Advances in graphene-based flexible and wearable strain sensors
•The strain sensing mechanisms and performance of graphene-based sensors.•The design and fabrication strategies of four graphene-based strain sensors.•The applications of graphene-based flexible strain sensors in numerous fields.•Existing challenges and future opportunities for graphene-based sensor...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 464; p. 142576 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The strain sensing mechanisms and performance of graphene-based sensors.•The design and fabrication strategies of four graphene-based strain sensors.•The applications of graphene-based flexible strain sensors in numerous fields.•Existing challenges and future opportunities for graphene-based sensors.
Flexible and wearable electronics have recently gained considerable research interest due to their potential applications in personal healthcare, electronic skins, and human–machine interfaces. In particular, strain sensors that can efficiently transmit external stimuli into electrical signals are essential for wearable electronics. Two-dimensional carbon-based materials such as graphene are potentially versatile platforms for the above applications, mainly attributed to their combined properties of excellent flexibility, thermal and electrical conductivity, and mechanical strength. Although there are numerous reports devoted to the design, fabrication and application of graphene-based strain sensors, a comprehensive overview dedicated on attributes of graphene-based strain sensors that can be systematically correlated with their mechanisms, fabrication strategies and applications is urgently required in the field. Specially this review is aimed to explore the following topics, i.e., (i) the strain sensing mechanisms and key performance parameters of graphene-based sensors; (ii) the recent progress of major graphene-based sensors including those of film-based, fiber-based, foam-based and hydrogel-based; (iii) applications of graphene-based sensors for human motion sensing, health indicators, electronic skins and human machine interfaces; and finally (iv) challenges and future directions for the design of graphene-based sensors. |
---|---|
AbstractList | •The strain sensing mechanisms and performance of graphene-based sensors.•The design and fabrication strategies of four graphene-based strain sensors.•The applications of graphene-based flexible strain sensors in numerous fields.•Existing challenges and future opportunities for graphene-based sensors.
Flexible and wearable electronics have recently gained considerable research interest due to their potential applications in personal healthcare, electronic skins, and human–machine interfaces. In particular, strain sensors that can efficiently transmit external stimuli into electrical signals are essential for wearable electronics. Two-dimensional carbon-based materials such as graphene are potentially versatile platforms for the above applications, mainly attributed to their combined properties of excellent flexibility, thermal and electrical conductivity, and mechanical strength. Although there are numerous reports devoted to the design, fabrication and application of graphene-based strain sensors, a comprehensive overview dedicated on attributes of graphene-based strain sensors that can be systematically correlated with their mechanisms, fabrication strategies and applications is urgently required in the field. Specially this review is aimed to explore the following topics, i.e., (i) the strain sensing mechanisms and key performance parameters of graphene-based sensors; (ii) the recent progress of major graphene-based sensors including those of film-based, fiber-based, foam-based and hydrogel-based; (iii) applications of graphene-based sensors for human motion sensing, health indicators, electronic skins and human machine interfaces; and finally (iv) challenges and future directions for the design of graphene-based sensors. |
ArticleNumber | 142576 |
Author | Duan, Huigao Zhou, Jian Liu, Ying Elmarakbi, Ahmed Chen, Hui Fu, Yongqing Liu, Xuqing Zhang, Jinbo Zhuo, Fengling Dong, Shurong |
Author_xml | – sequence: 1 givenname: Hui surname: Chen fullname: Chen, Hui organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China – sequence: 2 givenname: Fengling surname: Zhuo fullname: Zhuo, Fengling organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China – sequence: 3 givenname: Jian orcidid: 0000-0001-6660-5190 surname: Zhou fullname: Zhou, Jian email: jianzhou@hnu.edu.cn organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China – sequence: 4 givenname: Ying surname: Liu fullname: Liu, Ying organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China – sequence: 5 givenname: Jinbo orcidid: 0000-0003-4410-5739 surname: Zhang fullname: Zhang, Jinbo organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China – sequence: 6 givenname: Shurong surname: Dong fullname: Dong, Shurong organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China – sequence: 7 givenname: Xuqing surname: Liu fullname: Liu, Xuqing organization: Department of Materials, The University of Manchester. M13 9PL, United Kingdom – sequence: 8 givenname: Ahmed surname: Elmarakbi fullname: Elmarakbi, Ahmed organization: Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom – sequence: 9 givenname: Huigao surname: Duan fullname: Duan, Huigao organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China – sequence: 10 givenname: Yongqing orcidid: 0000-0001-9797-4036 surname: Fu fullname: Fu, Yongqing organization: Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom |
BookMark | eNp9kE1LxDAQhoOs4O7qD_DWP9CarzYtHmRZ_IIFL3oOk2SqKTVdkrLqv7dlPXnY08zAPMO8z4oswhCQkGtGC0ZZddMVFruCUy4KJnmpqjOyZLUSueCML6Ze1GVeN1JdkFVKHaW0alizJHcbd4BgMWU-ZO8R9h8YMDeQ0GVtj9_e9JhBcNkXQoR5SGOEaTdhSENMl-S8hT7h1V9dk7eH-9ftU757eXzebna55Y0a86Y2zkrBHHfQOMOcVa2SFZPSmukRoA4VKASoRCk4NVxKKVQtTM2hQubEmrDjXRuHlCK2eh_9J8QfzaieDehOTwb0bEAfDUyM-sdYP8LohzBH6E-St0cSp0gHj1En63HS5HxEO2o3-BP0LzdBd6w |
CitedBy_id | crossref_primary_10_1016_j_sna_2024_115316 crossref_primary_10_1002_zaac_202400051 crossref_primary_10_1016_j_rinma_2024_100646 crossref_primary_10_3390_s24227338 crossref_primary_10_1109_JSEN_2024_3405173 crossref_primary_10_1038_s41467_024_46467_6 crossref_primary_10_1021_acsanm_4c05287 crossref_primary_10_1088_1742_6596_2873_1_012039 crossref_primary_10_1016_j_cej_2024_155352 crossref_primary_10_1021_acsomega_4c09156 crossref_primary_10_1016_j_carbon_2024_119098 crossref_primary_10_1016_j_cej_2025_161112 crossref_primary_10_1016_j_flatc_2024_100776 crossref_primary_10_1016_j_mtnano_2023_100427 crossref_primary_10_1016_j_sna_2024_115710 crossref_primary_10_3390_s24041349 crossref_primary_10_1016_j_measurement_2023_113265 crossref_primary_10_3390_s24134092 crossref_primary_10_1016_j_ijbiomac_2024_129865 crossref_primary_10_1002_admt_202400355 crossref_primary_10_1109_JSEN_2024_3444927 crossref_primary_10_1021_acsaenm_4c00724 crossref_primary_10_1016_j_cej_2024_150104 crossref_primary_10_3390_s24010271 crossref_primary_10_1088_2053_1583_ada623 crossref_primary_10_1021_acsabm_3c00873 crossref_primary_10_1021_acsaelm_4c00380 crossref_primary_10_1039_D4RA00381K crossref_primary_10_1515_polyeng_2023_0188 crossref_primary_10_1016_j_aej_2024_09_039 crossref_primary_10_1016_j_cej_2024_158573 crossref_primary_10_1016_j_jcis_2024_08_262 crossref_primary_10_1016_j_cej_2025_160836 crossref_primary_10_1016_j_polymer_2024_127286 crossref_primary_10_1021_acsapm_4c02876 crossref_primary_10_1002_vjch_202300236 crossref_primary_10_1021_acsami_4c10872 crossref_primary_10_1016_j_biosx_2025_100615 crossref_primary_10_3390_sym16091242 crossref_primary_10_3390_mi16030319 crossref_primary_10_1007_s11082_024_07140_w crossref_primary_10_1016_j_cej_2023_147790 crossref_primary_10_1016_j_sna_2024_116133 crossref_primary_10_1039_D3TA01627G crossref_primary_10_1002_sus2_207 crossref_primary_10_1039_D4MA00231H crossref_primary_10_1039_D5TB00008D crossref_primary_10_1016_j_cej_2024_149729 crossref_primary_10_1021_acsami_3c08709 crossref_primary_10_1016_j_surfin_2024_104991 crossref_primary_10_3390_gels11040235 crossref_primary_10_1007_s10853_023_08887_5 crossref_primary_10_1039_D3SD00194F crossref_primary_10_1002_adfm_202500701 crossref_primary_10_1021_acsaelm_5c00368 crossref_primary_10_1016_j_addma_2025_104698 crossref_primary_10_1007_s42765_024_00460_2 crossref_primary_10_1007_s10854_024_12474_y crossref_primary_10_3390_bios13060656 crossref_primary_10_1016_j_cej_2025_161456 crossref_primary_10_1002_advs_202402759 crossref_primary_10_1039_D4TA00129J crossref_primary_10_1016_j_carbon_2024_119832 crossref_primary_10_1039_D4TC04700A crossref_primary_10_1021_acsami_4c06905 crossref_primary_10_1021_acsami_4c19546 crossref_primary_10_1016_j_cej_2023_147899 crossref_primary_10_1021_acsomega_3c09067 crossref_primary_10_1039_D4RA02707H crossref_primary_10_1016_j_cej_2023_145915 crossref_primary_10_1016_j_nanoen_2024_110041 crossref_primary_10_1177_0021955X251329430 crossref_primary_10_1016_j_cej_2024_159008 crossref_primary_10_1021_acsami_4c12118 crossref_primary_10_1155_2024_2966457 crossref_primary_10_1016_j_sna_2024_116152 crossref_primary_10_1021_acsapm_4c03346 crossref_primary_10_1002_adsr_202300120 crossref_primary_10_1038_s41378_024_00680_x crossref_primary_10_1039_D4SD00140K crossref_primary_10_3390_nano14231951 crossref_primary_10_1680_jsuin_24_00116 crossref_primary_10_1016_j_cej_2023_144385 crossref_primary_10_1016_j_foodcont_2023_110129 crossref_primary_10_1002_marc_202401141 crossref_primary_10_1016_j_ijbiomac_2024_135959 crossref_primary_10_1088_1361_6463_ada6c3 crossref_primary_10_1080_10408436_2024_2385828 crossref_primary_10_1002_admt_202301983 crossref_primary_10_1088_1361_6439_ad5cfd crossref_primary_10_3390_s24103038 crossref_primary_10_1016_j_cej_2024_151221 crossref_primary_10_1021_acsanm_3c06128 crossref_primary_10_1016_j_compositesa_2024_108586 crossref_primary_10_1016_j_optcom_2025_131477 crossref_primary_10_1039_D3TA06385B crossref_primary_10_1021_acsaem_3c02409 crossref_primary_10_1002_cctc_202400696 crossref_primary_10_3390_ma17030557 crossref_primary_10_1016_j_cossms_2024_101174 crossref_primary_10_1021_acsapm_4c03810 crossref_primary_10_1039_D4CS00220B crossref_primary_10_1021_acsami_4c07412 crossref_primary_10_1007_s10853_023_09091_1 crossref_primary_10_1007_s12274_024_6594_5 crossref_primary_10_1016_j_sna_2023_114824 crossref_primary_10_1016_j_jclepro_2023_139004 crossref_primary_10_59400_esc1613 crossref_primary_10_1002_adfm_202315162 crossref_primary_10_1080_10601325_2024_2362894 crossref_primary_10_1002_smll_202405847 crossref_primary_10_1016_j_apmt_2024_102574 crossref_primary_10_1016_j_nantod_2024_102211 crossref_primary_10_1021_acsami_4c17983 crossref_primary_10_1021_acsami_4c21563 crossref_primary_10_1016_j_sna_2024_115809 crossref_primary_10_1016_j_device_2025_100728 crossref_primary_10_1021_acsanm_3c03002 crossref_primary_10_1088_2053_1583_adabf3 crossref_primary_10_1002_app_54829 crossref_primary_10_1002_pc_29069 crossref_primary_10_3390_mi15080989 crossref_primary_10_1016_j_microc_2025_113446 crossref_primary_10_1149_1945_7111_adaa29 crossref_primary_10_1016_j_mtcomm_2025_111569 crossref_primary_10_1021_acssuschemeng_3c03543 crossref_primary_10_1002_adsr_202400079 crossref_primary_10_3390_polym15173553 crossref_primary_10_1126_sciadv_adp8804 crossref_primary_10_1016_j_jcis_2024_09_131 crossref_primary_10_1016_j_sbsr_2025_100750 crossref_primary_10_1016_j_coco_2023_101755 crossref_primary_10_1021_acsami_4c04519 crossref_primary_10_3390_c9040108 crossref_primary_10_1007_s10854_025_14498_4 crossref_primary_10_1016_j_compositesa_2024_108643 crossref_primary_10_1016_j_nanoen_2024_109781 crossref_primary_10_1016_j_cej_2023_147109 crossref_primary_10_1063_5_0223188 crossref_primary_10_1016_j_cej_2023_148317 crossref_primary_10_1016_j_cej_2024_151049 crossref_primary_10_1021_acsanm_3c03678 crossref_primary_10_1002_adsr_202300208 crossref_primary_10_1016_j_carbpol_2024_122788 crossref_primary_10_1088_1361_665X_ad765b crossref_primary_10_1021_acsanm_4c04054 crossref_primary_10_1021_acsaenm_3c00480 crossref_primary_10_1039_D4TC03626C crossref_primary_10_1088_1361_6463_ad8930 crossref_primary_10_1016_j_cej_2024_158365 crossref_primary_10_1016_j_mser_2025_100975 crossref_primary_10_1016_j_nxmate_2024_100107 crossref_primary_10_1039_D3TA04872A crossref_primary_10_1021_acsami_3c12851 crossref_primary_10_1016_j_cej_2024_154445 crossref_primary_10_1007_s12221_024_00543_2 crossref_primary_10_1021_acsami_4c06546 crossref_primary_10_3390_ma17205102 crossref_primary_10_3390_bios14050227 crossref_primary_10_1016_j_diamond_2024_111724 crossref_primary_10_1371_journal_pone_0306866 crossref_primary_10_3390_ma17184499 crossref_primary_10_1016_j_nanoen_2025_110821 crossref_primary_10_1002_admt_202401621 crossref_primary_10_3390_nano14141173 crossref_primary_10_1039_D4TA08802F crossref_primary_10_1002_pssa_202400613 crossref_primary_10_1021_acs_chemrev_4c00369 crossref_primary_10_1016_j_apsusc_2024_160964 crossref_primary_10_1021_acsaelm_4c00288 crossref_primary_10_1007_s10853_024_09835_7 crossref_primary_10_1039_D4TC04049J crossref_primary_10_1021_acsami_4c09786 crossref_primary_10_1109_LED_2024_3496859 crossref_primary_10_1016_j_eurpolymj_2024_113185 crossref_primary_10_1021_acssuschemeng_3c03887 |
Cites_doi | 10.1039/C4TA01073F 10.1002/adma.201801072 10.1126/sciadv.1701114 10.1016/j.cej.2021.134038 10.1021/acsami.8b11233 10.1039/C6MH00027D 10.1039/C7NR09022F 10.1021/acsami.9b11776 10.1016/j.cej.2022.137259 10.1016/j.cej.2022.135018 10.1166/jnn.2019.17097 10.1002/adfm.201808247 10.1021/acsami.7b05636 10.1038/nnano.2006.53 10.1021/nn501204t 10.1063/1.2819690 10.1016/j.carbpol.2017.08.106 10.1039/D2TC00932C 10.1039/D1TB00082A 10.1103/PhysRevLett.90.157601 10.1021/acsami.8b15848 10.1021/acsnano.8b02162 10.1016/j.snb.2019.01.063 10.3390/s111110691 10.1039/C7CS00229G 10.1021/am401402x 10.1002/adma.201302406 10.1002/adfm.202102355 10.1002/adfm.201802235 10.1002/adfm.201705879 10.1063/1.4742331 10.1021/nl302959a 10.1002/adfm.202104991 10.1021/acsami.5b09314 10.1002/adfm.201901917 10.1002/pc.25364 10.1039/C8QM00260F 10.1021/acsami.0c06091 10.1002/adfm.201907151 10.1039/D0TA11959H 10.1038/nnano.2012.224 10.1039/C8NR02652A 10.1038/nature12401 10.1038/s41378-021-00325-3 10.1016/j.polymer.2020.123340 10.1002/adma.201902051 10.1039/C3NR04521H 10.1039/C9TC05804D 10.1039/C9NR09306K 10.1063/1.4804580 10.1016/j.cej.2022.135399 10.1002/aelm.202001235 10.1016/j.cej.2022.136138 10.1016/j.compscitech.2021.108689 10.1038/s41598-019-55262-z 10.1002/adfm.201904706 10.1021/acsnano.0c05932 10.1016/j.tws.2005.07.003 10.1002/adfm.201501000 10.1002/adma.202005902 10.1039/C3TC31680G 10.1016/j.compscitech.2018.08.022 10.1016/j.carbon.2017.04.002 10.1002/adfm.201904549 10.1002/adfm.201702891 10.1039/D1TA07273K 10.1021/acsami.1c07620 10.1021/acsami.6b08172 10.1002/admt.201800444 10.1002/adma.201902133 10.1002/adfm.202008936 10.1088/1361-665X/aaaba0 10.1016/j.carbon.2019.11.072 10.1002/adma.201800716 10.1039/D0TA02878A 10.1002/adfm.201909912 10.1038/nnano.2011.36 10.1021/acsami.7b04605 10.1016/j.mee.2013.11.013 10.1016/j.carbon.2018.04.065 10.1016/j.cej.2021.128744 10.1021/nl802367t 10.1021/acsami.5b00695 10.1016/j.sna.2018.04.040 10.1021/acsami.7b12932 10.1016/j.nanoen.2019.104134 10.1039/C7NR01862B 10.1021/acsnano.8b03391 10.1002/adma.201504225 10.1039/C6NR07620C 10.1016/j.compscitech.2012.09.016 10.1016/j.surfcoat.2016.04.066 10.1016/j.jmps.2020.103943 10.1002/adma.202108932 10.1088/0960-1317/19/8/085019 10.1002/adma.201902343 10.1039/C5RA01519G 10.1021/acs.chemmater.5b02098 10.1063/1.5037318 10.1021/acsami.9b14476 10.1016/j.nanoen.2014.11.025 10.1039/D0TB01926G 10.1039/C9TA11084D 10.1038/nmat3001 10.1016/j.carbon.2014.05.022 10.1002/adfm.202007495 10.1016/j.compositesa.2020.105932 10.1002/smll.202006542 10.1038/s41467-022-30648-2 10.1021/acsami.0c15578 10.1002/adfm.201803221 10.1021/acsami.6b10484 10.1016/j.compscitech.2018.01.019 10.3390/s20082383 10.1021/acsami.9b13349 10.1039/C9TC03475G 10.1002/adfm.201701513 10.1002/adfm.201909035 10.1021/acsami.9b04915 10.1021/acsami.8b06496 10.1038/srep04452 10.1038/ncomms6714 10.1039/B917103G 10.1039/C7NR07225B 10.1002/adma.201503558 10.1016/j.mtcomm.2020.100909 10.3390/ma7042501 10.1002/adfm.201504755 10.1016/j.cej.2022.136631 10.1002/adfm.201905197 10.1021/acsami.1c12686 10.1002/adma.201400633 10.1021/acsami.9b20612 10.1021/acsami.8b12674 10.1002/aelm.202000269 10.1016/j.compositesa.2017.11.027 10.1002/adfm.202003214 10.1002/adfm.201504717 10.1038/s41467-020-19088-y 10.1039/C8TC03702G 10.1002/adma.202107902 10.1002/adma.201304742 10.1016/j.carbon.2013.05.064 10.1021/acsami.0c13442 10.1021/nn506341u 10.1088/1361-665X/aaf3ce 10.1063/1.3267079 10.1021/acsami.6b05088 10.1016/j.compositesa.2015.10.010 10.1016/j.compositesa.2018.01.031 10.1016/j.compscitech.2018.12.031 10.1016/j.cej.2022.135502 10.1021/acsnano.9b06899 10.1007/s12274-022-4413-4 10.1016/j.carbon.2012.04.056 10.1021/acsami.7b16284 10.1002/cphc.201402810 10.1039/D1TA07127K 10.1016/j.carbon.2010.01.062 10.1002/adfm.201907678 10.1021/acsnano.5b02781 10.1039/D0TC05589A 10.1016/j.colsurfa.2022.128428 10.1038/nature14002 10.1016/j.matdes.2018.02.006 10.1038/srep00870 10.1021/acsami.9b15412 10.1002/smll.201601916 10.1002/adfm.201602619 10.3390/polym11121985 10.1021/acsami.7b00847 10.1039/C9TB02570G 10.1007/s12274-018-2043-7 10.1039/C9TC04006D 10.1038/srep40116 10.1021/cr000108x 10.1088/1361-6528/ab1287 10.1021/cr3000412 10.1021/acsami.6b00867 10.1093/nsr/nwu072 10.1016/j.cej.2019.05.045 10.1007/s10853-020-05394-9 10.1002/aelm.202001084 10.1002/adfm.202007661 10.1016/j.nanoen.2018.10.030 10.1002/adfm.201800850 10.1021/acsami.8b16237 10.1016/j.matdes.2018.05.040 10.1021/nn700375n 10.1021/acsami.0c00176 10.1039/D1TC02599F 10.1021/acsami.0c19484 10.1021/acsami.5b12588 10.1063/1.4826496 10.1093/nsr/nwx009 10.1021/acsami.1c16646 10.1038/s41467-018-04906-1 10.1016/j.colsurfa.2022.129341 10.1002/adfm.201805924 10.1039/D1TC01894A 10.1021/acsnano.6b03813 10.1021/acsami.1c23176 10.1002/adfm.201400379 10.1002/adfm.202204272 10.1016/j.cej.2022.136468 10.1039/C5TB00075K 10.1038/ncomms4266 10.1021/acs.nanolett.8b01743 10.1039/C5NR04312C 10.3390/s20143927 10.1016/j.compscitech.2013.04.005 10.1021/nn300097q 10.1109/JPROC.2009.2013612 10.1002/adma.201701353 10.1002/adma.201405864 10.1038/ncomms4132 10.1088/0957-4484/26/37/375501 10.1016/j.msec.2015.07.053 10.1002/smll.201901124 10.1021/acsami.7b01551 10.1002/adma.201504244 10.1002/adfm.201903732 10.1016/j.cej.2019.122271 10.1016/j.carbon.2021.04.056 10.1002/admt.202100572 10.1021/acsnano.7b02182 10.1039/C8MH01062E 10.1016/j.carbon.2017.10.034 10.1002/adfm.202204755 10.1021/acsaelm.0c00292 10.1021/acsami.7b19649 10.1039/C9TA04248B 10.1039/C7NR03895J 10.1002/adfm.202104288 10.1021/acsami.9b19721 10.1039/c3ta10639j |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2023.142576 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2023_142576 S1385894723013074 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SSH ZY4 |
ID | FETCH-LOGICAL-c297t-98bdc431d2da9db1dc7f746144cb691a0de7a7eaa635320b24443783b82a6e1d3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 01:50:42 EDT 2025 Thu Apr 24 23:02:33 EDT 2025 Fri Feb 23 02:36:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stretchable Flexible and wearable electronics Graphene Strain sensors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-98bdc431d2da9db1dc7f746144cb691a0de7a7eaa635320b24443783b82a6e1d3 |
ORCID | 0000-0001-6660-5190 0000-0001-9797-4036 0000-0003-4410-5739 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2023_142576 crossref_citationtrail_10_1016_j_cej_2023_142576 elsevier_sciencedirect_doi_10_1016_j_cej_2023_142576 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-15 |
PublicationDateYYYYMMDD | 2023-05-15 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zheng, Gao, Ren, Gao (b1090) 2021; 9 Son, Kim, Lee, Hyeon, Hwang, Park (b0790) 2019; 19 Wang, Gao, Ren (b1035) 2021; 215 Wang, Wang, Yang, Li, Zang, Zhu, Wang, Wu, Zhu (b0320) 2014; 24 Zhang, Ren, Li, Cui, Guo, Tang, Xiao, Zhou, Qin, Wang, Liu (b1165) 2021; 9 Liu, Han, Xu, Wu, Liu (b0645) 2018; 10 Pan, Liu, Chen, Zhang, Guo (b1000) 2017; 9 Liu, Choi (b0460) 2009; 19 He, Yang (b0250) 2006; 1 Yang, Tao, Pang, Tian, Ju, Wu, Yang, Ren (b0580) 2018; 10 Shi, Zhao, Pai, Lee, Zhang, Stevenson, Ishara, Zhang, Zhu, Ma (b1205) 2016; 26 Liu, Dong, Shi, Wang, Ni, Fu (b0715) 2020; 24 Li, Chen, Fan, Wu, Guo (b0110) 2020; 30 Fan, Yeo, Su, Hattori, Lee, Jung, Zhang, Liu, Cheng, Falgout, Bajema, Coleman, Gregoire, Larsen, Huang, Rogers (b0690) 2014; 5 Yan, Wang, Wang, Pan (b0870) 2018; 143 Wu, Peng, Han, Zhu, Wang (b0505) 2018; 10 Liu, Peng, Hou, Wang, Zhang (b0745) 2013; 81 Chhetry, Sharifuzzaman, Yoon, Sharma, Xuan, Park (b0525) 2019; 11 Wang, Meng, Tebyetekerwa, Li, Pionteck, Sun, Qin, Zhu (b0700) 2018; 105 Kim, Kim, Kil, Kim, Park (b0105) 2018; 18 Yang, Cao, He, Shi, Ding, Wang, Sun (b0325) 2019; 66 Mai, Yu, Han, Kang, Li (b0135) 2020; 30 Wang, Guo, Lee, Ahmed, Zhong, Favors, Zaera, Ozkan, Ozkan (b0895) 2014; 4 Wu, Wang, Liu, Lv, Li, Wei, Liu (b0210) 2019; 31 Zhao, He, Yang, Shi, Cheng, Yang, Xie, Wang, Shi, Zhang (b0360) 2012; 101 Zhong, Liu, Xie (b1005) 2015; 3 Chhetry, Sharma, Barman, Yoon, Ko, Park, Yoon, Kim, Park (b1190) 2021; 31 Jing, Mi, Peng, Turng (b1070) 2018; 136 Hu, Tian, Xu, Sun, Sun, Sun, Liu, Zhang, Qu (b0755) 2020; 14 Jiang, He, Cai, Shen, Hu, Zhang (b1145) 2020; 12 Zhou, Zhuo, Long, Liu, Lu, Luo, Chen, Dong, Fu, Duan (b1075) 2022; 447 Fan, Qin, Gao, Wu, Pionteck, Mäder, Zhu (b0465) 2012; 50 Wang, Qiu, Cao, Hu (b0845) 2015; 27 Yun, Ju, Lee, Moon, Park, Kim, Hong, Ha, Jang, Lee, Chung, Choi, Nam, Lee, Jun, Skin (b1170) 2017; 27 Campea, Majcher, Lofts, Hoare (b0125) 2021; 31 Chen, Ren, Gao, Liu, Pei, Cheng (b0925) 2011; 10 Gao, Yu, Yeo, Lim (b0005) 2020; 32 Wen, Li, Cheng (b0205) 2016; 28 Mohseni Taromsari, Shi, Saadatnia, Park, Naguib (b0720) 2022; 442 Yuan, Zhou, Li, Shi (b0785) 2015; 7 Li, Zhao, Zeng, Huang, Gong, Zhang, Sun, Wong (b0950) 2016; 8 Lin, Liu, Zhang, Li, Ji, Deng, Fu (b0480) 2013; 5 Lin, Yin, Wang, Jia, Yuan, Wang (b0860) 2022; 443 Shao, Wei, Wu, Jiang, Yao, Peng, Chen, Huangfu, Ying, Zhang, Ping (b0070) 2022; 13 Park, You, Shin, Jeong (b1120) 2015; 16 Deng, Ji, Yan, Fu, Duan, Zhang, Fu (b0470) 2014; 2 Chu, Jiao, Huang, Zheng, Wang, He (b0520) 2021; 9 Yao, Wu, A, Zhang, Fang, Li, Sun, Gao, Lu (b0640) 2022; 431 Wang, Cong, Fu (b0965) 2020; 8 Wang, Yang, Daoud (b0120) 2019; 55 Cai, Qin, Li, Tyagi, Liu, Hossain, Chen, Kim, Liu, Zhuang, You, Xu, Lu, Sun, Luo (b1110) 2019; 7 Hong, Jeong, Cho, Lu, Kim (b0010) 2019; 29 Zhou, Long, Huang, Jiang, Zhuo, Guo, Li, Fu, Duan (b0290) 2022; 6 Pham, Cuong, Hur, Shin, Kim, Chung, Kim (b0550) 2010; 48 Wu, Zhang, Ladani, Ravindran, Mouritz, Kinloch, Wang (b0630) 2017; 9 Huang, Zhao, Wang, Sun, Tong (b1010) 2016; 8 Yao, Ren, Song, Liu, Huang, Dong, O'Connor, Zhu (b0040) 2020; 32 Huang, Zhao, Wang, Guo, Zhang, Liu, Liu, Zhang (b0770) 2018; 27 Xu, Jiang, Han, Cai, Gao (b1115) 2021; 9 Zhao, Wang, Yang, Lu, Cheng, He, Xie, Meng, Shi, Zhang (b0355) 2015; 9 Kim, Sim, Thukral, Yu (b0675) 2017; 3 Yamada, Hayamizu, Yamamoto, Yomogida, Izadi-Najafabadi, Futaba, Hata (b0430) 2011; 6 Ma, Wu, Patil, Zhu, Meng, Meng, Hou, Zhang, Liu, Yu, Wang, Lin, Liu (b0085) 2019; 29 Huang, Shi, Das, Qin, Li, Wang, Su, Wen, Li, Lu, Liu, Li, Zhang, Wang, Wu, Cheng (b0150) 2020; 30 Amjadi, Yoon, Park (b0500) 2015; 26 Li, Lai (b0800) 2019 Niu, Hua, Hu, Xu, Tian, Chan, Chen (b0810) 2019; 7 Dong, Xu, Wang, Huang, Chan-Park, Zhang, Wang, Huang, Chen (b0890) 2012; 6 Liu, Zhang, Gao (b0970) 2020; 14 Lin, Peng, Liu, Ruiz-Zepeda, Ye, Samuel, Yacaman, Yakobson, Tour (b0575) 2014; 5 Wang, Tang, Zhao, Huang, Zhang (b0130) 2022; 32 Sheng, Ji, Zhang, Wu, Liang, Chen, Wang (b0535) 2021; 7 Chen, Paul, Dai (b0185) 2017; 4 Li, Liu, Ho, Zhao, Wu, Ling, Han, Wu, Zhang, Sun, Wong (b0905) 2018; 10 Yang, Yao, Zheng, Gong, Yuan, Yuan, Liu (b0625) 2018; 167 Liu, Chen, Zhang, Wang, Guan, Yu (b0080) 2019; 29 Zhang, Deng, Valenca, Jin, Fu, Bilotti, Peijs (b0485) 2013; 74 Lee, Mooney (b0960) 2001; 101 Yuan, Yang, Yang, Peng, Yin (b0650) 2018; 10 Zhang, Wu, Peng, Sha, Wang (b0635) 2019; 172 Huang, He, Wang, Yang, Sun, Xie, Ding (b0705) 2019; 29 Cheng, Zhang, Lai, Huang (b0195) 2015; 27 Kang, Pikhitsa, Choi, Lee, Shin, Piao, Park, Suh, Kim, Choi (b0445) 2014; 516 Sun, Ye, Zhao, Zhang, Liu, Dai, Wang, Alam, Yan, Li, Xu, Chen, Zhao, Ye, Jiang, Chen, Wu, Kong, Lin (b0590) 2020; 8 Lee, Jug, Meng (b0335) 2013; 102 Amjadi, Pichitpajongkit, Lee, Ryu, Park (b0095) 2014; 8 Lu, Zhao, Liu, Yang (b0270) 2021; 9 Zhang, Sun, Xu (b0835) 2021; 13 Qin, Peng, Ding, Lin, Wang, Li, Xu, Li, Yuan, He, Li (b0915) 2015; 9 Alamusi, Hu, Fukunaga, Atobe, Liu (b0340) 2011; 11 Luo, Li, Li, Tian, Fan, Wang, Wu, Shen (b0415) 2020; 6 Salman, Chu, Huang, Cai, Yang, Dong, Gopalsamy, Gao (b0560) 2018; 2 Souri, Bhattacharyya (b0305) 2018; 6 Tian, Shu, Cui, Mi, Yang, Xie, Ren (b0315) 2014; 6 Wu, Huang, Liang, Wu, Zhong, Zhou, Ye, Tao, Zhou, Xie (b0975) 2021; 7 Dong, Wang, Wu, Zhu, Shi, Morikawa (b1095) 2022; 14 Tang, Zhao, Hu, Liu, Wang, Zhou, Qiu (b1185) 2015; 7 Gao, Li, Huang, Wang, Lin, Wang, Xue (b0725) 2019; 373 Zhou, Gu, Fei, Mai, Gao, Yang, Bao, Wang (b0245) 2008; 8 Wang, Lee, Kwak, Lee (b0390) 2013; 84 Li, Koh, Farhan, Lai (b0805) 2020; 12 Yin, Wang, Zhao, Lou, Shen (b0045) 2021; 31 Wu, Fan, Qu, Yang, Nie, Tang, Pan, Wang, Bin (b1100) 2021; 9 Wang, Zhang, Chen, Fu (b0710) 2021; 179 Ullah, Othman, Javed, Ahmad, Md Akil (b0955) 2015; 57 Chen, Li, Niu, Xin, Xu, Cheng, Yang (b1175) 2022; 444 Ma, Wu, Wang, Liao, Wan, Zhang (b1040) 2019; 11 Hassan, Bae, Hassan, Ali, Lee, Choi (b0280) 2018; 107 Kim, Mondal, Min, Choi (b0880) 2018; 10 Drotlef, Amjadi, Yunusa, Sitti (b1215) 2017; 29 Pan, Chen, Li, Tao, Ye, Ni, Yu, Xiang, Ren, Qin, Yu, Zhu (b0420) 2018; 28 Zhan, Hao, Li, Santillo, Zhang, Sorrentino, Lavorgna, Xia, Chen (b0985) 2021; 205 Li, Chen, Han, Cao, Luo (b1045) 2022; 648 Liu, Chen, Li, Shi (b0585) 2016; 10 Xu, Xie, Huang, Wang, Yu, Hu (b0780) 2020; 56 Yang, Yuan, Yao, Fang (b0395) 2020; 139 Zhang, Zang, Huang, Di, Zhu (b0075) 2015; 6 Zheng, Gao, Liu, Wang, Li, Xu, Gao (b0735) 2020; 158 Amjadi, Kyung, Park, Sitti (b0495) 2016; 26 Zeng, Shu, Li, Chen, Wang, Tao (b0685) 2014; 26 Wang, Xia, Wang, Liang, Yin, Zhang (b0190) 2019; 31 Yan, Wang, Kang, Cui, Wang, Foo, Chee, Lee (b0265) 2014; 26 Mao, Zhao, Li, Xiang, Wang (b1025) 2020; 17 Yu, Lian, Sun, Yang, Wang, Xie, Du, Gou, Li, Tai (b0595) 2019; 11 Liu, Xiang, Wang, Li, Qian, Li, Ma, Zhou, Huang (b1200) 2019; 11 O'Driscoll, McMahon, Garcia, Biccai, Gabbett, Kelly, Barwich, Moebius, Boland, Coleman (b0660) 2021; 17 Jiang, Zhang, Yang, Lin, Chen, Zhen, Xie, Zhu (b0555) 2016; 299 Du, Yu, Dai, Wang, Yao, Kong (b0370) 2020; 12 Deng, Gao, Lan, He, Zhao, Zheng, Chen, Zhong, Wu, Liu, Peng, Cao (b1155) 2019; 29 Li, Hu, Hua, Xu, Jiang (b0830) 2018; 11 Ji, Zhou, Lin, Wu, Zhang, Garner, Gu, Dong, Fu, Duan (b0055) 2021; 7 Pan, Wang, He, Liu, Ni, Chen, Ouyang, Huang, Wang, Xu (b1085) 2020; 379 Wang, Xia, Wang, Liang, Yin, Zhang (b0215) 2019; 31 Souri, Bhattacharyya (b0765) 2018; 154 Cheng, Wang, Sun, Gao (b0820) 2015; 27 Xu, Lu, Xiang, Zhang, Zhao, Xie, Gu (b1130) 2018; 10 Yang, Li, Sun, Jin, Lu, Zhang, Lin, Qu (b0980) 2019; 29 Ma, Chen (b0875) 2015; 2 Seyedin, Zhang, Naebe, Qin, Chen, Wang, Razal (b0385) 2019; 6 Hempel, Nezich, Kong, Hofmann (b0260) 2012; 12 Kim, Kim, Lee (b0025) 2020; 32 Liu, Choi (b0450) 2014; 117 Gan, Huang, Wang, Jiang, Wang, Zhu, Ren, Fang, Wang, Xie, Lu (b1055) 2020; 30 Liu, Zhang, Wang, Liu, Shang (b0655) 2016; 80 Li, Hua, Xu (b0815) 2017; 118 Qiao, Wang, Tian, Li, Jian, Wei, Tian, Wang, Pang, Geng, Wang, Zhao, Wang, Deng, Jian, Zhang, Liang, Yang, Ren (b0605) 2018; 12 Han, Zhang, Chen, Sun (b0155) 2018; 28 Bao (b0230) 2000 Chen, Huang, Liu, Gu, Zhu, Huang, Bai, Guo, Yang, Guan (b0410) 2021; 9 Li, Koh, Xue, So, Xiao, Tin, Wai, Lai (b0795) 2022; 15 Kim, Zhu, Yeom, Di Prima, Su, Kim, Yoo, Uher, Kotov (b0680) 2013; 500 Wang, Lu, Li, Lin, Liang, Lu, Xie (b0510) 2022; 14 Su, Zhao, Zhan, Yuan, Wu, Sui, Zhang (b1135) 2022; 435 Heo, Hossain, Kim (b0175) 2020; 20 Desai, Haque (b0275) 2005; 43 Fan, Shi, Lian, Li, Yin (b0995) 2013; 1 Ma, Yu, Liu, Li, Li (b0940) 2017; 9 Bai, Zhai, Liu, Wang, Luo (b0825) 2019; 9 Sengupta, Pei, Kottapalli (b0910) 2019; 11 Becerril, Mao, Liu, Stoltenberg, Bao, Chen (b0545) 2008; 2 Wu, Yuan, Xu, Bai, Chen, Tang, Wang, Yang, Zhang, Yuan, Chen, Zhang, Liu, Jiang (b0020) 2021; 412 Wang, Zhang, Yue, Xu, Xu, Sun, Chen, Jiang, Liu (b0235) 2019; 30 Tewari, Gandla, Bohm, McNeill, Gupta (b0775) 2018; 113 Wu, Huang, Wu, Qian, Jiang (b0900) 2013; 25 Amjadi, Turan, Clementson, Sitti (b0310) 2016; 8 Wang, Tao, Liu, Zhang, Pang, Wang, Jiang, Yang, Ren (b0665) 2016; 8 Li, Zheng, Liu, Zhao, Yu, Wang, Han, Xu, Cao, Lu, Gao (b0850) 2022; 437 Pyo, Lee, Bae, Sim, Kim (b0035) 2021; 33 Huang, Liu, Zhao, Ren, Guo (b0200) 2019; 29 Rajitha, Dash (b0565) 2018; 277 Fan, Xie, Zheng, Wei, Yao, Zhang, Zhang (b1105) 2020; 12 Zhou, Li, Ma, Wang, Shi, Koratkar, Ren, Li, Cheng (b0885) 2015; 11 Maurya, Khaleghian, Sriramdas, Kumar, Kishore, Kang, Kumar, Song, Lee, Yan, Park, Taheri, Priya (b0050) 2020; 11 Shi, Liu, Sun, Liang, Chen (b0425) 2018; 28 Han, Lu, Wang, Gan, Deng, Wang, Fang, Liu, Chan, Tang, Weng, Yuan (b1065) 2017; 13 Lv, Lu, Wang, Feng (b0140) 2021; 31 Georgakilas, Otyepka, Bourlinos, Chandra, Kim, Kemp, Hobza, Zboril, Kim (b0165) 2012; 112 Pan, Xiao, Huang, Zhu (b0750) 2020; 41 Pang, Tian, Tao, Li, Wang, Deng, Yang, Ren (b0930) 2016; 8 Hicks, Behnam, Ural (b0345) 2009; 95 Zhai, Xu, Liu, Jin, Yi, Zhang, Fan, Cheng, Li, Liu, Song, Yue, Li (b0855) 2022; 439 Wang, Chang, Zhan, Xu, Wang, Zhang, Li, Luo, Xing, Zhong (b1050) 2019; 7 Park, Hyun, Mun, Park, Park (b0285) 2015; 7 Zhang, Li, Lai, Gao, Zeng (b0945) 2020; 12 Dreyer, Park, Bielawski, Ruoff (b0990) 2010; 39 Tung, Nine, Krebsz, Pasinszki, Coghlan, Tran, Losic (b1080) 2017; 27 Tao, Wang, Tian, Ju, Liu, Pang, Chen, Yang, Ren (b0600) 20 Kim (10.1016/j.cej.2023.142576_b0680) 2013; 500 Liu (10.1016/j.cej.2023.142576_b0970) 2020; 14 Amjadi (10.1016/j.cej.2023.142576_b0310) 2016; 8 Pham (10.1016/j.cej.2023.142576_b0550) 2010; 48 Li (10.1016/j.cej.2023.142576_b0100) 2022; 34 Dreyer (10.1016/j.cej.2023.142576_b0990) 2010; 39 Qiao (10.1016/j.cej.2023.142576_b0605) 2018; 12 Shao (10.1016/j.cej.2023.142576_b0070) 2022; 13 Han (10.1016/j.cej.2023.142576_b0155) 2018; 28 Lee (10.1016/j.cej.2023.142576_b0515) 2015; 5 Trung (10.1016/j.cej.2023.142576_b0015) 2016; 28 Liu (10.1016/j.cej.2023.142576_b0080) 2019; 29 Lin (10.1016/j.cej.2023.142576_b0575) 2014; 5 Bottari (10.1016/j.cej.2023.142576_b0160) 2017; 46 Ma (10.1016/j.cej.2023.142576_b0085) 2019; 29 Huang (10.1016/j.cej.2023.142576_b0150) 2020; 30 Sun (10.1016/j.cej.2023.142576_b0590) 2020; 8 Niu (10.1016/j.cej.2023.142576_b0810) 2019; 7 Li (10.1016/j.cej.2023.142576_b0365) 2016; 26 Li (10.1016/j.cej.2023.142576_b0805) 2020; 12 Yang (10.1016/j.cej.2023.142576_b0580) 2018; 10 Jiang (10.1016/j.cej.2023.142576_b1145) 2020; 12 Liu (10.1016/j.cej.2023.142576_b1200) 2019; 11 Tousi (10.1016/j.cej.2023.142576_b0115) 2019; 11 Sheng (10.1016/j.cej.2023.142576_b0535) 2021; 7 Guo (10.1016/j.cej.2023.142576_b0090) 2021; 31 Choi (10.1016/j.cej.2023.142576_b0440) 2017; 7 Becerril (10.1016/j.cej.2023.142576_b0545) 2008; 2 Zhou (10.1016/j.cej.2023.142576_b1075) 2022; 447 Han (10.1016/j.cej.2023.142576_b1065) 2017; 13 Yang (10.1016/j.cej.2023.142576_b0610) 2018; 10 Chen (10.1016/j.cej.2023.142576_b0570) 2019; 29 Lin (10.1016/j.cej.2023.142576_b0480) 2013; 5 Souri (10.1016/j.cej.2023.142576_b0305) 2018; 6 Li (10.1016/j.cej.2023.142576_b1045) 2022; 648 Ma (10.1016/j.cej.2023.142576_b1040) 2019; 11 Vu (10.1016/j.cej.2023.142576_b0240) 2020; 20 Gong (10.1016/j.cej.2023.142576_b0065) 2014; 5 Yang (10.1016/j.cej.2023.142576_b0620) 2018; 12 Pyo (10.1016/j.cej.2023.142576_b0035) 2021; 33 Beeby (10.1016/j.cej.2023.142576_b0225) 2004 Zheng (10.1016/j.cej.2023.142576_b1090) 2021; 9 Jia (10.1016/j.cej.2023.142576_b0145) 2022; 32 Wang (10.1016/j.cej.2023.142576_b1050) 2019; 7 Fan (10.1016/j.cej.2023.142576_b1105) 2020; 12 Hicks (10.1016/j.cej.2023.142576_b0345) 2009; 95 Xu (10.1016/j.cej.2023.142576_b1130) 2018; 10 Zhang (10.1016/j.cej.2023.142576_b1020) 2017; 177 Zhao (10.1016/j.cej.2023.142576_b0355) 2015; 9 Bai (10.1016/j.cej.2023.142576_b0825) 2019; 9 Cao (10.1016/j.cej.2023.142576_b0255) 2003; 90 Cravanzola (10.1016/j.cej.2023.142576_b0670) 2013; 62 Pang (10.1016/j.cej.2023.142576_b0220) 2020; 16 Bao (10.1016/j.cej.2023.142576_b0230) 2000 Rajitha (10.1016/j.cej.2023.142576_b0565) 2018; 277 Li (10.1016/j.cej.2023.142576_b0170) 2020; 2 Li (10.1016/j.cej.2023.142576_b0795) 2022; 15 Cai (10.1016/j.cej.2023.142576_b1110) 2019; 7 Yin (10.1016/j.cej.2023.142576_b0840) 2019; 285 Kim (10.1016/j.cej.2023.142576_b0025) 2020; 32 Zhang (10.1016/j.cej.2023.142576_b0485) 2013; 74 Kang (10.1016/j.cej.2023.142576_b0445) 2014; 516 Salman (10.1016/j.cej.2023.142576_b0560) 2018; 2 Su (10.1016/j.cej.2023.142576_b1135) 2022; 435 Wu (10.1016/j.cej.2023.142576_b0300) 2017; 9 Yao (10.1016/j.cej.2023.142576_b0640) 2022; 431 Gao (10.1016/j.cej.2023.142576_b0725) 2019; 373 Liu (10.1016/j.cej.2023.142576_b0460) 2009; 19 Amjadi (10.1016/j.cej.2023.142576_b0495) 2016; 26 Li (10.1016/j.cej.2023.142576_b0850) 2022; 437 Campea (10.1016/j.cej.2023.142576_b0125) 2021; 31 Kong (10.1016/j.cej.2023.142576_b0455) 2014; 77 Kim (10.1016/j.cej.2023.142576_b0880) 2018; 10 Tian (10.1016/j.cej.2023.142576_b0315) 2014; 6 Yang (10.1016/j.cej.2023.142576_b1015) 2020; 8 Chen (10.1016/j.cej.2023.142576_b0695) 2020; 12 Drotlef (10.1016/j.cej.2023.142576_b1215) 2017; 29 Zhang (10.1016/j.cej.2023.142576_b0835) 2021; 13 Yao (10.1016/j.cej.2023.142576_b0040) 2020; 32 Shi (10.1016/j.cej.2023.142576_b0425) 2018; 28 He (10.1016/j.cej.2023.142576_b0250) 2006; 1 Chen (10.1016/j.cej.2023.142576_b1175) 2022; 444 Mai (10.1016/j.cej.2023.142576_b0135) 2020; 30 Zhang (10.1016/j.cej.2023.142576_b0635) 2019; 172 O'Driscoll (10.1016/j.cej.2023.142576_b0660) 2021; 17 Amjadi (10.1016/j.cej.2023.142576_b0500) 2015; 26 Yan (10.1016/j.cej.2023.142576_b0265) 2014; 26 Zhang (10.1016/j.cej.2023.142576_b0945) 2020; 12 Xu (10.1016/j.cej.2023.142576_b1180) 2018; 10 Chen (10.1016/j.cej.2023.142576_b0185) 2017; 4 Wang (10.1016/j.cej.2023.142576_b0845) 2015; 27 Dong (10.1016/j.cej.2023.142576_b1095) 2022; 14 Tang (10.1016/j.cej.2023.142576_b1185) 2015; 7 Chen (10.1016/j.cej.2023.142576_b0410) 2021; 9 Wu (10.1016/j.cej.2023.142576_b0020) 2021; 412 Souri (10.1016/j.cej.2023.142576_b0765) 2018; 154 Wu (10.1016/j.cej.2023.142576_b1100) 2021; 9 Li (10.1016/j.cej.2023.142576_b0110) 2020; 30 Pan (10.1016/j.cej.2023.142576_b1085) 2020; 379 Barlian (10.1016/j.cej.2023.142576_b1125) 2009; 97 Alamusi (10.1016/j.cej.2023.142576_b0340) 2011; 11 Zhan (10.1016/j.cej.2023.142576_b0985) 2021; 205 An (10.1016/j.cej.2023.142576_b0060) 2018; 9 Lu (10.1016/j.cej.2023.142576_b0270) 2021; 9 Zhou (10.1016/j.cej.2023.142576_b0885) 2015; 11 Chhetry (10.1016/j.cej.2023.142576_b0525) 2019; 11 Seyedin (10.1016/j.cej.2023.142576_b0385) 2019; 6 Lin (10.1016/j.cej.2023.142576_b0860) 2022; 443 Xia (10.1016/j.cej.2023.142576_b0400) 2019; 7 Deng (10.1016/j.cej.2023.142576_b0470) 2014; 2 Maurya (10.1016/j.cej.2023.142576_b0050) 2020; 11 Dong (10.1016/j.cej.2023.142576_b0890) 2012; 6 Wang (10.1016/j.cej.2023.142576_b1140) 2021; 31 Saha (10.1016/j.cej.2023.142576_b1210) 2017; 9 Zeng (10.1016/j.cej.2023.142576_b0685) 2014; 26 Pang (10.1016/j.cej.2023.142576_b0930) 2016; 8 He (10.1016/j.cej.2023.142576_b0405) 2020; 12 Wang (10.1016/j.cej.2023.142576_b0190) 2019; 31 Oskouyi (10.1016/j.cej.2023.142576_b0350) 2014; 7 Liu (10.1016/j.cej.2023.142576_b0655) 2016; 80 Liu (10.1016/j.cej.2023.142576_b0450) 2014; 117 Huang (10.1016/j.cej.2023.142576_b0770) 2018; 27 Xie (10.1016/j.cej.2023.142576_b0865) 2020; 135 Zhao (10.1016/j.cej.2023.142576_b0360) 2012; 101 Zhang (10.1016/j.cej.2023.142576_b1165) 2021; 9 Wu (10.1016/j.cej.2023.142576_b0975) 2021; 7 Lee (10.1016/j.cej.2023.142576_b1195) 2017; 9 Fan (10.1016/j.cej.2023.142576_b0465) 2012; 50 Wang (10.1016/j.cej.2023.142576_b0235) 2019; 30 Xie (10.1016/j.cej.2023.142576_b1060) 2021; 9 Lv (10.1016/j.cej.2023.142576_b0140) 2021; 31 Wang (10.1016/j.cej.2023.142576_b0700) 2018; 105 Zhai (10.1016/j.cej.2023.142576_b0855) 2022; 439 Li (10.1016/j.cej.2023.142576_b0800) 2019 Yin (10.1016/j.cej.2023.142576_b0045) 2021; 31 Zhou (10.1016/j.cej.2023.142576_b0245) 2008; 8 Shi (10.1016/j.cej.2023.142576_b1205) 2016; 26 Georgiou (10.1016/j.cej.2023.142576_b0375) 2013; 8 Zhao (10.1016/j.cej.2023.142576_b0760) 2019; 28 Wu (10.1016/j.cej.2023.142576_b0630) 2017; 9 Lou (10.1016/j.cej.2023.142576_b0380) 2018; 3 Zhou (10.1016/j.cej.2023.142576_b0290) 2022; 6 Yu (10.1016/j.cej.2023.142576_b0595) 2019; 11 Yang (10.1016/j.cej.2023.142576_b0325) 2019; 66 Pan (10.1016/j.cej.2023.142576_b0420) 2018; 28 Wang (10.1016/j.cej.2023.142576_b0510) 2022; 14 Liu (10.1016/j.cej.2023.142576_b0645) 2018; 10 Gan (10.1016/j.cej.2023.142576_b1055) 2020; 30 Xu (10.1016/j.cej.2023.142576_b1115) 2021; 9 Yuan (10.1016/j.cej.2023.142576_b0785) 2015; 7 Li (10.1016/j.cej.2023.142576_b0530) 2021; 13 Hong (10.1016/j.cej.2023.142576_b0010) 2019; 29 Amjadi (10.1016/j.cej.2023.142576_b0095) 2014; 8 Lee (10.1016/j.cej.2023.142576_b0960) 2001; 101 Fan (10.1016/j.cej.2023.142576_b0995) 2013; 1 Huang (10.1016/j.cej.2023.142576_b0705) 2019; 29 Li (10.1016/j.cej.2023.142576_b0435) 2012; 2 Mao (10.1016/j.cej.2023.142576_b1025) 2020; 17 Liu (10.1016/j.cej.2023.142576_b0585) 2016; 10 Wang (10.1016/j.cej.2023.142576_b0665) 2016; 8 Kabiri Ameri (10.1016/j.cej.2023.142576_b0540) 2017; 11 Yuan (10.1016/j.cej.2023.142576_b0650) 2018; 10 Desai (10.1016/j.cej.2023.142576_b0275) 2005; 43 Wu (10.1016/j.cej.2023.142576_b0210) 2019; 31 Zheng (10.1016/j.cej.2023.142576_b0735) 2020; 158 Heng (10.1016/j.cej.2023.142576_b0030) 2022; 34 Zhang (10.1016/j.cej.2023.142576_b0075) 2015; 6 Li (10.1016/j.cej.2023.142576_b0950) 2016; 8 Du (10.1016/j.cej.2023.142576_b0370) 2020; 12 Wang (10.1016/j.cej.2023.142576_b0730) 2018; 126 Yang (10.1016/j.cej.2023.142576_b0980) 2019; 29 Cheng (10.1016/j.cej.2023.142576_b0820) 2015; 27 Ma (10.1016/j.cej.2023.142576_b0875) 2015; 2 Qi (10.1016/j.cej.2023.142576_b0615) 2020; 12 Tian (10.1016/j.cej.2023.142576_b0740) 2017; 9 Kim (10.1016/j.cej.2023.142576_b0105) 2018; 18 Li (10.1016/j.cej.2023.142576_b0815) 2017; 118 Yan (10.1016/j.cej.2023.142576_b0870) 2018; 143 Fan (10.1016/j.cej.2023.142576_b0690) 2014; 5 Pan (10.1016/j.cej.2023.142576_b0750) 2020; 41 Li (10.1016/j.cej.2023.142576_b0830) 2018; 11 Wang (10.1016/j.cej.2023.142576_b0965) 2020; 8 Kim (10.1016/j.cej.2023.142576_b0675) 2017; 3 Jing (10.1016/j.cej.2023.142576_b1070) 2018; 136 Tung (10.1016/j.cej.2023.142576_b1080) 2017; 27 Liu (10.1016/j.cej.2023.142576_b0745) 2013; 81 Park (10.1016/j.cej.2023.142576_b0285) 2015; 7 Yang (10.1016/j.cej.2023.142576_b0625) 2018; 167 Sengupta (10.1016/j.cej.2023.142576_b0910) 2019; 11 Zhang (10.1016/j.cej.2023.142576_b1150) 2018; 28 Yun (10.1016/j.cej.2023.142576_b1170) 2017; 27 Ullah (10.1016/j.cej.2023.142576_b0955) 2015; 57 Ma (10.1016/j.cej.2023.142576_b0940) 2017; 9 Zhong (10.1016/j.cej.2023.142576_b1005) 2015; 3 Yang (10.1016/j.cej.2023.142576_b0295) 2016; 3 Wang (10.1016/j.cej.2023.142576_b0390) 2013; 84 Tao (10.1016/j.cej.2023.142576_b0600) 2017; 9 Jeong (10.1016/j.cej.2023.142576_b0475) 2015; 25 Chhetry (10.1016/j.cej.2023.142576_b1190) 2021; 31 Yamada (10.1016/j.cej.2023.142576_b0430) 2011; 6 Yin (10.1016/j.cej.2023.142576_b1030) 2022; 642 Hempel (10.1016/j.cej.2023.142576_b0260) 2012; 12 Wang (10.1016/j.cej.2023.142576_b0320) 2014; 24 Wang (10.1016/j.cej.2023.142576_b0895) 2014; 4 Wen (10.1016/j.cej.2023.142576_b0205) 2016; 28 Xu (10.1016/j.cej.2023.142576_b0780) 2020; 56 Heo (10.1016/j.cej.2023.142576_b0175) 2020; 20 Park (10.1016/j.cej.2023.142576_b1120) 2015; 16 Pan (10.1016/j.cej.2023.142576_b1000) 2017; 9 Wang (10.1016/j.cej.2023.142576_b0215) 2019; 31 Qin (10.1016/j.cej.2023.142576_b0915) 2015; 9 Hassan (10.1016/j.cej.2023.142576_b0280) 2018; 107 Son (10.1016/j.cej.2023.142576_b0790) 2019; 19 Gao (10.1016/j.cej.2023.142576_b0005) 2020; 32 Jiang (10.1016/j.cej |
References_xml | – volume: 28 start-page: 4338 year: 2016 end-page: 4372 ident: b0015 article-title: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare publication-title: Adv. Mater. – volume: 26 start-page: 7614 year: 2016 end-page: 7625 ident: b1205 article-title: Highly Sensitive, Wearable, Durable Strain Sensors and Stretchable Conductors Using Graphene/Silicon Rubber Composites publication-title: Adv. Funct. Mater. – volume: 442 start-page: 136138 year: 2022 ident: b0720 article-title: Design and development of ultra-sensitive, dynamically stable, multi-modal GnP@MXene nanohybrid electrospun strain sensors publication-title: Chem. Eng. J. – volume: 16 start-page: e1901124 year: 2020 ident: b0220 article-title: Wearable Electronics Based on 2D Materials for Human Physiological Information Detection publication-title: Small – volume: 11 start-page: 7634 year: 2017 end-page: 7641 ident: b0540 article-title: Graphene Electronic Tattoo Sensors publication-title: ACS Nano – volume: 57 start-page: 414 year: 2015 end-page: 433 ident: b0955 article-title: Classification, processing and application of hydrogels: A review publication-title: Mater Sci Eng C Mater Biol Appl – volume: 648 start-page: 129341 year: 2022 ident: b1045 article-title: Tough, highly resilient and conductive nanocomposite hydrogels reinforced with surface-grafted cellulose nanocrystals and reduced graphene oxide for flexible strain sensors publication-title: Colloids Surf A Physicochem Eng Asp – volume: 107 start-page: 519 year: 2018 end-page: 528 ident: b0280 article-title: Ink-jet printed stretchable strain sensor based on graphene/ZnO composite on micro-random ridged PDMS substrate publication-title: Compos. A Appl. Sci. Manuf. – volume: 19 start-page: 085019 year: 2009 ident: b0460 article-title: Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing publication-title: J. Micromech. Microeng. – volume: 9 start-page: 8266 year: 2017 end-page: 8273 ident: b0600 article-title: Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions publication-title: Nanoscale – volume: 34 start-page: 2108932 year: 2022 ident: b0100 article-title: Recent Progress on Self-Healable Conducting Polymers publication-title: Adv. Mater. – volume: 5 start-page: 5815 year: 2013 end-page: 5824 ident: b0480 article-title: Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer publication-title: ACS Appl. Mater. Interfaces – volume: 101 start-page: 063112 year: 2012 ident: b0360 article-title: Ultra-sensitive strain sensors based on piezoresistive nanographene films publication-title: Appl. Phys. Lett. – volume: 41 start-page: 233 year: 2020 end-page: 243 ident: b0750 article-title: Preparation and properties of melt-spun poly(fluorinated ethylene-propylene)/graphene composite fibers publication-title: Polym. Compos. – volume: 7 start-page: 2001084 year: 2021 ident: b0975 article-title: Self-Calibrated, Sensitive, and Flexible Temperature Sensor Based on 3D Chemically Modified Graphene Hydrogel publication-title: Adv. Electron. Mater. – volume: 30 start-page: 1909035 year: 2020 ident: b0150 article-title: The chemistry and promising applications of graphene and porous graphene materials publication-title: Adv. Funct. Mater. – volume: 7 start-page: 2501 year: 2014 end-page: 2521 ident: b0350 article-title: Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets publication-title: Materials (Basel) – volume: 12 start-page: 7565 year: 2020 end-page: 7574 ident: b0695 article-title: Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core-Shell Segmental Configuration for Wearable Strain and Temperature Sensors publication-title: ACS Appl. Mater. Interfaces – volume: 90 year: 2003 ident: b0255 article-title: Electromechanical Properties of Metallic, Quasimetallic, and Semiconducting Carbon Nanotubes under Stretching publication-title: Phys. Rev. Lett. – volume: 431 start-page: 134038 year: 2022 ident: b0640 article-title: Stretchable vertical graphene arrays for electronic skin with multifunctional sensing capabilities publication-title: Chem. Eng. J. – volume: 28 start-page: 1803221 year: 2018 ident: b0420 article-title: 3D Graphene Films Enable Simultaneously High Sensitivity and Large Stretchability for Strain Sensors publication-title: Adv. Funct. Mater. – volume: 20 year: 2020 ident: b0175 article-title: Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring. A critical review publication-title: Sensors – volume: 12 start-page: 58317 year: 2020 end-page: 58325 ident: b1145 article-title: Flexible strain sensor with tunable sensitivity via microscale electrical breakdown in graphene/polyimide thin films publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 2007661 year: 2021 ident: b1190 article-title: Black Phosphorus@Laser-Engraved Graphene Heterostructure-Based Temperature-Strain Hybridized Sensor for Electronic-Skin Applications publication-title: Adv. Funct. Mater. – volume: 11 year: 2019 ident: b0115 article-title: Scalable Fabrication of Highly Flexible Porous Polymer-Based Capacitive Humidity Sensor Using Convergence Fiber Drawing publication-title: Polymers – volume: 27 start-page: 3349 year: 2015 end-page: 3376 ident: b0195 article-title: Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability publication-title: Adv. Mater. – volume: 8 start-page: 2326 year: 2020 end-page: 2335 ident: b1015 article-title: Thermo-responsive shape memory sensors based on tough, remolding and anti-freezing hydrogels publication-title: J. Mater. Chem. C – volume: 31 start-page: 2104288 year: 2021 ident: b0090 article-title: Recent Advances in Carbon Material-Based Multifunctional Sensors and Their Applications in Electronic Skin Systems publication-title: Adv. Funct. Mater. – volume: 6 start-page: 2000269 year: 2020 ident: b0415 article-title: In Situ Dynamic Manipulation of Graphene Strain Sensor with Drastically Sensing Performance Enhancement publication-title: Adv. Electron. Mater. – volume: 33 start-page: 2005902 year: 2021 ident: b0035 article-title: Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications publication-title: Adv. Mater. – volume: 26 start-page: 1678 year: 2016 end-page: 1698 ident: b0495 article-title: Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review publication-title: Adv. Funct. Mater. – volume: 14 start-page: 559 year: 2020 end-page: 567 ident: b0755 article-title: Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear publication-title: ACS Nano – volume: 28 start-page: 1705879 year: 2018 ident: b1150 article-title: A Bubble-Derived Strategy to Prepare Multiple Graphene-Based Porous Materials publication-title: Adv. Funct. Mater. – volume: 26 start-page: 5310 year: 2014 end-page: 5336 ident: b0685 article-title: Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications publication-title: Adv. Mater. – volume: 12 start-page: 44360 year: 2020 end-page: 44370 ident: b0945 article-title: Three-Dimensional Binary-Conductive-Network Silver Nanowires@Thiolated Graphene Foam-Based Room-Temperature Self-Healable Strain Sensor for Human Motion Detection publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2017 ident: b0675 article-title: Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors publication-title: Sci. Adv. – volume: 66 start-page: 104134 year: 2019 ident: b0325 article-title: Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response publication-title: Nano Energy – volume: 136 start-page: 63 year: 2018 end-page: 72 ident: b1070 article-title: Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry publication-title: Carbon – volume: 102 start-page: 183511 year: 2013 ident: b0335 article-title: High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors publication-title: Appl. Phys. Lett. – volume: 379 start-page: 122271 year: 2020 ident: b1085 article-title: A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties publication-title: Chem. Eng. J. – volume: 13 year: 2022 ident: b0070 article-title: Room-temperature high-precision printing of flexible wireless electronics based on MXene inks publication-title: Nat. Commun. – volume: 12 start-page: 6442 year: 2020 end-page: 6450 ident: b0405 article-title: Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators publication-title: ACS Appl. Mater. Interfaces – volume: 143 start-page: 214 year: 2018 end-page: 223 ident: b0870 article-title: Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors publication-title: Mater. Des. – volume: 12 start-page: 8839 year: 2018 end-page: 8846 ident: b0605 article-title: Multilayer Graphene Epidermal Electronic Skin publication-title: ACS Nano – volume: 11 start-page: 41701 year: 2019 end-page: 41709 ident: b1040 article-title: Wearable, antifreezing, and healable epidermal sensor assembled from long-lasting moist conductive nanocomposite organohydrogel publication-title: ACS Appl. Mater. Interfaces – volume: 299 start-page: 22 year: 2016 end-page: 28 ident: b0555 article-title: Foldable and electrically stable graphene film resistors prepared by vacuum filtration for flexible electronics publication-title: Surf. Coat. Technol. – volume: 2 start-page: 40 year: 2015 end-page: 53 ident: b0875 article-title: Three-dimensional graphene networks: synthesis, properties and applications publication-title: Natl. Sci. Rev. – volume: 24 start-page: 4666 year: 2014 end-page: 4670 ident: b0320 article-title: Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring publication-title: Adv. Funct. Mater. – volume: 9 start-page: 12335 year: 2017 end-page: 12342 ident: b0740 article-title: Dry spinning approach to continuous graphene fibers with high toughness publication-title: Nanoscale – volume: 7 start-page: 40116 year: 2017 ident: b0440 article-title: Ultra-sensitive Pressure sensor based on guided straight mechanical cracks publication-title: Sci. Rep. – volume: 8 start-page: 3035 year: 2008 end-page: 3040 ident: b0245 article-title: Flexible Piezotronic Strain Sensor publication-title: Nano Lett. – volume: 10 start-page: 3948 year: 2018 end-page: 3954 ident: b0610 article-title: Simultaneously Detecting Subtle and Intensive Human Motions Based on a Silver Nanoparticles Bridged Graphene Strain Sensor publication-title: ACS Appl. Mater. Interfaces – volume: 167 start-page: 371 year: 2018 end-page: 378 ident: b0625 article-title: Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing publication-title: Compos. Sci. Technol. – volume: 9 start-page: 3343 year: 2021 end-page: 3351 ident: b1090 article-title: Polysaccharide-tackified composite hydrogel for skin-attached sensors publication-title: J. Mater. Chem. C – volume: 24 start-page: 100909 year: 2020 ident: b0715 article-title: Continuous graphene fibers prepared by liquid crystal spinning as strain sensors for Monitoring Vital Signs publication-title: Mater. Today Commun. – volume: 31 start-page: 1800716 year: 2019 ident: b0210 article-title: Carbon-Nanomaterial-Based Flexible Batteries for Wearable Electronics publication-title: Adv. Mater. – volume: 7 start-page: 6317 year: 2015 end-page: 6324 ident: b0285 article-title: Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 219 year: 2019 end-page: 249 ident: b0385 article-title: Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications publication-title: Mater. Horiz. – volume: 20 year: 2020 ident: b0240 article-title: Highly Sensitive E-Textile Strain Sensors Enhanced by Geometrical Treatment for Human Monitoring publication-title: Sensors – volume: 29 start-page: 1903732 year: 2019 ident: b0705 article-title: Porous Fibers Composed of Polymer Nanoball Decorated Graphene for Wearable and Highly Sensitive Strain Sensors publication-title: Adv. Funct. Mater. – volume: 26 start-page: 1322 year: 2016 end-page: 1329 ident: b0365 article-title: Large-Area Ultrathin Graphene Films by Single-Step Marangoni Self-Assembly for Highly Sensitive Strain Sensing Application publication-title: Adv. Funct. Mater. – volume: 32 start-page: 1902133 year: 2020 ident: b0005 article-title: Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability publication-title: Adv. Mater. – volume: 9 year: 2018 ident: b0060 article-title: Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature publication-title: Nat. Commun. – volume: 435 start-page: 135018 year: 2022 ident: b1135 article-title: A multifunctional hydrogel fabricated via ultra-fast polymerization by graphene oxide-adsorbed liquid metal nanodroplets publication-title: Chem. Eng. J. – year: 2000 ident: b0230 article-title: Micro mechanical transducers: pressure sensors, accelerometers and gyroscopes – volume: 30 start-page: 2003214 year: 2020 ident: b0110 article-title: Printed Flexible Strain Sensor Array for Bendable Interactive Surface publication-title: Adv. Funct. Mater. – volume: 112 start-page: 6156 year: 2012 end-page: 6214 ident: b0165 article-title: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications publication-title: Chem. Rev. – volume: 11 start-page: 5799 year: 2018 end-page: 5811 ident: b0830 article-title: Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors publication-title: Nano Res. – volume: 10 start-page: 36377 year: 2018 end-page: 36384 ident: b0880 article-title: Highly Sensitive and Flexible Strain-Pressure Sensors with Cracked Paddy-Shaped MoS2/Graphene Foam/Ecoflex Hybrid Nanostructures publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 4658 year: 2017 end-page: 4666 ident: b1210 article-title: Highly sensitive bendable and foldable paper sensors based on reduced graphene oxide publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 2282 year: 2020 end-page: 2300 ident: b0170 article-title: Recent Advances of Carbon-Based Flexible Strain Sensors in Physiological Signal Monitoring publication-title: ACS Appl. Electron. Mater. – volume: 29 start-page: 1701353 year: 2017 ident: b1215 article-title: Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors publication-title: Adv. Mater. – volume: 12 start-page: 23272 year: 2020 end-page: 23283 ident: b0615 article-title: Understanding the Cycling Performance Degradation Mechanism of a Graphene-Based Strain Sensor and an Effective Corresponding Improvement Solution publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 24814 year: 2019 end-page: 24829 ident: b1050 article-title: Tough but self-healing and 3D printable hydrogels for E-skin, E-noses and laser controlled actuators publication-title: J. Mater. Chem. A – volume: 7 start-page: 97 year: 2021 ident: b0055 article-title: Flexible thin-film acoustic wave devices with off-axis bending characteristics for multisensing applications publication-title: Microsyst. Nanoeng. – volume: 95 start-page: 213103 year: 2009 ident: b0345 article-title: A computational study of tunneling-percolation electrical transport in graphene-based nanocomposites publication-title: Appl. Phys. Lett. – volume: 28 start-page: 4306 year: 2016 end-page: 4337 ident: b0205 article-title: Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices publication-title: Adv. Mater. – volume: 8 start-page: 12384 year: 2016 end-page: 12392 ident: b1010 article-title: NIR-Triggered Rapid Shape Memory PAM-GO-Gelatin Hydrogels with High Mechanical Strength publication-title: ACS Appl. Mater. Interfaces – volume: 444 start-page: 136631 year: 2022 ident: b1175 article-title: Porous graphene foam composite-based dual-mode sensors for underwater temperature and subtle motion detection publication-title: Chem. Eng. J. – volume: 80 start-page: 95 year: 2016 end-page: 103 ident: b0655 article-title: A novel strain sensor based on graphene composite films with layered structure publication-title: Compos. A Appl. Sci. Manuf. – volume: 29 start-page: 1808247 year: 2019 ident: b0010 article-title: Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics publication-title: Adv. Funct. Mater. – volume: 7 start-page: 27099 year: 2019 end-page: 27109 ident: b1110 article-title: A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application publication-title: J. Mater. Chem. A – volume: 29 start-page: 1904706 year: 2019 ident: b0570 article-title: A dual-functional graphene-based self-alarm health-monitoring e-skin publication-title: Adv. Funct. Mater. – volume: 14 start-page: 9126 year: 2022 end-page: 9137 ident: b1095 article-title: Stretchable, Adhesive, Self-Healable, and Conductive Hydrogel-Based Deformable Triboelectric Nanogenerator for Energy Harvesting and Human Motion Sensing publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 1902051 year: 2020 ident: b0025 article-title: Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems publication-title: Adv. Mater. – volume: 11 year: 2020 ident: b0050 article-title: 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles publication-title: Nat. Commun. – volume: 12 start-page: 4110 year: 2020 end-page: 4118 ident: b0805 article-title: An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles publication-title: Nanoscale – volume: 29 start-page: 1805924 year: 2019 ident: b0200 article-title: Flexible Electronics: Stretchable Electrodes and Their Future publication-title: Adv. Funct. Mater. – volume: 154 start-page: 217 year: 2018 end-page: 227 ident: b0765 article-title: Wearable strain sensors based on electrically conductive natural fiber yarns publication-title: Mater. Des. – volume: 13 start-page: 34865 year: 2021 end-page: 34876 ident: b0835 article-title: (3-Mercaptopropyl)triethoxysilane-Modified Reduced Graphene Oxide-Modified Polyurethane Yarn Enhanced by Epoxy/Thiol Reactions for Strain Sensors publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 9309 year: 2021 end-page: 9318 ident: b0270 article-title: Coupling piezoelectric and piezoresistive effects in flexible pressure sensors for human motion detection from zero to high frequency publication-title: J. Mater. Chem. C – volume: 172 start-page: 7 year: 2019 end-page: 16 ident: b0635 article-title: Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors publication-title: Compos. Sci. Technol. – volume: 84 year: 2013 ident: b0390 article-title: Graphene/polydimethylsiloxane nanocomposite strain sensor publication-title: Rev. Sci. Instrum. – volume: 8 start-page: 5154 year: 2014 end-page: 5163 ident: b0095 article-title: Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite publication-title: ACS Nano – volume: 443 start-page: 136468 year: 2022 ident: b0860 article-title: Sensitivity enhanced, highly stretchable, and mechanically robust strain sensors based on reduced graphene oxide-aramid nanofibers hybrid fillers publication-title: Chem. Eng. J. – volume: 30 start-page: 1909912 year: 2020 ident: b0135 article-title: Self-healing materials for energy-storage devices publication-title: Adv. Funct. Mater. – volume: 105 start-page: 291 year: 2018 end-page: 299 ident: b0700 article-title: Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber publication-title: Compos. A Appl. Sci. Manuf. – volume: 9 start-page: 38052 year: 2017 end-page: 38061 ident: b1000 article-title: Tough, Stretchable, Compressive Novel Polymer/Graphene Oxide Nanocomposite Hydrogels with Excellent Self-Healing Performance publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 296 year: 2011 end-page: 301 ident: b0430 article-title: A stretchable carbon nanotube strain sensor for human-motion detection publication-title: Nat. Nanotechnol. – volume: 412 start-page: 128744 year: 2021 ident: b0020 article-title: Two-dimensional black phosphorus: Properties, fabrication and application for flexible supercapacitors publication-title: Chem. Eng. J. – volume: 31 start-page: e1801072 year: 2019 ident: b0215 article-title: Advanced Carbon for Flexible and Wearable Electronics publication-title: Adv. Mater. – volume: 9 start-page: 20098 year: 2017 end-page: 20105 ident: b0300 article-title: Channel Crack-Designed Gold@PU Sponge for Highly Elastic Piezoresistive Sensor with Excellent Detectability publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 356 year: 2015 end-page: 365 ident: b0885 article-title: A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries publication-title: Nano Energy – volume: 29 start-page: 1905197 year: 2019 ident: b0080 article-title: Flexible and Multifunctional Silk Textiles with Biomimetic Leaf-Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self-Derived Hydrophobicity publication-title: Adv. Funct. Mater. – volume: 31 start-page: 1801072 year: 2019 ident: b0190 article-title: Advanced Carbon for Flexible and Wearable Electronics publication-title: Adv. Mater. – volume: 10 start-page: 7901 year: 2016 end-page: 7906 ident: b0585 article-title: High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions publication-title: ACS Nano – volume: 205 year: 2021 ident: b0985 article-title: High sensitivity of multi-sensing materials based on reduced graphene oxide and natural rubber: The synergy between filler segregation and macro-porous morphology publication-title: Compos. Sci. Technol. – volume: 9 start-page: 11176 year: 2017 end-page: 11183 ident: b1195 article-title: Enhanced Sensitivity of Patterned Graphene Strain Sensors Used for Monitoring Subtle Human Body Motions publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 9634 year: 2021 end-page: 9643 ident: b0520 article-title: Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring publication-title: J. Mater. Chem. A – volume: 12 start-page: 51987 year: 2020 end-page: 51998 ident: b0370 article-title: Highly Stretchable, Self-Healable, Ultrasensitive Strain and Proximity Sensors Based on Skin-Inspired Conductive Film for Human Motion Monitoring publication-title: ACS Appl. Mater. Interfaces – volume: 642 start-page: 128428 year: 2022 ident: b1030 article-title: Construction of polydopamine reduced graphene oxide/sodium carboxymethyl cellulose/polyacrylamide double network conductive hydrogel with high stretchable, pH-sensitive and strain-sensing properties publication-title: Colloids Surf A Physicochem Eng Asp – volume: 26 start-page: 2022 year: 2014 end-page: 2027 ident: b0265 article-title: Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper for Strain Sensors publication-title: Adv. Mater. – volume: 26 year: 2015 ident: b0500 article-title: Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites publication-title: Nanotechnology – volume: 74 start-page: 1 year: 2013 end-page: 5 ident: b0485 article-title: Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading publication-title: Compos. Sci. Technol. – volume: 12 start-page: 9134 year: 2018 end-page: 9141 ident: b0620 article-title: Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection publication-title: ACS Nano – volume: 6 start-page: 3206 year: 2012 end-page: 3213 ident: b0890 article-title: 3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection publication-title: ACS Nano – volume: 17 start-page: e2006542 year: 2021 ident: b0660 article-title: Printable G-Putty for Frequency- and Rate-Independent, High-Performance Strain Sensors publication-title: Small – volume: 19 start-page: 6690 year: 2019 end-page: 6695 ident: b0790 article-title: Ecoflex-Passivated Graphene-Yarn Composite for a Highly Conductive and Stretchable Strain Sensor publication-title: J. Nanosci. Nanotechnol. – volume: 48 start-page: 1945 year: 2010 end-page: 1951 ident: b0550 article-title: Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating publication-title: Carbon – volume: 10 start-page: 8266 year: 2022 end-page: 8277 ident: b1160 article-title: Ultrastretchable, self-healable and adhesive composite organohydrogels with a fast response for human–machine interface applications publication-title: J. Mater. Chem. C – volume: 13 start-page: 37433 year: 2021 end-page: 37444 ident: b0530 article-title: Laser-Induced Corrugated Graphene Films for Integrated Multimodal Sensors publication-title: ACS Appl. Mater. Interfaces – volume: 285 start-page: 179 year: 2019 end-page: 185 ident: b0840 article-title: A highly sensitive, multifunctional, and wearable mechanical sensor based on RGO/synergetic fiber bundles for monitoring human actions and physiological signals publication-title: Sens. Actuators B – volume: 8 start-page: 5618 year: 2016 end-page: 5626 ident: b0310 article-title: Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 2090 year: 2018 end-page: 2098 ident: b1130 article-title: A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat publication-title: Nanoscale – volume: 1 start-page: 42 year: 2006 end-page: 46 ident: b0250 article-title: Giant piezoresistance effect in silicon nanowires publication-title: Nat. Nanotechnol. – volume: 447 start-page: 137259 year: 2022 ident: b1075 article-title: Bio-inspired, super-stretchable and self-adhesive hybrid hydrogel with SC-PDA/GO-Ca2+/PAM framework for high precision wearable sensors publication-title: Chem. Eng. J. – volume: 29 start-page: 1907151 year: 2019 ident: b1155 article-title: Ultrasensitive and Highly Stretchable Multifunctional Strain Sensors with Timbre-Recognition Ability Based on Vertical Graphene publication-title: Adv. Funct. Mater. – volume: 8 start-page: 100 year: 2013 end-page: 103 ident: b0375 article-title: Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics publication-title: Nat. Nanotechnol. – start-page: 117 year: 2019 end-page: 120 ident: b0800 article-title: Highly flexible and stretchable structure based on au/graphene film and polyurethane yarn publication-title: 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO) – volume: 135 start-page: 105932 year: 2020 ident: b0865 article-title: A spirally layered carbon nanotube-graphene/polyurethane composite yarn for highly sensitive and stretchable strain sensor publication-title: Compos. A Appl. Sci. Manuf. – volume: 277 start-page: 26 year: 2018 end-page: 34 ident: b0565 article-title: Optically transparent and high dielectric constant reduced graphene oxide (RGO)-PDMS based flexible composite for wearable and flexible sensors publication-title: Sens. Actuators, A – year: 2004 ident: b0225 article-title: MEMS mechanical sensors publication-title: Artech House – volume: 11 start-page: 35201 year: 2019 end-page: 35211 ident: b0910 article-title: Ultralightweight and 3D Squeezable Graphene-Polydimethylsiloxane Composite Foams as Piezoresistive Sensors publication-title: ACS Appl. Mater. Interfaces – volume: 126 start-page: 360 year: 2018 end-page: 371 ident: b0730 article-title: Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring publication-title: Carbon – volume: 16 start-page: 1155 year: 2015 end-page: 1163 ident: b1120 article-title: Material approaches to stretchable strain sensors publication-title: ChemPhysChem – volume: 8 start-page: 18954 year: 2016 end-page: 18961 ident: b0950 article-title: Highly Stretchable and Sensitive Strain Sensor Based on Facilely Prepared Three-Dimensional Graphene Foam Composite publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 16361 year: 2015 end-page: 16365 ident: b0785 article-title: Small and light strain sensors based on graphene coated human hairs publication-title: Nanoscale – volume: 3 start-page: 1800444 year: 2018 ident: b0380 article-title: Recent Advances in Smart Wearable Sensing Systems publication-title: Adv. Mater. Technol. – volume: 117 start-page: 1 year: 2014 end-page: 7 ident: b0450 article-title: Analyzing resistance response of embedded PDMS and carbon nanotubes composite under tensile strain publication-title: Microelectron. Eng. – volume: 500 start-page: 59 year: 2013 end-page: 63 ident: b0680 article-title: Stretchable nanoparticle conductors with self-organized conductive pathways publication-title: Nature – volume: 12 start-page: 5714 year: 2012 end-page: 5718 ident: b0260 article-title: A novel class of strain gauges based on layered percolative films of 2D materials publication-title: Nano Lett. – volume: 27 start-page: 1702891 year: 2017 ident: b1080 article-title: Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites publication-title: Adv. Funct. Mater. – volume: 62 start-page: 270 year: 2013 end-page: 277 ident: b0670 article-title: Carbon-based piezoresistive polymer composites: Structure and electrical properties publication-title: Carbon – volume: 9 start-page: 719 year: 2021 end-page: 730 ident: b1165 article-title: A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors publication-title: J. Mater. Chem. B – volume: 50 start-page: 4085 year: 2012 end-page: 4092 ident: b0465 article-title: The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400% publication-title: Carbon – volume: 9 start-page: 1622 year: 2015 end-page: 1629 ident: b0355 article-title: Tunable Piezoresistivity of Nanographene Films for Strain Sensing publication-title: ACS Nano – volume: 6 start-page: 699 year: 2014 end-page: 705 ident: b0315 article-title: Scalable fabrication of high-performance and flexible graphene strain sensors publication-title: Nanoscale – volume: 28 start-page: 1802235 year: 2018 ident: b0155 article-title: Carbon-Based Photothermal Actuators publication-title: Adv. Funct. Mater. – volume: 215 start-page: 123340 year: 2021 ident: b1035 article-title: Graphene assisted ion-conductive hydrogel with super sensitivity for strain sensor publication-title: Polymer – volume: 6 year: 2022 ident: b0290 article-title: Multiscale and hierarchical wrinkle enhanced graphene/Ecoflex sensors integrated with human-machine interfaces and cloud-platform, npj Flexible publication-title: Electronics – volume: 31 start-page: 2102355 year: 2021 ident: b0125 article-title: A review of design and fabrication methods for nanoparticle network hydrogels for biomedical, environmental, and industrial applications publication-title: Adv. Funct. Mater. – volume: 10 start-page: 19906 year: 2018 end-page: 19913 ident: b0650 article-title: High-Performance and Multifunctional Skinlike Strain Sensors Based on Graphene/Springlike Mesh Network publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 463 year: 2008 end-page: 470 ident: b0545 article-title: Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors publication-title: ACS Nano – volume: 9 start-page: 25104 year: 2021 end-page: 25113 ident: b1115 article-title: Cooking inspired tough, adhesive, and low-temperature tolerant gluten-based organohydrogels for high performance strain sensors publication-title: J. Mater. Chem. A – volume: 7 start-page: 2100572 year: 2022 ident: b0180 article-title: Carbon-based nanomaterials and sensing tools for wearable health monitoring devices publication-title: Adv. Mater. Technol. – volume: 5 start-page: 28379 year: 2015 end-page: 28384 ident: b0515 article-title: Directly printed stretchable strain sensor based on ring and diamond shaped silver nanowire electrodes publication-title: RSC Adv. – volume: 29 start-page: 1904549 year: 2019 ident: b0085 article-title: Full-Textile Wireless Flexible Humidity Sensor for Human Physiological Monitoring publication-title: Adv. Funct. Mater. – volume: 8 start-page: 3437 year: 2020 end-page: 3459 ident: b0965 article-title: Stretchable and tough conductive hydrogels for flexible pressure and strain sensors publication-title: J. Mater. Chem. B – volume: 516 start-page: 222 year: 2014 end-page: 226 ident: b0445 article-title: Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system publication-title: Nature – volume: 113 start-page: 084101 year: 2018 ident: b0775 article-title: Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications publication-title: Appl. Phys. Lett. – volume: 7 start-page: 14651 year: 2019 end-page: 14663 ident: b0810 article-title: A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing publication-title: J. Mater. Chem. C – volume: 31 start-page: 2104991 year: 2021 ident: b0140 article-title: Nanocellulose-based functional materials: from chiral photonics to soft actuator and energy storage publication-title: Adv. Funct. Mater. – volume: 15 start-page: 8398 year: 2022 end-page: 8409 ident: b0795 article-title: 1D–2D nanohybrid-based textile strain sensor to boost multiscale deformative motion sensing performance publication-title: Nano Res. – volume: 29 start-page: 1901917 year: 2019 ident: b0980 article-title: Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale publication-title: Adv. Funct. Mater. – volume: 77 start-page: 199 year: 2014 end-page: 207 ident: b0455 article-title: Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors publication-title: Carbon – volume: 91 start-page: 223114 year: 2007 ident: b0330 article-title: Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites publication-title: Appl. Phys. Lett. – volume: 14 start-page: 13709 year: 2020 end-page: 13717 ident: b0970 article-title: Solvent-Resistant and Nonswellable Hydrogel Conductor toward Mechanical Perception in Diverse Liquid Media publication-title: ACS Nano – volume: 439 start-page: 135502 year: 2022 ident: b0855 article-title: Twisted graphene fibre based breathable, wettable and washable anti-jamming strain sensor for underwater motion sensing publication-title: Chem. Eng. J. – volume: 56 start-page: 2296 year: 2020 end-page: 2310 ident: b0780 article-title: Encapsulated core–sheath carbon nanotube–graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor publication-title: J. Mater. Sci. – volume: 177 start-page: 116 year: 2017 end-page: 125 ident: b1020 article-title: Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect publication-title: Carbohydr. Polym. – volume: 46 start-page: 4464 year: 2017 end-page: 4500 ident: b0160 article-title: Chemical functionalization and characterization of graphene-based materials publication-title: Chem. Soc. Rev. – volume: 118 start-page: 686 year: 2017 end-page: 698 ident: b0815 article-title: Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core publication-title: Carbon – volume: 7 start-page: 11303 year: 2019 end-page: 11314 ident: b0400 article-title: Highly sensitive and wearable gel-based sensors with a dynamic physically cross-linked structure for strain-stimulus detection over a wide temperature range publication-title: J. Mater. Chem. C – volume: 1 start-page: 7433 year: 2013 ident: b0995 article-title: Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity publication-title: J. Mater. Chem. A – volume: 6 year: 2015 ident: b0075 article-title: Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials publication-title: Nat. Commun. – volume: 32 start-page: 2204272 year: 2022 ident: b0145 article-title: Practical graphene technologies for electrochemical energy storage publication-title: Adv. Funct. Mater. – volume: 10 start-page: 31716 year: 2018 end-page: 31724 ident: b0645 article-title: Multifunctional Highly Sensitive Multiscale Stretchable Strain Sensor Based on a Graphene/Glycerol–KCl Synergistic Conductive Network publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 248 year: 2016 end-page: 255 ident: b0295 article-title: Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing publication-title: Mater. Horiz. – volume: 4 start-page: 4452 year: 2014 ident: b0895 article-title: Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors publication-title: Sci. Rep. – volume: 34 start-page: 2107902 year: 2022 ident: b0030 article-title: Flexible electronics and devices as human-machine interfaces for medical robotics publication-title: Adv. Mater. – volume: 43 start-page: 1787 year: 2005 end-page: 1803 ident: b0275 article-title: Mechanics of the interface for carbon nanotube–polymer composites publication-title: Thin-Walled Struct. – volume: 11 start-page: 10691 year: 2011 end-page: 10723 ident: b0340 article-title: Li, Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites publication-title: Sensors (Basel) – volume: 10 start-page: 424 year: 2011 end-page: 428 ident: b0925 article-title: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition publication-title: Nat. Mater. – volume: 2 start-page: 10048 year: 2014 end-page: 10058 ident: b0470 article-title: Towards tunable resistivity–strain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites publication-title: J. Mater. Chem. A – volume: 27 start-page: 6969 year: 2015 end-page: 6975 ident: b0845 article-title: Highly Stretchable and Conductive Core-Sheath Chemical Vapor Deposition Graphene Fibers and Their Applications in Safe Strain Sensors publication-title: Chem. Mater. – volume: 18 start-page: 4531 year: 2018 end-page: 4540 ident: b0105 article-title: Highly Conformable, Transparent Electrodes for Epidermal Electronics publication-title: Nano Lett. – volume: 31 start-page: 2007495 year: 2021 ident: b1140 article-title: Wearable Stretchable Dry and Self-Adhesive Strain Sensors with Conformal Contact to Skin for High-Quality Motion Monitoring publication-title: Adv. Funct. Mater. – volume: 39 start-page: 228 year: 2010 end-page: 240 ident: b0990 article-title: The chemistry of graphene oxide publication-title: Chem. Soc. Rev. – volume: 5 start-page: 5714 year: 2014 ident: b0575 article-title: Laser-induced porous graphene films from commercial polymers publication-title: Nat. Commun. – volume: 28 start-page: 035004 year: 2019 ident: b0760 article-title: Highly sensitive flexible strain sensor based on threadlike spandex substrate coating with conductive nanocomposites for wearable electronic skin publication-title: Smart Mater. Struct. – volume: 30 start-page: 1907678 year: 2020 ident: b1055 article-title: Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics publication-title: Adv. Funct. Mater. – volume: 11 start-page: 43543 year: 2019 end-page: 43552 ident: b0595 article-title: Two-Sided Topological Architecture on a Monolithic Flexible Substrate for Ultrasensitive Strain Sensors publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2014 ident: b0690 article-title: Fractal design concepts for stretchable electronics publication-title: Nat. Commun. – volume: 25 start-page: 4228 year: 2015 end-page: 4236 ident: b0475 article-title: Highly Stretchable and Sensitive Strain Sensors Using Fragmentized Graphene Foam publication-title: Adv. Funct. Mater. – volume: 2 start-page: 2313 year: 2018 end-page: 2319 ident: b0560 article-title: Functionalization of wet-spun graphene films using aminophenol molecules for high performance supercapacitors publication-title: Mater. Chem. Front. – volume: 179 start-page: 655 year: 2021 end-page: 665 ident: b0710 article-title: Aramid nanofiber framework supporting graphene nanoplate via wet-spinning for a high-performance filament publication-title: Carbon – volume: 10 start-page: 9727 year: 2018 end-page: 9735 ident: b0905 article-title: Three-Dimensional Graphene Structure for Healable Flexible Electronics Based on Diels-Alder Chemistry publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 18644 year: 2019 ident: b0825 article-title: Stretchable Graphene Thin Film Enabled Yarn Sensors with Tunable Piezoresistivity for Human Motion Monitoring publication-title: Sci. Rep. – volume: 32 start-page: 1902343 year: 2020 ident: b0040 article-title: Nanomaterial-Enabled flexible and stretchable sensing systems: processing, integration, and applications publication-title: Adv. Mater. – volume: 139 start-page: 103943 year: 2020 ident: b0395 article-title: Piezoresistive response of graphene rubber composites considering the tunneling effect publication-title: J. Mech. Phys. Solids – volume: 156 start-page: 276 year: 2018 end-page: 286 ident: b0935 article-title: A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring publication-title: Compos. Sci. Technol. – volume: 11 start-page: 40613 year: 2019 end-page: 40619 ident: b1200 article-title: A Flexible Multimodal Sensor That Detects Strain, Humidity, Temperature, and Pressure with Carbon Black and Reduced Graphene Oxide Hierarchical Composite on Paper publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 1209 year: 2014 end-page: 1219 ident: b0490 article-title: Recent advances in flexible and stretchable electronic devices via electrospinning publication-title: J. Mater. Chem. C – volume: 32 start-page: 2204755 year: 2022 ident: b0130 article-title: Emerging graphene derivatives and analogues for efficient energy electrocatalysis publication-title: Adv. Funct. Mater. – volume: 158 start-page: 157 year: 2020 end-page: 162 ident: b0735 article-title: Twist-spinning assembly of robust ultralight graphene fibers with hierarchical structure and multi-functions publication-title: Carbon – volume: 101 start-page: 1869 year: 2001 end-page: 1880 ident: b0960 article-title: Hydrogels for tissue engineering publication-title: Chem. Rev. – volume: 11 start-page: 22531 year: 2019 end-page: 22542 ident: b0525 article-title: MoS2-Decorated Laser-Induced Graphene for a Highly Sensitive, Hysteresis-free, and Reliable Piezoresistive Strain Sensor publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 10127 year: 2021 end-page: 10137 ident: b1060 article-title: Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications publication-title: J. Mater. Chem. C – volume: 9 start-page: 23243 year: 2021 end-page: 23255 ident: b0410 article-title: High toughness multifunctional organic hydrogels for flexible strain and temperature sensor publication-title: J. Mater. Chem. A – volume: 27 start-page: 7365 year: 2015 end-page: 7371 ident: b0820 article-title: A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion publication-title: Adv. Mater. – volume: 7 start-page: 27432 year: 2015 end-page: 27439 ident: b1185 article-title: Highly Stretchable and Ultrasensitive Strain Sensor Based on Reduced Graphene Oxide Microtubes-Elastomer Composite publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 36312 year: 2018 end-page: 36322 ident: b0505 article-title: Ultrasensitive and Stretchable Strain Sensors Based on Mazelike Vertical Graphene Network publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 035013 year: 2018 ident: b0770 article-title: Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions publication-title: Smart Mater. Struct. – volume: 55 start-page: 433 year: 2019 end-page: 440 ident: b0120 article-title: High power-output mechanical energy harvester based on flexible and transparent Au nanoparticle-embedded polymer matrix publication-title: Nano Energy – volume: 14 start-page: 1315 year: 2022 end-page: 1325 ident: b0510 article-title: Fingerprint-Inspired Strain Sensor with Balanced Sensitivity and Strain Range Using Laser-Induced Graphene publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 2008936 year: 2021 ident: b0045 article-title: Wearable Sensors-Enabled Human-Machine Interaction Systems: From Design to Application publication-title: Adv. Funct. Mater. – volume: 9 start-page: 27127 year: 2017 end-page: 27134 ident: b0940 article-title: Ultralight Interconnected Graphene-Amorphous Carbon Hierarchical Foam with Mechanical Resiliency for High Sensitivity and Durable Strain Sensors publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 22 year: 2020 end-page: 27 ident: b1025 article-title: Highly stretchable, self-healing, and strain-sensitive based on double-crosslinked nanocomposite hydrogel, Composites publication-title: Communications – volume: 9 start-page: 8933 year: 2015 end-page: 8941 ident: b0915 article-title: Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application publication-title: ACS Nano – volume: 10 start-page: 44173 year: 2018 end-page: 44182 ident: b0920 article-title: Multifunctional Mechanical Sensors for Versatile Physiological Signal Detection publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 5658 year: 2013 end-page: 5662 ident: b0900 article-title: Mechanically Flexible and Multifunctional Polymer-Based Graphene Foams for Elastic Conductors and Oil-Water Separators publication-title: Adv. Mater. – volume: 2 start-page: 870 year: 2012 ident: b0435 article-title: Stretchable and highly sensitive graphene-on-polymer strain sensors publication-title: Sci. Rep. – volume: 8 start-page: 20090 year: 2016 end-page: 20095 ident: b0665 article-title: High performance flexible strain sensor based on self-locked overlapping graphene sheets publication-title: Nanoscale – volume: 373 start-page: 298 year: 2019 end-page: 306 ident: b0725 article-title: Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring publication-title: Chem. Eng. J. – volume: 81 start-page: 61 year: 2013 end-page: 68 ident: b0745 article-title: The production of a melt-spun functionalized graphene/poly(ε-caprolactam) nanocomposite fiber publication-title: Compos. Sci. Technol. – volume: 28 start-page: 1800850 year: 2018 ident: b0425 article-title: Lowering Internal Friction of 0D–1D-2D Ternary Nanocomposite-Based Strain Sensor by Fullerene to Boost the Sensing Performance publication-title: Adv. Funct. Mater. – volume: 9 start-page: 3088 year: 2021 end-page: 3096 ident: b1100 article-title: Self-healing and anti-freezing graphene-hydrogel-graphene sandwich strain sensor with ultrahigh sensitivity publication-title: J. Mater. Chem. B – volume: 30 year: 2019 ident: b0235 article-title: 3D printed graphene/polydimethylsiloxane composite for stretchable strain sensor with tunable sensitivity publication-title: Nanotechnology – volume: 4 start-page: 453 year: 2017 end-page: 489 ident: b0185 article-title: Carbon-based supercapacitors for efficient energy storage publication-title: Natl. Sci. Rev. – volume: 8 start-page: 10310 year: 2020 end-page: 10317 ident: b0590 article-title: Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate's Poisson's ratio effect publication-title: J. Mater. Chem. A – volume: 5 year: 2014 ident: b0065 article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires publication-title: Nat. Commun. – volume: 7 start-page: 2001235 year: 2021 ident: b0535 article-title: High Sensitivity Polyurethane-Based Fiber Strain Sensor with Porous Structure via Incorporation of Bacterial Cellulose Nanofibers publication-title: Adv. Electron. Mater. – volume: 9 start-page: 14207 year: 2017 end-page: 14215 ident: b0630 article-title: Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 4001 year: 2015 end-page: 4008 ident: b1005 article-title: Self-healable, super tough graphene oxide-poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions publication-title: J. Mater. Chem. B – volume: 437 start-page: 135399 year: 2022 ident: b0850 article-title: Stretchable and ultrasensitive strain sensor based on a bilayer wrinkle-microcracking mechanism publication-title: Chem. Eng. J. – volume: 10 start-page: 11524 year: 2018 end-page: 11530 ident: b0580 article-title: An ultrasensitive strain sensor with a wide strain range based on graphene armour scales publication-title: Nanoscale – volume: 6 start-page: 10524 year: 2018 end-page: 10531 ident: b0305 article-title: Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric publication-title: J. Mater. Chem. C – volume: 8 start-page: 26458 year: 2016 end-page: 26462 ident: b0930 article-title: Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 22225 year: 2020 end-page: 22236 ident: b1105 article-title: Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing publication-title: ACS Appl. Mater. Interfaces – volume: 27 year: 2017 ident: b1170 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 1601916 year: 2017 ident: b1065 article-title: A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics publication-title: Small – volume: 97 start-page: 513 year: 2009 end-page: 552 ident: b1125 article-title: Semiconductor piezoresistance for microsystems publication-title: Proc. IEEE – volume: 10 start-page: 5264 year: 2018 end-page: 5271 ident: b1180 article-title: Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics publication-title: Nanoscale – volume: 2 start-page: 10048 issue: 26 year: 2014 ident: 10.1016/j.cej.2023.142576_b0470 article-title: Towards tunable resistivity–strain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01073F – volume: 31 start-page: e1801072 issue: 9 year: 2019 ident: 10.1016/j.cej.2023.142576_b0215 article-title: Advanced Carbon for Flexible and Wearable Electronics publication-title: Adv. Mater. doi: 10.1002/adma.201801072 – volume: 3 issue: 9 year: 2017 ident: 10.1016/j.cej.2023.142576_b0675 article-title: Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors publication-title: Sci. Adv. doi: 10.1126/sciadv.1701114 – volume: 431 start-page: 134038 year: 2022 ident: 10.1016/j.cej.2023.142576_b0640 article-title: Stretchable vertical graphene arrays for electronic skin with multifunctional sensing capabilities publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134038 – volume: 10 start-page: 36377 issue: 42 year: 2018 ident: 10.1016/j.cej.2023.142576_b0880 article-title: Highly Sensitive and Flexible Strain-Pressure Sensors with Cracked Paddy-Shaped MoS2/Graphene Foam/Ecoflex Hybrid Nanostructures publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b11233 – volume: 3 start-page: 248 issue: 3 year: 2016 ident: 10.1016/j.cej.2023.142576_b0295 article-title: Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing publication-title: Mater. Horiz. doi: 10.1039/C6MH00027D – volume: 10 start-page: 5264 issue: 11 year: 2018 ident: 10.1016/j.cej.2023.142576_b1180 article-title: Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics publication-title: Nanoscale doi: 10.1039/C7NR09022F – volume: 11 start-page: 35201 issue: 38 year: 2019 ident: 10.1016/j.cej.2023.142576_b0910 article-title: Ultralightweight and 3D Squeezable Graphene-Polydimethylsiloxane Composite Foams as Piezoresistive Sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b11776 – volume: 447 start-page: 137259 year: 2022 ident: 10.1016/j.cej.2023.142576_b1075 article-title: Bio-inspired, super-stretchable and self-adhesive hybrid hydrogel with SC-PDA/GO-Ca2+/PAM framework for high precision wearable sensors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137259 – volume: 435 start-page: 135018 year: 2022 ident: 10.1016/j.cej.2023.142576_b1135 article-title: A multifunctional hydrogel fabricated via ultra-fast polymerization by graphene oxide-adsorbed liquid metal nanodroplets publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135018 – volume: 19 start-page: 6690 issue: 10 year: 2019 ident: 10.1016/j.cej.2023.142576_b0790 article-title: Ecoflex-Passivated Graphene-Yarn Composite for a Highly Conductive and Stretchable Strain Sensor publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2019.17097 – volume: 29 start-page: 1808247 issue: 19 year: 2019 ident: 10.1016/j.cej.2023.142576_b0010 article-title: Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808247 – volume: 9 start-page: 27127 issue: 32 year: 2017 ident: 10.1016/j.cej.2023.142576_b0940 article-title: Ultralight Interconnected Graphene-Amorphous Carbon Hierarchical Foam with Mechanical Resiliency for High Sensitivity and Durable Strain Sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05636 – volume: 1 start-page: 42 issue: 1 year: 2006 ident: 10.1016/j.cej.2023.142576_b0250 article-title: Giant piezoresistance effect in silicon nanowires publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2006.53 – volume: 8 start-page: 5154 issue: 5 year: 2014 ident: 10.1016/j.cej.2023.142576_b0095 article-title: Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite publication-title: ACS Nano doi: 10.1021/nn501204t – volume: 91 start-page: 223114 issue: 22 year: 2007 ident: 10.1016/j.cej.2023.142576_b0330 article-title: Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites publication-title: Appl. Phys. Lett. doi: 10.1063/1.2819690 – volume: 177 start-page: 116 year: 2017 ident: 10.1016/j.cej.2023.142576_b1020 article-title: Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2017.08.106 – volume: 10 start-page: 8266 issue: 21 year: 2022 ident: 10.1016/j.cej.2023.142576_b1160 article-title: Ultrastretchable, self-healable and adhesive composite organohydrogels with a fast response for human–machine interface applications publication-title: J. Mater. Chem. C doi: 10.1039/D2TC00932C – volume: 9 start-page: 3088 issue: 13 year: 2021 ident: 10.1016/j.cej.2023.142576_b1100 article-title: Self-healing and anti-freezing graphene-hydrogel-graphene sandwich strain sensor with ultrahigh sensitivity publication-title: J. Mater. Chem. B doi: 10.1039/D1TB00082A – volume: 90 issue: 15 year: 2003 ident: 10.1016/j.cej.2023.142576_b0255 article-title: Electromechanical Properties of Metallic, Quasimetallic, and Semiconducting Carbon Nanotubes under Stretching publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.157601 – volume: 10 start-page: 36312 issue: 42 year: 2018 ident: 10.1016/j.cej.2023.142576_b0505 article-title: Ultrasensitive and Stretchable Strain Sensors Based on Mazelike Vertical Graphene Network publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b15848 – volume: 12 start-page: 8839 issue: 9 year: 2018 ident: 10.1016/j.cej.2023.142576_b0605 article-title: Multilayer Graphene Epidermal Electronic Skin publication-title: ACS Nano doi: 10.1021/acsnano.8b02162 – volume: 285 start-page: 179 year: 2019 ident: 10.1016/j.cej.2023.142576_b0840 article-title: A highly sensitive, multifunctional, and wearable mechanical sensor based on RGO/synergetic fiber bundles for monitoring human actions and physiological signals publication-title: Sens. Actuators B doi: 10.1016/j.snb.2019.01.063 – volume: 11 start-page: 10691 issue: 11 year: 2011 ident: 10.1016/j.cej.2023.142576_b0340 article-title: Li, Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites publication-title: Sensors (Basel) doi: 10.3390/s111110691 – volume: 46 start-page: 4464 issue: 15 year: 2017 ident: 10.1016/j.cej.2023.142576_b0160 article-title: Chemical functionalization and characterization of graphene-based materials publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00229G – volume: 5 start-page: 5815 issue: 12 year: 2013 ident: 10.1016/j.cej.2023.142576_b0480 article-title: Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am401402x – volume: 25 start-page: 5658 issue: 39 year: 2013 ident: 10.1016/j.cej.2023.142576_b0900 article-title: Mechanically Flexible and Multifunctional Polymer-Based Graphene Foams for Elastic Conductors and Oil-Water Separators publication-title: Adv. Mater. doi: 10.1002/adma.201302406 – volume: 31 start-page: 2102355 issue: 33 year: 2021 ident: 10.1016/j.cej.2023.142576_b0125 article-title: A review of design and fabrication methods for nanoparticle network hydrogels for biomedical, environmental, and industrial applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102355 – volume: 28 start-page: 1802235 issue: 40 year: 2018 ident: 10.1016/j.cej.2023.142576_b0155 article-title: Carbon-Based Photothermal Actuators publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802235 – volume: 28 start-page: 1705879 issue: 23 year: 2018 ident: 10.1016/j.cej.2023.142576_b1150 article-title: A Bubble-Derived Strategy to Prepare Multiple Graphene-Based Porous Materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705879 – volume: 101 start-page: 063112 issue: 6 year: 2012 ident: 10.1016/j.cej.2023.142576_b0360 article-title: Ultra-sensitive strain sensors based on piezoresistive nanographene films publication-title: Appl. Phys. Lett. doi: 10.1063/1.4742331 – volume: 12 start-page: 5714 issue: 11 year: 2012 ident: 10.1016/j.cej.2023.142576_b0260 article-title: A novel class of strain gauges based on layered percolative films of 2D materials publication-title: Nano Lett. doi: 10.1021/nl302959a – volume: 31 start-page: 2104991 issue: 45 year: 2021 ident: 10.1016/j.cej.2023.142576_b0140 article-title: Nanocellulose-based functional materials: from chiral photonics to soft actuator and energy storage publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104991 – volume: 7 start-page: 27432 issue: 49 year: 2015 ident: 10.1016/j.cej.2023.142576_b1185 article-title: Highly Stretchable and Ultrasensitive Strain Sensor Based on Reduced Graphene Oxide Microtubes-Elastomer Composite publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09314 – volume: 29 start-page: 1901917 issue: 26 year: 2019 ident: 10.1016/j.cej.2023.142576_b0980 article-title: Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201901917 – volume: 41 start-page: 233 issue: 1 year: 2020 ident: 10.1016/j.cej.2023.142576_b0750 article-title: Preparation and properties of melt-spun poly(fluorinated ethylene-propylene)/graphene composite fibers publication-title: Polym. Compos. doi: 10.1002/pc.25364 – volume: 2 start-page: 2313 issue: 12 year: 2018 ident: 10.1016/j.cej.2023.142576_b0560 article-title: Functionalization of wet-spun graphene films using aminophenol molecules for high performance supercapacitors publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00260F – volume: 12 start-page: 22225 issue: 19 year: 2020 ident: 10.1016/j.cej.2023.142576_b1105 article-title: Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c06091 – volume: 29 start-page: 1907151 issue: 51 year: 2019 ident: 10.1016/j.cej.2023.142576_b1155 article-title: Ultrasensitive and Highly Stretchable Multifunctional Strain Sensors with Timbre-Recognition Ability Based on Vertical Graphene publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907151 – volume: 9 start-page: 9634 issue: 15 year: 2021 ident: 10.1016/j.cej.2023.142576_b0520 article-title: Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring publication-title: J. Mater. Chem. A doi: 10.1039/D0TA11959H – volume: 8 start-page: 100 issue: 2 year: 2013 ident: 10.1016/j.cej.2023.142576_b0375 article-title: Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.224 – volume: 10 start-page: 11524 issue: 24 year: 2018 ident: 10.1016/j.cej.2023.142576_b0580 article-title: An ultrasensitive strain sensor with a wide strain range based on graphene armour scales publication-title: Nanoscale doi: 10.1039/C8NR02652A – volume: 500 start-page: 59 issue: 7460 year: 2013 ident: 10.1016/j.cej.2023.142576_b0680 article-title: Stretchable nanoparticle conductors with self-organized conductive pathways publication-title: Nature doi: 10.1038/nature12401 – volume: 7 start-page: 97 issue: 1 year: 2021 ident: 10.1016/j.cej.2023.142576_b0055 article-title: Flexible thin-film acoustic wave devices with off-axis bending characteristics for multisensing applications publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-021-00325-3 – volume: 215 start-page: 123340 year: 2021 ident: 10.1016/j.cej.2023.142576_b1035 article-title: Graphene assisted ion-conductive hydrogel with super sensitivity for strain sensor publication-title: Polymer doi: 10.1016/j.polymer.2020.123340 – volume: 32 start-page: 1902051 issue: 15 year: 2020 ident: 10.1016/j.cej.2023.142576_b0025 article-title: Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems publication-title: Adv. Mater. doi: 10.1002/adma.201902051 – volume: 6 start-page: 699 issue: 2 year: 2014 ident: 10.1016/j.cej.2023.142576_b0315 article-title: Scalable fabrication of high-performance and flexible graphene strain sensors publication-title: Nanoscale doi: 10.1039/C3NR04521H – volume: 8 start-page: 2326 issue: 7 year: 2020 ident: 10.1016/j.cej.2023.142576_b1015 article-title: Thermo-responsive shape memory sensors based on tough, remolding and anti-freezing hydrogels publication-title: J. Mater. Chem. C doi: 10.1039/C9TC05804D – volume: 12 start-page: 4110 issue: 6 year: 2020 ident: 10.1016/j.cej.2023.142576_b0805 article-title: An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles publication-title: Nanoscale doi: 10.1039/C9NR09306K – volume: 102 start-page: 183511 issue: 18 year: 2013 ident: 10.1016/j.cej.2023.142576_b0335 article-title: High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors publication-title: Appl. Phys. Lett. doi: 10.1063/1.4804580 – year: 2004 ident: 10.1016/j.cej.2023.142576_b0225 article-title: MEMS mechanical sensors publication-title: Artech House – volume: 437 start-page: 135399 year: 2022 ident: 10.1016/j.cej.2023.142576_b0850 article-title: Stretchable and ultrasensitive strain sensor based on a bilayer wrinkle-microcracking mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135399 – volume: 7 start-page: 2001235 issue: 4 year: 2021 ident: 10.1016/j.cej.2023.142576_b0535 article-title: High Sensitivity Polyurethane-Based Fiber Strain Sensor with Porous Structure via Incorporation of Bacterial Cellulose Nanofibers publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202001235 – volume: 442 start-page: 136138 year: 2022 ident: 10.1016/j.cej.2023.142576_b0720 article-title: Design and development of ultra-sensitive, dynamically stable, multi-modal GnP@MXene nanohybrid electrospun strain sensors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136138 – volume: 205 year: 2021 ident: 10.1016/j.cej.2023.142576_b0985 article-title: High sensitivity of multi-sensing materials based on reduced graphene oxide and natural rubber: The synergy between filler segregation and macro-porous morphology publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2021.108689 – volume: 9 start-page: 18644 issue: 1 year: 2019 ident: 10.1016/j.cej.2023.142576_b0825 article-title: Stretchable Graphene Thin Film Enabled Yarn Sensors with Tunable Piezoresistivity for Human Motion Monitoring publication-title: Sci. Rep. doi: 10.1038/s41598-019-55262-z – volume: 29 start-page: 1904706 issue: 51 year: 2019 ident: 10.1016/j.cej.2023.142576_b0570 article-title: A dual-functional graphene-based self-alarm health-monitoring e-skin publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201904706 – volume: 14 start-page: 13709 issue: 10 year: 2020 ident: 10.1016/j.cej.2023.142576_b0970 article-title: Solvent-Resistant and Nonswellable Hydrogel Conductor toward Mechanical Perception in Diverse Liquid Media publication-title: ACS Nano doi: 10.1021/acsnano.0c05932 – volume: 43 start-page: 1787 issue: 11 year: 2005 ident: 10.1016/j.cej.2023.142576_b0275 article-title: Mechanics of the interface for carbon nanotube–polymer composites publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2005.07.003 – volume: 25 start-page: 4228 issue: 27 year: 2015 ident: 10.1016/j.cej.2023.142576_b0475 article-title: Highly Stretchable and Sensitive Strain Sensors Using Fragmentized Graphene Foam publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501000 – volume: 33 start-page: 2005902 issue: 47 year: 2021 ident: 10.1016/j.cej.2023.142576_b0035 article-title: Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications publication-title: Adv. Mater. doi: 10.1002/adma.202005902 – volume: 2 start-page: 1209 issue: 7 year: 2014 ident: 10.1016/j.cej.2023.142576_b0490 article-title: Recent advances in flexible and stretchable electronic devices via electrospinning publication-title: J. Mater. Chem. C doi: 10.1039/C3TC31680G – volume: 167 start-page: 371 year: 2018 ident: 10.1016/j.cej.2023.142576_b0625 article-title: Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.08.022 – volume: 118 start-page: 686 year: 2017 ident: 10.1016/j.cej.2023.142576_b0815 article-title: Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core publication-title: Carbon doi: 10.1016/j.carbon.2017.04.002 – volume: 29 start-page: 1904549 issue: 43 year: 2019 ident: 10.1016/j.cej.2023.142576_b0085 article-title: Full-Textile Wireless Flexible Humidity Sensor for Human Physiological Monitoring publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201904549 – volume: 27 start-page: 1702891 issue: 46 year: 2017 ident: 10.1016/j.cej.2023.142576_b1080 article-title: Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702891 – volume: 9 start-page: 25104 issue: 44 year: 2021 ident: 10.1016/j.cej.2023.142576_b1115 article-title: Cooking inspired tough, adhesive, and low-temperature tolerant gluten-based organohydrogels for high performance strain sensors publication-title: J. Mater. Chem. A doi: 10.1039/D1TA07273K – volume: 13 start-page: 34865 issue: 29 year: 2021 ident: 10.1016/j.cej.2023.142576_b0835 article-title: (3-Mercaptopropyl)triethoxysilane-Modified Reduced Graphene Oxide-Modified Polyurethane Yarn Enhanced by Epoxy/Thiol Reactions for Strain Sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c07620 – volume: 8 start-page: 26458 issue: 40 year: 2016 ident: 10.1016/j.cej.2023.142576_b0930 article-title: Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08172 – volume: 3 start-page: 1800444 issue: 12 year: 2018 ident: 10.1016/j.cej.2023.142576_b0380 article-title: Recent Advances in Smart Wearable Sensing Systems publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800444 – volume: 32 start-page: 1902133 issue: 15 year: 2020 ident: 10.1016/j.cej.2023.142576_b0005 article-title: Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability publication-title: Adv. Mater. doi: 10.1002/adma.201902133 – volume: 31 start-page: 2008936 issue: 11 year: 2021 ident: 10.1016/j.cej.2023.142576_b0045 article-title: Wearable Sensors-Enabled Human-Machine Interaction Systems: From Design to Application publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008936 – volume: 27 start-page: 035013 issue: 3 year: 2018 ident: 10.1016/j.cej.2023.142576_b0770 article-title: Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aaaba0 – volume: 158 start-page: 157 year: 2020 ident: 10.1016/j.cej.2023.142576_b0735 article-title: Twist-spinning assembly of robust ultralight graphene fibers with hierarchical structure and multi-functions publication-title: Carbon doi: 10.1016/j.carbon.2019.11.072 – volume: 31 start-page: 1800716 issue: 9 year: 2019 ident: 10.1016/j.cej.2023.142576_b0210 article-title: Carbon-Nanomaterial-Based Flexible Batteries for Wearable Electronics publication-title: Adv. Mater. doi: 10.1002/adma.201800716 – volume: 8 start-page: 10310 issue: 20 year: 2020 ident: 10.1016/j.cej.2023.142576_b0590 article-title: Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate's Poisson's ratio effect publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02878A – volume: 30 start-page: 1909912 issue: 24 year: 2020 ident: 10.1016/j.cej.2023.142576_b0135 article-title: Self-healing materials for energy-storage devices publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909912 – volume: 6 start-page: 296 issue: 5 year: 2011 ident: 10.1016/j.cej.2023.142576_b0430 article-title: A stretchable carbon nanotube strain sensor for human-motion detection publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.36 – volume: 17 start-page: 22 year: 2020 ident: 10.1016/j.cej.2023.142576_b1025 article-title: Highly stretchable, self-healing, and strain-sensitive based on double-crosslinked nanocomposite hydrogel, Composites publication-title: Communications – volume: 9 start-page: 20098 issue: 23 year: 2017 ident: 10.1016/j.cej.2023.142576_b0300 article-title: Channel Crack-Designed Gold@PU Sponge for Highly Elastic Piezoresistive Sensor with Excellent Detectability publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04605 – volume: 117 start-page: 1 year: 2014 ident: 10.1016/j.cej.2023.142576_b0450 article-title: Analyzing resistance response of embedded PDMS and carbon nanotubes composite under tensile strain publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2013.11.013 – volume: 136 start-page: 63 year: 2018 ident: 10.1016/j.cej.2023.142576_b1070 article-title: Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry publication-title: Carbon doi: 10.1016/j.carbon.2018.04.065 – volume: 412 start-page: 128744 year: 2021 ident: 10.1016/j.cej.2023.142576_b0020 article-title: Two-dimensional black phosphorus: Properties, fabrication and application for flexible supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128744 – volume: 8 start-page: 3035 issue: 9 year: 2008 ident: 10.1016/j.cej.2023.142576_b0245 article-title: Flexible Piezotronic Strain Sensor publication-title: Nano Lett. doi: 10.1021/nl802367t – volume: 31 start-page: 1801072 issue: 9 year: 2019 ident: 10.1016/j.cej.2023.142576_b0190 article-title: Advanced Carbon for Flexible and Wearable Electronics publication-title: Adv. Mater. doi: 10.1002/adma.201801072 – volume: 7 start-page: 6317 issue: 11 year: 2015 ident: 10.1016/j.cej.2023.142576_b0285 article-title: Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00695 – volume: 277 start-page: 26 year: 2018 ident: 10.1016/j.cej.2023.142576_b0565 article-title: Optically transparent and high dielectric constant reduced graphene oxide (RGO)-PDMS based flexible composite for wearable and flexible sensors publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2018.04.040 – volume: 9 start-page: 38052 issue: 43 year: 2017 ident: 10.1016/j.cej.2023.142576_b1000 article-title: Tough, Stretchable, Compressive Novel Polymer/Graphene Oxide Nanocomposite Hydrogels with Excellent Self-Healing Performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b12932 – volume: 66 start-page: 104134 year: 2019 ident: 10.1016/j.cej.2023.142576_b0325 article-title: Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104134 – volume: 9 start-page: 8266 issue: 24 year: 2017 ident: 10.1016/j.cej.2023.142576_b0600 article-title: Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions publication-title: Nanoscale doi: 10.1039/C7NR01862B – volume: 12 start-page: 9134 issue: 9 year: 2018 ident: 10.1016/j.cej.2023.142576_b0620 article-title: Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection publication-title: ACS Nano doi: 10.1021/acsnano.8b03391 – volume: 28 start-page: 4306 issue: 22 year: 2016 ident: 10.1016/j.cej.2023.142576_b0205 article-title: Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices publication-title: Adv. Mater. doi: 10.1002/adma.201504225 – volume: 6 year: 2015 ident: 10.1016/j.cej.2023.142576_b0075 article-title: Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials publication-title: Nat. Commun. – volume: 8 start-page: 20090 issue: 48 year: 2016 ident: 10.1016/j.cej.2023.142576_b0665 article-title: High performance flexible strain sensor based on self-locked overlapping graphene sheets publication-title: Nanoscale doi: 10.1039/C6NR07620C – volume: 74 start-page: 1 year: 2013 ident: 10.1016/j.cej.2023.142576_b0485 article-title: Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2012.09.016 – volume: 299 start-page: 22 year: 2016 ident: 10.1016/j.cej.2023.142576_b0555 article-title: Foldable and electrically stable graphene film resistors prepared by vacuum filtration for flexible electronics publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2016.04.066 – volume: 139 start-page: 103943 year: 2020 ident: 10.1016/j.cej.2023.142576_b0395 article-title: Piezoresistive response of graphene rubber composites considering the tunneling effect publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2020.103943 – volume: 34 start-page: 2108932 issue: 24 year: 2022 ident: 10.1016/j.cej.2023.142576_b0100 article-title: Recent Progress on Self-Healable Conducting Polymers publication-title: Adv. Mater. doi: 10.1002/adma.202108932 – volume: 19 start-page: 085019 issue: 8 year: 2009 ident: 10.1016/j.cej.2023.142576_b0460 article-title: Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/19/8/085019 – volume: 32 start-page: 1902343 issue: 15 year: 2020 ident: 10.1016/j.cej.2023.142576_b0040 article-title: Nanomaterial-Enabled flexible and stretchable sensing systems: processing, integration, and applications publication-title: Adv. Mater. doi: 10.1002/adma.201902343 – volume: 5 start-page: 28379 issue: 36 year: 2015 ident: 10.1016/j.cej.2023.142576_b0515 article-title: Directly printed stretchable strain sensor based on ring and diamond shaped silver nanowire electrodes publication-title: RSC Adv. doi: 10.1039/C5RA01519G – volume: 27 start-page: 6969 issue: 20 year: 2015 ident: 10.1016/j.cej.2023.142576_b0845 article-title: Highly Stretchable and Conductive Core-Sheath Chemical Vapor Deposition Graphene Fibers and Their Applications in Safe Strain Sensors publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02098 – volume: 113 start-page: 084101 issue: 8 year: 2018 ident: 10.1016/j.cej.2023.142576_b0775 article-title: Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications publication-title: Appl. Phys. Lett. doi: 10.1063/1.5037318 – volume: 11 start-page: 43543 issue: 46 year: 2019 ident: 10.1016/j.cej.2023.142576_b0595 article-title: Two-Sided Topological Architecture on a Monolithic Flexible Substrate for Ultrasensitive Strain Sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14476 – volume: 11 start-page: 356 year: 2015 ident: 10.1016/j.cej.2023.142576_b0885 article-title: A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.025 – volume: 9 start-page: 719 issue: 3 year: 2021 ident: 10.1016/j.cej.2023.142576_b1165 article-title: A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors publication-title: J. Mater. Chem. B doi: 10.1039/D0TB01926G – volume: 7 start-page: 27099 issue: 47 year: 2019 ident: 10.1016/j.cej.2023.142576_b1110 article-title: A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application publication-title: J. Mater. Chem. A doi: 10.1039/C9TA11084D – volume: 10 start-page: 424 issue: 6 year: 2011 ident: 10.1016/j.cej.2023.142576_b0925 article-title: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition publication-title: Nat. Mater. doi: 10.1038/nmat3001 – volume: 77 start-page: 199 year: 2014 ident: 10.1016/j.cej.2023.142576_b0455 article-title: Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors publication-title: Carbon doi: 10.1016/j.carbon.2014.05.022 – volume: 31 start-page: 2007495 issue: 5 year: 2021 ident: 10.1016/j.cej.2023.142576_b1140 article-title: Wearable Stretchable Dry and Self-Adhesive Strain Sensors with Conformal Contact to Skin for High-Quality Motion Monitoring publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007495 – volume: 135 start-page: 105932 year: 2020 ident: 10.1016/j.cej.2023.142576_b0865 article-title: A spirally layered carbon nanotube-graphene/polyurethane composite yarn for highly sensitive and stretchable strain sensor publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2020.105932 – volume: 17 start-page: e2006542 issue: 23 year: 2021 ident: 10.1016/j.cej.2023.142576_b0660 article-title: Printable G-Putty for Frequency- and Rate-Independent, High-Performance Strain Sensors publication-title: Small doi: 10.1002/smll.202006542 – volume: 13 issue: 1 year: 2022 ident: 10.1016/j.cej.2023.142576_b0070 article-title: Room-temperature high-precision printing of flexible wireless electronics based on MXene inks publication-title: Nat. Commun. doi: 10.1038/s41467-022-30648-2 – volume: 12 start-page: 51987 issue: 46 year: 2020 ident: 10.1016/j.cej.2023.142576_b0370 article-title: Highly Stretchable, Self-Healable, Ultrasensitive Strain and Proximity Sensors Based on Skin-Inspired Conductive Film for Human Motion Monitoring publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15578 – volume: 28 start-page: 1803221 issue: 40 year: 2018 ident: 10.1016/j.cej.2023.142576_b0420 article-title: 3D Graphene Films Enable Simultaneously High Sensitivity and Large Stretchability for Strain Sensors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803221 – volume: 9 start-page: 4658 issue: 5 year: 2017 ident: 10.1016/j.cej.2023.142576_b1210 article-title: Highly sensitive bendable and foldable paper sensors based on reduced graphene oxide publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10484 – volume: 156 start-page: 276 year: 2018 ident: 10.1016/j.cej.2023.142576_b0935 article-title: A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.01.019 – volume: 20 issue: 8 year: 2020 ident: 10.1016/j.cej.2023.142576_b0240 article-title: Highly Sensitive E-Textile Strain Sensors Enhanced by Geometrical Treatment for Human Monitoring publication-title: Sensors doi: 10.3390/s20082383 – volume: 11 start-page: 40613 issue: 43 year: 2019 ident: 10.1016/j.cej.2023.142576_b1200 article-title: A Flexible Multimodal Sensor That Detects Strain, Humidity, Temperature, and Pressure with Carbon Black and Reduced Graphene Oxide Hierarchical Composite on Paper publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13349 – volume: 7 start-page: 11303 issue: 36 year: 2019 ident: 10.1016/j.cej.2023.142576_b0400 article-title: Highly sensitive and wearable gel-based sensors with a dynamic physically cross-linked structure for strain-stimulus detection over a wide temperature range publication-title: J. Mater. Chem. C doi: 10.1039/C9TC03475G – volume: 6 issue: 1 year: 2022 ident: 10.1016/j.cej.2023.142576_b0290 article-title: Multiscale and hierarchical wrinkle enhanced graphene/Ecoflex sensors integrated with human-machine interfaces and cloud-platform, npj Flexible publication-title: Electronics – volume: 27 issue: 33 year: 2017 ident: 10.1016/j.cej.2023.142576_b1170 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701513 – volume: 30 start-page: 1909035 issue: 41 year: 2020 ident: 10.1016/j.cej.2023.142576_b0150 article-title: The chemistry and promising applications of graphene and porous graphene materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909035 – volume: 11 start-page: 22531 issue: 25 year: 2019 ident: 10.1016/j.cej.2023.142576_b0525 article-title: MoS2-Decorated Laser-Induced Graphene for a Highly Sensitive, Hysteresis-free, and Reliable Piezoresistive Strain Sensor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04915 – volume: 10 start-page: 19906 issue: 23 year: 2018 ident: 10.1016/j.cej.2023.142576_b0650 article-title: High-Performance and Multifunctional Skinlike Strain Sensors Based on Graphene/Springlike Mesh Network publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b06496 – volume: 4 start-page: 4452 issue: 1 year: 2014 ident: 10.1016/j.cej.2023.142576_b0895 article-title: Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors publication-title: Sci. Rep. doi: 10.1038/srep04452 – volume: 5 start-page: 5714 year: 2014 ident: 10.1016/j.cej.2023.142576_b0575 article-title: Laser-induced porous graphene films from commercial polymers publication-title: Nat. Commun. doi: 10.1038/ncomms6714 – volume: 39 start-page: 228 issue: 1 year: 2010 ident: 10.1016/j.cej.2023.142576_b0990 article-title: The chemistry of graphene oxide publication-title: Chem. Soc. Rev. doi: 10.1039/B917103G – volume: 10 start-page: 2090 issue: 4 year: 2018 ident: 10.1016/j.cej.2023.142576_b1130 article-title: A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat publication-title: Nanoscale doi: 10.1039/C7NR07225B – volume: 27 start-page: 7365 issue: 45 year: 2015 ident: 10.1016/j.cej.2023.142576_b0820 article-title: A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion publication-title: Adv. Mater. doi: 10.1002/adma.201503558 – volume: 24 start-page: 100909 year: 2020 ident: 10.1016/j.cej.2023.142576_b0715 article-title: Continuous graphene fibers prepared by liquid crystal spinning as strain sensors for Monitoring Vital Signs publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2020.100909 – volume: 7 start-page: 2501 issue: 4 year: 2014 ident: 10.1016/j.cej.2023.142576_b0350 article-title: Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets publication-title: Materials (Basel) doi: 10.3390/ma7042501 – volume: 26 start-page: 1678 issue: 11 year: 2016 ident: 10.1016/j.cej.2023.142576_b0495 article-title: Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504755 – volume: 444 start-page: 136631 year: 2022 ident: 10.1016/j.cej.2023.142576_b1175 article-title: Porous graphene foam composite-based dual-mode sensors for underwater temperature and subtle motion detection publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136631 – volume: 29 start-page: 1905197 issue: 44 year: 2019 ident: 10.1016/j.cej.2023.142576_b0080 article-title: Flexible and Multifunctional Silk Textiles with Biomimetic Leaf-Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self-Derived Hydrophobicity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905197 – volume: 13 start-page: 37433 issue: 31 year: 2021 ident: 10.1016/j.cej.2023.142576_b0530 article-title: Laser-Induced Corrugated Graphene Films for Integrated Multimodal Sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c12686 – volume: 26 start-page: 5310 issue: 31 year: 2014 ident: 10.1016/j.cej.2023.142576_b0685 article-title: Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications publication-title: Adv. Mater. doi: 10.1002/adma.201400633 – volume: 12 start-page: 7565 issue: 6 year: 2020 ident: 10.1016/j.cej.2023.142576_b0695 article-title: Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core-Shell Segmental Configuration for Wearable Strain and Temperature Sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20612 – volume: 10 start-page: 31716 issue: 37 year: 2018 ident: 10.1016/j.cej.2023.142576_b0645 article-title: Multifunctional Highly Sensitive Multiscale Stretchable Strain Sensor Based on a Graphene/Glycerol–KCl Synergistic Conductive Network publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12674 – volume: 6 start-page: 2000269 issue: 6 year: 2020 ident: 10.1016/j.cej.2023.142576_b0415 article-title: In Situ Dynamic Manipulation of Graphene Strain Sensor with Drastically Sensing Performance Enhancement publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202000269 – volume: 105 start-page: 291 year: 2018 ident: 10.1016/j.cej.2023.142576_b0700 article-title: Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2017.11.027 – volume: 30 start-page: 2003214 issue: 34 year: 2020 ident: 10.1016/j.cej.2023.142576_b0110 article-title: Printed Flexible Strain Sensor Array for Bendable Interactive Surface publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003214 – volume: 26 start-page: 1322 issue: 9 year: 2016 ident: 10.1016/j.cej.2023.142576_b0365 article-title: Large-Area Ultrathin Graphene Films by Single-Step Marangoni Self-Assembly for Highly Sensitive Strain Sensing Application publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504717 – volume: 11 issue: 1 year: 2020 ident: 10.1016/j.cej.2023.142576_b0050 article-title: 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles publication-title: Nat. Commun. doi: 10.1038/s41467-020-19088-y – volume: 6 start-page: 10524 issue: 39 year: 2018 ident: 10.1016/j.cej.2023.142576_b0305 article-title: Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric publication-title: J. Mater. Chem. C doi: 10.1039/C8TC03702G – volume: 34 start-page: 2107902 issue: 16 year: 2022 ident: 10.1016/j.cej.2023.142576_b0030 article-title: Flexible electronics and devices as human-machine interfaces for medical robotics publication-title: Adv. Mater. doi: 10.1002/adma.202107902 – volume: 26 start-page: 2022 issue: 13 year: 2014 ident: 10.1016/j.cej.2023.142576_b0265 article-title: Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper for Strain Sensors publication-title: Adv. Mater. doi: 10.1002/adma.201304742 – volume: 62 start-page: 270 year: 2013 ident: 10.1016/j.cej.2023.142576_b0670 article-title: Carbon-based piezoresistive polymer composites: Structure and electrical properties publication-title: Carbon doi: 10.1016/j.carbon.2013.05.064 – volume: 12 start-page: 44360 issue: 39 year: 2020 ident: 10.1016/j.cej.2023.142576_b0945 article-title: Three-Dimensional Binary-Conductive-Network Silver Nanowires@Thiolated Graphene Foam-Based Room-Temperature Self-Healable Strain Sensor for Human Motion Detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c13442 – volume: 9 start-page: 1622 issue: 2 year: 2015 ident: 10.1016/j.cej.2023.142576_b0355 article-title: Tunable Piezoresistivity of Nanographene Films for Strain Sensing publication-title: ACS Nano doi: 10.1021/nn506341u – volume: 28 start-page: 035004 issue: 3 year: 2019 ident: 10.1016/j.cej.2023.142576_b0760 article-title: Highly sensitive flexible strain sensor based on threadlike spandex substrate coating with conductive nanocomposites for wearable electronic skin publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aaf3ce – volume: 95 start-page: 213103 issue: 21 year: 2009 ident: 10.1016/j.cej.2023.142576_b0345 article-title: A computational study of tunneling-percolation electrical transport in graphene-based nanocomposites publication-title: Appl. Phys. Lett. doi: 10.1063/1.3267079 – volume: 8 start-page: 18954 issue: 29 year: 2016 ident: 10.1016/j.cej.2023.142576_b0950 article-title: Highly Stretchable and Sensitive Strain Sensor Based on Facilely Prepared Three-Dimensional Graphene Foam Composite publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b05088 – volume: 80 start-page: 95 year: 2016 ident: 10.1016/j.cej.2023.142576_b0655 article-title: A novel strain sensor based on graphene composite films with layered structure publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2015.10.010 – start-page: 117 year: 2019 ident: 10.1016/j.cej.2023.142576_b0800 article-title: Highly flexible and stretchable structure based on au/graphene film and polyurethane yarn – volume: 107 start-page: 519 year: 2018 ident: 10.1016/j.cej.2023.142576_b0280 article-title: Ink-jet printed stretchable strain sensor based on graphene/ZnO composite on micro-random ridged PDMS substrate publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2018.01.031 – volume: 172 start-page: 7 year: 2019 ident: 10.1016/j.cej.2023.142576_b0635 article-title: Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.12.031 – volume: 439 start-page: 135502 year: 2022 ident: 10.1016/j.cej.2023.142576_b0855 article-title: Twisted graphene fibre based breathable, wettable and washable anti-jamming strain sensor for underwater motion sensing publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135502 – volume: 14 start-page: 559 issue: 1 year: 2020 ident: 10.1016/j.cej.2023.142576_b0755 article-title: Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear publication-title: ACS Nano doi: 10.1021/acsnano.9b06899 – volume: 15 start-page: 8398 issue: 9 year: 2022 ident: 10.1016/j.cej.2023.142576_b0795 article-title: 1D–2D nanohybrid-based textile strain sensor to boost multiscale deformative motion sensing performance publication-title: Nano Res. doi: 10.1007/s12274-022-4413-4 – volume: 50 start-page: 4085 issue: 11 year: 2012 ident: 10.1016/j.cej.2023.142576_b0465 article-title: The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400% publication-title: Carbon doi: 10.1016/j.carbon.2012.04.056 – volume: 10 start-page: 3948 issue: 4 year: 2018 ident: 10.1016/j.cej.2023.142576_b0610 article-title: Simultaneously Detecting Subtle and Intensive Human Motions Based on a Silver Nanoparticles Bridged Graphene Strain Sensor publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16284 – volume: 16 start-page: 1155 issue: 6 year: 2015 ident: 10.1016/j.cej.2023.142576_b1120 article-title: Material approaches to stretchable strain sensors publication-title: ChemPhysChem doi: 10.1002/cphc.201402810 – volume: 9 start-page: 23243 issue: 40 year: 2021 ident: 10.1016/j.cej.2023.142576_b0410 article-title: High toughness multifunctional organic hydrogels for flexible strain and temperature sensor publication-title: J. Mater. Chem. A doi: 10.1039/D1TA07127K – volume: 48 start-page: 1945 issue: 7 year: 2010 ident: 10.1016/j.cej.2023.142576_b0550 article-title: Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating publication-title: Carbon doi: 10.1016/j.carbon.2010.01.062 – volume: 30 start-page: 1907678 issue: 5 year: 2020 ident: 10.1016/j.cej.2023.142576_b1055 article-title: Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907678 – volume: 9 start-page: 8933 issue: 9 year: 2015 ident: 10.1016/j.cej.2023.142576_b0915 article-title: Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application publication-title: ACS Nano doi: 10.1021/acsnano.5b02781 – volume: 9 start-page: 3343 issue: 9 year: 2021 ident: 10.1016/j.cej.2023.142576_b1090 article-title: Polysaccharide-tackified composite hydrogel for skin-attached sensors publication-title: J. Mater. Chem. C doi: 10.1039/D0TC05589A – volume: 642 start-page: 128428 year: 2022 ident: 10.1016/j.cej.2023.142576_b1030 article-title: Construction of polydopamine reduced graphene oxide/sodium carboxymethyl cellulose/polyacrylamide double network conductive hydrogel with high stretchable, pH-sensitive and strain-sensing properties publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2022.128428 – volume: 516 start-page: 222 issue: 7530 year: 2014 ident: 10.1016/j.cej.2023.142576_b0445 article-title: Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system publication-title: Nature doi: 10.1038/nature14002 – volume: 143 start-page: 214 year: 2018 ident: 10.1016/j.cej.2023.142576_b0870 article-title: Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.02.006 – volume: 2 start-page: 870 year: 2012 ident: 10.1016/j.cej.2023.142576_b0435 article-title: Stretchable and highly sensitive graphene-on-polymer strain sensors publication-title: Sci. Rep. doi: 10.1038/srep00870 – volume: 11 start-page: 41701 issue: 44 year: 2019 ident: 10.1016/j.cej.2023.142576_b1040 article-title: Wearable, antifreezing, and healable epidermal sensor assembled from long-lasting moist conductive nanocomposite organohydrogel publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b15412 – volume: 13 start-page: 1601916 issue: 2 year: 2017 ident: 10.1016/j.cej.2023.142576_b1065 article-title: A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics publication-title: Small doi: 10.1002/smll.201601916 – volume: 26 start-page: 7614 issue: 42 year: 2016 ident: 10.1016/j.cej.2023.142576_b1205 article-title: Highly Sensitive, Wearable, Durable Strain Sensors and Stretchable Conductors Using Graphene/Silicon Rubber Composites publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201602619 – volume: 11 issue: 12 year: 2019 ident: 10.1016/j.cej.2023.142576_b0115 article-title: Scalable Fabrication of Highly Flexible Porous Polymer-Based Capacitive Humidity Sensor Using Convergence Fiber Drawing publication-title: Polymers doi: 10.3390/polym11121985 – volume: 9 start-page: 14207 issue: 16 year: 2017 ident: 10.1016/j.cej.2023.142576_b0630 article-title: Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b00847 – volume: 8 start-page: 3437 issue: 16 year: 2020 ident: 10.1016/j.cej.2023.142576_b0965 article-title: Stretchable and tough conductive hydrogels for flexible pressure and strain sensors publication-title: J. Mater. Chem. B doi: 10.1039/C9TB02570G – volume: 11 start-page: 5799 issue: 11 year: 2018 ident: 10.1016/j.cej.2023.142576_b0830 article-title: Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors publication-title: Nano Res. doi: 10.1007/s12274-018-2043-7 – volume: 7 start-page: 14651 issue: 46 year: 2019 ident: 10.1016/j.cej.2023.142576_b0810 article-title: A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing publication-title: J. Mater. Chem. C doi: 10.1039/C9TC04006D – volume: 7 start-page: 40116 year: 2017 ident: 10.1016/j.cej.2023.142576_b0440 article-title: Ultra-sensitive Pressure sensor based on guided straight mechanical cracks publication-title: Sci. Rep. doi: 10.1038/srep40116 – volume: 101 start-page: 1869 issue: 7 year: 2001 ident: 10.1016/j.cej.2023.142576_b0960 article-title: Hydrogels for tissue engineering publication-title: Chem. Rev. doi: 10.1021/cr000108x – volume: 30 issue: 34 year: 2019 ident: 10.1016/j.cej.2023.142576_b0235 article-title: 3D printed graphene/polydimethylsiloxane composite for stretchable strain sensor with tunable sensitivity publication-title: Nanotechnology doi: 10.1088/1361-6528/ab1287 – volume: 112 start-page: 6156 issue: 11 year: 2012 ident: 10.1016/j.cej.2023.142576_b0165 article-title: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications publication-title: Chem. Rev. doi: 10.1021/cr3000412 – volume: 8 start-page: 12384 issue: 19 year: 2016 ident: 10.1016/j.cej.2023.142576_b1010 article-title: NIR-Triggered Rapid Shape Memory PAM-GO-Gelatin Hydrogels with High Mechanical Strength publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00867 – volume: 2 start-page: 40 issue: 1 year: 2015 ident: 10.1016/j.cej.2023.142576_b0875 article-title: Three-dimensional graphene networks: synthesis, properties and applications publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwu072 – volume: 373 start-page: 298 year: 2019 ident: 10.1016/j.cej.2023.142576_b0725 article-title: Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.045 – volume: 56 start-page: 2296 issue: 3 year: 2020 ident: 10.1016/j.cej.2023.142576_b0780 article-title: Encapsulated core–sheath carbon nanotube–graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05394-9 – volume: 7 start-page: 2001084 issue: 4 year: 2021 ident: 10.1016/j.cej.2023.142576_b0975 article-title: Self-Calibrated, Sensitive, and Flexible Temperature Sensor Based on 3D Chemically Modified Graphene Hydrogel publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202001084 – volume: 31 start-page: 2007661 issue: 10 year: 2021 ident: 10.1016/j.cej.2023.142576_b1190 article-title: Black Phosphorus@Laser-Engraved Graphene Heterostructure-Based Temperature-Strain Hybridized Sensor for Electronic-Skin Applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202007661 – volume: 55 start-page: 433 year: 2019 ident: 10.1016/j.cej.2023.142576_b0120 article-title: High power-output mechanical energy harvester based on flexible and transparent Au nanoparticle-embedded polymer matrix publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.10.030 – volume: 28 start-page: 1800850 issue: 22 year: 2018 ident: 10.1016/j.cej.2023.142576_b0425 article-title: Lowering Internal Friction of 0D–1D-2D Ternary Nanocomposite-Based Strain Sensor by Fullerene to Boost the Sensing Performance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800850 – volume: 10 start-page: 44173 issue: 50 year: 2018 ident: 10.1016/j.cej.2023.142576_b0920 article-title: Multifunctional Mechanical Sensors for Versatile Physiological Signal Detection publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b16237 – volume: 154 start-page: 217 year: 2018 ident: 10.1016/j.cej.2023.142576_b0765 article-title: Wearable strain sensors based on electrically conductive natural fiber yarns publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.05.040 – volume: 2 start-page: 463 issue: 3 year: 2008 ident: 10.1016/j.cej.2023.142576_b0545 article-title: Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors publication-title: ACS Nano doi: 10.1021/nn700375n – volume: 12 start-page: 23272 issue: 20 year: 2020 ident: 10.1016/j.cej.2023.142576_b0615 article-title: Understanding the Cycling Performance Degradation Mechanism of a Graphene-Based Strain Sensor and an Effective Corresponding Improvement Solution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c00176 – volume: 9 start-page: 10127 issue: 31 year: 2021 ident: 10.1016/j.cej.2023.142576_b1060 article-title: Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications publication-title: J. Mater. Chem. C doi: 10.1039/D1TC02599F – volume: 12 start-page: 58317 issue: 52 year: 2020 ident: 10.1016/j.cej.2023.142576_b1145 article-title: Flexible strain sensor with tunable sensitivity via microscale electrical breakdown in graphene/polyimide thin films publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c19484 – volume: 8 start-page: 5618 issue: 8 year: 2016 ident: 10.1016/j.cej.2023.142576_b0310 article-title: Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12588 – volume: 84 issue: 10 year: 2013 ident: 10.1016/j.cej.2023.142576_b0390 article-title: Graphene/polydimethylsiloxane nanocomposite strain sensor publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4826496 – volume: 4 start-page: 453 issue: 3 year: 2017 ident: 10.1016/j.cej.2023.142576_b0185 article-title: Carbon-based supercapacitors for efficient energy storage publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx009 – volume: 14 start-page: 1315 issue: 1 year: 2022 ident: 10.1016/j.cej.2023.142576_b0510 article-title: Fingerprint-Inspired Strain Sensor with Balanced Sensitivity and Strain Range Using Laser-Induced Graphene publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c16646 – volume: 9 year: 2018 ident: 10.1016/j.cej.2023.142576_b0060 article-title: Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature publication-title: Nat. Commun. doi: 10.1038/s41467-018-04906-1 – volume: 648 start-page: 129341 year: 2022 ident: 10.1016/j.cej.2023.142576_b1045 article-title: Tough, highly resilient and conductive nanocomposite hydrogels reinforced with surface-grafted cellulose nanocrystals and reduced graphene oxide for flexible strain sensors publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2022.129341 – volume: 29 start-page: 1805924 issue: 6 year: 2019 ident: 10.1016/j.cej.2023.142576_b0200 article-title: Flexible Electronics: Stretchable Electrodes and Their Future publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805924 – volume: 9 start-page: 9309 issue: 29 year: 2021 ident: 10.1016/j.cej.2023.142576_b0270 article-title: Coupling piezoelectric and piezoresistive effects in flexible pressure sensors for human motion detection from zero to high frequency publication-title: J. Mater. Chem. C doi: 10.1039/D1TC01894A – volume: 10 start-page: 7901 issue: 8 year: 2016 ident: 10.1016/j.cej.2023.142576_b0585 article-title: High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions publication-title: ACS Nano doi: 10.1021/acsnano.6b03813 – volume: 14 start-page: 9126 issue: 7 year: 2022 ident: 10.1016/j.cej.2023.142576_b1095 article-title: Stretchable, Adhesive, Self-Healable, and Conductive Hydrogel-Based Deformable Triboelectric Nanogenerator for Energy Harvesting and Human Motion Sensing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c23176 – volume: 24 start-page: 4666 issue: 29 year: 2014 ident: 10.1016/j.cej.2023.142576_b0320 article-title: Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400379 – volume: 32 start-page: 2204272 issue: 42 year: 2022 ident: 10.1016/j.cej.2023.142576_b0145 article-title: Practical graphene technologies for electrochemical energy storage publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204272 – volume: 443 start-page: 136468 year: 2022 ident: 10.1016/j.cej.2023.142576_b0860 article-title: Sensitivity enhanced, highly stretchable, and mechanically robust strain sensors based on reduced graphene oxide-aramid nanofibers hybrid fillers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136468 – volume: 3 start-page: 4001 issue: 19 year: 2015 ident: 10.1016/j.cej.2023.142576_b1005 article-title: Self-healable, super tough graphene oxide-poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00075K – volume: 5 issue: 1 year: 2014 ident: 10.1016/j.cej.2023.142576_b0690 article-title: Fractal design concepts for stretchable electronics publication-title: Nat. Commun. doi: 10.1038/ncomms4266 – volume: 18 start-page: 4531 issue: 7 year: 2018 ident: 10.1016/j.cej.2023.142576_b0105 article-title: Highly Conformable, Transparent Electrodes for Epidermal Electronics publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01743 – volume: 7 start-page: 16361 issue: 39 year: 2015 ident: 10.1016/j.cej.2023.142576_b0785 article-title: Small and light strain sensors based on graphene coated human hairs publication-title: Nanoscale doi: 10.1039/C5NR04312C – volume: 20 issue: 14 year: 2020 ident: 10.1016/j.cej.2023.142576_b0175 article-title: Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring. A critical review publication-title: Sensors doi: 10.3390/s20143927 – volume: 81 start-page: 61 year: 2013 ident: 10.1016/j.cej.2023.142576_b0745 article-title: The production of a melt-spun functionalized graphene/poly(ε-caprolactam) nanocomposite fiber publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2013.04.005 – volume: 6 start-page: 3206 issue: 4 year: 2012 ident: 10.1016/j.cej.2023.142576_b0890 article-title: 3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection publication-title: ACS Nano doi: 10.1021/nn300097q – volume: 97 start-page: 513 issue: 3 year: 2009 ident: 10.1016/j.cej.2023.142576_b1125 article-title: Semiconductor piezoresistance for microsystems publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2013612 – volume: 29 start-page: 1701353 issue: 28 year: 2017 ident: 10.1016/j.cej.2023.142576_b1215 article-title: Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors publication-title: Adv. Mater. doi: 10.1002/adma.201701353 – volume: 27 start-page: 3349 issue: 22 year: 2015 ident: 10.1016/j.cej.2023.142576_b0195 article-title: Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability publication-title: Adv. Mater. doi: 10.1002/adma.201405864 – volume: 5 year: 2014 ident: 10.1016/j.cej.2023.142576_b0065 article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires publication-title: Nat. Commun. doi: 10.1038/ncomms4132 – volume: 26 issue: 37 year: 2015 ident: 10.1016/j.cej.2023.142576_b0500 article-title: Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites publication-title: Nanotechnology doi: 10.1088/0957-4484/26/37/375501 – volume: 57 start-page: 414 year: 2015 ident: 10.1016/j.cej.2023.142576_b0955 article-title: Classification, processing and application of hydrogels: A review publication-title: Mater Sci Eng C Mater Biol Appl doi: 10.1016/j.msec.2015.07.053 – volume: 16 start-page: e1901124 issue: 15 year: 2020 ident: 10.1016/j.cej.2023.142576_b0220 article-title: Wearable Electronics Based on 2D Materials for Human Physiological Information Detection publication-title: Small doi: 10.1002/smll.201901124 – volume: 9 start-page: 11176 issue: 12 year: 2017 ident: 10.1016/j.cej.2023.142576_b1195 article-title: Enhanced Sensitivity of Patterned Graphene Strain Sensors Used for Monitoring Subtle Human Body Motions publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01551 – volume: 28 start-page: 4338 issue: 22 year: 2016 ident: 10.1016/j.cej.2023.142576_b0015 article-title: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare publication-title: Adv. Mater. doi: 10.1002/adma.201504244 – volume: 29 start-page: 1903732 issue: 45 year: 2019 ident: 10.1016/j.cej.2023.142576_b0705 article-title: Porous Fibers Composed of Polymer Nanoball Decorated Graphene for Wearable and Highly Sensitive Strain Sensors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903732 – volume: 379 start-page: 122271 year: 2020 ident: 10.1016/j.cej.2023.142576_b1085 article-title: A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122271 – volume: 179 start-page: 655 year: 2021 ident: 10.1016/j.cej.2023.142576_b0710 article-title: Aramid nanofiber framework supporting graphene nanoplate via wet-spinning for a high-performance filament publication-title: Carbon doi: 10.1016/j.carbon.2021.04.056 – year: 2000 ident: 10.1016/j.cej.2023.142576_b0230 – volume: 7 start-page: 2100572 issue: 3 year: 2022 ident: 10.1016/j.cej.2023.142576_b0180 article-title: Carbon-based nanomaterials and sensing tools for wearable health monitoring devices publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202100572 – volume: 11 start-page: 7634 issue: 8 year: 2017 ident: 10.1016/j.cej.2023.142576_b0540 article-title: Graphene Electronic Tattoo Sensors publication-title: ACS Nano doi: 10.1021/acsnano.7b02182 – volume: 6 start-page: 219 issue: 2 year: 2019 ident: 10.1016/j.cej.2023.142576_b0385 article-title: Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications publication-title: Mater. Horiz. doi: 10.1039/C8MH01062E – volume: 126 start-page: 360 year: 2018 ident: 10.1016/j.cej.2023.142576_b0730 article-title: Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring publication-title: Carbon doi: 10.1016/j.carbon.2017.10.034 – volume: 32 start-page: 2204755 issue: 42 year: 2022 ident: 10.1016/j.cej.2023.142576_b0130 article-title: Emerging graphene derivatives and analogues for efficient energy electrocatalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204755 – volume: 2 start-page: 2282 issue: 8 year: 2020 ident: 10.1016/j.cej.2023.142576_b0170 article-title: Recent Advances of Carbon-Based Flexible Strain Sensors in Physiological Signal Monitoring publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.0c00292 – volume: 10 start-page: 9727 issue: 11 year: 2018 ident: 10.1016/j.cej.2023.142576_b0905 article-title: Three-Dimensional Graphene Structure for Healable Flexible Electronics Based on Diels-Alder Chemistry publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b19649 – volume: 7 start-page: 24814 issue: 43 year: 2019 ident: 10.1016/j.cej.2023.142576_b1050 article-title: Tough but self-healing and 3D printable hydrogels for E-skin, E-noses and laser controlled actuators publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04248B – volume: 9 start-page: 12335 issue: 34 year: 2017 ident: 10.1016/j.cej.2023.142576_b0740 article-title: Dry spinning approach to continuous graphene fibers with high toughness publication-title: Nanoscale doi: 10.1039/C7NR03895J – volume: 31 start-page: 2104288 issue: 40 year: 2021 ident: 10.1016/j.cej.2023.142576_b0090 article-title: Recent Advances in Carbon Material-Based Multifunctional Sensors and Their Applications in Electronic Skin Systems publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104288 – volume: 12 start-page: 6442 issue: 5 year: 2020 ident: 10.1016/j.cej.2023.142576_b0405 article-title: Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b19721 – volume: 1 start-page: 7433 issue: 25 year: 2013 ident: 10.1016/j.cej.2023.142576_b0995 article-title: Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10639j |
SSID | ssj0006919 |
Score | 2.7116475 |
SecondaryResourceType | review_article |
Snippet | •The strain sensing mechanisms and performance of graphene-based sensors.•The design and fabrication strategies of four graphene-based strain sensors.•The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 142576 |
SubjectTerms | Flexible and wearable electronics Graphene Strain sensors Stretchable |
Title | Advances in graphene-based flexible and wearable strain sensors |
URI | https://dx.doi.org/10.1016/j.cej.2023.142576 |
Volume | 464 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGKrlj14EtLmsckmJynFUi32oBZ7C7vZKbSUtDQVb_52Z_LQCurBU0jYhc2XzTezzMw3jF25CszUo-p2aUIqyfGsUHl4cNUuGJDK9m0qFH4YBYOxuJ_4kxrrVbUwlFZZcn_B6Tlbl086JZqd1WzWeXIophUJiU40ErEkTVAhJO3y9vtXmkcQ5c09aLBFo6vIZp7jlcC8Tf3DkS_I8f7ZNm3Zm_4B2y8dRd4t1nLIapAesb0t-cBjdtMtAvgZn6U8V55G4rLILhk-JaFLvQCuUsPfcDtTiRTP8o4QPMOz63KdnbBx__a5N7DKhghW4kZyY0WhNglafOMaFRntmEROpaAjXaLxPZVN6EpQCr0Iz0W4hRCeDD0duioAx3inrJ4uUzhjHLTvaBGAlvhDSgU6CHMl9wgcUEImDWZXUMRJqRZOS1zEVVrYPEb0YkIvLtBrsOvPKatCKuOvwaLCN_72vWOk8t-nNf837Zzt0h1F_R3_gtU361e4RGdio1v5bmmxne7dcDCi6_DxZfgBsrLJAw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB6qHtSD-MS3e9CLENskm2xyECk-qNr2Ygu9xd3sFioSpakUL_4p_6AzeWgF9SD0mmTC5MvwzQw7D4BDRxrdd6m7XeiAWnJcK5AuJq7KMdoIWfNq1CjcavuNLr_peb0KvJe9MFRWWXB_zukZWxdXqgWa1efBoHpn05lWyAUG0UjEgheVlbfmdYx5W3p6fYE_-chxri475w2rWC1gxU4oRlYYKB2j79SOlqFWto5FX3BKjmLlh7askZ7CSIn-2HVQcc65KwJXBY70ja1dfO8MzHGkC1qbcPL2VVeC4mGW5QWeReqVR6lZUVlsHk5oYTkSFEX6PzvDCQd3tQxLRWTK6vnHr0DFJKuwODGvcA3O6nnFQMoGCctGXSNTWuQINevTZE31aJhMNBsjRtSTxdJsBQVLMVl-Gqbr0J0KTBswmzwlZhOYUZ6tuG-UQAYQ0ig_yEbHh8Y2kot4C2olFFFcjCcnFR-jsg7tIUL0IkIvytHbguNPked8NsdfD_MS3-ibgUXoO34X2_6f2AHMNzqtZtS8bt_uwALdoZID29uF2dHwxexhJDNS-5nlMLiftql-APtuAyE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+graphene-based+flexible+and+wearable+strain+sensors&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Chen%2C+Hui&rft.au=Zhuo%2C+Fengling&rft.au=Zhou%2C+Jian&rft.au=Liu%2C+Ying&rft.date=2023-05-15&rft.issn=1385-8947&rft.volume=464&rft.spage=142576&rft_id=info:doi/10.1016%2Fj.cej.2023.142576&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2023_142576 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |