Advances in graphene-based flexible and wearable strain sensors

•The strain sensing mechanisms and performance of graphene-based sensors.•The design and fabrication strategies of four graphene-based strain sensors.•The applications of graphene-based flexible strain sensors in numerous fields.•Existing challenges and future opportunities for graphene-based sensor...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 464; p. 142576
Main Authors Chen, Hui, Zhuo, Fengling, Zhou, Jian, Liu, Ying, Zhang, Jinbo, Dong, Shurong, Liu, Xuqing, Elmarakbi, Ahmed, Duan, Huigao, Fu, Yongqing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The strain sensing mechanisms and performance of graphene-based sensors.•The design and fabrication strategies of four graphene-based strain sensors.•The applications of graphene-based flexible strain sensors in numerous fields.•Existing challenges and future opportunities for graphene-based sensors. Flexible and wearable electronics have recently gained considerable research interest due to their potential applications in personal healthcare, electronic skins, and human–machine interfaces. In particular, strain sensors that can efficiently transmit external stimuli into electrical signals are essential for wearable electronics. Two-dimensional carbon-based materials such as graphene are potentially versatile platforms for the above applications, mainly attributed to their combined properties of excellent flexibility, thermal and electrical conductivity, and mechanical strength. Although there are numerous reports devoted to the design, fabrication and application of graphene-based strain sensors, a comprehensive overview dedicated on attributes of graphene-based strain sensors that can be systematically correlated with their mechanisms, fabrication strategies and applications is urgently required in the field. Specially this review is aimed to explore the following topics, i.e., (i) the strain sensing mechanisms and key performance parameters of graphene-based sensors; (ii) the recent progress of major graphene-based sensors including those of film-based, fiber-based, foam-based and hydrogel-based; (iii) applications of graphene-based sensors for human motion sensing, health indicators, electronic skins and human machine interfaces; and finally (iv) challenges and future directions for the design of graphene-based sensors.
AbstractList •The strain sensing mechanisms and performance of graphene-based sensors.•The design and fabrication strategies of four graphene-based strain sensors.•The applications of graphene-based flexible strain sensors in numerous fields.•Existing challenges and future opportunities for graphene-based sensors. Flexible and wearable electronics have recently gained considerable research interest due to their potential applications in personal healthcare, electronic skins, and human–machine interfaces. In particular, strain sensors that can efficiently transmit external stimuli into electrical signals are essential for wearable electronics. Two-dimensional carbon-based materials such as graphene are potentially versatile platforms for the above applications, mainly attributed to their combined properties of excellent flexibility, thermal and electrical conductivity, and mechanical strength. Although there are numerous reports devoted to the design, fabrication and application of graphene-based strain sensors, a comprehensive overview dedicated on attributes of graphene-based strain sensors that can be systematically correlated with their mechanisms, fabrication strategies and applications is urgently required in the field. Specially this review is aimed to explore the following topics, i.e., (i) the strain sensing mechanisms and key performance parameters of graphene-based sensors; (ii) the recent progress of major graphene-based sensors including those of film-based, fiber-based, foam-based and hydrogel-based; (iii) applications of graphene-based sensors for human motion sensing, health indicators, electronic skins and human machine interfaces; and finally (iv) challenges and future directions for the design of graphene-based sensors.
ArticleNumber 142576
Author Duan, Huigao
Zhou, Jian
Liu, Ying
Elmarakbi, Ahmed
Chen, Hui
Fu, Yongqing
Liu, Xuqing
Zhang, Jinbo
Zhuo, Fengling
Dong, Shurong
Author_xml – sequence: 1
  givenname: Hui
  surname: Chen
  fullname: Chen, Hui
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
– sequence: 2
  givenname: Fengling
  surname: Zhuo
  fullname: Zhuo, Fengling
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
– sequence: 3
  givenname: Jian
  orcidid: 0000-0001-6660-5190
  surname: Zhou
  fullname: Zhou, Jian
  email: jianzhou@hnu.edu.cn
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
– sequence: 4
  givenname: Ying
  surname: Liu
  fullname: Liu, Ying
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
– sequence: 5
  givenname: Jinbo
  orcidid: 0000-0003-4410-5739
  surname: Zhang
  fullname: Zhang, Jinbo
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
– sequence: 6
  givenname: Shurong
  surname: Dong
  fullname: Dong, Shurong
  organization: College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
– sequence: 7
  givenname: Xuqing
  surname: Liu
  fullname: Liu, Xuqing
  organization: Department of Materials, The University of Manchester. M13 9PL, United Kingdom
– sequence: 8
  givenname: Ahmed
  surname: Elmarakbi
  fullname: Elmarakbi, Ahmed
  organization: Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
– sequence: 9
  givenname: Huigao
  surname: Duan
  fullname: Duan, Huigao
  organization: College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
– sequence: 10
  givenname: Yongqing
  orcidid: 0000-0001-9797-4036
  surname: Fu
  fullname: Fu, Yongqing
  organization: Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
BookMark eNp9kE1LxDAQhoOs4O7qD_DWP9CarzYtHmRZ_IIFL3oOk2SqKTVdkrLqv7dlPXnY08zAPMO8z4oswhCQkGtGC0ZZddMVFruCUy4KJnmpqjOyZLUSueCML6Ze1GVeN1JdkFVKHaW0alizJHcbd4BgMWU-ZO8R9h8YMDeQ0GVtj9_e9JhBcNkXQoR5SGOEaTdhSENMl-S8hT7h1V9dk7eH-9ftU757eXzebna55Y0a86Y2zkrBHHfQOMOcVa2SFZPSmukRoA4VKASoRCk4NVxKKVQtTM2hQubEmrDjXRuHlCK2eh_9J8QfzaieDehOTwb0bEAfDUyM-sdYP8LohzBH6E-St0cSp0gHj1En63HS5HxEO2o3-BP0LzdBd6w
CitedBy_id crossref_primary_10_1016_j_sna_2024_115316
crossref_primary_10_1002_zaac_202400051
crossref_primary_10_1016_j_rinma_2024_100646
crossref_primary_10_3390_s24227338
crossref_primary_10_1109_JSEN_2024_3405173
crossref_primary_10_1038_s41467_024_46467_6
crossref_primary_10_1021_acsanm_4c05287
crossref_primary_10_1088_1742_6596_2873_1_012039
crossref_primary_10_1016_j_cej_2024_155352
crossref_primary_10_1021_acsomega_4c09156
crossref_primary_10_1016_j_carbon_2024_119098
crossref_primary_10_1016_j_cej_2025_161112
crossref_primary_10_1016_j_flatc_2024_100776
crossref_primary_10_1016_j_mtnano_2023_100427
crossref_primary_10_1016_j_sna_2024_115710
crossref_primary_10_3390_s24041349
crossref_primary_10_1016_j_measurement_2023_113265
crossref_primary_10_3390_s24134092
crossref_primary_10_1016_j_ijbiomac_2024_129865
crossref_primary_10_1002_admt_202400355
crossref_primary_10_1109_JSEN_2024_3444927
crossref_primary_10_1021_acsaenm_4c00724
crossref_primary_10_1016_j_cej_2024_150104
crossref_primary_10_3390_s24010271
crossref_primary_10_1088_2053_1583_ada623
crossref_primary_10_1021_acsabm_3c00873
crossref_primary_10_1021_acsaelm_4c00380
crossref_primary_10_1039_D4RA00381K
crossref_primary_10_1515_polyeng_2023_0188
crossref_primary_10_1016_j_aej_2024_09_039
crossref_primary_10_1016_j_cej_2024_158573
crossref_primary_10_1016_j_jcis_2024_08_262
crossref_primary_10_1016_j_cej_2025_160836
crossref_primary_10_1016_j_polymer_2024_127286
crossref_primary_10_1021_acsapm_4c02876
crossref_primary_10_1002_vjch_202300236
crossref_primary_10_1021_acsami_4c10872
crossref_primary_10_1016_j_biosx_2025_100615
crossref_primary_10_3390_sym16091242
crossref_primary_10_3390_mi16030319
crossref_primary_10_1007_s11082_024_07140_w
crossref_primary_10_1016_j_cej_2023_147790
crossref_primary_10_1016_j_sna_2024_116133
crossref_primary_10_1039_D3TA01627G
crossref_primary_10_1002_sus2_207
crossref_primary_10_1039_D4MA00231H
crossref_primary_10_1039_D5TB00008D
crossref_primary_10_1016_j_cej_2024_149729
crossref_primary_10_1021_acsami_3c08709
crossref_primary_10_1016_j_surfin_2024_104991
crossref_primary_10_3390_gels11040235
crossref_primary_10_1007_s10853_023_08887_5
crossref_primary_10_1039_D3SD00194F
crossref_primary_10_1002_adfm_202500701
crossref_primary_10_1021_acsaelm_5c00368
crossref_primary_10_1016_j_addma_2025_104698
crossref_primary_10_1007_s42765_024_00460_2
crossref_primary_10_1007_s10854_024_12474_y
crossref_primary_10_3390_bios13060656
crossref_primary_10_1016_j_cej_2025_161456
crossref_primary_10_1002_advs_202402759
crossref_primary_10_1039_D4TA00129J
crossref_primary_10_1016_j_carbon_2024_119832
crossref_primary_10_1039_D4TC04700A
crossref_primary_10_1021_acsami_4c06905
crossref_primary_10_1021_acsami_4c19546
crossref_primary_10_1016_j_cej_2023_147899
crossref_primary_10_1021_acsomega_3c09067
crossref_primary_10_1039_D4RA02707H
crossref_primary_10_1016_j_cej_2023_145915
crossref_primary_10_1016_j_nanoen_2024_110041
crossref_primary_10_1177_0021955X251329430
crossref_primary_10_1016_j_cej_2024_159008
crossref_primary_10_1021_acsami_4c12118
crossref_primary_10_1155_2024_2966457
crossref_primary_10_1016_j_sna_2024_116152
crossref_primary_10_1021_acsapm_4c03346
crossref_primary_10_1002_adsr_202300120
crossref_primary_10_1038_s41378_024_00680_x
crossref_primary_10_1039_D4SD00140K
crossref_primary_10_3390_nano14231951
crossref_primary_10_1680_jsuin_24_00116
crossref_primary_10_1016_j_cej_2023_144385
crossref_primary_10_1016_j_foodcont_2023_110129
crossref_primary_10_1002_marc_202401141
crossref_primary_10_1016_j_ijbiomac_2024_135959
crossref_primary_10_1088_1361_6463_ada6c3
crossref_primary_10_1080_10408436_2024_2385828
crossref_primary_10_1002_admt_202301983
crossref_primary_10_1088_1361_6439_ad5cfd
crossref_primary_10_3390_s24103038
crossref_primary_10_1016_j_cej_2024_151221
crossref_primary_10_1021_acsanm_3c06128
crossref_primary_10_1016_j_compositesa_2024_108586
crossref_primary_10_1016_j_optcom_2025_131477
crossref_primary_10_1039_D3TA06385B
crossref_primary_10_1021_acsaem_3c02409
crossref_primary_10_1002_cctc_202400696
crossref_primary_10_3390_ma17030557
crossref_primary_10_1016_j_cossms_2024_101174
crossref_primary_10_1021_acsapm_4c03810
crossref_primary_10_1039_D4CS00220B
crossref_primary_10_1021_acsami_4c07412
crossref_primary_10_1007_s10853_023_09091_1
crossref_primary_10_1007_s12274_024_6594_5
crossref_primary_10_1016_j_sna_2023_114824
crossref_primary_10_1016_j_jclepro_2023_139004
crossref_primary_10_59400_esc1613
crossref_primary_10_1002_adfm_202315162
crossref_primary_10_1080_10601325_2024_2362894
crossref_primary_10_1002_smll_202405847
crossref_primary_10_1016_j_apmt_2024_102574
crossref_primary_10_1016_j_nantod_2024_102211
crossref_primary_10_1021_acsami_4c17983
crossref_primary_10_1021_acsami_4c21563
crossref_primary_10_1016_j_sna_2024_115809
crossref_primary_10_1016_j_device_2025_100728
crossref_primary_10_1021_acsanm_3c03002
crossref_primary_10_1088_2053_1583_adabf3
crossref_primary_10_1002_app_54829
crossref_primary_10_1002_pc_29069
crossref_primary_10_3390_mi15080989
crossref_primary_10_1016_j_microc_2025_113446
crossref_primary_10_1149_1945_7111_adaa29
crossref_primary_10_1016_j_mtcomm_2025_111569
crossref_primary_10_1021_acssuschemeng_3c03543
crossref_primary_10_1002_adsr_202400079
crossref_primary_10_3390_polym15173553
crossref_primary_10_1126_sciadv_adp8804
crossref_primary_10_1016_j_jcis_2024_09_131
crossref_primary_10_1016_j_sbsr_2025_100750
crossref_primary_10_1016_j_coco_2023_101755
crossref_primary_10_1021_acsami_4c04519
crossref_primary_10_3390_c9040108
crossref_primary_10_1007_s10854_025_14498_4
crossref_primary_10_1016_j_compositesa_2024_108643
crossref_primary_10_1016_j_nanoen_2024_109781
crossref_primary_10_1016_j_cej_2023_147109
crossref_primary_10_1063_5_0223188
crossref_primary_10_1016_j_cej_2023_148317
crossref_primary_10_1016_j_cej_2024_151049
crossref_primary_10_1021_acsanm_3c03678
crossref_primary_10_1002_adsr_202300208
crossref_primary_10_1016_j_carbpol_2024_122788
crossref_primary_10_1088_1361_665X_ad765b
crossref_primary_10_1021_acsanm_4c04054
crossref_primary_10_1021_acsaenm_3c00480
crossref_primary_10_1039_D4TC03626C
crossref_primary_10_1088_1361_6463_ad8930
crossref_primary_10_1016_j_cej_2024_158365
crossref_primary_10_1016_j_mser_2025_100975
crossref_primary_10_1016_j_nxmate_2024_100107
crossref_primary_10_1039_D3TA04872A
crossref_primary_10_1021_acsami_3c12851
crossref_primary_10_1016_j_cej_2024_154445
crossref_primary_10_1007_s12221_024_00543_2
crossref_primary_10_1021_acsami_4c06546
crossref_primary_10_3390_ma17205102
crossref_primary_10_3390_bios14050227
crossref_primary_10_1016_j_diamond_2024_111724
crossref_primary_10_1371_journal_pone_0306866
crossref_primary_10_3390_ma17184499
crossref_primary_10_1016_j_nanoen_2025_110821
crossref_primary_10_1002_admt_202401621
crossref_primary_10_3390_nano14141173
crossref_primary_10_1039_D4TA08802F
crossref_primary_10_1002_pssa_202400613
crossref_primary_10_1021_acs_chemrev_4c00369
crossref_primary_10_1016_j_apsusc_2024_160964
crossref_primary_10_1021_acsaelm_4c00288
crossref_primary_10_1007_s10853_024_09835_7
crossref_primary_10_1039_D4TC04049J
crossref_primary_10_1021_acsami_4c09786
crossref_primary_10_1109_LED_2024_3496859
crossref_primary_10_1016_j_eurpolymj_2024_113185
crossref_primary_10_1021_acssuschemeng_3c03887
Cites_doi 10.1039/C4TA01073F
10.1002/adma.201801072
10.1126/sciadv.1701114
10.1016/j.cej.2021.134038
10.1021/acsami.8b11233
10.1039/C6MH00027D
10.1039/C7NR09022F
10.1021/acsami.9b11776
10.1016/j.cej.2022.137259
10.1016/j.cej.2022.135018
10.1166/jnn.2019.17097
10.1002/adfm.201808247
10.1021/acsami.7b05636
10.1038/nnano.2006.53
10.1021/nn501204t
10.1063/1.2819690
10.1016/j.carbpol.2017.08.106
10.1039/D2TC00932C
10.1039/D1TB00082A
10.1103/PhysRevLett.90.157601
10.1021/acsami.8b15848
10.1021/acsnano.8b02162
10.1016/j.snb.2019.01.063
10.3390/s111110691
10.1039/C7CS00229G
10.1021/am401402x
10.1002/adma.201302406
10.1002/adfm.202102355
10.1002/adfm.201802235
10.1002/adfm.201705879
10.1063/1.4742331
10.1021/nl302959a
10.1002/adfm.202104991
10.1021/acsami.5b09314
10.1002/adfm.201901917
10.1002/pc.25364
10.1039/C8QM00260F
10.1021/acsami.0c06091
10.1002/adfm.201907151
10.1039/D0TA11959H
10.1038/nnano.2012.224
10.1039/C8NR02652A
10.1038/nature12401
10.1038/s41378-021-00325-3
10.1016/j.polymer.2020.123340
10.1002/adma.201902051
10.1039/C3NR04521H
10.1039/C9TC05804D
10.1039/C9NR09306K
10.1063/1.4804580
10.1016/j.cej.2022.135399
10.1002/aelm.202001235
10.1016/j.cej.2022.136138
10.1016/j.compscitech.2021.108689
10.1038/s41598-019-55262-z
10.1002/adfm.201904706
10.1021/acsnano.0c05932
10.1016/j.tws.2005.07.003
10.1002/adfm.201501000
10.1002/adma.202005902
10.1039/C3TC31680G
10.1016/j.compscitech.2018.08.022
10.1016/j.carbon.2017.04.002
10.1002/adfm.201904549
10.1002/adfm.201702891
10.1039/D1TA07273K
10.1021/acsami.1c07620
10.1021/acsami.6b08172
10.1002/admt.201800444
10.1002/adma.201902133
10.1002/adfm.202008936
10.1088/1361-665X/aaaba0
10.1016/j.carbon.2019.11.072
10.1002/adma.201800716
10.1039/D0TA02878A
10.1002/adfm.201909912
10.1038/nnano.2011.36
10.1021/acsami.7b04605
10.1016/j.mee.2013.11.013
10.1016/j.carbon.2018.04.065
10.1016/j.cej.2021.128744
10.1021/nl802367t
10.1021/acsami.5b00695
10.1016/j.sna.2018.04.040
10.1021/acsami.7b12932
10.1016/j.nanoen.2019.104134
10.1039/C7NR01862B
10.1021/acsnano.8b03391
10.1002/adma.201504225
10.1039/C6NR07620C
10.1016/j.compscitech.2012.09.016
10.1016/j.surfcoat.2016.04.066
10.1016/j.jmps.2020.103943
10.1002/adma.202108932
10.1088/0960-1317/19/8/085019
10.1002/adma.201902343
10.1039/C5RA01519G
10.1021/acs.chemmater.5b02098
10.1063/1.5037318
10.1021/acsami.9b14476
10.1016/j.nanoen.2014.11.025
10.1039/D0TB01926G
10.1039/C9TA11084D
10.1038/nmat3001
10.1016/j.carbon.2014.05.022
10.1002/adfm.202007495
10.1016/j.compositesa.2020.105932
10.1002/smll.202006542
10.1038/s41467-022-30648-2
10.1021/acsami.0c15578
10.1002/adfm.201803221
10.1021/acsami.6b10484
10.1016/j.compscitech.2018.01.019
10.3390/s20082383
10.1021/acsami.9b13349
10.1039/C9TC03475G
10.1002/adfm.201701513
10.1002/adfm.201909035
10.1021/acsami.9b04915
10.1021/acsami.8b06496
10.1038/srep04452
10.1038/ncomms6714
10.1039/B917103G
10.1039/C7NR07225B
10.1002/adma.201503558
10.1016/j.mtcomm.2020.100909
10.3390/ma7042501
10.1002/adfm.201504755
10.1016/j.cej.2022.136631
10.1002/adfm.201905197
10.1021/acsami.1c12686
10.1002/adma.201400633
10.1021/acsami.9b20612
10.1021/acsami.8b12674
10.1002/aelm.202000269
10.1016/j.compositesa.2017.11.027
10.1002/adfm.202003214
10.1002/adfm.201504717
10.1038/s41467-020-19088-y
10.1039/C8TC03702G
10.1002/adma.202107902
10.1002/adma.201304742
10.1016/j.carbon.2013.05.064
10.1021/acsami.0c13442
10.1021/nn506341u
10.1088/1361-665X/aaf3ce
10.1063/1.3267079
10.1021/acsami.6b05088
10.1016/j.compositesa.2015.10.010
10.1016/j.compositesa.2018.01.031
10.1016/j.compscitech.2018.12.031
10.1016/j.cej.2022.135502
10.1021/acsnano.9b06899
10.1007/s12274-022-4413-4
10.1016/j.carbon.2012.04.056
10.1021/acsami.7b16284
10.1002/cphc.201402810
10.1039/D1TA07127K
10.1016/j.carbon.2010.01.062
10.1002/adfm.201907678
10.1021/acsnano.5b02781
10.1039/D0TC05589A
10.1016/j.colsurfa.2022.128428
10.1038/nature14002
10.1016/j.matdes.2018.02.006
10.1038/srep00870
10.1021/acsami.9b15412
10.1002/smll.201601916
10.1002/adfm.201602619
10.3390/polym11121985
10.1021/acsami.7b00847
10.1039/C9TB02570G
10.1007/s12274-018-2043-7
10.1039/C9TC04006D
10.1038/srep40116
10.1021/cr000108x
10.1088/1361-6528/ab1287
10.1021/cr3000412
10.1021/acsami.6b00867
10.1093/nsr/nwu072
10.1016/j.cej.2019.05.045
10.1007/s10853-020-05394-9
10.1002/aelm.202001084
10.1002/adfm.202007661
10.1016/j.nanoen.2018.10.030
10.1002/adfm.201800850
10.1021/acsami.8b16237
10.1016/j.matdes.2018.05.040
10.1021/nn700375n
10.1021/acsami.0c00176
10.1039/D1TC02599F
10.1021/acsami.0c19484
10.1021/acsami.5b12588
10.1063/1.4826496
10.1093/nsr/nwx009
10.1021/acsami.1c16646
10.1038/s41467-018-04906-1
10.1016/j.colsurfa.2022.129341
10.1002/adfm.201805924
10.1039/D1TC01894A
10.1021/acsnano.6b03813
10.1021/acsami.1c23176
10.1002/adfm.201400379
10.1002/adfm.202204272
10.1016/j.cej.2022.136468
10.1039/C5TB00075K
10.1038/ncomms4266
10.1021/acs.nanolett.8b01743
10.1039/C5NR04312C
10.3390/s20143927
10.1016/j.compscitech.2013.04.005
10.1021/nn300097q
10.1109/JPROC.2009.2013612
10.1002/adma.201701353
10.1002/adma.201405864
10.1038/ncomms4132
10.1088/0957-4484/26/37/375501
10.1016/j.msec.2015.07.053
10.1002/smll.201901124
10.1021/acsami.7b01551
10.1002/adma.201504244
10.1002/adfm.201903732
10.1016/j.cej.2019.122271
10.1016/j.carbon.2021.04.056
10.1002/admt.202100572
10.1021/acsnano.7b02182
10.1039/C8MH01062E
10.1016/j.carbon.2017.10.034
10.1002/adfm.202204755
10.1021/acsaelm.0c00292
10.1021/acsami.7b19649
10.1039/C9TA04248B
10.1039/C7NR03895J
10.1002/adfm.202104288
10.1021/acsami.9b19721
10.1039/c3ta10639j
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2023.142576
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2023_142576
S1385894723013074
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SSH
ZY4
ID FETCH-LOGICAL-c297t-98bdc431d2da9db1dc7f746144cb691a0de7a7eaa635320b24443783b82a6e1d3
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 01:50:42 EDT 2025
Thu Apr 24 23:02:33 EDT 2025
Fri Feb 23 02:36:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stretchable
Flexible and wearable electronics
Graphene
Strain sensors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-98bdc431d2da9db1dc7f746144cb691a0de7a7eaa635320b24443783b82a6e1d3
ORCID 0000-0001-6660-5190
0000-0001-9797-4036
0000-0003-4410-5739
ParticipantIDs crossref_primary_10_1016_j_cej_2023_142576
crossref_citationtrail_10_1016_j_cej_2023_142576
elsevier_sciencedirect_doi_10_1016_j_cej_2023_142576
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zheng, Gao, Ren, Gao (b1090) 2021; 9
Son, Kim, Lee, Hyeon, Hwang, Park (b0790) 2019; 19
Wang, Gao, Ren (b1035) 2021; 215
Wang, Wang, Yang, Li, Zang, Zhu, Wang, Wu, Zhu (b0320) 2014; 24
Zhang, Ren, Li, Cui, Guo, Tang, Xiao, Zhou, Qin, Wang, Liu (b1165) 2021; 9
Liu, Han, Xu, Wu, Liu (b0645) 2018; 10
Pan, Liu, Chen, Zhang, Guo (b1000) 2017; 9
Liu, Choi (b0460) 2009; 19
He, Yang (b0250) 2006; 1
Yang, Tao, Pang, Tian, Ju, Wu, Yang, Ren (b0580) 2018; 10
Shi, Zhao, Pai, Lee, Zhang, Stevenson, Ishara, Zhang, Zhu, Ma (b1205) 2016; 26
Liu, Dong, Shi, Wang, Ni, Fu (b0715) 2020; 24
Li, Chen, Fan, Wu, Guo (b0110) 2020; 30
Fan, Yeo, Su, Hattori, Lee, Jung, Zhang, Liu, Cheng, Falgout, Bajema, Coleman, Gregoire, Larsen, Huang, Rogers (b0690) 2014; 5
Yan, Wang, Wang, Pan (b0870) 2018; 143
Wu, Peng, Han, Zhu, Wang (b0505) 2018; 10
Liu, Peng, Hou, Wang, Zhang (b0745) 2013; 81
Chhetry, Sharifuzzaman, Yoon, Sharma, Xuan, Park (b0525) 2019; 11
Wang, Meng, Tebyetekerwa, Li, Pionteck, Sun, Qin, Zhu (b0700) 2018; 105
Kim, Kim, Kil, Kim, Park (b0105) 2018; 18
Yang, Cao, He, Shi, Ding, Wang, Sun (b0325) 2019; 66
Mai, Yu, Han, Kang, Li (b0135) 2020; 30
Wang, Guo, Lee, Ahmed, Zhong, Favors, Zaera, Ozkan, Ozkan (b0895) 2014; 4
Wu, Wang, Liu, Lv, Li, Wei, Liu (b0210) 2019; 31
Zhao, He, Yang, Shi, Cheng, Yang, Xie, Wang, Shi, Zhang (b0360) 2012; 101
Zhong, Liu, Xie (b1005) 2015; 3
Chhetry, Sharma, Barman, Yoon, Ko, Park, Yoon, Kim, Park (b1190) 2021; 31
Jing, Mi, Peng, Turng (b1070) 2018; 136
Hu, Tian, Xu, Sun, Sun, Sun, Liu, Zhang, Qu (b0755) 2020; 14
Jiang, He, Cai, Shen, Hu, Zhang (b1145) 2020; 12
Zhou, Zhuo, Long, Liu, Lu, Luo, Chen, Dong, Fu, Duan (b1075) 2022; 447
Fan, Qin, Gao, Wu, Pionteck, Mäder, Zhu (b0465) 2012; 50
Wang, Qiu, Cao, Hu (b0845) 2015; 27
Yun, Ju, Lee, Moon, Park, Kim, Hong, Ha, Jang, Lee, Chung, Choi, Nam, Lee, Jun, Skin (b1170) 2017; 27
Campea, Majcher, Lofts, Hoare (b0125) 2021; 31
Chen, Ren, Gao, Liu, Pei, Cheng (b0925) 2011; 10
Gao, Yu, Yeo, Lim (b0005) 2020; 32
Wen, Li, Cheng (b0205) 2016; 28
Mohseni Taromsari, Shi, Saadatnia, Park, Naguib (b0720) 2022; 442
Yuan, Zhou, Li, Shi (b0785) 2015; 7
Li, Zhao, Zeng, Huang, Gong, Zhang, Sun, Wong (b0950) 2016; 8
Lin, Liu, Zhang, Li, Ji, Deng, Fu (b0480) 2013; 5
Lin, Yin, Wang, Jia, Yuan, Wang (b0860) 2022; 443
Shao, Wei, Wu, Jiang, Yao, Peng, Chen, Huangfu, Ying, Zhang, Ping (b0070) 2022; 13
Park, You, Shin, Jeong (b1120) 2015; 16
Deng, Ji, Yan, Fu, Duan, Zhang, Fu (b0470) 2014; 2
Chu, Jiao, Huang, Zheng, Wang, He (b0520) 2021; 9
Yao, Wu, A, Zhang, Fang, Li, Sun, Gao, Lu (b0640) 2022; 431
Wang, Cong, Fu (b0965) 2020; 8
Wang, Yang, Daoud (b0120) 2019; 55
Cai, Qin, Li, Tyagi, Liu, Hossain, Chen, Kim, Liu, Zhuang, You, Xu, Lu, Sun, Luo (b1110) 2019; 7
Hong, Jeong, Cho, Lu, Kim (b0010) 2019; 29
Zhou, Long, Huang, Jiang, Zhuo, Guo, Li, Fu, Duan (b0290) 2022; 6
Pham, Cuong, Hur, Shin, Kim, Chung, Kim (b0550) 2010; 48
Wu, Zhang, Ladani, Ravindran, Mouritz, Kinloch, Wang (b0630) 2017; 9
Huang, Zhao, Wang, Sun, Tong (b1010) 2016; 8
Yao, Ren, Song, Liu, Huang, Dong, O'Connor, Zhu (b0040) 2020; 32
Huang, Zhao, Wang, Guo, Zhang, Liu, Liu, Zhang (b0770) 2018; 27
Xu, Jiang, Han, Cai, Gao (b1115) 2021; 9
Zhao, Wang, Yang, Lu, Cheng, He, Xie, Meng, Shi, Zhang (b0355) 2015; 9
Kim, Sim, Thukral, Yu (b0675) 2017; 3
Yamada, Hayamizu, Yamamoto, Yomogida, Izadi-Najafabadi, Futaba, Hata (b0430) 2011; 6
Ma, Wu, Patil, Zhu, Meng, Meng, Hou, Zhang, Liu, Yu, Wang, Lin, Liu (b0085) 2019; 29
Huang, Shi, Das, Qin, Li, Wang, Su, Wen, Li, Lu, Liu, Li, Zhang, Wang, Wu, Cheng (b0150) 2020; 30
Amjadi, Yoon, Park (b0500) 2015; 26
Li, Lai (b0800) 2019
Niu, Hua, Hu, Xu, Tian, Chan, Chen (b0810) 2019; 7
Dong, Xu, Wang, Huang, Chan-Park, Zhang, Wang, Huang, Chen (b0890) 2012; 6
Liu, Zhang, Gao (b0970) 2020; 14
Lin, Peng, Liu, Ruiz-Zepeda, Ye, Samuel, Yacaman, Yakobson, Tour (b0575) 2014; 5
Wang, Tang, Zhao, Huang, Zhang (b0130) 2022; 32
Sheng, Ji, Zhang, Wu, Liang, Chen, Wang (b0535) 2021; 7
Chen, Paul, Dai (b0185) 2017; 4
Li, Liu, Ho, Zhao, Wu, Ling, Han, Wu, Zhang, Sun, Wong (b0905) 2018; 10
Yang, Yao, Zheng, Gong, Yuan, Yuan, Liu (b0625) 2018; 167
Liu, Chen, Zhang, Wang, Guan, Yu (b0080) 2019; 29
Zhang, Deng, Valenca, Jin, Fu, Bilotti, Peijs (b0485) 2013; 74
Lee, Mooney (b0960) 2001; 101
Yuan, Yang, Yang, Peng, Yin (b0650) 2018; 10
Zhang, Wu, Peng, Sha, Wang (b0635) 2019; 172
Huang, He, Wang, Yang, Sun, Xie, Ding (b0705) 2019; 29
Cheng, Zhang, Lai, Huang (b0195) 2015; 27
Kang, Pikhitsa, Choi, Lee, Shin, Piao, Park, Suh, Kim, Choi (b0445) 2014; 516
Sun, Ye, Zhao, Zhang, Liu, Dai, Wang, Alam, Yan, Li, Xu, Chen, Zhao, Ye, Jiang, Chen, Wu, Kong, Lin (b0590) 2020; 8
Lee, Jug, Meng (b0335) 2013; 102
Amjadi, Pichitpajongkit, Lee, Ryu, Park (b0095) 2014; 8
Lu, Zhao, Liu, Yang (b0270) 2021; 9
Zhang, Sun, Xu (b0835) 2021; 13
Qin, Peng, Ding, Lin, Wang, Li, Xu, Li, Yuan, He, Li (b0915) 2015; 9
Alamusi, Hu, Fukunaga, Atobe, Liu (b0340) 2011; 11
Luo, Li, Li, Tian, Fan, Wang, Wu, Shen (b0415) 2020; 6
Salman, Chu, Huang, Cai, Yang, Dong, Gopalsamy, Gao (b0560) 2018; 2
Souri, Bhattacharyya (b0305) 2018; 6
Tian, Shu, Cui, Mi, Yang, Xie, Ren (b0315) 2014; 6
Wu, Huang, Liang, Wu, Zhong, Zhou, Ye, Tao, Zhou, Xie (b0975) 2021; 7
Dong, Wang, Wu, Zhu, Shi, Morikawa (b1095) 2022; 14
Tang, Zhao, Hu, Liu, Wang, Zhou, Qiu (b1185) 2015; 7
Gao, Li, Huang, Wang, Lin, Wang, Xue (b0725) 2019; 373
Zhou, Gu, Fei, Mai, Gao, Yang, Bao, Wang (b0245) 2008; 8
Wang, Lee, Kwak, Lee (b0390) 2013; 84
Li, Koh, Farhan, Lai (b0805) 2020; 12
Yin, Wang, Zhao, Lou, Shen (b0045) 2021; 31
Wu, Fan, Qu, Yang, Nie, Tang, Pan, Wang, Bin (b1100) 2021; 9
Wang, Zhang, Chen, Fu (b0710) 2021; 179
Ullah, Othman, Javed, Ahmad, Md Akil (b0955) 2015; 57
Chen, Li, Niu, Xin, Xu, Cheng, Yang (b1175) 2022; 444
Ma, Wu, Wang, Liao, Wan, Zhang (b1040) 2019; 11
Hassan, Bae, Hassan, Ali, Lee, Choi (b0280) 2018; 107
Kim, Mondal, Min, Choi (b0880) 2018; 10
Drotlef, Amjadi, Yunusa, Sitti (b1215) 2017; 29
Pan, Chen, Li, Tao, Ye, Ni, Yu, Xiang, Ren, Qin, Yu, Zhu (b0420) 2018; 28
Zhan, Hao, Li, Santillo, Zhang, Sorrentino, Lavorgna, Xia, Chen (b0985) 2021; 205
Li, Chen, Han, Cao, Luo (b1045) 2022; 648
Liu, Chen, Li, Shi (b0585) 2016; 10
Xu, Xie, Huang, Wang, Yu, Hu (b0780) 2020; 56
Yang, Yuan, Yao, Fang (b0395) 2020; 139
Zhang, Zang, Huang, Di, Zhu (b0075) 2015; 6
Zheng, Gao, Liu, Wang, Li, Xu, Gao (b0735) 2020; 158
Amjadi, Kyung, Park, Sitti (b0495) 2016; 26
Zeng, Shu, Li, Chen, Wang, Tao (b0685) 2014; 26
Wang, Xia, Wang, Liang, Yin, Zhang (b0190) 2019; 31
Yan, Wang, Kang, Cui, Wang, Foo, Chee, Lee (b0265) 2014; 26
Mao, Zhao, Li, Xiang, Wang (b1025) 2020; 17
Yu, Lian, Sun, Yang, Wang, Xie, Du, Gou, Li, Tai (b0595) 2019; 11
Liu, Xiang, Wang, Li, Qian, Li, Ma, Zhou, Huang (b1200) 2019; 11
O'Driscoll, McMahon, Garcia, Biccai, Gabbett, Kelly, Barwich, Moebius, Boland, Coleman (b0660) 2021; 17
Jiang, Zhang, Yang, Lin, Chen, Zhen, Xie, Zhu (b0555) 2016; 299
Du, Yu, Dai, Wang, Yao, Kong (b0370) 2020; 12
Deng, Gao, Lan, He, Zhao, Zheng, Chen, Zhong, Wu, Liu, Peng, Cao (b1155) 2019; 29
Li, Hu, Hua, Xu, Jiang (b0830) 2018; 11
Ji, Zhou, Lin, Wu, Zhang, Garner, Gu, Dong, Fu, Duan (b0055) 2021; 7
Pan, Wang, He, Liu, Ni, Chen, Ouyang, Huang, Wang, Xu (b1085) 2020; 379
Wang, Xia, Wang, Liang, Yin, Zhang (b0215) 2019; 31
Souri, Bhattacharyya (b0765) 2018; 154
Cheng, Wang, Sun, Gao (b0820) 2015; 27
Xu, Lu, Xiang, Zhang, Zhao, Xie, Gu (b1130) 2018; 10
Yang, Li, Sun, Jin, Lu, Zhang, Lin, Qu (b0980) 2019; 29
Ma, Chen (b0875) 2015; 2
Seyedin, Zhang, Naebe, Qin, Chen, Wang, Razal (b0385) 2019; 6
Hempel, Nezich, Kong, Hofmann (b0260) 2012; 12
Kim, Kim, Lee (b0025) 2020; 32
Liu, Choi (b0450) 2014; 117
Gan, Huang, Wang, Jiang, Wang, Zhu, Ren, Fang, Wang, Xie, Lu (b1055) 2020; 30
Liu, Zhang, Wang, Liu, Shang (b0655) 2016; 80
Li, Hua, Xu (b0815) 2017; 118
Qiao, Wang, Tian, Li, Jian, Wei, Tian, Wang, Pang, Geng, Wang, Zhao, Wang, Deng, Jian, Zhang, Liang, Yang, Ren (b0605) 2018; 12
Han, Zhang, Chen, Sun (b0155) 2018; 28
Bao (b0230) 2000
Chen, Huang, Liu, Gu, Zhu, Huang, Bai, Guo, Yang, Guan (b0410) 2021; 9
Li, Koh, Xue, So, Xiao, Tin, Wai, Lai (b0795) 2022; 15
Kim, Zhu, Yeom, Di Prima, Su, Kim, Yoo, Uher, Kotov (b0680) 2013; 500
Wang, Lu, Li, Lin, Liang, Lu, Xie (b0510) 2022; 14
Su, Zhao, Zhan, Yuan, Wu, Sui, Zhang (b1135) 2022; 435
Heo, Hossain, Kim (b0175) 2020; 20
Desai, Haque (b0275) 2005; 43
Fan, Shi, Lian, Li, Yin (b0995) 2013; 1
Ma, Yu, Liu, Li, Li (b0940) 2017; 9
Bai, Zhai, Liu, Wang, Luo (b0825) 2019; 9
Sengupta, Pei, Kottapalli (b0910) 2019; 11
Becerril, Mao, Liu, Stoltenberg, Bao, Chen (b0545) 2008; 2
Wu, Yuan, Xu, Bai, Chen, Tang, Wang, Yang, Zhang, Yuan, Chen, Zhang, Liu, Jiang (b0020) 2021; 412
Wang, Zhang, Yue, Xu, Xu, Sun, Chen, Jiang, Liu (b0235) 2019; 30
Tewari, Gandla, Bohm, McNeill, Gupta (b0775) 2018; 113
Wu, Huang, Wu, Qian, Jiang (b0900) 2013; 25
Amjadi, Turan, Clementson, Sitti (b0310) 2016; 8
Wang, Tao, Liu, Zhang, Pang, Wang, Jiang, Yang, Ren (b0665) 2016; 8
Li, Zheng, Liu, Zhao, Yu, Wang, Han, Xu, Cao, Lu, Gao (b0850) 2022; 437
Pyo, Lee, Bae, Sim, Kim (b0035) 2021; 33
Huang, Liu, Zhao, Ren, Guo (b0200) 2019; 29
Rajitha, Dash (b0565) 2018; 277
Fan, Xie, Zheng, Wei, Yao, Zhang, Zhang (b1105) 2020; 12
Zhou, Li, Ma, Wang, Shi, Koratkar, Ren, Li, Cheng (b0885) 2015; 11
Maurya, Khaleghian, Sriramdas, Kumar, Kishore, Kang, Kumar, Song, Lee, Yan, Park, Taheri, Priya (b0050) 2020; 11
Shi, Liu, Sun, Liang, Chen (b0425) 2018; 28
Han, Lu, Wang, Gan, Deng, Wang, Fang, Liu, Chan, Tang, Weng, Yuan (b1065) 2017; 13
Lv, Lu, Wang, Feng (b0140) 2021; 31
Georgakilas, Otyepka, Bourlinos, Chandra, Kim, Kemp, Hobza, Zboril, Kim (b0165) 2012; 112
Pan, Xiao, Huang, Zhu (b0750) 2020; 41
Pang, Tian, Tao, Li, Wang, Deng, Yang, Ren (b0930) 2016; 8
Hicks, Behnam, Ural (b0345) 2009; 95
Zhai, Xu, Liu, Jin, Yi, Zhang, Fan, Cheng, Li, Liu, Song, Yue, Li (b0855) 2022; 439
Wang, Chang, Zhan, Xu, Wang, Zhang, Li, Luo, Xing, Zhong (b1050) 2019; 7
Park, Hyun, Mun, Park, Park (b0285) 2015; 7
Zhang, Li, Lai, Gao, Zeng (b0945) 2020; 12
Dreyer, Park, Bielawski, Ruoff (b0990) 2010; 39
Tung, Nine, Krebsz, Pasinszki, Coghlan, Tran, Losic (b1080) 2017; 27
Tao, Wang, Tian, Ju, Liu, Pang, Chen, Yang, Ren (b0600) 20
Kim (10.1016/j.cej.2023.142576_b0680) 2013; 500
Liu (10.1016/j.cej.2023.142576_b0970) 2020; 14
Amjadi (10.1016/j.cej.2023.142576_b0310) 2016; 8
Pham (10.1016/j.cej.2023.142576_b0550) 2010; 48
Li (10.1016/j.cej.2023.142576_b0100) 2022; 34
Dreyer (10.1016/j.cej.2023.142576_b0990) 2010; 39
Qiao (10.1016/j.cej.2023.142576_b0605) 2018; 12
Shao (10.1016/j.cej.2023.142576_b0070) 2022; 13
Han (10.1016/j.cej.2023.142576_b0155) 2018; 28
Lee (10.1016/j.cej.2023.142576_b0515) 2015; 5
Trung (10.1016/j.cej.2023.142576_b0015) 2016; 28
Liu (10.1016/j.cej.2023.142576_b0080) 2019; 29
Lin (10.1016/j.cej.2023.142576_b0575) 2014; 5
Bottari (10.1016/j.cej.2023.142576_b0160) 2017; 46
Ma (10.1016/j.cej.2023.142576_b0085) 2019; 29
Huang (10.1016/j.cej.2023.142576_b0150) 2020; 30
Sun (10.1016/j.cej.2023.142576_b0590) 2020; 8
Niu (10.1016/j.cej.2023.142576_b0810) 2019; 7
Li (10.1016/j.cej.2023.142576_b0365) 2016; 26
Li (10.1016/j.cej.2023.142576_b0805) 2020; 12
Yang (10.1016/j.cej.2023.142576_b0580) 2018; 10
Jiang (10.1016/j.cej.2023.142576_b1145) 2020; 12
Liu (10.1016/j.cej.2023.142576_b1200) 2019; 11
Tousi (10.1016/j.cej.2023.142576_b0115) 2019; 11
Sheng (10.1016/j.cej.2023.142576_b0535) 2021; 7
Guo (10.1016/j.cej.2023.142576_b0090) 2021; 31
Choi (10.1016/j.cej.2023.142576_b0440) 2017; 7
Becerril (10.1016/j.cej.2023.142576_b0545) 2008; 2
Zhou (10.1016/j.cej.2023.142576_b1075) 2022; 447
Han (10.1016/j.cej.2023.142576_b1065) 2017; 13
Yang (10.1016/j.cej.2023.142576_b0610) 2018; 10
Chen (10.1016/j.cej.2023.142576_b0570) 2019; 29
Lin (10.1016/j.cej.2023.142576_b0480) 2013; 5
Souri (10.1016/j.cej.2023.142576_b0305) 2018; 6
Li (10.1016/j.cej.2023.142576_b1045) 2022; 648
Ma (10.1016/j.cej.2023.142576_b1040) 2019; 11
Vu (10.1016/j.cej.2023.142576_b0240) 2020; 20
Gong (10.1016/j.cej.2023.142576_b0065) 2014; 5
Yang (10.1016/j.cej.2023.142576_b0620) 2018; 12
Pyo (10.1016/j.cej.2023.142576_b0035) 2021; 33
Beeby (10.1016/j.cej.2023.142576_b0225) 2004
Zheng (10.1016/j.cej.2023.142576_b1090) 2021; 9
Jia (10.1016/j.cej.2023.142576_b0145) 2022; 32
Wang (10.1016/j.cej.2023.142576_b1050) 2019; 7
Fan (10.1016/j.cej.2023.142576_b1105) 2020; 12
Hicks (10.1016/j.cej.2023.142576_b0345) 2009; 95
Xu (10.1016/j.cej.2023.142576_b1130) 2018; 10
Zhang (10.1016/j.cej.2023.142576_b1020) 2017; 177
Zhao (10.1016/j.cej.2023.142576_b0355) 2015; 9
Bai (10.1016/j.cej.2023.142576_b0825) 2019; 9
Cao (10.1016/j.cej.2023.142576_b0255) 2003; 90
Cravanzola (10.1016/j.cej.2023.142576_b0670) 2013; 62
Pang (10.1016/j.cej.2023.142576_b0220) 2020; 16
Bao (10.1016/j.cej.2023.142576_b0230) 2000
Rajitha (10.1016/j.cej.2023.142576_b0565) 2018; 277
Li (10.1016/j.cej.2023.142576_b0170) 2020; 2
Li (10.1016/j.cej.2023.142576_b0795) 2022; 15
Cai (10.1016/j.cej.2023.142576_b1110) 2019; 7
Yin (10.1016/j.cej.2023.142576_b0840) 2019; 285
Kim (10.1016/j.cej.2023.142576_b0025) 2020; 32
Zhang (10.1016/j.cej.2023.142576_b0485) 2013; 74
Kang (10.1016/j.cej.2023.142576_b0445) 2014; 516
Salman (10.1016/j.cej.2023.142576_b0560) 2018; 2
Su (10.1016/j.cej.2023.142576_b1135) 2022; 435
Wu (10.1016/j.cej.2023.142576_b0300) 2017; 9
Yao (10.1016/j.cej.2023.142576_b0640) 2022; 431
Gao (10.1016/j.cej.2023.142576_b0725) 2019; 373
Liu (10.1016/j.cej.2023.142576_b0460) 2009; 19
Amjadi (10.1016/j.cej.2023.142576_b0495) 2016; 26
Li (10.1016/j.cej.2023.142576_b0850) 2022; 437
Campea (10.1016/j.cej.2023.142576_b0125) 2021; 31
Kong (10.1016/j.cej.2023.142576_b0455) 2014; 77
Kim (10.1016/j.cej.2023.142576_b0880) 2018; 10
Tian (10.1016/j.cej.2023.142576_b0315) 2014; 6
Yang (10.1016/j.cej.2023.142576_b1015) 2020; 8
Chen (10.1016/j.cej.2023.142576_b0695) 2020; 12
Drotlef (10.1016/j.cej.2023.142576_b1215) 2017; 29
Zhang (10.1016/j.cej.2023.142576_b0835) 2021; 13
Yao (10.1016/j.cej.2023.142576_b0040) 2020; 32
Shi (10.1016/j.cej.2023.142576_b0425) 2018; 28
He (10.1016/j.cej.2023.142576_b0250) 2006; 1
Chen (10.1016/j.cej.2023.142576_b1175) 2022; 444
Mai (10.1016/j.cej.2023.142576_b0135) 2020; 30
Zhang (10.1016/j.cej.2023.142576_b0635) 2019; 172
O'Driscoll (10.1016/j.cej.2023.142576_b0660) 2021; 17
Amjadi (10.1016/j.cej.2023.142576_b0500) 2015; 26
Yan (10.1016/j.cej.2023.142576_b0265) 2014; 26
Zhang (10.1016/j.cej.2023.142576_b0945) 2020; 12
Xu (10.1016/j.cej.2023.142576_b1180) 2018; 10
Chen (10.1016/j.cej.2023.142576_b0185) 2017; 4
Wang (10.1016/j.cej.2023.142576_b0845) 2015; 27
Dong (10.1016/j.cej.2023.142576_b1095) 2022; 14
Tang (10.1016/j.cej.2023.142576_b1185) 2015; 7
Chen (10.1016/j.cej.2023.142576_b0410) 2021; 9
Wu (10.1016/j.cej.2023.142576_b0020) 2021; 412
Souri (10.1016/j.cej.2023.142576_b0765) 2018; 154
Wu (10.1016/j.cej.2023.142576_b1100) 2021; 9
Li (10.1016/j.cej.2023.142576_b0110) 2020; 30
Pan (10.1016/j.cej.2023.142576_b1085) 2020; 379
Barlian (10.1016/j.cej.2023.142576_b1125) 2009; 97
Alamusi (10.1016/j.cej.2023.142576_b0340) 2011; 11
Zhan (10.1016/j.cej.2023.142576_b0985) 2021; 205
An (10.1016/j.cej.2023.142576_b0060) 2018; 9
Lu (10.1016/j.cej.2023.142576_b0270) 2021; 9
Zhou (10.1016/j.cej.2023.142576_b0885) 2015; 11
Chhetry (10.1016/j.cej.2023.142576_b0525) 2019; 11
Seyedin (10.1016/j.cej.2023.142576_b0385) 2019; 6
Lin (10.1016/j.cej.2023.142576_b0860) 2022; 443
Xia (10.1016/j.cej.2023.142576_b0400) 2019; 7
Deng (10.1016/j.cej.2023.142576_b0470) 2014; 2
Maurya (10.1016/j.cej.2023.142576_b0050) 2020; 11
Dong (10.1016/j.cej.2023.142576_b0890) 2012; 6
Wang (10.1016/j.cej.2023.142576_b1140) 2021; 31
Saha (10.1016/j.cej.2023.142576_b1210) 2017; 9
Zeng (10.1016/j.cej.2023.142576_b0685) 2014; 26
Pang (10.1016/j.cej.2023.142576_b0930) 2016; 8
He (10.1016/j.cej.2023.142576_b0405) 2020; 12
Wang (10.1016/j.cej.2023.142576_b0190) 2019; 31
Oskouyi (10.1016/j.cej.2023.142576_b0350) 2014; 7
Liu (10.1016/j.cej.2023.142576_b0655) 2016; 80
Liu (10.1016/j.cej.2023.142576_b0450) 2014; 117
Huang (10.1016/j.cej.2023.142576_b0770) 2018; 27
Xie (10.1016/j.cej.2023.142576_b0865) 2020; 135
Zhao (10.1016/j.cej.2023.142576_b0360) 2012; 101
Zhang (10.1016/j.cej.2023.142576_b1165) 2021; 9
Wu (10.1016/j.cej.2023.142576_b0975) 2021; 7
Lee (10.1016/j.cej.2023.142576_b1195) 2017; 9
Fan (10.1016/j.cej.2023.142576_b0465) 2012; 50
Wang (10.1016/j.cej.2023.142576_b0235) 2019; 30
Xie (10.1016/j.cej.2023.142576_b1060) 2021; 9
Lv (10.1016/j.cej.2023.142576_b0140) 2021; 31
Wang (10.1016/j.cej.2023.142576_b0700) 2018; 105
Zhai (10.1016/j.cej.2023.142576_b0855) 2022; 439
Li (10.1016/j.cej.2023.142576_b0800) 2019
Yin (10.1016/j.cej.2023.142576_b0045) 2021; 31
Zhou (10.1016/j.cej.2023.142576_b0245) 2008; 8
Shi (10.1016/j.cej.2023.142576_b1205) 2016; 26
Georgiou (10.1016/j.cej.2023.142576_b0375) 2013; 8
Zhao (10.1016/j.cej.2023.142576_b0760) 2019; 28
Wu (10.1016/j.cej.2023.142576_b0630) 2017; 9
Lou (10.1016/j.cej.2023.142576_b0380) 2018; 3
Zhou (10.1016/j.cej.2023.142576_b0290) 2022; 6
Yu (10.1016/j.cej.2023.142576_b0595) 2019; 11
Yang (10.1016/j.cej.2023.142576_b0325) 2019; 66
Pan (10.1016/j.cej.2023.142576_b0420) 2018; 28
Wang (10.1016/j.cej.2023.142576_b0510) 2022; 14
Liu (10.1016/j.cej.2023.142576_b0645) 2018; 10
Gan (10.1016/j.cej.2023.142576_b1055) 2020; 30
Xu (10.1016/j.cej.2023.142576_b1115) 2021; 9
Yuan (10.1016/j.cej.2023.142576_b0785) 2015; 7
Li (10.1016/j.cej.2023.142576_b0530) 2021; 13
Hong (10.1016/j.cej.2023.142576_b0010) 2019; 29
Amjadi (10.1016/j.cej.2023.142576_b0095) 2014; 8
Lee (10.1016/j.cej.2023.142576_b0960) 2001; 101
Fan (10.1016/j.cej.2023.142576_b0995) 2013; 1
Huang (10.1016/j.cej.2023.142576_b0705) 2019; 29
Li (10.1016/j.cej.2023.142576_b0435) 2012; 2
Mao (10.1016/j.cej.2023.142576_b1025) 2020; 17
Liu (10.1016/j.cej.2023.142576_b0585) 2016; 10
Wang (10.1016/j.cej.2023.142576_b0665) 2016; 8
Kabiri Ameri (10.1016/j.cej.2023.142576_b0540) 2017; 11
Yuan (10.1016/j.cej.2023.142576_b0650) 2018; 10
Desai (10.1016/j.cej.2023.142576_b0275) 2005; 43
Wu (10.1016/j.cej.2023.142576_b0210) 2019; 31
Zheng (10.1016/j.cej.2023.142576_b0735) 2020; 158
Heng (10.1016/j.cej.2023.142576_b0030) 2022; 34
Zhang (10.1016/j.cej.2023.142576_b0075) 2015; 6
Li (10.1016/j.cej.2023.142576_b0950) 2016; 8
Du (10.1016/j.cej.2023.142576_b0370) 2020; 12
Wang (10.1016/j.cej.2023.142576_b0730) 2018; 126
Yang (10.1016/j.cej.2023.142576_b0980) 2019; 29
Cheng (10.1016/j.cej.2023.142576_b0820) 2015; 27
Ma (10.1016/j.cej.2023.142576_b0875) 2015; 2
Qi (10.1016/j.cej.2023.142576_b0615) 2020; 12
Tian (10.1016/j.cej.2023.142576_b0740) 2017; 9
Kim (10.1016/j.cej.2023.142576_b0105) 2018; 18
Li (10.1016/j.cej.2023.142576_b0815) 2017; 118
Yan (10.1016/j.cej.2023.142576_b0870) 2018; 143
Fan (10.1016/j.cej.2023.142576_b0690) 2014; 5
Pan (10.1016/j.cej.2023.142576_b0750) 2020; 41
Li (10.1016/j.cej.2023.142576_b0830) 2018; 11
Wang (10.1016/j.cej.2023.142576_b0965) 2020; 8
Kim (10.1016/j.cej.2023.142576_b0675) 2017; 3
Jing (10.1016/j.cej.2023.142576_b1070) 2018; 136
Tung (10.1016/j.cej.2023.142576_b1080) 2017; 27
Liu (10.1016/j.cej.2023.142576_b0745) 2013; 81
Park (10.1016/j.cej.2023.142576_b0285) 2015; 7
Yang (10.1016/j.cej.2023.142576_b0625) 2018; 167
Sengupta (10.1016/j.cej.2023.142576_b0910) 2019; 11
Zhang (10.1016/j.cej.2023.142576_b1150) 2018; 28
Yun (10.1016/j.cej.2023.142576_b1170) 2017; 27
Ullah (10.1016/j.cej.2023.142576_b0955) 2015; 57
Ma (10.1016/j.cej.2023.142576_b0940) 2017; 9
Zhong (10.1016/j.cej.2023.142576_b1005) 2015; 3
Yang (10.1016/j.cej.2023.142576_b0295) 2016; 3
Wang (10.1016/j.cej.2023.142576_b0390) 2013; 84
Tao (10.1016/j.cej.2023.142576_b0600) 2017; 9
Jeong (10.1016/j.cej.2023.142576_b0475) 2015; 25
Chhetry (10.1016/j.cej.2023.142576_b1190) 2021; 31
Yamada (10.1016/j.cej.2023.142576_b0430) 2011; 6
Yin (10.1016/j.cej.2023.142576_b1030) 2022; 642
Hempel (10.1016/j.cej.2023.142576_b0260) 2012; 12
Wang (10.1016/j.cej.2023.142576_b0320) 2014; 24
Wang (10.1016/j.cej.2023.142576_b0895) 2014; 4
Wen (10.1016/j.cej.2023.142576_b0205) 2016; 28
Xu (10.1016/j.cej.2023.142576_b0780) 2020; 56
Heo (10.1016/j.cej.2023.142576_b0175) 2020; 20
Park (10.1016/j.cej.2023.142576_b1120) 2015; 16
Pan (10.1016/j.cej.2023.142576_b1000) 2017; 9
Wang (10.1016/j.cej.2023.142576_b0215) 2019; 31
Qin (10.1016/j.cej.2023.142576_b0915) 2015; 9
Hassan (10.1016/j.cej.2023.142576_b0280) 2018; 107
Son (10.1016/j.cej.2023.142576_b0790) 2019; 19
Gao (10.1016/j.cej.2023.142576_b0005) 2020; 32
Jiang (10.1016/j.cej
References_xml – volume: 28
  start-page: 4338
  year: 2016
  end-page: 4372
  ident: b0015
  article-title: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare
  publication-title: Adv. Mater.
– volume: 26
  start-page: 7614
  year: 2016
  end-page: 7625
  ident: b1205
  article-title: Highly Sensitive, Wearable, Durable Strain Sensors and Stretchable Conductors Using Graphene/Silicon Rubber Composites
  publication-title: Adv. Funct. Mater.
– volume: 442
  start-page: 136138
  year: 2022
  ident: b0720
  article-title: Design and development of ultra-sensitive, dynamically stable, multi-modal GnP@MXene nanohybrid electrospun strain sensors
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: e1901124
  year: 2020
  ident: b0220
  article-title: Wearable Electronics Based on 2D Materials for Human Physiological Information Detection
  publication-title: Small
– volume: 11
  start-page: 7634
  year: 2017
  end-page: 7641
  ident: b0540
  article-title: Graphene Electronic Tattoo Sensors
  publication-title: ACS Nano
– volume: 57
  start-page: 414
  year: 2015
  end-page: 433
  ident: b0955
  article-title: Classification, processing and application of hydrogels: A review
  publication-title: Mater Sci Eng C Mater Biol Appl
– volume: 648
  start-page: 129341
  year: 2022
  ident: b1045
  article-title: Tough, highly resilient and conductive nanocomposite hydrogels reinforced with surface-grafted cellulose nanocrystals and reduced graphene oxide for flexible strain sensors
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 107
  start-page: 519
  year: 2018
  end-page: 528
  ident: b0280
  article-title: Ink-jet printed stretchable strain sensor based on graphene/ZnO composite on micro-random ridged PDMS substrate
  publication-title: Compos. A Appl. Sci. Manuf.
– volume: 19
  start-page: 085019
  year: 2009
  ident: b0460
  article-title: Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing
  publication-title: J. Micromech. Microeng.
– volume: 9
  start-page: 8266
  year: 2017
  end-page: 8273
  ident: b0600
  article-title: Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions
  publication-title: Nanoscale
– volume: 34
  start-page: 2108932
  year: 2022
  ident: b0100
  article-title: Recent Progress on Self-Healable Conducting Polymers
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5815
  year: 2013
  end-page: 5824
  ident: b0480
  article-title: Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer
  publication-title: ACS Appl. Mater. Interfaces
– volume: 101
  start-page: 063112
  year: 2012
  ident: b0360
  article-title: Ultra-sensitive strain sensors based on piezoresistive nanographene films
  publication-title: Appl. Phys. Lett.
– volume: 41
  start-page: 233
  year: 2020
  end-page: 243
  ident: b0750
  article-title: Preparation and properties of melt-spun poly(fluorinated ethylene-propylene)/graphene composite fibers
  publication-title: Polym. Compos.
– volume: 7
  start-page: 2001084
  year: 2021
  ident: b0975
  article-title: Self-Calibrated, Sensitive, and Flexible Temperature Sensor Based on 3D Chemically Modified Graphene Hydrogel
  publication-title: Adv. Electron. Mater.
– volume: 30
  start-page: 1909035
  year: 2020
  ident: b0150
  article-title: The chemistry and promising applications of graphene and porous graphene materials
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 2501
  year: 2014
  end-page: 2521
  ident: b0350
  article-title: Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets
  publication-title: Materials (Basel)
– volume: 12
  start-page: 7565
  year: 2020
  end-page: 7574
  ident: b0695
  article-title: Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core-Shell Segmental Configuration for Wearable Strain and Temperature Sensors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 90
  year: 2003
  ident: b0255
  article-title: Electromechanical Properties of Metallic, Quasimetallic, and Semiconducting Carbon Nanotubes under Stretching
  publication-title: Phys. Rev. Lett.
– volume: 431
  start-page: 134038
  year: 2022
  ident: b0640
  article-title: Stretchable vertical graphene arrays for electronic skin with multifunctional sensing capabilities
  publication-title: Chem. Eng. J.
– volume: 28
  start-page: 1803221
  year: 2018
  ident: b0420
  article-title: 3D Graphene Films Enable Simultaneously High Sensitivity and Large Stretchability for Strain Sensors
  publication-title: Adv. Funct. Mater.
– volume: 20
  year: 2020
  ident: b0175
  article-title: Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring. A critical review
  publication-title: Sensors
– volume: 12
  start-page: 58317
  year: 2020
  end-page: 58325
  ident: b1145
  article-title: Flexible strain sensor with tunable sensitivity via microscale electrical breakdown in graphene/polyimide thin films
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 2007661
  year: 2021
  ident: b1190
  article-title: Black Phosphorus@Laser-Engraved Graphene Heterostructure-Based Temperature-Strain Hybridized Sensor for Electronic-Skin Applications
  publication-title: Adv. Funct. Mater.
– volume: 11
  year: 2019
  ident: b0115
  article-title: Scalable Fabrication of Highly Flexible Porous Polymer-Based Capacitive Humidity Sensor Using Convergence Fiber Drawing
  publication-title: Polymers
– volume: 27
  start-page: 3349
  year: 2015
  end-page: 3376
  ident: b0195
  article-title: Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2326
  year: 2020
  end-page: 2335
  ident: b1015
  article-title: Thermo-responsive shape memory sensors based on tough, remolding and anti-freezing hydrogels
  publication-title: J. Mater. Chem. C
– volume: 31
  start-page: 2104288
  year: 2021
  ident: b0090
  article-title: Recent Advances in Carbon Material-Based Multifunctional Sensors and Their Applications in Electronic Skin Systems
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 2000269
  year: 2020
  ident: b0415
  article-title: In Situ Dynamic Manipulation of Graphene Strain Sensor with Drastically Sensing Performance Enhancement
  publication-title: Adv. Electron. Mater.
– volume: 33
  start-page: 2005902
  year: 2021
  ident: b0035
  article-title: Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications
  publication-title: Adv. Mater.
– volume: 26
  start-page: 1678
  year: 2016
  end-page: 1698
  ident: b0495
  article-title: Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 559
  year: 2020
  end-page: 567
  ident: b0755
  article-title: Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear
  publication-title: ACS Nano
– volume: 28
  start-page: 1705879
  year: 2018
  ident: b1150
  article-title: A Bubble-Derived Strategy to Prepare Multiple Graphene-Based Porous Materials
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 5310
  year: 2014
  end-page: 5336
  ident: b0685
  article-title: Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications
  publication-title: Adv. Mater.
– volume: 12
  start-page: 44360
  year: 2020
  end-page: 44370
  ident: b0945
  article-title: Three-Dimensional Binary-Conductive-Network Silver Nanowires@Thiolated Graphene Foam-Based Room-Temperature Self-Healable Strain Sensor for Human Motion Detection
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2017
  ident: b0675
  article-title: Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors
  publication-title: Sci. Adv.
– volume: 66
  start-page: 104134
  year: 2019
  ident: b0325
  article-title: Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response
  publication-title: Nano Energy
– volume: 136
  start-page: 63
  year: 2018
  end-page: 72
  ident: b1070
  article-title: Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry
  publication-title: Carbon
– volume: 102
  start-page: 183511
  year: 2013
  ident: b0335
  article-title: High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors
  publication-title: Appl. Phys. Lett.
– volume: 379
  start-page: 122271
  year: 2020
  ident: b1085
  article-title: A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties
  publication-title: Chem. Eng. J.
– volume: 13
  year: 2022
  ident: b0070
  article-title: Room-temperature high-precision printing of flexible wireless electronics based on MXene inks
  publication-title: Nat. Commun.
– volume: 12
  start-page: 6442
  year: 2020
  end-page: 6450
  ident: b0405
  article-title: Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators
  publication-title: ACS Appl. Mater. Interfaces
– volume: 143
  start-page: 214
  year: 2018
  end-page: 223
  ident: b0870
  article-title: Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors
  publication-title: Mater. Des.
– volume: 12
  start-page: 8839
  year: 2018
  end-page: 8846
  ident: b0605
  article-title: Multilayer Graphene Epidermal Electronic Skin
  publication-title: ACS Nano
– volume: 11
  start-page: 41701
  year: 2019
  end-page: 41709
  ident: b1040
  article-title: Wearable, antifreezing, and healable epidermal sensor assembled from long-lasting moist conductive nanocomposite organohydrogel
  publication-title: ACS Appl. Mater. Interfaces
– volume: 299
  start-page: 22
  year: 2016
  end-page: 28
  ident: b0555
  article-title: Foldable and electrically stable graphene film resistors prepared by vacuum filtration for flexible electronics
  publication-title: Surf. Coat. Technol.
– volume: 2
  start-page: 40
  year: 2015
  end-page: 53
  ident: b0875
  article-title: Three-dimensional graphene networks: synthesis, properties and applications
  publication-title: Natl. Sci. Rev.
– volume: 24
  start-page: 4666
  year: 2014
  end-page: 4670
  ident: b0320
  article-title: Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 12335
  year: 2017
  end-page: 12342
  ident: b0740
  article-title: Dry spinning approach to continuous graphene fibers with high toughness
  publication-title: Nanoscale
– volume: 7
  start-page: 40116
  year: 2017
  ident: b0440
  article-title: Ultra-sensitive Pressure sensor based on guided straight mechanical cracks
  publication-title: Sci. Rep.
– volume: 8
  start-page: 3035
  year: 2008
  end-page: 3040
  ident: b0245
  article-title: Flexible Piezotronic Strain Sensor
  publication-title: Nano Lett.
– volume: 10
  start-page: 3948
  year: 2018
  end-page: 3954
  ident: b0610
  article-title: Simultaneously Detecting Subtle and Intensive Human Motions Based on a Silver Nanoparticles Bridged Graphene Strain Sensor
  publication-title: ACS Appl. Mater. Interfaces
– volume: 167
  start-page: 371
  year: 2018
  end-page: 378
  ident: b0625
  article-title: Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing
  publication-title: Compos. Sci. Technol.
– volume: 9
  start-page: 3343
  year: 2021
  end-page: 3351
  ident: b1090
  article-title: Polysaccharide-tackified composite hydrogel for skin-attached sensors
  publication-title: J. Mater. Chem. C
– volume: 24
  start-page: 100909
  year: 2020
  ident: b0715
  article-title: Continuous graphene fibers prepared by liquid crystal spinning as strain sensors for Monitoring Vital Signs
  publication-title: Mater. Today Commun.
– volume: 31
  start-page: 1800716
  year: 2019
  ident: b0210
  article-title: Carbon-Nanomaterial-Based Flexible Batteries for Wearable Electronics
  publication-title: Adv. Mater.
– volume: 7
  start-page: 6317
  year: 2015
  end-page: 6324
  ident: b0285
  article-title: Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 219
  year: 2019
  end-page: 249
  ident: b0385
  article-title: Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications
  publication-title: Mater. Horiz.
– volume: 20
  year: 2020
  ident: b0240
  article-title: Highly Sensitive E-Textile Strain Sensors Enhanced by Geometrical Treatment for Human Monitoring
  publication-title: Sensors
– volume: 29
  start-page: 1903732
  year: 2019
  ident: b0705
  article-title: Porous Fibers Composed of Polymer Nanoball Decorated Graphene for Wearable and Highly Sensitive Strain Sensors
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 1322
  year: 2016
  end-page: 1329
  ident: b0365
  article-title: Large-Area Ultrathin Graphene Films by Single-Step Marangoni Self-Assembly for Highly Sensitive Strain Sensing Application
  publication-title: Adv. Funct. Mater.
– volume: 32
  start-page: 1902133
  year: 2020
  ident: b0005
  article-title: Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability
  publication-title: Adv. Mater.
– volume: 9
  year: 2018
  ident: b0060
  article-title: Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature
  publication-title: Nat. Commun.
– volume: 435
  start-page: 135018
  year: 2022
  ident: b1135
  article-title: A multifunctional hydrogel fabricated via ultra-fast polymerization by graphene oxide-adsorbed liquid metal nanodroplets
  publication-title: Chem. Eng. J.
– year: 2000
  ident: b0230
  article-title: Micro mechanical transducers: pressure sensors, accelerometers and gyroscopes
– volume: 30
  start-page: 2003214
  year: 2020
  ident: b0110
  article-title: Printed Flexible Strain Sensor Array for Bendable Interactive Surface
  publication-title: Adv. Funct. Mater.
– volume: 112
  start-page: 6156
  year: 2012
  end-page: 6214
  ident: b0165
  article-title: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications
  publication-title: Chem. Rev.
– volume: 11
  start-page: 5799
  year: 2018
  end-page: 5811
  ident: b0830
  article-title: Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors
  publication-title: Nano Res.
– volume: 10
  start-page: 36377
  year: 2018
  end-page: 36384
  ident: b0880
  article-title: Highly Sensitive and Flexible Strain-Pressure Sensors with Cracked Paddy-Shaped MoS2/Graphene Foam/Ecoflex Hybrid Nanostructures
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 4658
  year: 2017
  end-page: 4666
  ident: b1210
  article-title: Highly sensitive bendable and foldable paper sensors based on reduced graphene oxide
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 2282
  year: 2020
  end-page: 2300
  ident: b0170
  article-title: Recent Advances of Carbon-Based Flexible Strain Sensors in Physiological Signal Monitoring
  publication-title: ACS Appl. Electron. Mater.
– volume: 29
  start-page: 1701353
  year: 2017
  ident: b1215
  article-title: Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors
  publication-title: Adv. Mater.
– volume: 12
  start-page: 23272
  year: 2020
  end-page: 23283
  ident: b0615
  article-title: Understanding the Cycling Performance Degradation Mechanism of a Graphene-Based Strain Sensor and an Effective Corresponding Improvement Solution
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 24814
  year: 2019
  end-page: 24829
  ident: b1050
  article-title: Tough but self-healing and 3D printable hydrogels for E-skin, E-noses and laser controlled actuators
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 97
  year: 2021
  ident: b0055
  article-title: Flexible thin-film acoustic wave devices with off-axis bending characteristics for multisensing applications
  publication-title: Microsyst. Nanoeng.
– volume: 95
  start-page: 213103
  year: 2009
  ident: b0345
  article-title: A computational study of tunneling-percolation electrical transport in graphene-based nanocomposites
  publication-title: Appl. Phys. Lett.
– volume: 28
  start-page: 4306
  year: 2016
  end-page: 4337
  ident: b0205
  article-title: Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices
  publication-title: Adv. Mater.
– volume: 8
  start-page: 12384
  year: 2016
  end-page: 12392
  ident: b1010
  article-title: NIR-Triggered Rapid Shape Memory PAM-GO-Gelatin Hydrogels with High Mechanical Strength
  publication-title: ACS Appl. Mater. Interfaces
– volume: 444
  start-page: 136631
  year: 2022
  ident: b1175
  article-title: Porous graphene foam composite-based dual-mode sensors for underwater temperature and subtle motion detection
  publication-title: Chem. Eng. J.
– volume: 80
  start-page: 95
  year: 2016
  end-page: 103
  ident: b0655
  article-title: A novel strain sensor based on graphene composite films with layered structure
  publication-title: Compos. A Appl. Sci. Manuf.
– volume: 29
  start-page: 1808247
  year: 2019
  ident: b0010
  article-title: Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 27099
  year: 2019
  end-page: 27109
  ident: b1110
  article-title: A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application
  publication-title: J. Mater. Chem. A
– volume: 29
  start-page: 1904706
  year: 2019
  ident: b0570
  article-title: A dual-functional graphene-based self-alarm health-monitoring e-skin
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 9126
  year: 2022
  end-page: 9137
  ident: b1095
  article-title: Stretchable, Adhesive, Self-Healable, and Conductive Hydrogel-Based Deformable Triboelectric Nanogenerator for Energy Harvesting and Human Motion Sensing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 1902051
  year: 2020
  ident: b0025
  article-title: Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems
  publication-title: Adv. Mater.
– volume: 11
  year: 2020
  ident: b0050
  article-title: 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles
  publication-title: Nat. Commun.
– volume: 12
  start-page: 4110
  year: 2020
  end-page: 4118
  ident: b0805
  article-title: An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles
  publication-title: Nanoscale
– volume: 29
  start-page: 1805924
  year: 2019
  ident: b0200
  article-title: Flexible Electronics: Stretchable Electrodes and Their Future
  publication-title: Adv. Funct. Mater.
– volume: 154
  start-page: 217
  year: 2018
  end-page: 227
  ident: b0765
  article-title: Wearable strain sensors based on electrically conductive natural fiber yarns
  publication-title: Mater. Des.
– volume: 13
  start-page: 34865
  year: 2021
  end-page: 34876
  ident: b0835
  article-title: (3-Mercaptopropyl)triethoxysilane-Modified Reduced Graphene Oxide-Modified Polyurethane Yarn Enhanced by Epoxy/Thiol Reactions for Strain Sensors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 9309
  year: 2021
  end-page: 9318
  ident: b0270
  article-title: Coupling piezoelectric and piezoresistive effects in flexible pressure sensors for human motion detection from zero to high frequency
  publication-title: J. Mater. Chem. C
– volume: 172
  start-page: 7
  year: 2019
  end-page: 16
  ident: b0635
  article-title: Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors
  publication-title: Compos. Sci. Technol.
– volume: 84
  year: 2013
  ident: b0390
  article-title: Graphene/polydimethylsiloxane nanocomposite strain sensor
  publication-title: Rev. Sci. Instrum.
– volume: 8
  start-page: 5154
  year: 2014
  end-page: 5163
  ident: b0095
  article-title: Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite
  publication-title: ACS Nano
– volume: 443
  start-page: 136468
  year: 2022
  ident: b0860
  article-title: Sensitivity enhanced, highly stretchable, and mechanically robust strain sensors based on reduced graphene oxide-aramid nanofibers hybrid fillers
  publication-title: Chem. Eng. J.
– volume: 30
  start-page: 1909912
  year: 2020
  ident: b0135
  article-title: Self-healing materials for energy-storage devices
  publication-title: Adv. Funct. Mater.
– volume: 105
  start-page: 291
  year: 2018
  end-page: 299
  ident: b0700
  article-title: Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber
  publication-title: Compos. A Appl. Sci. Manuf.
– volume: 9
  start-page: 38052
  year: 2017
  end-page: 38061
  ident: b1000
  article-title: Tough, Stretchable, Compressive Novel Polymer/Graphene Oxide Nanocomposite Hydrogels with Excellent Self-Healing Performance
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 296
  year: 2011
  end-page: 301
  ident: b0430
  article-title: A stretchable carbon nanotube strain sensor for human-motion detection
  publication-title: Nat. Nanotechnol.
– volume: 412
  start-page: 128744
  year: 2021
  ident: b0020
  article-title: Two-dimensional black phosphorus: Properties, fabrication and application for flexible supercapacitors
  publication-title: Chem. Eng. J.
– volume: 31
  start-page: e1801072
  year: 2019
  ident: b0215
  article-title: Advanced Carbon for Flexible and Wearable Electronics
  publication-title: Adv. Mater.
– volume: 9
  start-page: 20098
  year: 2017
  end-page: 20105
  ident: b0300
  article-title: Channel Crack-Designed Gold@PU Sponge for Highly Elastic Piezoresistive Sensor with Excellent Detectability
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 356
  year: 2015
  end-page: 365
  ident: b0885
  article-title: A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries
  publication-title: Nano Energy
– volume: 29
  start-page: 1905197
  year: 2019
  ident: b0080
  article-title: Flexible and Multifunctional Silk Textiles with Biomimetic Leaf-Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self-Derived Hydrophobicity
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 1801072
  year: 2019
  ident: b0190
  article-title: Advanced Carbon for Flexible and Wearable Electronics
  publication-title: Adv. Mater.
– volume: 10
  start-page: 7901
  year: 2016
  end-page: 7906
  ident: b0585
  article-title: High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions
  publication-title: ACS Nano
– volume: 205
  year: 2021
  ident: b0985
  article-title: High sensitivity of multi-sensing materials based on reduced graphene oxide and natural rubber: The synergy between filler segregation and macro-porous morphology
  publication-title: Compos. Sci. Technol.
– volume: 9
  start-page: 11176
  year: 2017
  end-page: 11183
  ident: b1195
  article-title: Enhanced Sensitivity of Patterned Graphene Strain Sensors Used for Monitoring Subtle Human Body Motions
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 9634
  year: 2021
  end-page: 9643
  ident: b0520
  article-title: Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 51987
  year: 2020
  end-page: 51998
  ident: b0370
  article-title: Highly Stretchable, Self-Healable, Ultrasensitive Strain and Proximity Sensors Based on Skin-Inspired Conductive Film for Human Motion Monitoring
  publication-title: ACS Appl. Mater. Interfaces
– volume: 642
  start-page: 128428
  year: 2022
  ident: b1030
  article-title: Construction of polydopamine reduced graphene oxide/sodium carboxymethyl cellulose/polyacrylamide double network conductive hydrogel with high stretchable, pH-sensitive and strain-sensing properties
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 26
  start-page: 2022
  year: 2014
  end-page: 2027
  ident: b0265
  article-title: Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper for Strain Sensors
  publication-title: Adv. Mater.
– volume: 26
  year: 2015
  ident: b0500
  article-title: Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites
  publication-title: Nanotechnology
– volume: 74
  start-page: 1
  year: 2013
  end-page: 5
  ident: b0485
  article-title: Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading
  publication-title: Compos. Sci. Technol.
– volume: 12
  start-page: 9134
  year: 2018
  end-page: 9141
  ident: b0620
  article-title: Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection
  publication-title: ACS Nano
– volume: 6
  start-page: 3206
  year: 2012
  end-page: 3213
  ident: b0890
  article-title: 3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection
  publication-title: ACS Nano
– volume: 17
  start-page: e2006542
  year: 2021
  ident: b0660
  article-title: Printable G-Putty for Frequency- and Rate-Independent, High-Performance Strain Sensors
  publication-title: Small
– volume: 19
  start-page: 6690
  year: 2019
  end-page: 6695
  ident: b0790
  article-title: Ecoflex-Passivated Graphene-Yarn Composite for a Highly Conductive and Stretchable Strain Sensor
  publication-title: J. Nanosci. Nanotechnol.
– volume: 48
  start-page: 1945
  year: 2010
  end-page: 1951
  ident: b0550
  article-title: Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating
  publication-title: Carbon
– volume: 10
  start-page: 8266
  year: 2022
  end-page: 8277
  ident: b1160
  article-title: Ultrastretchable, self-healable and adhesive composite organohydrogels with a fast response for human–machine interface applications
  publication-title: J. Mater. Chem. C
– volume: 13
  start-page: 37433
  year: 2021
  end-page: 37444
  ident: b0530
  article-title: Laser-Induced Corrugated Graphene Films for Integrated Multimodal Sensors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 285
  start-page: 179
  year: 2019
  end-page: 185
  ident: b0840
  article-title: A highly sensitive, multifunctional, and wearable mechanical sensor based on RGO/synergetic fiber bundles for monitoring human actions and physiological signals
  publication-title: Sens. Actuators B
– volume: 8
  start-page: 5618
  year: 2016
  end-page: 5626
  ident: b0310
  article-title: Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 2090
  year: 2018
  end-page: 2098
  ident: b1130
  article-title: A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat
  publication-title: Nanoscale
– volume: 1
  start-page: 42
  year: 2006
  end-page: 46
  ident: b0250
  article-title: Giant piezoresistance effect in silicon nanowires
  publication-title: Nat. Nanotechnol.
– volume: 447
  start-page: 137259
  year: 2022
  ident: b1075
  article-title: Bio-inspired, super-stretchable and self-adhesive hybrid hydrogel with SC-PDA/GO-Ca2+/PAM framework for high precision wearable sensors
  publication-title: Chem. Eng. J.
– volume: 29
  start-page: 1907151
  year: 2019
  ident: b1155
  article-title: Ultrasensitive and Highly Stretchable Multifunctional Strain Sensors with Timbre-Recognition Ability Based on Vertical Graphene
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 100
  year: 2013
  end-page: 103
  ident: b0375
  article-title: Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics
  publication-title: Nat. Nanotechnol.
– start-page: 117
  year: 2019
  end-page: 120
  ident: b0800
  article-title: Highly flexible and stretchable structure based on au/graphene film and polyurethane yarn
  publication-title: 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO)
– volume: 135
  start-page: 105932
  year: 2020
  ident: b0865
  article-title: A spirally layered carbon nanotube-graphene/polyurethane composite yarn for highly sensitive and stretchable strain sensor
  publication-title: Compos. A Appl. Sci. Manuf.
– volume: 277
  start-page: 26
  year: 2018
  end-page: 34
  ident: b0565
  article-title: Optically transparent and high dielectric constant reduced graphene oxide (RGO)-PDMS based flexible composite for wearable and flexible sensors
  publication-title: Sens. Actuators, A
– year: 2004
  ident: b0225
  article-title: MEMS mechanical sensors
  publication-title: Artech House
– volume: 11
  start-page: 35201
  year: 2019
  end-page: 35211
  ident: b0910
  article-title: Ultralightweight and 3D Squeezable Graphene-Polydimethylsiloxane Composite Foams as Piezoresistive Sensors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 126
  start-page: 360
  year: 2018
  end-page: 371
  ident: b0730
  article-title: Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring
  publication-title: Carbon
– volume: 16
  start-page: 1155
  year: 2015
  end-page: 1163
  ident: b1120
  article-title: Material approaches to stretchable strain sensors
  publication-title: ChemPhysChem
– volume: 8
  start-page: 18954
  year: 2016
  end-page: 18961
  ident: b0950
  article-title: Highly Stretchable and Sensitive Strain Sensor Based on Facilely Prepared Three-Dimensional Graphene Foam Composite
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 16361
  year: 2015
  end-page: 16365
  ident: b0785
  article-title: Small and light strain sensors based on graphene coated human hairs
  publication-title: Nanoscale
– volume: 3
  start-page: 1800444
  year: 2018
  ident: b0380
  article-title: Recent Advances in Smart Wearable Sensing Systems
  publication-title: Adv. Mater. Technol.
– volume: 117
  start-page: 1
  year: 2014
  end-page: 7
  ident: b0450
  article-title: Analyzing resistance response of embedded PDMS and carbon nanotubes composite under tensile strain
  publication-title: Microelectron. Eng.
– volume: 500
  start-page: 59
  year: 2013
  end-page: 63
  ident: b0680
  article-title: Stretchable nanoparticle conductors with self-organized conductive pathways
  publication-title: Nature
– volume: 12
  start-page: 5714
  year: 2012
  end-page: 5718
  ident: b0260
  article-title: A novel class of strain gauges based on layered percolative films of 2D materials
  publication-title: Nano Lett.
– volume: 27
  start-page: 1702891
  year: 2017
  ident: b1080
  article-title: Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites
  publication-title: Adv. Funct. Mater.
– volume: 62
  start-page: 270
  year: 2013
  end-page: 277
  ident: b0670
  article-title: Carbon-based piezoresistive polymer composites: Structure and electrical properties
  publication-title: Carbon
– volume: 9
  start-page: 719
  year: 2021
  end-page: 730
  ident: b1165
  article-title: A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors
  publication-title: J. Mater. Chem. B
– volume: 50
  start-page: 4085
  year: 2012
  end-page: 4092
  ident: b0465
  article-title: The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400%
  publication-title: Carbon
– volume: 9
  start-page: 1622
  year: 2015
  end-page: 1629
  ident: b0355
  article-title: Tunable Piezoresistivity of Nanographene Films for Strain Sensing
  publication-title: ACS Nano
– volume: 6
  start-page: 699
  year: 2014
  end-page: 705
  ident: b0315
  article-title: Scalable fabrication of high-performance and flexible graphene strain sensors
  publication-title: Nanoscale
– volume: 28
  start-page: 1802235
  year: 2018
  ident: b0155
  article-title: Carbon-Based Photothermal Actuators
  publication-title: Adv. Funct. Mater.
– volume: 215
  start-page: 123340
  year: 2021
  ident: b1035
  article-title: Graphene assisted ion-conductive hydrogel with super sensitivity for strain sensor
  publication-title: Polymer
– volume: 6
  year: 2022
  ident: b0290
  article-title: Multiscale and hierarchical wrinkle enhanced graphene/Ecoflex sensors integrated with human-machine interfaces and cloud-platform, npj Flexible
  publication-title: Electronics
– volume: 31
  start-page: 2102355
  year: 2021
  ident: b0125
  article-title: A review of design and fabrication methods for nanoparticle network hydrogels for biomedical, environmental, and industrial applications
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 19906
  year: 2018
  end-page: 19913
  ident: b0650
  article-title: High-Performance and Multifunctional Skinlike Strain Sensors Based on Graphene/Springlike Mesh Network
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 463
  year: 2008
  end-page: 470
  ident: b0545
  article-title: Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors
  publication-title: ACS Nano
– volume: 9
  start-page: 25104
  year: 2021
  end-page: 25113
  ident: b1115
  article-title: Cooking inspired tough, adhesive, and low-temperature tolerant gluten-based organohydrogels for high performance strain sensors
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 2100572
  year: 2022
  ident: b0180
  article-title: Carbon-based nanomaterials and sensing tools for wearable health monitoring devices
  publication-title: Adv. Mater. Technol.
– volume: 5
  start-page: 28379
  year: 2015
  end-page: 28384
  ident: b0515
  article-title: Directly printed stretchable strain sensor based on ring and diamond shaped silver nanowire electrodes
  publication-title: RSC Adv.
– volume: 29
  start-page: 1904549
  year: 2019
  ident: b0085
  article-title: Full-Textile Wireless Flexible Humidity Sensor for Human Physiological Monitoring
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 3437
  year: 2020
  end-page: 3459
  ident: b0965
  article-title: Stretchable and tough conductive hydrogels for flexible pressure and strain sensors
  publication-title: J. Mater. Chem. B
– volume: 516
  start-page: 222
  year: 2014
  end-page: 226
  ident: b0445
  article-title: Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system
  publication-title: Nature
– volume: 113
  start-page: 084101
  year: 2018
  ident: b0775
  article-title: Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 14651
  year: 2019
  end-page: 14663
  ident: b0810
  article-title: A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing
  publication-title: J. Mater. Chem. C
– volume: 31
  start-page: 2104991
  year: 2021
  ident: b0140
  article-title: Nanocellulose-based functional materials: from chiral photonics to soft actuator and energy storage
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 8398
  year: 2022
  end-page: 8409
  ident: b0795
  article-title: 1D–2D nanohybrid-based textile strain sensor to boost multiscale deformative motion sensing performance
  publication-title: Nano Res.
– volume: 29
  start-page: 1901917
  year: 2019
  ident: b0980
  article-title: Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale
  publication-title: Adv. Funct. Mater.
– volume: 77
  start-page: 199
  year: 2014
  end-page: 207
  ident: b0455
  article-title: Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors
  publication-title: Carbon
– volume: 91
  start-page: 223114
  year: 2007
  ident: b0330
  article-title: Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 13709
  year: 2020
  end-page: 13717
  ident: b0970
  article-title: Solvent-Resistant and Nonswellable Hydrogel Conductor toward Mechanical Perception in Diverse Liquid Media
  publication-title: ACS Nano
– volume: 439
  start-page: 135502
  year: 2022
  ident: b0855
  article-title: Twisted graphene fibre based breathable, wettable and washable anti-jamming strain sensor for underwater motion sensing
  publication-title: Chem. Eng. J.
– volume: 56
  start-page: 2296
  year: 2020
  end-page: 2310
  ident: b0780
  article-title: Encapsulated core–sheath carbon nanotube–graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor
  publication-title: J. Mater. Sci.
– volume: 177
  start-page: 116
  year: 2017
  end-page: 125
  ident: b1020
  article-title: Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect
  publication-title: Carbohydr. Polym.
– volume: 46
  start-page: 4464
  year: 2017
  end-page: 4500
  ident: b0160
  article-title: Chemical functionalization and characterization of graphene-based materials
  publication-title: Chem. Soc. Rev.
– volume: 118
  start-page: 686
  year: 2017
  end-page: 698
  ident: b0815
  article-title: Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core
  publication-title: Carbon
– volume: 7
  start-page: 11303
  year: 2019
  end-page: 11314
  ident: b0400
  article-title: Highly sensitive and wearable gel-based sensors with a dynamic physically cross-linked structure for strain-stimulus detection over a wide temperature range
  publication-title: J. Mater. Chem. C
– volume: 1
  start-page: 7433
  year: 2013
  ident: b0995
  article-title: Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2015
  ident: b0075
  article-title: Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials
  publication-title: Nat. Commun.
– volume: 32
  start-page: 2204272
  year: 2022
  ident: b0145
  article-title: Practical graphene technologies for electrochemical energy storage
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 31716
  year: 2018
  end-page: 31724
  ident: b0645
  article-title: Multifunctional Highly Sensitive Multiscale Stretchable Strain Sensor Based on a Graphene/Glycerol–KCl Synergistic Conductive Network
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 248
  year: 2016
  end-page: 255
  ident: b0295
  article-title: Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing
  publication-title: Mater. Horiz.
– volume: 4
  start-page: 4452
  year: 2014
  ident: b0895
  article-title: Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors
  publication-title: Sci. Rep.
– volume: 34
  start-page: 2107902
  year: 2022
  ident: b0030
  article-title: Flexible electronics and devices as human-machine interfaces for medical robotics
  publication-title: Adv. Mater.
– volume: 43
  start-page: 1787
  year: 2005
  end-page: 1803
  ident: b0275
  article-title: Mechanics of the interface for carbon nanotube–polymer composites
  publication-title: Thin-Walled Struct.
– volume: 11
  start-page: 10691
  year: 2011
  end-page: 10723
  ident: b0340
  article-title: Li, Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites
  publication-title: Sensors (Basel)
– volume: 10
  start-page: 424
  year: 2011
  end-page: 428
  ident: b0925
  article-title: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition
  publication-title: Nat. Mater.
– volume: 2
  start-page: 10048
  year: 2014
  end-page: 10058
  ident: b0470
  article-title: Towards tunable resistivity–strain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 6969
  year: 2015
  end-page: 6975
  ident: b0845
  article-title: Highly Stretchable and Conductive Core-Sheath Chemical Vapor Deposition Graphene Fibers and Their Applications in Safe Strain Sensors
  publication-title: Chem. Mater.
– volume: 18
  start-page: 4531
  year: 2018
  end-page: 4540
  ident: b0105
  article-title: Highly Conformable, Transparent Electrodes for Epidermal Electronics
  publication-title: Nano Lett.
– volume: 31
  start-page: 2007495
  year: 2021
  ident: b1140
  article-title: Wearable Stretchable Dry and Self-Adhesive Strain Sensors with Conformal Contact to Skin for High-Quality Motion Monitoring
  publication-title: Adv. Funct. Mater.
– volume: 39
  start-page: 228
  year: 2010
  end-page: 240
  ident: b0990
  article-title: The chemistry of graphene oxide
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 5714
  year: 2014
  ident: b0575
  article-title: Laser-induced porous graphene films from commercial polymers
  publication-title: Nat. Commun.
– volume: 28
  start-page: 035004
  year: 2019
  ident: b0760
  article-title: Highly sensitive flexible strain sensor based on threadlike spandex substrate coating with conductive nanocomposites for wearable electronic skin
  publication-title: Smart Mater. Struct.
– volume: 30
  start-page: 1907678
  year: 2020
  ident: b1055
  article-title: Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 43543
  year: 2019
  end-page: 43552
  ident: b0595
  article-title: Two-Sided Topological Architecture on a Monolithic Flexible Substrate for Ultrasensitive Strain Sensors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2014
  ident: b0690
  article-title: Fractal design concepts for stretchable electronics
  publication-title: Nat. Commun.
– volume: 25
  start-page: 4228
  year: 2015
  end-page: 4236
  ident: b0475
  article-title: Highly Stretchable and Sensitive Strain Sensors Using Fragmentized Graphene Foam
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 2313
  year: 2018
  end-page: 2319
  ident: b0560
  article-title: Functionalization of wet-spun graphene films using aminophenol molecules for high performance supercapacitors
  publication-title: Mater. Chem. Front.
– volume: 179
  start-page: 655
  year: 2021
  end-page: 665
  ident: b0710
  article-title: Aramid nanofiber framework supporting graphene nanoplate via wet-spinning for a high-performance filament
  publication-title: Carbon
– volume: 10
  start-page: 9727
  year: 2018
  end-page: 9735
  ident: b0905
  article-title: Three-Dimensional Graphene Structure for Healable Flexible Electronics Based on Diels-Alder Chemistry
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 18644
  year: 2019
  ident: b0825
  article-title: Stretchable Graphene Thin Film Enabled Yarn Sensors with Tunable Piezoresistivity for Human Motion Monitoring
  publication-title: Sci. Rep.
– volume: 32
  start-page: 1902343
  year: 2020
  ident: b0040
  article-title: Nanomaterial-Enabled flexible and stretchable sensing systems: processing, integration, and applications
  publication-title: Adv. Mater.
– volume: 139
  start-page: 103943
  year: 2020
  ident: b0395
  article-title: Piezoresistive response of graphene rubber composites considering the tunneling effect
  publication-title: J. Mech. Phys. Solids
– volume: 156
  start-page: 276
  year: 2018
  end-page: 286
  ident: b0935
  article-title: A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring
  publication-title: Compos. Sci. Technol.
– volume: 11
  start-page: 40613
  year: 2019
  end-page: 40619
  ident: b1200
  article-title: A Flexible Multimodal Sensor That Detects Strain, Humidity, Temperature, and Pressure with Carbon Black and Reduced Graphene Oxide Hierarchical Composite on Paper
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 1209
  year: 2014
  end-page: 1219
  ident: b0490
  article-title: Recent advances in flexible and stretchable electronic devices via electrospinning
  publication-title: J. Mater. Chem. C
– volume: 32
  start-page: 2204755
  year: 2022
  ident: b0130
  article-title: Emerging graphene derivatives and analogues for efficient energy electrocatalysis
  publication-title: Adv. Funct. Mater.
– volume: 158
  start-page: 157
  year: 2020
  end-page: 162
  ident: b0735
  article-title: Twist-spinning assembly of robust ultralight graphene fibers with hierarchical structure and multi-functions
  publication-title: Carbon
– volume: 101
  start-page: 1869
  year: 2001
  end-page: 1880
  ident: b0960
  article-title: Hydrogels for tissue engineering
  publication-title: Chem. Rev.
– volume: 11
  start-page: 22531
  year: 2019
  end-page: 22542
  ident: b0525
  article-title: MoS2-Decorated Laser-Induced Graphene for a Highly Sensitive, Hysteresis-free, and Reliable Piezoresistive Strain Sensor
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 10127
  year: 2021
  end-page: 10137
  ident: b1060
  article-title: Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications
  publication-title: J. Mater. Chem. C
– volume: 9
  start-page: 23243
  year: 2021
  end-page: 23255
  ident: b0410
  article-title: High toughness multifunctional organic hydrogels for flexible strain and temperature sensor
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 7365
  year: 2015
  end-page: 7371
  ident: b0820
  article-title: A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion
  publication-title: Adv. Mater.
– volume: 7
  start-page: 27432
  year: 2015
  end-page: 27439
  ident: b1185
  article-title: Highly Stretchable and Ultrasensitive Strain Sensor Based on Reduced Graphene Oxide Microtubes-Elastomer Composite
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 36312
  year: 2018
  end-page: 36322
  ident: b0505
  article-title: Ultrasensitive and Stretchable Strain Sensors Based on Mazelike Vertical Graphene Network
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 035013
  year: 2018
  ident: b0770
  article-title: Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions
  publication-title: Smart Mater. Struct.
– volume: 55
  start-page: 433
  year: 2019
  end-page: 440
  ident: b0120
  article-title: High power-output mechanical energy harvester based on flexible and transparent Au nanoparticle-embedded polymer matrix
  publication-title: Nano Energy
– volume: 14
  start-page: 1315
  year: 2022
  end-page: 1325
  ident: b0510
  article-title: Fingerprint-Inspired Strain Sensor with Balanced Sensitivity and Strain Range Using Laser-Induced Graphene
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 2008936
  year: 2021
  ident: b0045
  article-title: Wearable Sensors-Enabled Human-Machine Interaction Systems: From Design to Application
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 27127
  year: 2017
  end-page: 27134
  ident: b0940
  article-title: Ultralight Interconnected Graphene-Amorphous Carbon Hierarchical Foam with Mechanical Resiliency for High Sensitivity and Durable Strain Sensors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 22
  year: 2020
  end-page: 27
  ident: b1025
  article-title: Highly stretchable, self-healing, and strain-sensitive based on double-crosslinked nanocomposite hydrogel, Composites
  publication-title: Communications
– volume: 9
  start-page: 8933
  year: 2015
  end-page: 8941
  ident: b0915
  article-title: Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application
  publication-title: ACS Nano
– volume: 10
  start-page: 44173
  year: 2018
  end-page: 44182
  ident: b0920
  article-title: Multifunctional Mechanical Sensors for Versatile Physiological Signal Detection
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 5658
  year: 2013
  end-page: 5662
  ident: b0900
  article-title: Mechanically Flexible and Multifunctional Polymer-Based Graphene Foams for Elastic Conductors and Oil-Water Separators
  publication-title: Adv. Mater.
– volume: 2
  start-page: 870
  year: 2012
  ident: b0435
  article-title: Stretchable and highly sensitive graphene-on-polymer strain sensors
  publication-title: Sci. Rep.
– volume: 8
  start-page: 20090
  year: 2016
  end-page: 20095
  ident: b0665
  article-title: High performance flexible strain sensor based on self-locked overlapping graphene sheets
  publication-title: Nanoscale
– volume: 373
  start-page: 298
  year: 2019
  end-page: 306
  ident: b0725
  article-title: Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring
  publication-title: Chem. Eng. J.
– volume: 81
  start-page: 61
  year: 2013
  end-page: 68
  ident: b0745
  article-title: The production of a melt-spun functionalized graphene/poly(ε-caprolactam) nanocomposite fiber
  publication-title: Compos. Sci. Technol.
– volume: 28
  start-page: 1800850
  year: 2018
  ident: b0425
  article-title: Lowering Internal Friction of 0D–1D-2D Ternary Nanocomposite-Based Strain Sensor by Fullerene to Boost the Sensing Performance
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 3088
  year: 2021
  end-page: 3096
  ident: b1100
  article-title: Self-healing and anti-freezing graphene-hydrogel-graphene sandwich strain sensor with ultrahigh sensitivity
  publication-title: J. Mater. Chem. B
– volume: 30
  year: 2019
  ident: b0235
  article-title: 3D printed graphene/polydimethylsiloxane composite for stretchable strain sensor with tunable sensitivity
  publication-title: Nanotechnology
– volume: 4
  start-page: 453
  year: 2017
  end-page: 489
  ident: b0185
  article-title: Carbon-based supercapacitors for efficient energy storage
  publication-title: Natl. Sci. Rev.
– volume: 8
  start-page: 10310
  year: 2020
  end-page: 10317
  ident: b0590
  article-title: Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate's Poisson's ratio effect
  publication-title: J. Mater. Chem. A
– volume: 5
  year: 2014
  ident: b0065
  article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
  publication-title: Nat. Commun.
– volume: 7
  start-page: 2001235
  year: 2021
  ident: b0535
  article-title: High Sensitivity Polyurethane-Based Fiber Strain Sensor with Porous Structure via Incorporation of Bacterial Cellulose Nanofibers
  publication-title: Adv. Electron. Mater.
– volume: 9
  start-page: 14207
  year: 2017
  end-page: 14215
  ident: b0630
  article-title: Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 4001
  year: 2015
  end-page: 4008
  ident: b1005
  article-title: Self-healable, super tough graphene oxide-poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions
  publication-title: J. Mater. Chem. B
– volume: 437
  start-page: 135399
  year: 2022
  ident: b0850
  article-title: Stretchable and ultrasensitive strain sensor based on a bilayer wrinkle-microcracking mechanism
  publication-title: Chem. Eng. J.
– volume: 10
  start-page: 11524
  year: 2018
  end-page: 11530
  ident: b0580
  article-title: An ultrasensitive strain sensor with a wide strain range based on graphene armour scales
  publication-title: Nanoscale
– volume: 6
  start-page: 10524
  year: 2018
  end-page: 10531
  ident: b0305
  article-title: Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric
  publication-title: J. Mater. Chem. C
– volume: 8
  start-page: 26458
  year: 2016
  end-page: 26462
  ident: b0930
  article-title: Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 22225
  year: 2020
  end-page: 22236
  ident: b1105
  article-title: Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  year: 2017
  ident: b1170
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 1601916
  year: 2017
  ident: b1065
  article-title: A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics
  publication-title: Small
– volume: 97
  start-page: 513
  year: 2009
  end-page: 552
  ident: b1125
  article-title: Semiconductor piezoresistance for microsystems
  publication-title: Proc. IEEE
– volume: 10
  start-page: 5264
  year: 2018
  end-page: 5271
  ident: b1180
  article-title: Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics
  publication-title: Nanoscale
– volume: 2
  start-page: 10048
  issue: 26
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0470
  article-title: Towards tunable resistivity–strain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01073F
– volume: 31
  start-page: e1801072
  issue: 9
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0215
  article-title: Advanced Carbon for Flexible and Wearable Electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801072
– volume: 3
  issue: 9
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b0675
  article-title: Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701114
– volume: 431
  start-page: 134038
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0640
  article-title: Stretchable vertical graphene arrays for electronic skin with multifunctional sensing capabilities
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134038
– volume: 10
  start-page: 36377
  issue: 42
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0880
  article-title: Highly Sensitive and Flexible Strain-Pressure Sensors with Cracked Paddy-Shaped MoS2/Graphene Foam/Ecoflex Hybrid Nanostructures
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b11233
– volume: 3
  start-page: 248
  issue: 3
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b0295
  article-title: Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing
  publication-title: Mater. Horiz.
  doi: 10.1039/C6MH00027D
– volume: 10
  start-page: 5264
  issue: 11
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b1180
  article-title: Highly stretchable strain sensors with reduced graphene oxide sensing liquids for wearable electronics
  publication-title: Nanoscale
  doi: 10.1039/C7NR09022F
– volume: 11
  start-page: 35201
  issue: 38
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0910
  article-title: Ultralightweight and 3D Squeezable Graphene-Polydimethylsiloxane Composite Foams as Piezoresistive Sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b11776
– volume: 447
  start-page: 137259
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b1075
  article-title: Bio-inspired, super-stretchable and self-adhesive hybrid hydrogel with SC-PDA/GO-Ca2+/PAM framework for high precision wearable sensors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137259
– volume: 435
  start-page: 135018
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b1135
  article-title: A multifunctional hydrogel fabricated via ultra-fast polymerization by graphene oxide-adsorbed liquid metal nanodroplets
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135018
– volume: 19
  start-page: 6690
  issue: 10
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0790
  article-title: Ecoflex-Passivated Graphene-Yarn Composite for a Highly Conductive and Stretchable Strain Sensor
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2019.17097
– volume: 29
  start-page: 1808247
  issue: 19
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0010
  article-title: Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808247
– volume: 9
  start-page: 27127
  issue: 32
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b0940
  article-title: Ultralight Interconnected Graphene-Amorphous Carbon Hierarchical Foam with Mechanical Resiliency for High Sensitivity and Durable Strain Sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05636
– volume: 1
  start-page: 42
  issue: 1
  year: 2006
  ident: 10.1016/j.cej.2023.142576_b0250
  article-title: Giant piezoresistance effect in silicon nanowires
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2006.53
– volume: 8
  start-page: 5154
  issue: 5
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0095
  article-title: Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite
  publication-title: ACS Nano
  doi: 10.1021/nn501204t
– volume: 91
  start-page: 223114
  issue: 22
  year: 2007
  ident: 10.1016/j.cej.2023.142576_b0330
  article-title: Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube–based composites
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2819690
– volume: 177
  start-page: 116
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b1020
  article-title: Bio-inspired layered chitosan/graphene oxide nanocomposite hydrogels with high strength and pH-driven shape memory effect
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2017.08.106
– volume: 10
  start-page: 8266
  issue: 21
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b1160
  article-title: Ultrastretchable, self-healable and adhesive composite organohydrogels with a fast response for human–machine interface applications
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D2TC00932C
– volume: 9
  start-page: 3088
  issue: 13
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b1100
  article-title: Self-healing and anti-freezing graphene-hydrogel-graphene sandwich strain sensor with ultrahigh sensitivity
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D1TB00082A
– volume: 90
  issue: 15
  year: 2003
  ident: 10.1016/j.cej.2023.142576_b0255
  article-title: Electromechanical Properties of Metallic, Quasimetallic, and Semiconducting Carbon Nanotubes under Stretching
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.157601
– volume: 10
  start-page: 36312
  issue: 42
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0505
  article-title: Ultrasensitive and Stretchable Strain Sensors Based on Mazelike Vertical Graphene Network
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b15848
– volume: 12
  start-page: 8839
  issue: 9
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0605
  article-title: Multilayer Graphene Epidermal Electronic Skin
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02162
– volume: 285
  start-page: 179
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0840
  article-title: A highly sensitive, multifunctional, and wearable mechanical sensor based on RGO/synergetic fiber bundles for monitoring human actions and physiological signals
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2019.01.063
– volume: 11
  start-page: 10691
  issue: 11
  year: 2011
  ident: 10.1016/j.cej.2023.142576_b0340
  article-title: Li, Piezoresistive strain sensors made from carbon nanotubes based polymer nanocomposites
  publication-title: Sensors (Basel)
  doi: 10.3390/s111110691
– volume: 46
  start-page: 4464
  issue: 15
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b0160
  article-title: Chemical functionalization and characterization of graphene-based materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00229G
– volume: 5
  start-page: 5815
  issue: 12
  year: 2013
  ident: 10.1016/j.cej.2023.142576_b0480
  article-title: Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am401402x
– volume: 25
  start-page: 5658
  issue: 39
  year: 2013
  ident: 10.1016/j.cej.2023.142576_b0900
  article-title: Mechanically Flexible and Multifunctional Polymer-Based Graphene Foams for Elastic Conductors and Oil-Water Separators
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201302406
– volume: 31
  start-page: 2102355
  issue: 33
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0125
  article-title: A review of design and fabrication methods for nanoparticle network hydrogels for biomedical, environmental, and industrial applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102355
– volume: 28
  start-page: 1802235
  issue: 40
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0155
  article-title: Carbon-Based Photothermal Actuators
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802235
– volume: 28
  start-page: 1705879
  issue: 23
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b1150
  article-title: A Bubble-Derived Strategy to Prepare Multiple Graphene-Based Porous Materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705879
– volume: 101
  start-page: 063112
  issue: 6
  year: 2012
  ident: 10.1016/j.cej.2023.142576_b0360
  article-title: Ultra-sensitive strain sensors based on piezoresistive nanographene films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4742331
– volume: 12
  start-page: 5714
  issue: 11
  year: 2012
  ident: 10.1016/j.cej.2023.142576_b0260
  article-title: A novel class of strain gauges based on layered percolative films of 2D materials
  publication-title: Nano Lett.
  doi: 10.1021/nl302959a
– volume: 31
  start-page: 2104991
  issue: 45
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0140
  article-title: Nanocellulose-based functional materials: from chiral photonics to soft actuator and energy storage
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202104991
– volume: 7
  start-page: 27432
  issue: 49
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b1185
  article-title: Highly Stretchable and Ultrasensitive Strain Sensor Based on Reduced Graphene Oxide Microtubes-Elastomer Composite
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09314
– volume: 29
  start-page: 1901917
  issue: 26
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0980
  article-title: Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201901917
– volume: 41
  start-page: 233
  issue: 1
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0750
  article-title: Preparation and properties of melt-spun poly(fluorinated ethylene-propylene)/graphene composite fibers
  publication-title: Polym. Compos.
  doi: 10.1002/pc.25364
– volume: 2
  start-page: 2313
  issue: 12
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0560
  article-title: Functionalization of wet-spun graphene films using aminophenol molecules for high performance supercapacitors
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00260F
– volume: 12
  start-page: 22225
  issue: 19
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b1105
  article-title: Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c06091
– volume: 29
  start-page: 1907151
  issue: 51
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b1155
  article-title: Ultrasensitive and Highly Stretchable Multifunctional Strain Sensors with Timbre-Recognition Ability Based on Vertical Graphene
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907151
– volume: 9
  start-page: 9634
  issue: 15
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0520
  article-title: Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA11959H
– volume: 8
  start-page: 100
  issue: 2
  year: 2013
  ident: 10.1016/j.cej.2023.142576_b0375
  article-title: Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.224
– volume: 10
  start-page: 11524
  issue: 24
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0580
  article-title: An ultrasensitive strain sensor with a wide strain range based on graphene armour scales
  publication-title: Nanoscale
  doi: 10.1039/C8NR02652A
– volume: 500
  start-page: 59
  issue: 7460
  year: 2013
  ident: 10.1016/j.cej.2023.142576_b0680
  article-title: Stretchable nanoparticle conductors with self-organized conductive pathways
  publication-title: Nature
  doi: 10.1038/nature12401
– volume: 7
  start-page: 97
  issue: 1
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0055
  article-title: Flexible thin-film acoustic wave devices with off-axis bending characteristics for multisensing applications
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-021-00325-3
– volume: 215
  start-page: 123340
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b1035
  article-title: Graphene assisted ion-conductive hydrogel with super sensitivity for strain sensor
  publication-title: Polymer
  doi: 10.1016/j.polymer.2020.123340
– volume: 32
  start-page: 1902051
  issue: 15
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0025
  article-title: Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902051
– volume: 6
  start-page: 699
  issue: 2
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0315
  article-title: Scalable fabrication of high-performance and flexible graphene strain sensors
  publication-title: Nanoscale
  doi: 10.1039/C3NR04521H
– volume: 8
  start-page: 2326
  issue: 7
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b1015
  article-title: Thermo-responsive shape memory sensors based on tough, remolding and anti-freezing hydrogels
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC05804D
– volume: 12
  start-page: 4110
  issue: 6
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0805
  article-title: An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles
  publication-title: Nanoscale
  doi: 10.1039/C9NR09306K
– volume: 102
  start-page: 183511
  issue: 18
  year: 2013
  ident: 10.1016/j.cej.2023.142576_b0335
  article-title: High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4804580
– year: 2004
  ident: 10.1016/j.cej.2023.142576_b0225
  article-title: MEMS mechanical sensors
  publication-title: Artech House
– volume: 437
  start-page: 135399
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0850
  article-title: Stretchable and ultrasensitive strain sensor based on a bilayer wrinkle-microcracking mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135399
– volume: 7
  start-page: 2001235
  issue: 4
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0535
  article-title: High Sensitivity Polyurethane-Based Fiber Strain Sensor with Porous Structure via Incorporation of Bacterial Cellulose Nanofibers
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202001235
– volume: 442
  start-page: 136138
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0720
  article-title: Design and development of ultra-sensitive, dynamically stable, multi-modal GnP@MXene nanohybrid electrospun strain sensors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136138
– volume: 205
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0985
  article-title: High sensitivity of multi-sensing materials based on reduced graphene oxide and natural rubber: The synergy between filler segregation and macro-porous morphology
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2021.108689
– volume: 9
  start-page: 18644
  issue: 1
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0825
  article-title: Stretchable Graphene Thin Film Enabled Yarn Sensors with Tunable Piezoresistivity for Human Motion Monitoring
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55262-z
– volume: 29
  start-page: 1904706
  issue: 51
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0570
  article-title: A dual-functional graphene-based self-alarm health-monitoring e-skin
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201904706
– volume: 14
  start-page: 13709
  issue: 10
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0970
  article-title: Solvent-Resistant and Nonswellable Hydrogel Conductor toward Mechanical Perception in Diverse Liquid Media
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05932
– volume: 43
  start-page: 1787
  issue: 11
  year: 2005
  ident: 10.1016/j.cej.2023.142576_b0275
  article-title: Mechanics of the interface for carbon nanotube–polymer composites
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2005.07.003
– volume: 25
  start-page: 4228
  issue: 27
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0475
  article-title: Highly Stretchable and Sensitive Strain Sensors Using Fragmentized Graphene Foam
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501000
– volume: 33
  start-page: 2005902
  issue: 47
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0035
  article-title: Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005902
– volume: 2
  start-page: 1209
  issue: 7
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0490
  article-title: Recent advances in flexible and stretchable electronic devices via electrospinning
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C3TC31680G
– volume: 167
  start-page: 371
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0625
  article-title: Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.08.022
– volume: 118
  start-page: 686
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b0815
  article-title: Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.04.002
– volume: 29
  start-page: 1904549
  issue: 43
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0085
  article-title: Full-Textile Wireless Flexible Humidity Sensor for Human Physiological Monitoring
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201904549
– volume: 27
  start-page: 1702891
  issue: 46
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b1080
  article-title: Recent Advances in Sensing Applications of Graphene Assemblies and Their Composites
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702891
– volume: 9
  start-page: 25104
  issue: 44
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b1115
  article-title: Cooking inspired tough, adhesive, and low-temperature tolerant gluten-based organohydrogels for high performance strain sensors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA07273K
– volume: 13
  start-page: 34865
  issue: 29
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0835
  article-title: (3-Mercaptopropyl)triethoxysilane-Modified Reduced Graphene Oxide-Modified Polyurethane Yarn Enhanced by Epoxy/Thiol Reactions for Strain Sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c07620
– volume: 8
  start-page: 26458
  issue: 40
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b0930
  article-title: Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08172
– volume: 3
  start-page: 1800444
  issue: 12
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0380
  article-title: Recent Advances in Smart Wearable Sensing Systems
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800444
– volume: 32
  start-page: 1902133
  issue: 15
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0005
  article-title: Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902133
– volume: 31
  start-page: 2008936
  issue: 11
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0045
  article-title: Wearable Sensors-Enabled Human-Machine Interaction Systems: From Design to Application
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008936
– volume: 27
  start-page: 035013
  issue: 3
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0770
  article-title: Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aaaba0
– volume: 158
  start-page: 157
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0735
  article-title: Twist-spinning assembly of robust ultralight graphene fibers with hierarchical structure and multi-functions
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.11.072
– volume: 31
  start-page: 1800716
  issue: 9
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0210
  article-title: Carbon-Nanomaterial-Based Flexible Batteries for Wearable Electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800716
– volume: 8
  start-page: 10310
  issue: 20
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0590
  article-title: Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate's Poisson's ratio effect
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02878A
– volume: 30
  start-page: 1909912
  issue: 24
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0135
  article-title: Self-healing materials for energy-storage devices
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909912
– volume: 6
  start-page: 296
  issue: 5
  year: 2011
  ident: 10.1016/j.cej.2023.142576_b0430
  article-title: A stretchable carbon nanotube strain sensor for human-motion detection
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.36
– volume: 17
  start-page: 22
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b1025
  article-title: Highly stretchable, self-healing, and strain-sensitive based on double-crosslinked nanocomposite hydrogel, Composites
  publication-title: Communications
– volume: 9
  start-page: 20098
  issue: 23
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b0300
  article-title: Channel Crack-Designed Gold@PU Sponge for Highly Elastic Piezoresistive Sensor with Excellent Detectability
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04605
– volume: 117
  start-page: 1
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0450
  article-title: Analyzing resistance response of embedded PDMS and carbon nanotubes composite under tensile strain
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2013.11.013
– volume: 136
  start-page: 63
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b1070
  article-title: Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.04.065
– volume: 412
  start-page: 128744
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0020
  article-title: Two-dimensional black phosphorus: Properties, fabrication and application for flexible supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128744
– volume: 8
  start-page: 3035
  issue: 9
  year: 2008
  ident: 10.1016/j.cej.2023.142576_b0245
  article-title: Flexible Piezotronic Strain Sensor
  publication-title: Nano Lett.
  doi: 10.1021/nl802367t
– volume: 31
  start-page: 1801072
  issue: 9
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0190
  article-title: Advanced Carbon for Flexible and Wearable Electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801072
– volume: 7
  start-page: 6317
  issue: 11
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0285
  article-title: Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00695
– volume: 277
  start-page: 26
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0565
  article-title: Optically transparent and high dielectric constant reduced graphene oxide (RGO)-PDMS based flexible composite for wearable and flexible sensors
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2018.04.040
– volume: 9
  start-page: 38052
  issue: 43
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b1000
  article-title: Tough, Stretchable, Compressive Novel Polymer/Graphene Oxide Nanocomposite Hydrogels with Excellent Self-Healing Performance
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b12932
– volume: 66
  start-page: 104134
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0325
  article-title: Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104134
– volume: 9
  start-page: 8266
  issue: 24
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b0600
  article-title: Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions
  publication-title: Nanoscale
  doi: 10.1039/C7NR01862B
– volume: 12
  start-page: 9134
  issue: 9
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0620
  article-title: Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03391
– volume: 28
  start-page: 4306
  issue: 22
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b0205
  article-title: Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504225
– volume: 6
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0075
  article-title: Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials
  publication-title: Nat. Commun.
– volume: 8
  start-page: 20090
  issue: 48
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b0665
  article-title: High performance flexible strain sensor based on self-locked overlapping graphene sheets
  publication-title: Nanoscale
  doi: 10.1039/C6NR07620C
– volume: 74
  start-page: 1
  year: 2013
  ident: 10.1016/j.cej.2023.142576_b0485
  article-title: Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2012.09.016
– volume: 299
  start-page: 22
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b0555
  article-title: Foldable and electrically stable graphene film resistors prepared by vacuum filtration for flexible electronics
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2016.04.066
– volume: 139
  start-page: 103943
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0395
  article-title: Piezoresistive response of graphene rubber composites considering the tunneling effect
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2020.103943
– volume: 34
  start-page: 2108932
  issue: 24
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0100
  article-title: Recent Progress on Self-Healable Conducting Polymers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108932
– volume: 19
  start-page: 085019
  issue: 8
  year: 2009
  ident: 10.1016/j.cej.2023.142576_b0460
  article-title: Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/19/8/085019
– volume: 32
  start-page: 1902343
  issue: 15
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0040
  article-title: Nanomaterial-Enabled flexible and stretchable sensing systems: processing, integration, and applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902343
– volume: 5
  start-page: 28379
  issue: 36
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0515
  article-title: Directly printed stretchable strain sensor based on ring and diamond shaped silver nanowire electrodes
  publication-title: RSC Adv.
  doi: 10.1039/C5RA01519G
– volume: 27
  start-page: 6969
  issue: 20
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0845
  article-title: Highly Stretchable and Conductive Core-Sheath Chemical Vapor Deposition Graphene Fibers and Their Applications in Safe Strain Sensors
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02098
– volume: 113
  start-page: 084101
  issue: 8
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0775
  article-title: Rapid dip-dry MWNT-rGO ink wrapped polyester elastic band (PEB) for piezoresistive strain sensor applications
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5037318
– volume: 11
  start-page: 43543
  issue: 46
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0595
  article-title: Two-Sided Topological Architecture on a Monolithic Flexible Substrate for Ultrasensitive Strain Sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14476
– volume: 11
  start-page: 356
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0885
  article-title: A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.025
– volume: 9
  start-page: 719
  issue: 3
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b1165
  article-title: A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB01926G
– volume: 7
  start-page: 27099
  issue: 47
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b1110
  article-title: A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA11084D
– volume: 10
  start-page: 424
  issue: 6
  year: 2011
  ident: 10.1016/j.cej.2023.142576_b0925
  article-title: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3001
– volume: 77
  start-page: 199
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0455
  article-title: Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.05.022
– volume: 31
  start-page: 2007495
  issue: 5
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b1140
  article-title: Wearable Stretchable Dry and Self-Adhesive Strain Sensors with Conformal Contact to Skin for High-Quality Motion Monitoring
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007495
– volume: 135
  start-page: 105932
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0865
  article-title: A spirally layered carbon nanotube-graphene/polyurethane composite yarn for highly sensitive and stretchable strain sensor
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2020.105932
– volume: 17
  start-page: e2006542
  issue: 23
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0660
  article-title: Printable G-Putty for Frequency- and Rate-Independent, High-Performance Strain Sensors
  publication-title: Small
  doi: 10.1002/smll.202006542
– volume: 13
  issue: 1
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0070
  article-title: Room-temperature high-precision printing of flexible wireless electronics based on MXene inks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30648-2
– volume: 12
  start-page: 51987
  issue: 46
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0370
  article-title: Highly Stretchable, Self-Healable, Ultrasensitive Strain and Proximity Sensors Based on Skin-Inspired Conductive Film for Human Motion Monitoring
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15578
– volume: 28
  start-page: 1803221
  issue: 40
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0420
  article-title: 3D Graphene Films Enable Simultaneously High Sensitivity and Large Stretchability for Strain Sensors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803221
– volume: 9
  start-page: 4658
  issue: 5
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b1210
  article-title: Highly sensitive bendable and foldable paper sensors based on reduced graphene oxide
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10484
– volume: 156
  start-page: 276
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0935
  article-title: A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.01.019
– volume: 20
  issue: 8
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0240
  article-title: Highly Sensitive E-Textile Strain Sensors Enhanced by Geometrical Treatment for Human Monitoring
  publication-title: Sensors
  doi: 10.3390/s20082383
– volume: 11
  start-page: 40613
  issue: 43
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b1200
  article-title: A Flexible Multimodal Sensor That Detects Strain, Humidity, Temperature, and Pressure with Carbon Black and Reduced Graphene Oxide Hierarchical Composite on Paper
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b13349
– volume: 7
  start-page: 11303
  issue: 36
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0400
  article-title: Highly sensitive and wearable gel-based sensors with a dynamic physically cross-linked structure for strain-stimulus detection over a wide temperature range
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC03475G
– volume: 6
  issue: 1
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0290
  article-title: Multiscale and hierarchical wrinkle enhanced graphene/Ecoflex sensors integrated with human-machine interfaces and cloud-platform, npj Flexible
  publication-title: Electronics
– volume: 27
  issue: 33
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b1170
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701513
– volume: 30
  start-page: 1909035
  issue: 41
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0150
  article-title: The chemistry and promising applications of graphene and porous graphene materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909035
– volume: 11
  start-page: 22531
  issue: 25
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0525
  article-title: MoS2-Decorated Laser-Induced Graphene for a Highly Sensitive, Hysteresis-free, and Reliable Piezoresistive Strain Sensor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04915
– volume: 10
  start-page: 19906
  issue: 23
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0650
  article-title: High-Performance and Multifunctional Skinlike Strain Sensors Based on Graphene/Springlike Mesh Network
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b06496
– volume: 4
  start-page: 4452
  issue: 1
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0895
  article-title: Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors
  publication-title: Sci. Rep.
  doi: 10.1038/srep04452
– volume: 5
  start-page: 5714
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0575
  article-title: Laser-induced porous graphene films from commercial polymers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6714
– volume: 39
  start-page: 228
  issue: 1
  year: 2010
  ident: 10.1016/j.cej.2023.142576_b0990
  article-title: The chemistry of graphene oxide
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B917103G
– volume: 10
  start-page: 2090
  issue: 4
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b1130
  article-title: A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat
  publication-title: Nanoscale
  doi: 10.1039/C7NR07225B
– volume: 27
  start-page: 7365
  issue: 45
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0820
  article-title: A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503558
– volume: 24
  start-page: 100909
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0715
  article-title: Continuous graphene fibers prepared by liquid crystal spinning as strain sensors for Monitoring Vital Signs
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2020.100909
– volume: 7
  start-page: 2501
  issue: 4
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0350
  article-title: Tunneling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets
  publication-title: Materials (Basel)
  doi: 10.3390/ma7042501
– volume: 26
  start-page: 1678
  issue: 11
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b0495
  article-title: Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504755
– volume: 444
  start-page: 136631
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b1175
  article-title: Porous graphene foam composite-based dual-mode sensors for underwater temperature and subtle motion detection
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136631
– volume: 29
  start-page: 1905197
  issue: 44
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0080
  article-title: Flexible and Multifunctional Silk Textiles with Biomimetic Leaf-Like MXene/Silver Nanowire Nanostructures for Electromagnetic Interference Shielding, Humidity Monitoring, and Self-Derived Hydrophobicity
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201905197
– volume: 13
  start-page: 37433
  issue: 31
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0530
  article-title: Laser-Induced Corrugated Graphene Films for Integrated Multimodal Sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c12686
– volume: 26
  start-page: 5310
  issue: 31
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0685
  article-title: Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400633
– volume: 12
  start-page: 7565
  issue: 6
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0695
  article-title: Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core-Shell Segmental Configuration for Wearable Strain and Temperature Sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b20612
– volume: 10
  start-page: 31716
  issue: 37
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0645
  article-title: Multifunctional Highly Sensitive Multiscale Stretchable Strain Sensor Based on a Graphene/Glycerol–KCl Synergistic Conductive Network
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12674
– volume: 6
  start-page: 2000269
  issue: 6
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0415
  article-title: In Situ Dynamic Manipulation of Graphene Strain Sensor with Drastically Sensing Performance Enhancement
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202000269
– volume: 105
  start-page: 291
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0700
  article-title: Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2017.11.027
– volume: 30
  start-page: 2003214
  issue: 34
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0110
  article-title: Printed Flexible Strain Sensor Array for Bendable Interactive Surface
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003214
– volume: 26
  start-page: 1322
  issue: 9
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b0365
  article-title: Large-Area Ultrathin Graphene Films by Single-Step Marangoni Self-Assembly for Highly Sensitive Strain Sensing Application
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504717
– volume: 11
  issue: 1
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0050
  article-title: 3D printed graphene-based self-powered strain sensors for smart tires in autonomous vehicles
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19088-y
– volume: 6
  start-page: 10524
  issue: 39
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0305
  article-title: Highly sensitive, stretchable and wearable strain sensors using fragmented conductive cotton fabric
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC03702G
– volume: 34
  start-page: 2107902
  issue: 16
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0030
  article-title: Flexible electronics and devices as human-machine interfaces for medical robotics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107902
– volume: 26
  start-page: 2022
  issue: 13
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0265
  article-title: Highly Stretchable Piezoresistive Graphene-Nanocellulose Nanopaper for Strain Sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304742
– volume: 62
  start-page: 270
  year: 2013
  ident: 10.1016/j.cej.2023.142576_b0670
  article-title: Carbon-based piezoresistive polymer composites: Structure and electrical properties
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.05.064
– volume: 12
  start-page: 44360
  issue: 39
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0945
  article-title: Three-Dimensional Binary-Conductive-Network Silver Nanowires@Thiolated Graphene Foam-Based Room-Temperature Self-Healable Strain Sensor for Human Motion Detection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c13442
– volume: 9
  start-page: 1622
  issue: 2
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0355
  article-title: Tunable Piezoresistivity of Nanographene Films for Strain Sensing
  publication-title: ACS Nano
  doi: 10.1021/nn506341u
– volume: 28
  start-page: 035004
  issue: 3
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0760
  article-title: Highly sensitive flexible strain sensor based on threadlike spandex substrate coating with conductive nanocomposites for wearable electronic skin
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aaf3ce
– volume: 95
  start-page: 213103
  issue: 21
  year: 2009
  ident: 10.1016/j.cej.2023.142576_b0345
  article-title: A computational study of tunneling-percolation electrical transport in graphene-based nanocomposites
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3267079
– volume: 8
  start-page: 18954
  issue: 29
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b0950
  article-title: Highly Stretchable and Sensitive Strain Sensor Based on Facilely Prepared Three-Dimensional Graphene Foam Composite
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b05088
– volume: 80
  start-page: 95
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b0655
  article-title: A novel strain sensor based on graphene composite films with layered structure
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2015.10.010
– start-page: 117
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0800
  article-title: Highly flexible and stretchable structure based on au/graphene film and polyurethane yarn
– volume: 107
  start-page: 519
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0280
  article-title: Ink-jet printed stretchable strain sensor based on graphene/ZnO composite on micro-random ridged PDMS substrate
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2018.01.031
– volume: 172
  start-page: 7
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0635
  article-title: Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.12.031
– volume: 439
  start-page: 135502
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0855
  article-title: Twisted graphene fibre based breathable, wettable and washable anti-jamming strain sensor for underwater motion sensing
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135502
– volume: 14
  start-page: 559
  issue: 1
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0755
  article-title: Multiscale Disordered Porous Fibers for Self-Sensing and Self-Cooling Integrated Smart Sportswear
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06899
– volume: 15
  start-page: 8398
  issue: 9
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0795
  article-title: 1D–2D nanohybrid-based textile strain sensor to boost multiscale deformative motion sensing performance
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4413-4
– volume: 50
  start-page: 4085
  issue: 11
  year: 2012
  ident: 10.1016/j.cej.2023.142576_b0465
  article-title: The use of a carbon nanotube layer on a polyurethane multifilament substrate for monitoring strains as large as 400%
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.04.056
– volume: 10
  start-page: 3948
  issue: 4
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0610
  article-title: Simultaneously Detecting Subtle and Intensive Human Motions Based on a Silver Nanoparticles Bridged Graphene Strain Sensor
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16284
– volume: 16
  start-page: 1155
  issue: 6
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b1120
  article-title: Material approaches to stretchable strain sensors
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201402810
– volume: 9
  start-page: 23243
  issue: 40
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0410
  article-title: High toughness multifunctional organic hydrogels for flexible strain and temperature sensor
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA07127K
– volume: 48
  start-page: 1945
  issue: 7
  year: 2010
  ident: 10.1016/j.cej.2023.142576_b0550
  article-title: Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.01.062
– volume: 30
  start-page: 1907678
  issue: 5
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b1055
  article-title: Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907678
– volume: 9
  start-page: 8933
  issue: 9
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0915
  article-title: Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02781
– volume: 9
  start-page: 3343
  issue: 9
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b1090
  article-title: Polysaccharide-tackified composite hydrogel for skin-attached sensors
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC05589A
– volume: 642
  start-page: 128428
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b1030
  article-title: Construction of polydopamine reduced graphene oxide/sodium carboxymethyl cellulose/polyacrylamide double network conductive hydrogel with high stretchable, pH-sensitive and strain-sensing properties
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2022.128428
– volume: 516
  start-page: 222
  issue: 7530
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0445
  article-title: Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system
  publication-title: Nature
  doi: 10.1038/nature14002
– volume: 143
  start-page: 214
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0870
  article-title: Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.02.006
– volume: 2
  start-page: 870
  year: 2012
  ident: 10.1016/j.cej.2023.142576_b0435
  article-title: Stretchable and highly sensitive graphene-on-polymer strain sensors
  publication-title: Sci. Rep.
  doi: 10.1038/srep00870
– volume: 11
  start-page: 41701
  issue: 44
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b1040
  article-title: Wearable, antifreezing, and healable epidermal sensor assembled from long-lasting moist conductive nanocomposite organohydrogel
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b15412
– volume: 13
  start-page: 1601916
  issue: 2
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b1065
  article-title: A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics
  publication-title: Small
  doi: 10.1002/smll.201601916
– volume: 26
  start-page: 7614
  issue: 42
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b1205
  article-title: Highly Sensitive, Wearable, Durable Strain Sensors and Stretchable Conductors Using Graphene/Silicon Rubber Composites
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201602619
– volume: 11
  issue: 12
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0115
  article-title: Scalable Fabrication of Highly Flexible Porous Polymer-Based Capacitive Humidity Sensor Using Convergence Fiber Drawing
  publication-title: Polymers
  doi: 10.3390/polym11121985
– volume: 9
  start-page: 14207
  issue: 16
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b0630
  article-title: Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b00847
– volume: 8
  start-page: 3437
  issue: 16
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0965
  article-title: Stretchable and tough conductive hydrogels for flexible pressure and strain sensors
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB02570G
– volume: 11
  start-page: 5799
  issue: 11
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0830
  article-title: Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2043-7
– volume: 7
  start-page: 14651
  issue: 46
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0810
  article-title: A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC04006D
– volume: 7
  start-page: 40116
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b0440
  article-title: Ultra-sensitive Pressure sensor based on guided straight mechanical cracks
  publication-title: Sci. Rep.
  doi: 10.1038/srep40116
– volume: 101
  start-page: 1869
  issue: 7
  year: 2001
  ident: 10.1016/j.cej.2023.142576_b0960
  article-title: Hydrogels for tissue engineering
  publication-title: Chem. Rev.
  doi: 10.1021/cr000108x
– volume: 30
  issue: 34
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0235
  article-title: 3D printed graphene/polydimethylsiloxane composite for stretchable strain sensor with tunable sensitivity
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab1287
– volume: 112
  start-page: 6156
  issue: 11
  year: 2012
  ident: 10.1016/j.cej.2023.142576_b0165
  article-title: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr3000412
– volume: 8
  start-page: 12384
  issue: 19
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b1010
  article-title: NIR-Triggered Rapid Shape Memory PAM-GO-Gelatin Hydrogels with High Mechanical Strength
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00867
– volume: 2
  start-page: 40
  issue: 1
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0875
  article-title: Three-dimensional graphene networks: synthesis, properties and applications
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwu072
– volume: 373
  start-page: 298
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0725
  article-title: Electrically conductive and fluorine free superhydrophobic strain sensors based on SiO2/graphene-decorated electrospun nanofibers for human motion monitoring
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.045
– volume: 56
  start-page: 2296
  issue: 3
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0780
  article-title: Encapsulated core–sheath carbon nanotube–graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-05394-9
– volume: 7
  start-page: 2001084
  issue: 4
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0975
  article-title: Self-Calibrated, Sensitive, and Flexible Temperature Sensor Based on 3D Chemically Modified Graphene Hydrogel
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202001084
– volume: 31
  start-page: 2007661
  issue: 10
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b1190
  article-title: Black Phosphorus@Laser-Engraved Graphene Heterostructure-Based Temperature-Strain Hybridized Sensor for Electronic-Skin Applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202007661
– volume: 55
  start-page: 433
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0120
  article-title: High power-output mechanical energy harvester based on flexible and transparent Au nanoparticle-embedded polymer matrix
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.10.030
– volume: 28
  start-page: 1800850
  issue: 22
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0425
  article-title: Lowering Internal Friction of 0D–1D-2D Ternary Nanocomposite-Based Strain Sensor by Fullerene to Boost the Sensing Performance
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201800850
– volume: 10
  start-page: 44173
  issue: 50
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0920
  article-title: Multifunctional Mechanical Sensors for Versatile Physiological Signal Detection
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b16237
– volume: 154
  start-page: 217
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0765
  article-title: Wearable strain sensors based on electrically conductive natural fiber yarns
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.05.040
– volume: 2
  start-page: 463
  issue: 3
  year: 2008
  ident: 10.1016/j.cej.2023.142576_b0545
  article-title: Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors
  publication-title: ACS Nano
  doi: 10.1021/nn700375n
– volume: 12
  start-page: 23272
  issue: 20
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0615
  article-title: Understanding the Cycling Performance Degradation Mechanism of a Graphene-Based Strain Sensor and an Effective Corresponding Improvement Solution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c00176
– volume: 9
  start-page: 10127
  issue: 31
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b1060
  article-title: Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC02599F
– volume: 12
  start-page: 58317
  issue: 52
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b1145
  article-title: Flexible strain sensor with tunable sensitivity via microscale electrical breakdown in graphene/polyimide thin films
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c19484
– volume: 8
  start-page: 5618
  issue: 8
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b0310
  article-title: Parallel Microcracks-based Ultrasensitive and Highly Stretchable Strain Sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12588
– volume: 84
  issue: 10
  year: 2013
  ident: 10.1016/j.cej.2023.142576_b0390
  article-title: Graphene/polydimethylsiloxane nanocomposite strain sensor
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4826496
– volume: 4
  start-page: 453
  issue: 3
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b0185
  article-title: Carbon-based supercapacitors for efficient energy storage
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx009
– volume: 14
  start-page: 1315
  issue: 1
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0510
  article-title: Fingerprint-Inspired Strain Sensor with Balanced Sensitivity and Strain Range Using Laser-Induced Graphene
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c16646
– volume: 9
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0060
  article-title: Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04906-1
– volume: 648
  start-page: 129341
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b1045
  article-title: Tough, highly resilient and conductive nanocomposite hydrogels reinforced with surface-grafted cellulose nanocrystals and reduced graphene oxide for flexible strain sensors
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2022.129341
– volume: 29
  start-page: 1805924
  issue: 6
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0200
  article-title: Flexible Electronics: Stretchable Electrodes and Their Future
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805924
– volume: 9
  start-page: 9309
  issue: 29
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0270
  article-title: Coupling piezoelectric and piezoresistive effects in flexible pressure sensors for human motion detection from zero to high frequency
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC01894A
– volume: 10
  start-page: 7901
  issue: 8
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b0585
  article-title: High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03813
– volume: 14
  start-page: 9126
  issue: 7
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b1095
  article-title: Stretchable, Adhesive, Self-Healable, and Conductive Hydrogel-Based Deformable Triboelectric Nanogenerator for Energy Harvesting and Human Motion Sensing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c23176
– volume: 24
  start-page: 4666
  issue: 29
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0320
  article-title: Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400379
– volume: 32
  start-page: 2204272
  issue: 42
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0145
  article-title: Practical graphene technologies for electrochemical energy storage
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204272
– volume: 443
  start-page: 136468
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0860
  article-title: Sensitivity enhanced, highly stretchable, and mechanically robust strain sensors based on reduced graphene oxide-aramid nanofibers hybrid fillers
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136468
– volume: 3
  start-page: 4001
  issue: 19
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b1005
  article-title: Self-healable, super tough graphene oxide-poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00075K
– volume: 5
  issue: 1
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0690
  article-title: Fractal design concepts for stretchable electronics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4266
– volume: 18
  start-page: 4531
  issue: 7
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0105
  article-title: Highly Conformable, Transparent Electrodes for Epidermal Electronics
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01743
– volume: 7
  start-page: 16361
  issue: 39
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0785
  article-title: Small and light strain sensors based on graphene coated human hairs
  publication-title: Nanoscale
  doi: 10.1039/C5NR04312C
– volume: 20
  issue: 14
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0175
  article-title: Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring. A critical review
  publication-title: Sensors
  doi: 10.3390/s20143927
– volume: 81
  start-page: 61
  year: 2013
  ident: 10.1016/j.cej.2023.142576_b0745
  article-title: The production of a melt-spun functionalized graphene/poly(ε-caprolactam) nanocomposite fiber
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2013.04.005
– volume: 6
  start-page: 3206
  issue: 4
  year: 2012
  ident: 10.1016/j.cej.2023.142576_b0890
  article-title: 3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection
  publication-title: ACS Nano
  doi: 10.1021/nn300097q
– volume: 97
  start-page: 513
  issue: 3
  year: 2009
  ident: 10.1016/j.cej.2023.142576_b1125
  article-title: Semiconductor piezoresistance for microsystems
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2013612
– volume: 29
  start-page: 1701353
  issue: 28
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b1215
  article-title: Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701353
– volume: 27
  start-page: 3349
  issue: 22
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0195
  article-title: Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405864
– volume: 5
  year: 2014
  ident: 10.1016/j.cej.2023.142576_b0065
  article-title: A wearable and highly sensitive pressure sensor with ultrathin gold nanowires
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4132
– volume: 26
  issue: 37
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0500
  article-title: Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/26/37/375501
– volume: 57
  start-page: 414
  year: 2015
  ident: 10.1016/j.cej.2023.142576_b0955
  article-title: Classification, processing and application of hydrogels: A review
  publication-title: Mater Sci Eng C Mater Biol Appl
  doi: 10.1016/j.msec.2015.07.053
– volume: 16
  start-page: e1901124
  issue: 15
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0220
  article-title: Wearable Electronics Based on 2D Materials for Human Physiological Information Detection
  publication-title: Small
  doi: 10.1002/smll.201901124
– volume: 9
  start-page: 11176
  issue: 12
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b1195
  article-title: Enhanced Sensitivity of Patterned Graphene Strain Sensors Used for Monitoring Subtle Human Body Motions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b01551
– volume: 28
  start-page: 4338
  issue: 22
  year: 2016
  ident: 10.1016/j.cej.2023.142576_b0015
  article-title: Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504244
– volume: 29
  start-page: 1903732
  issue: 45
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0705
  article-title: Porous Fibers Composed of Polymer Nanoball Decorated Graphene for Wearable and Highly Sensitive Strain Sensors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201903732
– volume: 379
  start-page: 122271
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b1085
  article-title: A bionic tactile plastic hydrogel-based electronic skin constructed by a nerve-like nanonetwork combining stretchable, compliant, and self-healing properties
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122271
– volume: 179
  start-page: 655
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0710
  article-title: Aramid nanofiber framework supporting graphene nanoplate via wet-spinning for a high-performance filament
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.04.056
– year: 2000
  ident: 10.1016/j.cej.2023.142576_b0230
– volume: 7
  start-page: 2100572
  issue: 3
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0180
  article-title: Carbon-based nanomaterials and sensing tools for wearable health monitoring devices
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202100572
– volume: 11
  start-page: 7634
  issue: 8
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b0540
  article-title: Graphene Electronic Tattoo Sensors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b02182
– volume: 6
  start-page: 219
  issue: 2
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b0385
  article-title: Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH01062E
– volume: 126
  start-page: 360
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0730
  article-title: Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.10.034
– volume: 32
  start-page: 2204755
  issue: 42
  year: 2022
  ident: 10.1016/j.cej.2023.142576_b0130
  article-title: Emerging graphene derivatives and analogues for efficient energy electrocatalysis
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202204755
– volume: 2
  start-page: 2282
  issue: 8
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0170
  article-title: Recent Advances of Carbon-Based Flexible Strain Sensors in Physiological Signal Monitoring
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.0c00292
– volume: 10
  start-page: 9727
  issue: 11
  year: 2018
  ident: 10.1016/j.cej.2023.142576_b0905
  article-title: Three-Dimensional Graphene Structure for Healable Flexible Electronics Based on Diels-Alder Chemistry
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b19649
– volume: 7
  start-page: 24814
  issue: 43
  year: 2019
  ident: 10.1016/j.cej.2023.142576_b1050
  article-title: Tough but self-healing and 3D printable hydrogels for E-skin, E-noses and laser controlled actuators
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04248B
– volume: 9
  start-page: 12335
  issue: 34
  year: 2017
  ident: 10.1016/j.cej.2023.142576_b0740
  article-title: Dry spinning approach to continuous graphene fibers with high toughness
  publication-title: Nanoscale
  doi: 10.1039/C7NR03895J
– volume: 31
  start-page: 2104288
  issue: 40
  year: 2021
  ident: 10.1016/j.cej.2023.142576_b0090
  article-title: Recent Advances in Carbon Material-Based Multifunctional Sensors and Their Applications in Electronic Skin Systems
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202104288
– volume: 12
  start-page: 6442
  issue: 5
  year: 2020
  ident: 10.1016/j.cej.2023.142576_b0405
  article-title: Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b19721
– volume: 1
  start-page: 7433
  issue: 25
  year: 2013
  ident: 10.1016/j.cej.2023.142576_b0995
  article-title: Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10639j
SSID ssj0006919
Score 2.7116475
SecondaryResourceType review_article
Snippet •The strain sensing mechanisms and performance of graphene-based sensors.•The design and fabrication strategies of four graphene-based strain sensors.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 142576
SubjectTerms Flexible and wearable electronics
Graphene
Strain sensors
Stretchable
Title Advances in graphene-based flexible and wearable strain sensors
URI https://dx.doi.org/10.1016/j.cej.2023.142576
Volume 464
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGKrlj14EtLmsckmJynFUi32oBZ7C7vZKbSUtDQVb_52Z_LQCurBU0jYhc2XzTezzMw3jF25CszUo-p2aUIqyfGsUHl4cNUuGJDK9m0qFH4YBYOxuJ_4kxrrVbUwlFZZcn_B6Tlbl086JZqd1WzWeXIophUJiU40ErEkTVAhJO3y9vtXmkcQ5c09aLBFo6vIZp7jlcC8Tf3DkS_I8f7ZNm3Zm_4B2y8dRd4t1nLIapAesb0t-cBjdtMtAvgZn6U8V55G4rLILhk-JaFLvQCuUsPfcDtTiRTP8o4QPMOz63KdnbBx__a5N7DKhghW4kZyY0WhNglafOMaFRntmEROpaAjXaLxPZVN6EpQCr0Iz0W4hRCeDD0duioAx3inrJ4uUzhjHLTvaBGAlvhDSgU6CHMl9wgcUEImDWZXUMRJqRZOS1zEVVrYPEb0YkIvLtBrsOvPKatCKuOvwaLCN_72vWOk8t-nNf837Zzt0h1F_R3_gtU361e4RGdio1v5bmmxne7dcDCi6_DxZfgBsrLJAw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB6qHtSD-MS3e9CLENskm2xyECk-qNr2Ygu9xd3sFioSpakUL_4p_6AzeWgF9SD0mmTC5MvwzQw7D4BDRxrdd6m7XeiAWnJcK5AuJq7KMdoIWfNq1CjcavuNLr_peb0KvJe9MFRWWXB_zukZWxdXqgWa1efBoHpn05lWyAUG0UjEgheVlbfmdYx5W3p6fYE_-chxri475w2rWC1gxU4oRlYYKB2j79SOlqFWto5FX3BKjmLlh7askZ7CSIn-2HVQcc65KwJXBY70ja1dfO8MzHGkC1qbcPL2VVeC4mGW5QWeReqVR6lZUVlsHk5oYTkSFEX6PzvDCQd3tQxLRWTK6vnHr0DFJKuwODGvcA3O6nnFQMoGCctGXSNTWuQINevTZE31aJhMNBsjRtSTxdJsBQVLMVl-Gqbr0J0KTBswmzwlZhOYUZ6tuG-UQAYQ0ig_yEbHh8Y2kot4C2olFFFcjCcnFR-jsg7tIUL0IkIvytHbguNPked8NsdfD_MS3-ibgUXoO34X2_6f2AHMNzqtZtS8bt_uwALdoZID29uF2dHwxexhJDNS-5nlMLiftql-APtuAyE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+graphene-based+flexible+and+wearable+strain+sensors&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Chen%2C+Hui&rft.au=Zhuo%2C+Fengling&rft.au=Zhou%2C+Jian&rft.au=Liu%2C+Ying&rft.date=2023-05-15&rft.issn=1385-8947&rft.volume=464&rft.spage=142576&rft_id=info:doi/10.1016%2Fj.cej.2023.142576&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2023_142576
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon