.214264_b1170 doi: 10.1039/C9TA02926E – volume: 5 start-page: 6113 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0290 article-title: Bimetallic metal–organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00339K – volume: 44 start-page: 21597 year: 2019 ident: 10.1016/j.ccr.2021.214264_b1215 article-title: Enhanced photoelectrochemical hydrogenation of green-house gas CO2 to high-order solar fuel on coordinatively unsaturated metal-N sites containing carbonized Zn/Co ZIFs publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.06.102 – volume: 7 start-page: 9743 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0665 article-title: Highly conductive bimetallic Ni-Fe metal organic framework as a novel electrocatalyst for water oxidation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b01131 – volume: 28 start-page: 1802596 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0305 article-title: Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and Zinc-Air batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802596 – volume: 422 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0895 article-title: Transition metal macrocycles for heterogeneous electrochemical CO2 reduction publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213435 – volume: 4 start-page: 2390 year: 2013 ident: 10.1016/j.ccr.2021.214264_b0105 article-title: Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation publication-title: Nat. Commun. doi: 10.1038/ncomms3390 – volume: 373 start-page: 22 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0405 article-title: Metal–organic frameworks for electrocatalysis publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.09.001 – volume: 117 start-page: 9187 year: 2013 ident: 10.1016/j.ccr.2021.214264_b1095 article-title: Electrochemical CO2 and CO reduction on metal-functionalized porphyrin-like graphene publication-title: J. Phys. Chem. C doi: 10.1021/jp306172k – volume: 428 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0230 article-title: Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213619 – ident: 10.1016/j.ccr.2021.214264_b0775 doi: 10.1039/D1TA01224J – volume: 32 start-page: 8450 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0370 article-title: Improving charge transfer in metal–organic frameworks through open site functionalization and porosity selection for Li–S batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c02438 – volume: 12 start-page: 632 year: 2010 ident: 10.1016/j.ccr.2021.214264_b0975 article-title: Electrocatalytic activity of BasoliteTM F300 metal-organic-framework structures publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2010.02.017 – ident: 10.1016/j.ccr.2021.214264_b0005 doi: 10.1039/C6CS00328A – volume: 2 start-page: 86 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0570 article-title: Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices, commun publication-title: Chem. – volume: 20 start-page: 1166 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0965 article-title: Polymeric phthalocyanine sheets as electrocatalytic electrodes for water-oxidation publication-title: J. Porphyrins Phthalocyanines doi: 10.1142/S1088424616500826 – volume: 329 start-page: 1053 year: 2010 ident: 10.1016/j.ccr.2021.214264_b0215 article-title: An adaptable peptide-based porous material publication-title: Science doi: 10.1126/science.1190672 – volume: 410 year: 2020 ident: 10.1016/j.ccr.2021.214264_b1030 article-title: Recent progress on metalloporphyrin-based hydrogen evolution catalysis publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213234 – volume: 4 start-page: 1967 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0675 article-title: Tailoring electronegativity of bimetallic Ni/Fe metal-organic framework nanosheets for electrocatalytic water oxidation publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c03310 – volume: 1 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0170 article-title: Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities publication-title: EnergyChem – volume: 7 start-page: 69 year: 2002 ident: 10.1016/j.ccr.2021.214264_b1155 article-title: Haber process for ammonia synthesis publication-title: Resonance doi: 10.1007/BF02836187 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.ccr.2021.214264_b1050 article-title: A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/ncomms9304 – volume: 35 start-page: 185 year: 2014 ident: 10.1016/j.ccr.2021.214264_b0985 article-title: Preparation of MOF (Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(12)60729-3 – volume: 254 start-page: 2755 year: 2010 ident: 10.1016/j.ccr.2021.214264_b0840 article-title: Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2010.05.001 – volume: 135 start-page: 1926 year: 2013 ident: 10.1016/j.ccr.2021.214264_b1265 article-title: Semiconductor@metal–organic framework core–shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response publication-title: J. Am. Chem. Soc. doi: 10.1021/ja311085e – volume: 8 start-page: 1033 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0550 article-title: Direct carbonization of cobalt-doped NH2-MIL-53(Fe) for electrocatalysis of oxygen evolution reaction publication-title: Nanoscale doi: 10.1039/C5NR06626C – volume: 19 start-page: 266 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0145 article-title: Molecular enhancement of heterogeneous CO2 reduction publication-title: Nat. Mater. doi: 10.1038/s41563-020-0610-2 – volume: 11 start-page: 5464 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0845 article-title: Electro-reduction of carbon dioxide at low over-potential at a metal–organic framework decorated cathode publication-title: Nat. Commun. doi: 10.1038/s41467-020-19236-4 – volume: 39 start-page: 815 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0900 article-title: Bifunctional iron-phtalocyanine metal–organic framework catalyst for ORR, OER and rechargeable zinc–air battery publication-title: Rare Met. doi: 10.1007/s12598-020-01440-2 – volume: 5 start-page: 521 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0960 article-title: A review of anion-regulated multi-anion transition metal compounds for oxygen evolution electrocatalysis publication-title: Inorg. Chem. Front. doi: 10.1039/C7QI00780A – volume: 13 start-page: 374 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0150 article-title: Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03660A – volume: 140 start-page: 14161 year: 2018 ident: 10.1016/j.ccr.2021.214264_b1180 article-title: Metal-free single atom catalyst for N2 fixation driven by visible light publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07472 – volume: 141 start-page: 9664 year: 2019 ident: 10.1016/j.ccr.2021.214264_b1185 article-title: Qiao, Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03811 – volume: 50 start-page: 2663 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0380 article-title: Metal–organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01191F – volume: 24 start-page: 18137 year: 2018 ident: 10.1016/j.ccr.2021.214264_b1195 article-title: Metal–organic frameworks and their derived materials as electrocatalysts and photocatalysts for CO2 reduction: Progress, challenges, and perspectives publication-title: Chem. Eur. J. doi: 10.1002/chem.201803083 – volume: 30 start-page: 1802091 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0425 article-title: Surface Engineering of nanostructured energy materials publication-title: Adv Mater. doi: 10.1002/adma.201802091 – ident: 10.1016/j.ccr.2021.214264_b1190 doi: 10.1002/chem.201902203 – volume: 2 start-page: 2628 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0330 article-title: The function of metal–organic frameworks in the application of MOF-based composites publication-title: Nanoscale Adv. doi: 10.1039/D0NA00184H – volume: 29 start-page: 1701463 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0585 article-title: Optochemically responsive 2D nanosheets of a 3D metal–organic framework material publication-title: Adv. Mater. doi: 10.1002/adma.201701463 – volume: 1 start-page: H17 year: 2012 ident: 10.1016/j.ccr.2021.214264_b1120 article-title: Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework publication-title: ECS Electrochem. Lett. doi: 10.1149/2.001204eel – volume: 50 start-page: 4280 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0670 article-title: Ruthenium-doped NiFe-based metal-organic framework nanoparticles as highly efficient catalysts for the oxygen evolution reaction publication-title: Dalton. Trans. doi: 10.1039/D0DT04133E – volume: 45 start-page: 2396 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0835 article-title: Structural effects of a carbon matrix in non-precious metal O2-reduction electrocatalysts publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00665A – volume: 8 start-page: 14863 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0360 article-title: Hybrid cocatalysts in semiconductor-based photocatalysis and photoelectrocatalysis publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04977H – volume: 31 start-page: 2010052 year: 2021 ident: 10.1016/j.ccr.2021.214264_b1160 article-title: The role of defects in metal–organic frameworks for nitrogen reduction reaction: when defects switch to features publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010052 – volume: 435 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0190 article-title: Control of interpenetration and structural transformations in the interpenetrated MOFs publication-title: Coord. Chem. Rev. – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0705 article-title: In Situ Grown Bimetallic MOF-based composite as highly efficient bifunctional electrocatalyst for overall water splitting with ultrastability at high current densities publication-title: Adv. Energy Mater. – volume: 2 year: 2020 ident: 10.1016/j.ccr.2021.214264_b1165 article-title: Two-dimensional metal-organic frameworks for energy-related electrocatalytic applications publication-title: J. Phys. Energy doi: 10.1088/2515-7655/ab6429 – volume: 46 start-page: 1900 year: 2013 ident: 10.1016/j.ccr.2021.214264_b0345 article-title: Roles of cocatalysts in photocatalysis and photoelectrocatalysis publication-title: Acc. Chem. Res. doi: 10.1021/ar300227e – volume: 6 start-page: 9930 year: 2014 ident: 10.1016/j.ccr.2021.214264_b0980 article-title: Water oxidation electrocatalysis by a zeolitic imidazolate framework publication-title: Nanoscale doi: 10.1039/C4NR02399D – volume: 578 start-page: 10 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0700 article-title: Efficient multifunctional electrocatalyst based on 2D semiconductive bimetallic metal-organic framework toward non-Pt methanol oxidation and overall water splitting publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.05.098 – volume: 11 start-page: 2003291 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0245 article-title: Modulating metal–organic frameworks as advanced oxygen electrocatalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003291 – volume: 57 start-page: 8921 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0545 article-title: Bifunctional electrocatalysts for overall water splitting from an iron/nickel-based bimetallic metal-organic framework/dicyandiamide composite publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803136 – volume: 11 start-page: 1 year: 2020 ident: 10.1016/j.ccr.2021.214264_b1115 article-title: Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon publication-title: Nat. Commun. – volume: 101 start-page: 54302 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0800 article-title: Origin of the anomalous Pb-Br bond dynamics in formamidinium lead bromide perovskites publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.054302 – volume: 28 start-page: 1704158 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0130 article-title: History of organic–inorganic hybrid materials: Prehistory, art, science, and advanced applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704158 – volume: 1 start-page: 4662 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0510 article-title: Electrochemical reduction of CO2 to CO by a heterogeneous catalyst of Fe–porphyrin-based metal–organic framework publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00797 – volume: 133 start-page: 14431 year: 2011 ident: 10.1016/j.ccr.2021.214264_b0690 article-title: Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: The thermodynamic basis for catalyst structure, stability, and activity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja205647m – volume: 393 start-page: 48 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0335 article-title: Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.05.006 – volume: 49 start-page: 6364 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0220 article-title: Functional metal–organic frameworks as effective sensors of gases and volatile compounds publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00778D – volume: 555 start-page: 541 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0660 article-title: Fe/Ni bimetal organic framework as efficient oxygen evolution catalyst with low overpotential publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.08.005 – volume: 8 start-page: 15341 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0315 article-title: Ultrathin metal-organic framework array for efficient electrocatalytic water splitting publication-title: Nat. Commun. doi: 10.1038/ncomms15341 – volume: 43 start-page: 5468 year: 2014 ident: 10.1016/j.ccr.2021.214264_b0325 article-title: Metal–organic framework composites publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60472A – volume: 3 start-page: 2520 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0630 article-title: Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution Rreaction publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b01540 – volume: 58 start-page: 13828 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0160 article-title: Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907674 – volume: 7 start-page: 16629 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0635 article-title: From low-to high-crystallinity bimetal-organic framework nanosheet with highly exposed boundaries: An efficient and stable electrocatalyst for oxygen evolution reaction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b03952 – volume: 8 start-page: 1404 year: 2015 ident: 10.1016/j.ccr.2021.214264_b0040 article-title: Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03869J – volume: 8 start-page: 7451 year: 2014 ident: 10.1016/j.ccr.2021.214264_b0540 article-title: Supercapacitors of nanocrystalline metal–organic frameworks publication-title: ACS Nano doi: 10.1021/nn5027092 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0970 article-title: Missing-linker metal-organic frameworks for oxygen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-13051-2 – volume: 8 start-page: 6898 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0770 article-title: Co-Ni nanoalloy-organic framework electrocatalysts with ultrahigh electron transfer kinetics for efficient oxygen reduction publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c02271 – volume: 17 start-page: 2788 year: 2017 ident: 10.1016/j.ccr.2021.214264_b0950 article-title: High-performance energy storage and conversion materials derived from a single metal–organic framework/graphene aerogel composite publication-title: Nano lett. doi: 10.1021/acs.nanolett.6b05004 – volume: 143 start-page: 4064 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0745 article-title: Co-Cu bimetallic metal organic framework catalyst outperforms the Pt/C benchmark for oxygen reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c01096 – volume: 250 start-page: 2194 year: 2006 ident: 10.1016/j.ccr.2021.214264_b0470 article-title: Magnetic interactions in one-, two-, and three-dimensional assemblies of dinuclear ruthenium carboxylates publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2006.01.011 – volume: 418 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0955 article-title: Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213374 – volume: 47 start-page: 457 year: 2016 ident: 10.1016/j.ccr.2021.214264_b0790 article-title: Correlation of size and oxygen bonding at the interface of Si nanocrystal in Si-SiO2 nanocomposite: A Raman mapping study publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4832 – volume: 110 start-page: 4606 year: 2010 ident: 10.1016/j.ccr.2021.214264_b0445 article-title: Engineering metal organic frameworks for heterogeneous catalysis publication-title: Chem. Rev. doi: 10.1021/cr9003924 – volume: 256 start-page: 2571 year: 2012 ident: 10.1016/j.ccr.2021.214264_b1110 article-title: Electrocatalytic pathways towards sustainable fuel production from water and CO2 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2012.05.002 – volume: 660 start-page: 11048 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0285 article-title: Metal-organic framework derived bimetallic materials for electrochemical energy storage publication-title: Angew. Chem. Int. Ed. – volume: 5 start-page: 431 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0135 article-title: Organic–inorganic hybrids for CO2 sensing, separation and conversion publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00380K – volume: 53 start-page: 9577 year: 2014 ident: 10.1016/j.ccr.2021.214264_b0435 article-title: Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201403842 – volume: 7 start-page: 11911 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0480 article-title: Toward green production of water-stable metal–organic frameworks based on high-valence metals with low toxicities publication-title: ACS Sustainable Chem. Eng. – start-page: 26238 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0925 article-title: Ambient fast, large-scale synthesis of entropy-stabilized metal–organic framework nanosheets for electrocatalytic oxygen evolution publication-title: J. Mater. Chem. A doi: 10.1039/C9TA09975A – volume: 15 start-page: 1 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0740 article-title: Synthesis of bimetallic conductive 2D metal–organic framework (CoxNiy-CAT) and its mass production: enhanced electrochemical oxygen reduction activity publication-title: Small doi: 10.1002/smll.201805232 – volume: 23 start-page: 2982 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0365 article-title: A novel Co-based MOF/Pd composite: synergy of charge-transfer towards the electrocatalytic oxygen evolution reaction publication-title: CrystEngComm doi: 10.1039/D0CE01747G – volume: 125 start-page: 7365 year: 2013 ident: 10.1016/j.ccr.2021.214264_b1235 article-title: Sustained water oxidation by a catalyst cage-isolated in a metal–organic framework publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201301327 – volume: 58 start-page: 15188 year: 2019 ident: 10.1016/j.ccr.2021.214264_b0260 article-title: Mixed-metal MOFs: Unique opportunities in metal–organic framework (MOF) functionality and design publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902229 – volume: 8 start-page: 19729 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0080 article-title: Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: recent advances and future prospects publication-title: J. Mater. Chem. A doi: 10.1039/D0TA05628F – volume: 4 start-page: 366 year: 2005 ident: 10.1016/j.ccr.2021.214264_b0420 article-title: Nanostructured materials for advanced energy conversion and storage devices publication-title: Nat. Mater. doi: 10.1038/nmat1368 – volume: 5 start-page: 9269 year: 2012 ident: 10.1016/j.ccr.2021.214264_b0450 article-title: Metal organic frameworks for electrochemical applications publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22989g – volume: 197 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0805 article-title: Unveiling interactions of non-metallic inclusions within advanced ultra-high-strength steel: A spectro-microscopic determination and first-principles elucidation publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.113791 – volume: 5 start-page: 10290 year: 2015 ident: 10.1016/j.ccr.2021.214264_b1080 article-title: Metal–organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting publication-title: RSC Adv. doi: 10.1039/C4RA15680C – volume: 137 start-page: 14129 year: 2015 ident: 10.1016/j.ccr.2021.214264_b0525 article-title: Metal–organic frameworks for electrocatalytic reduction of carbon dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08212 – volume: 131 start-page: 4727 year: 2019 ident: 10.1016/j.ccr.2021.214264_b1035 article-title: CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201901409 – volume: 12 start-page: 67 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0640 article-title: Bimetal-organic framework MIL-53(Co-Fe): An efficient and robust electrocatalyst for the oxygen evolution reaction publication-title: Nanoscale doi: 10.1039/C9NR06883J – volume: 51 start-page: 7440 year: 2012 ident: 10.1016/j.ccr.2021.214264_b0915 article-title: A water-stable porphyrin-based metal–organic framework active for visible-light photocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201202471 – volume: 5 start-page: 90265 year: 2015 ident: 10.1016/j.ccr.2021.214264_b1075 article-title: MOF-derived nanostructured cobalt phosphide assemblies for efficient hydrogen evolution reaction publication-title: RSC Adv. doi: 10.1039/C5RA17427A – volume: 57 start-page: 1888 year: 2018 ident: 10.1016/j.ccr.2021.214264_b0320 article-title: Nanoscale trimetallic metal–organic frameworks enable efficient oxygen evolution electrocatalysis publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201711376 – volume: 11 start-page: 26891 year: 2019 ident: 10.1016/j.ccr.2021.214264_b1175 article-title: MOF-derived Co3O4@NC with Core-Shell structures for N2 electrochemical reduction under ambient conditions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07100 – volume: 12 start-page: 48495 year: 2020 ident: 10.1016/j.ccr.2021.214264_b0725 article-title: 3D hydrangea macrophylla-like nickel−vanadium metal−organic frameworks formed by self-assembly of ultrathin 2D nanosheets for overall water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c11722 – volume: 39 start-page: 16179 year: 2014 ident: 10.1016/j.ccr.2021.214264_b0990 article-title: Preparation, characterization and bifunctional catalytic properties of MOF (Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.12.120 – volume: 44 start-page: 2060 year: 2015 ident: 10.1016/j.ccr.2021.214264_b0035 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 136 start-page: 13925 year: 2014 ident: 10.1016/j.ccr.2021.214264_b1010 article-title: Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5082553 – volume: 439 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0165 article-title: Recent advances in the development of electronically and ionically conductive metal-organic frameworks publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213915 – volume: 57 start-page: 1540 year: 2021 ident: 10.1016/j.ccr.2021.214264_b0350 article-title: Introduction to (photo)electrocatalysis for renewable energy publication-title: Chem. Commun. doi: 10.1039/D0CC90530E – volume: 7 start-page: 3519 year: 2014 ident: 10.1016/j.ccr.2021.214264_b0115 article-title: Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications publication-title: Energy Environ. Sci. doi: 10.1039/C4EE01760A |
SSID | ssj0016992 |
Score | 2.7077212 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•The advantages of BMOFs and their composites are summarized and discussed.•BMOFs and their composites exhibit high... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 214264 |
SubjectTerms | Composites Electrocatalysis Metal-organic frameworks Oxygen evolution reaction Photoelectrocatalysis Synergic effect |
Title | Bimetallic metal–organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications |
URI | https://dx.doi.org/10.1016/j.ccr.2021.214264 |
Volume | 451 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPehFfOKz7MGTsLZJNo_1VoulKtaLhd7CZh8YqUmxUfAiHvwH_kN_ibObpFRQD97CsgPLzuw8Mt_MIHRE3cSXQgniUqEIKDxFIhYqIpyQRxziZ61st89hMBjRy7E_bqBeXQtjYJWV7i91utXW1Uq7us32NE1Nja9BzlOwP0aSIlNoTmlopPzkdQ7zcALGyo7hoG_M7jqzaTFeQpiWoC7EiY7xDH62TQv2pr-GVitHEXfLs6yjhso20HKvns-2id7P0gcFrvMkFdh-fL59lDOaBNY15GqGeSbx9U2fSBC1ZyWxwZAboJaanWLwGcHmYIvRAo2H8wxXY3GIpZve5UVerdj_PC9wGLyY895Co_75bW9AqpkKRLgsLAjTVAuHRdqBkNqlkSf9SLDEdyXTOggY18JjnqeY5PC0g1BJLh0N7JS2c5vytlEzyzO1gzB4CgLYWmZuQ5GwQOrI1RHX0lc88XZRp77NWFQNx83ci0lcI8vuY2BAbBgQlwzYRcdzkmnZbeOvzbRmUfxNZGKwBr-T7f2PbB-tuKbyoeMQxz9AzeLxSR2CP1IkLStwLbTUvbgaDL8AezHjcA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60HvQiPvFtDp6EoPtOvGmxtPbhpYXelt08sKLbolXw5sF_4D_0lzjJZqWCevC2hB0ImdmZyc433wAchX4eSaEE9UOhKDo8RRlPFBVekrEM789aWbbPXtwchFfDaDgH9aoXxsAqne8vfbr11m7lxJ3myWQ0Mj2-BjkfYvwxlsSieVgw7FRRDRbOW-1m76uYEHNekoajyzECVXHTwryEMKygPl4VPZMc_ByeZkJOYwWWXa5IzsvtrMKcKtZgsV6NaFuHt4vRvcLs-W4kiH34eH0vxzQJoivU1SPJCkm61w0q0dqelSQGRm6wWurxjGDaiGGHWJgWOj0yLoibjEOt3ORmPB27Ffur5wU3Q2bL3hswaFz2603qxipQ4fNkSrkOtfA40x7eqv2QBTJigueRL7nWccwzLQIeBIrLDL_uOFEyk55GjUpL3qaCTagV40JtAcFkQaBmy-JtInIeS818zTItI5XlwTacVqeZCsc5bkZf3KUVuOw2RQWkRgFpqYBtOP4SmZSEG3-9HFYqSr9ZTYoB4Xexnf-JHcJis9_tpJ1Wr70LS75phDj1qBftQW368KT2MT2Z5gfO_D4BRnrmIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bimetallic+metal%E2%80%93organic+frameworks+and+MOF-derived+composites%3A+Recent+progress+on+electro-+and+photoelectrocatalytic+applications&rft.jtitle=Coordination+chemistry+reviews&rft.au=Zhou%2C+Yingtang&rft.au=Abazari%2C+Reza&rft.au=Chen%2C+Jing&rft.au=Tahir%2C+Muhammad&rft.date=2022-01-15&rft.issn=0010-8545&rft.volume=451&rft.spage=214264&rft_id=info:doi/10.1016%2Fj.ccr.2021.214264&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ccr_2021_214264 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-8545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-8545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-8545&client=summon |