On the solution of fuzzy fractional optimal control problems with the Caputo derivative
This paper presents an extension to fractional optimal control problems with ambiguity. As the ambiguity is modeled with fuzzy method, we encounter with a fuzzy fractional optimal control problem. The objective in fuzzy fractional optimal control problem is to determine the best possible fuzzy contr...
Saved in:
Published in | Information sciences Vol. 421; pp. 218 - 236 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents an extension to fractional optimal control problems with ambiguity. As the ambiguity is modeled with fuzzy method, we encounter with a fuzzy fractional optimal control problem. The objective in fuzzy fractional optimal control problem is to determine the best possible fuzzy control which satisfies the related fuzzy fractional dynamic systems and minimizes the fuzzy performance index. Here, the fractional derivative is described in the Caputo sense. To find the solution, first we state some definitions and prove some required theorems. Then, we employ the obtained result to determine the necessary conditions. Furthermore, we show that the obtained necessary optimality conditions become sufficient by considering some extra assumptions. Finally, some examples are presented for more illustration of the subject. |
---|---|
AbstractList | This paper presents an extension to fractional optimal control problems with ambiguity. As the ambiguity is modeled with fuzzy method, we encounter with a fuzzy fractional optimal control problem. The objective in fuzzy fractional optimal control problem is to determine the best possible fuzzy control which satisfies the related fuzzy fractional dynamic systems and minimizes the fuzzy performance index. Here, the fractional derivative is described in the Caputo sense. To find the solution, first we state some definitions and prove some required theorems. Then, we employ the obtained result to determine the necessary conditions. Furthermore, we show that the obtained necessary optimality conditions become sufficient by considering some extra assumptions. Finally, some examples are presented for more illustration of the subject. |
Author | Allahviranloo, T. Alinezhad, M. |
Author_xml | – sequence: 1 givenname: M. surname: Alinezhad fullname: Alinezhad, M. email: alinezhad@phd.pnu.ac.ir organization: Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran – sequence: 2 givenname: T. surname: Allahviranloo fullname: Allahviranloo, T. email: tofigh@allahviranloo.com organization: Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran |
BookMark | eNp9kM1qAjEUhUOxULV9gO7yAjO9yfxkQldF-geCG6HLEDM3GBknkkSLPn3H2lUXrg5c-A73fBMy6n2PhDwyyBmw-mmTuz7mHJjIoclBljdkzBrBs5pLNiJjAA4Z8Kq6I5MYNwBQiroek69FT9MaafTdPjnfU2-p3Z9OR2qDNueL7qjfJbcd0vg-Bd_RXfCrDreRfru0_sVnerdPnrYY3EEnd8B7cmt1F_HhL6dk-fa6nH1k88X75-xlnhkuRcqk4HKlLVYVY6UVAlcMuayhNbYtihKlLSuObQlN3RQMdSNlJdvCilZCIcpiStil1gQfY0CrdmF4NRwVA3UWozZqEKPOYhQ0ahAzMOIfY1zS56kpaNddJZ8vJA6LDg6DisZhb7B1AU1SrXdX6B8ILYFX |
CitedBy_id | crossref_primary_10_1016_j_physa_2018_03_092 crossref_primary_10_1016_j_fss_2023_108725 crossref_primary_10_1016_j_mechmachtheory_2021_104577 crossref_primary_10_1080_00207721_2019_1585999 crossref_primary_10_1016_j_isatra_2019_08_006 crossref_primary_10_3233_JIFS_213028 crossref_primary_10_1002_mma_5981 crossref_primary_10_1016_j_ins_2018_12_066 crossref_primary_10_1007_s40435_023_01317_z crossref_primary_10_1177_1077546317751755 crossref_primary_10_3233_JIFS_210583 crossref_primary_10_1016_j_fss_2018_02_003 crossref_primary_10_1016_j_fss_2021_04_012 crossref_primary_10_1002_asjc_3639 crossref_primary_10_3233_JIFS_161474 crossref_primary_10_3390_fractalfract7120851 crossref_primary_10_1142_S1793005721500046 crossref_primary_10_1016_j_aej_2023_01_056 crossref_primary_10_1080_00207160_2022_2038368 crossref_primary_10_1007_s43674_021_00003_x crossref_primary_10_3233_JIFS_171042 crossref_primary_10_1016_j_engappai_2024_108265 crossref_primary_10_1016_j_robot_2021_103836 crossref_primary_10_1016_j_ins_2018_10_023 crossref_primary_10_1002_asjc_2958 crossref_primary_10_1016_j_ins_2019_04_030 |
Cites_doi | 10.1177/1077546307077467 10.1007/s00158-008-0307-7 10.1007/s11071-004-3764-6 10.1023/A:1016508704745 10.1007/s00500-011-0743-y 10.1177/1077546309353361 10.1016/S0165-0114(82)80001-8 10.1007/s11071-004-3743-y 10.1016/j.fss.2012.10.003 10.1177/1077546307087451 10.1016/j.cnsns.2011.07.005 10.1016/j.fss.2009.06.009 10.1016/j.aml.2004.06.021 10.2514/3.20641 10.1177/1077546308088565 10.3934/jimo.2014.10.363 10.1016/j.fss.2014.11.009 10.1016/0165-0114(87)90029-7 10.1016/j.ins.2010.11.027 10.1007/s11071-007-9309-z 10.1016/0165-0114(86)90026-6 10.1016/j.cam.2014.03.019 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. |
Copyright_xml | – notice: 2017 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ins.2017.08.094 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 236 |
ExternalDocumentID | 10_1016_j_ins_2017_08_094 S0020025517309283 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-9729bafe55114f77eb1e2960dcfd334e9f452ed4086831ea89959d3f7d903743 |
IEDL.DBID | .~1 |
ISSN | 0020-0255 |
IngestDate | Thu Apr 24 23:10:38 EDT 2025 Tue Jul 01 04:16:37 EDT 2025 Fri Feb 23 02:33:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fuzzy fractional calculus Generalized Hakahara differentiability Fuzzy fractional derivative Fuzzy fractional differential equations Fuzzy fractional optimal control Fuzzy integral |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-9729bafe55114f77eb1e2960dcfd334e9f452ed4086831ea89959d3f7d903743 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1016_j_ins_2017_08_094 crossref_citationtrail_10_1016_j_ins_2017_08_094 elsevier_sciencedirect_doi_10_1016_j_ins_2017_08_094 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2017 2017-12-00 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: December 2017 |
PublicationDecade | 2010 |
PublicationTitle | Information sciences |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kirk (bib0026) 2004 Allahviranloo, Salahshour, Abbasbandy (bib0007) 2012; 16 Agrawal (bib0004) 2008; 130 Salahshour, Allahviranloo, Abbasbandy (bib0035) 2012; 17 Agrawal, Machado, Sabatier (bib0001) 2004; 38 Malinowska, Torres (bib0028) 2012 Goetschel, Voxman (bib0021) 1986; 18 Salahshour, Allahviranloo, Abbasbandy, Baleanu (bib0034) 2012; 112 Baleanu, Defterli, Agrawal (bib0010) 2009; 15 Stefanini (bib0036) 2010; 161 Agrawal, Baleanu (bib0003) 2007; 13 Fard, Salehi (bib0016) 2014; 271 Diamond, Kloeden (bib0013) 1994 Carpinteri, Mainardi (bib0012) 1997 Agrawal (bib0005) 2008; 14 Emamizadeh (bib0015) 2005; 18 Podlubny (bib0032) 1999 Frederico, Torres (bib0019) 2008; 3 Farhadinia (bib0017) 2011; 181 Kaleva (bib0025) 1987; 24 Agrawal (bib0002) 2004; 38 Hilfer (bib0022) 2000 Allahviranloo, Gouyandeha, Armanda, Hasanoglub (bib0008) 2015; 265 Frederico, Torres (bib0018) 2008; 53 Bede, Stefanini (bib0011) 2013; 230 Mordukhovich, Wang (bib0031) 2003; 32 . Dubios, Prade (bib0014) 1982; 8 Magin (bib0030) 2006 Hunter, J.K., An introduction to real analysis Bagley, Calico (bib0009) 1999; 14 Agrawal, Baleanu (bib0006) 2010; 16 Pooseh, Almeida, Torres (bib0033) 2014; 10 Machado (bib0029) 2002; 29 Jelicic, Petrovackim (bib0024) 2009; 38 Salahshour (10.1016/j.ins.2017.08.094_bib0035) 2012; 17 Pooseh (10.1016/j.ins.2017.08.094_bib0033) 2014; 10 Salahshour (10.1016/j.ins.2017.08.094_bib0034) 2012; 112 Agrawal (10.1016/j.ins.2017.08.094_bib0001) 2004; 38 Podlubny (10.1016/j.ins.2017.08.094_bib0032) 1999 Agrawal (10.1016/j.ins.2017.08.094_bib0005) 2008; 14 Hilfer (10.1016/j.ins.2017.08.094_bib0022) 2000 Agrawal (10.1016/j.ins.2017.08.094_bib0003) 2007; 13 Agrawal (10.1016/j.ins.2017.08.094_bib0004) 2008; 130 Jelicic (10.1016/j.ins.2017.08.094_bib0024) 2009; 38 Carpinteri (10.1016/j.ins.2017.08.094_bib0012) 1997 Magin (10.1016/j.ins.2017.08.094_bib0030) 2006 Allahviranloo (10.1016/j.ins.2017.08.094_bib0008) 2015; 265 Kaleva (10.1016/j.ins.2017.08.094_bib0025) 1987; 24 Agrawal (10.1016/j.ins.2017.08.094_bib0002) 2004; 38 Emamizadeh (10.1016/j.ins.2017.08.094_bib0015) 2005; 18 Goetschel (10.1016/j.ins.2017.08.094_bib0021) 1986; 18 Bagley (10.1016/j.ins.2017.08.094_bib0009) 1999; 14 Diamond (10.1016/j.ins.2017.08.094_bib0013) 1994 Kirk (10.1016/j.ins.2017.08.094_bib0026) 2004 Mordukhovich (10.1016/j.ins.2017.08.094_bib0031) 2003; 32 Agrawal (10.1016/j.ins.2017.08.094_bib0006) 2010; 16 10.1016/j.ins.2017.08.094_bib0023 Baleanu (10.1016/j.ins.2017.08.094_bib0010) 2009; 15 Bede (10.1016/j.ins.2017.08.094_bib0011) 2013; 230 Malinowska (10.1016/j.ins.2017.08.094_bib0028) 2012 Dubios (10.1016/j.ins.2017.08.094_bib0014) 1982; 8 Farhadinia (10.1016/j.ins.2017.08.094_bib0017) 2011; 181 Fard (10.1016/j.ins.2017.08.094_bib0016) 2014; 271 Machado (10.1016/j.ins.2017.08.094_bib0029) 2002; 29 Frederico (10.1016/j.ins.2017.08.094_bib0019) 2008; 3 Stefanini (10.1016/j.ins.2017.08.094_bib0036) 2010; 161 Allahviranloo (10.1016/j.ins.2017.08.094_bib0007) 2012; 16 Frederico (10.1016/j.ins.2017.08.094_bib0018) 2008; 53 |
References_xml | – volume: 130 start-page: 1 year: 2008 end-page: 6 ident: bib0004 article-title: A quadratic numerical scheme for fractional optimal control problems publication-title: J. Dyn. Syst., Measure. Contr. – year: 1997 ident: bib0012 article-title: Fractals and Fractional Calculus in Continuum Mechanics – volume: 181 start-page: 1348 year: 2011 end-page: 1357 ident: bib0017 article-title: Necessary optimality conditions for fuzzy variational problems publication-title: Info. Sci. – volume: 53 start-page: 215 year: 2008 end-page: 222 ident: bib0018 article-title: Fractional conservation laws in optimal control theory publication-title: Nonlinear Dyn. – reference: Hunter, J.K., An introduction to real analysis, – volume: 38 start-page: 571 year: 2009 end-page: 581 ident: bib0024 article-title: Optimality conditions and a solution scheme for fractional optimal control problems publication-title: Struct. Multidiscip. Optim – volume: 265 start-page: 1 year: 2015 end-page: 23 ident: bib0008 article-title: On fuzzy solutions for heat equation based on generalized Hukuhara differentiability publication-title: Fuzzy Sets Syst. – volume: 38 start-page: 1 year: 2004 end-page: 2 ident: bib0001 article-title: Special issue: fractional derivatives and their applications-introduction publication-title: Nonlinear Dyn. – volume: 8 start-page: 225 year: 1982 end-page: 233 ident: bib0014 article-title: Towards fuzzy differential calculus publication-title: Fuzzy Sets Syst. – volume: 32 start-page: 585 year: 2003 end-page: 609 ident: bib0031 article-title: Optimal control of constrained delay-differential inclusions with multivalued initial conditions publication-title: J. Contr. Cybern. – volume: 230 start-page: 119 year: 2013 end-page: 141 ident: bib0011 article-title: Generalized differentiability of fuzzy valued functions publication-title: Fuzzy Sets Syst. – year: 2000 ident: bib0022 article-title: Applications of Fractional Calculus in Physics – volume: 161 start-page: 1564 year: 2010 end-page: 1584 ident: bib0036 article-title: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic publication-title: Fuzzy Sets Syst – volume: 18 start-page: 31 year: 1986 end-page: 42 ident: bib0021 article-title: Elementary fuzzy calculus publication-title: Fuzzy Sets Syst. – year: 2006 ident: bib0030 article-title: Fractional Calculus in Bioengineering – volume: 10 start-page: 363 year: 2014 end-page: 381 ident: bib0033 article-title: Fractional optimal control problems with free terminal time publication-title: J. Ind. Manage. Optim. (JIMO) – volume: 16 start-page: 1967 year: 2010 end-page: 1976 ident: bib0006 article-title: Fractional optimal control problems with several state and control variables publication-title: J. Vib Contr. – volume: 18 start-page: 171 year: 2005 end-page: 178 ident: bib0015 article-title: Decreasing rearrangement and a fuzzy variational problem publication-title: Appl. Math. Lett – volume: 14 start-page: 1291 year: 2008 end-page: 1299 ident: bib0005 article-title: A formulation and numerical scheme for fractional optimal control problems publication-title: J. Vib. Contr.. – volume: 112 year: 2012 ident: bib0034 article-title: Existence and uniqueness results for fractional differential equations with uncertainty publication-title: Adv. Diff. Eqn. – volume: 29 start-page: 1 year: 2002 end-page: 386 ident: bib0029 article-title: Special issue on fractional calculus and applications publication-title: Nonlinear Dyn. – year: 1999 ident: bib0032 article-title: Fractional Differential Equations – volume: 15 start-page: 583 year: 2009 end-page: 597 ident: bib0010 article-title: A central difference numerical scheme for fractional optimal control problems publication-title: J. Vib. Contr. – reference: . – year: 2004 ident: bib0026 article-title: Optimal Control Theory, An Introduction – volume: 3 start-page: 479 year: 2008 end-page: 493 ident: bib0019 article-title: Fractional optimal control in the sense of Caputo and the fractional Noether's theorem publication-title: Int. Math. Forum – year: 2012 ident: bib0028 article-title: Introduction to the Fractional Calculus of Variations – volume: 16 start-page: 297 year: 2012 end-page: 302 ident: bib0007 article-title: Explicit solutions of fractional differential equations with uncertainty publication-title: Soft Comput.. – volume: 13 start-page: 1269 year: 2007 end-page: 1281 ident: bib0003 article-title: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems publication-title: J. Vib. Contr. – year: 1994 ident: bib0013 article-title: Metric Spaces of Fuzzy Sets – volume: 38 start-page: 323 year: 2004 end-page: 337 ident: bib0002 article-title: A general formulation and solution scheme for fractional optimal control problems publication-title: Nonlinear Dyn. – volume: 24 start-page: 301 year: 1987 end-page: 317 ident: bib0025 article-title: Fuzzy differential equations publication-title: Fuzzy Sets Syst. – volume: 17 start-page: 1372 year: 2012 end-page: 1381 ident: bib0035 article-title: Solving fuzzy fractional differential equations by fuzzy Laplace transforms publication-title: Commun. Nonlinear Sci. Numer. Simul – volume: 14 start-page: 304 year: 1999 end-page: 311 ident: bib0009 article-title: Fractional order state equations for the control of viscoelastically damped structures publication-title: J. Guid., Contr. Dyn.. – volume: 271 start-page: 71 year: 2014 end-page: 82 ident: bib0016 article-title: A survey on fuzzy fractional variational problems publication-title: J. Comput. Appl. Math.. – year: 1997 ident: 10.1016/j.ins.2017.08.094_bib0012 – year: 1994 ident: 10.1016/j.ins.2017.08.094_bib0013 – volume: 112 year: 2012 ident: 10.1016/j.ins.2017.08.094_bib0034 article-title: Existence and uniqueness results for fractional differential equations with uncertainty publication-title: Adv. Diff. Eqn. – volume: 13 start-page: 1269 issue: 9–10 year: 2007 ident: 10.1016/j.ins.2017.08.094_bib0003 article-title: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems publication-title: J. Vib. Contr. doi: 10.1177/1077546307077467 – volume: 130 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.ins.2017.08.094_bib0004 article-title: A quadratic numerical scheme for fractional optimal control problems publication-title: J. Dyn. Syst., Measure. Contr. – volume: 38 start-page: 571 year: 2009 ident: 10.1016/j.ins.2017.08.094_bib0024 article-title: Optimality conditions and a solution scheme for fractional optimal control problems publication-title: Struct. Multidiscip. Optim doi: 10.1007/s00158-008-0307-7 – year: 1999 ident: 10.1016/j.ins.2017.08.094_bib0032 – volume: 38 start-page: 323 issue: 1–2 year: 2004 ident: 10.1016/j.ins.2017.08.094_bib0002 article-title: A general formulation and solution scheme for fractional optimal control problems publication-title: Nonlinear Dyn. doi: 10.1007/s11071-004-3764-6 – volume: 3 start-page: 479 issue: 9-12 year: 2008 ident: 10.1016/j.ins.2017.08.094_bib0019 article-title: Fractional optimal control in the sense of Caputo and the fractional Noether's theorem publication-title: Int. Math. Forum – volume: 29 start-page: 1 year: 2002 ident: 10.1016/j.ins.2017.08.094_bib0029 article-title: Special issue on fractional calculus and applications publication-title: Nonlinear Dyn. doi: 10.1023/A:1016508704745 – volume: 16 start-page: 297 year: 2012 ident: 10.1016/j.ins.2017.08.094_bib0007 article-title: Explicit solutions of fractional differential equations with uncertainty publication-title: Soft Comput.. doi: 10.1007/s00500-011-0743-y – volume: 16 start-page: 1967 issue: 13 year: 2010 ident: 10.1016/j.ins.2017.08.094_bib0006 article-title: Fractional optimal control problems with several state and control variables publication-title: J. Vib Contr. doi: 10.1177/1077546309353361 – volume: 8 start-page: 225 year: 1982 ident: 10.1016/j.ins.2017.08.094_bib0014 article-title: Towards fuzzy differential calculus publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(82)80001-8 – volume: 38 start-page: 1 issue: 1–4 year: 2004 ident: 10.1016/j.ins.2017.08.094_bib0001 article-title: Special issue: fractional derivatives and their applications-introduction publication-title: Nonlinear Dyn. doi: 10.1007/s11071-004-3743-y – volume: 230 start-page: 119 year: 2013 ident: 10.1016/j.ins.2017.08.094_bib0011 article-title: Generalized differentiability of fuzzy valued functions publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2012.10.003 – volume: 14 start-page: 1291 issue: 9-10 year: 2008 ident: 10.1016/j.ins.2017.08.094_bib0005 article-title: A formulation and numerical scheme for fractional optimal control problems publication-title: J. Vib. Contr.. doi: 10.1177/1077546307087451 – volume: 17 start-page: 1372 year: 2012 ident: 10.1016/j.ins.2017.08.094_bib0035 article-title: Solving fuzzy fractional differential equations by fuzzy Laplace transforms publication-title: Commun. Nonlinear Sci. Numer. Simul doi: 10.1016/j.cnsns.2011.07.005 – volume: 161 start-page: 1564 year: 2010 ident: 10.1016/j.ins.2017.08.094_bib0036 article-title: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2009.06.009 – year: 2006 ident: 10.1016/j.ins.2017.08.094_bib0030 – volume: 18 start-page: 171 year: 2005 ident: 10.1016/j.ins.2017.08.094_bib0015 article-title: Decreasing rearrangement and a fuzzy variational problem publication-title: Appl. Math. Lett doi: 10.1016/j.aml.2004.06.021 – year: 2004 ident: 10.1016/j.ins.2017.08.094_bib0026 – ident: 10.1016/j.ins.2017.08.094_bib0023 – volume: 14 start-page: 304 year: 1999 ident: 10.1016/j.ins.2017.08.094_bib0009 article-title: Fractional order state equations for the control of viscoelastically damped structures publication-title: J. Guid., Contr. Dyn.. doi: 10.2514/3.20641 – volume: 15 start-page: 583 issue: 4 year: 2009 ident: 10.1016/j.ins.2017.08.094_bib0010 article-title: A central difference numerical scheme for fractional optimal control problems publication-title: J. Vib. Contr. doi: 10.1177/1077546308088565 – year: 2000 ident: 10.1016/j.ins.2017.08.094_bib0022 – volume: 10 start-page: 363 issue: 2 year: 2014 ident: 10.1016/j.ins.2017.08.094_bib0033 article-title: Fractional optimal control problems with free terminal time publication-title: J. Ind. Manage. Optim. (JIMO) doi: 10.3934/jimo.2014.10.363 – volume: 265 start-page: 1 year: 2015 ident: 10.1016/j.ins.2017.08.094_bib0008 article-title: On fuzzy solutions for heat equation based on generalized Hukuhara differentiability publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2014.11.009 – volume: 24 start-page: 301 year: 1987 ident: 10.1016/j.ins.2017.08.094_bib0025 article-title: Fuzzy differential equations publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(87)90029-7 – volume: 181 start-page: 1348 year: 2011 ident: 10.1016/j.ins.2017.08.094_bib0017 article-title: Necessary optimality conditions for fuzzy variational problems publication-title: Info. Sci. doi: 10.1016/j.ins.2010.11.027 – volume: 53 start-page: 215 issue: 3 year: 2008 ident: 10.1016/j.ins.2017.08.094_bib0018 article-title: Fractional conservation laws in optimal control theory publication-title: Nonlinear Dyn. doi: 10.1007/s11071-007-9309-z – year: 2012 ident: 10.1016/j.ins.2017.08.094_bib0028 – volume: 18 start-page: 31 year: 1986 ident: 10.1016/j.ins.2017.08.094_bib0021 article-title: Elementary fuzzy calculus publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(86)90026-6 – volume: 32 start-page: 585 year: 2003 ident: 10.1016/j.ins.2017.08.094_bib0031 article-title: Optimal control of constrained delay-differential inclusions with multivalued initial conditions publication-title: J. Contr. Cybern. – volume: 271 start-page: 71 year: 2014 ident: 10.1016/j.ins.2017.08.094_bib0016 article-title: A survey on fuzzy fractional variational problems publication-title: J. Comput. Appl. Math.. doi: 10.1016/j.cam.2014.03.019 |
SSID | ssj0004766 |
Score | 2.3682456 |
Snippet | This paper presents an extension to fractional optimal control problems with ambiguity. As the ambiguity is modeled with fuzzy method, we encounter with a... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 218 |
SubjectTerms | Fuzzy fractional calculus Fuzzy fractional derivative Fuzzy fractional differential equations Fuzzy fractional optimal control Fuzzy integral Generalized Hakahara differentiability |
Title | On the solution of fuzzy fractional optimal control problems with the Caputo derivative |
URI | https://dx.doi.org/10.1016/j.ins.2017.08.094 |
Volume | 421 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BSsNAEB1KvehBtCpWbdmDeBBim2SbdI-lWKpivVTsLWyyu1DRpNRWsAe_3ZlkoxXUg6eQZYcNk9mZl-zMG4BT3GRxYIgBoKukg4hYO9JI7nDPcxXxgbiaTnRvR8Hwnl9POpMK9MtaGEqrtL6_8Om5t7YjLavN1mw6pRpfL0fELhqpwChJFew8JCu_eP9K88CRoEjzaDs0uzzZzHO8pikxdrthzuIp-M-xaS3eDHZg2wJF1iueZRcqOq3B1hp9YA0atuiAnTFbVURaZna77sHDXcoQ37HSvFhmmFmuVm_MzIt6BlwgQ5_xjFebs85sh5kXRn9oc_G-nC0XGVO46mtOE74P48HluD90bCMFJ_FEuHAEIuhYGo26crkJQ_TP2sNPF5UY5ftcC8M7nlYcP2-6vqtll0jIlG9CJYiexj-Aapql-hCYSDq-DlBSJorrgJNTwLEYkYKQ6Crr0C41GCWWZJx6XTxFZTbZY4RKj0jpEfW_FLwO558is4Jh46_JvHwt0TcziTAC_C529D-xY9ikuyJ75QSqi_lSNxCDLOJmbmRN2Ohd3QxHHy802-A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qe1APolWxanUP4kEINckm6R5LsVT74aVibyHN7kJFk1Jbwf56Z5KNVlAPngKbDBsms29mszNvAC5wkU18TQwATRlZGBErK9IRt7jj2JL4QGxFJ7qDod994Hdjb1yCdlELQ2mVBvtzTM_Q2ow0jDYbs-mUanydLCK20UgFeskNqBA7lVeGSuu21x1-lUcG-ZEl7ZRIoDjczNK8pgmRdttBRuQp-M_uac3ldHZhx8SKrJW_zh6UVFKF7TUGwSrUTd0Bu2SmsIgUzcyK3YfH-4RhiMcKC2OpZnq5Wr0zPc9LGnCCFGHjBa8mbZ2ZJjOvjH7SZuLtaLZcpEzirG8ZU_gBjDo3o3bXMr0UrNgRwcISGERPIq1QXTbXQYAQrRzcvchYS9flSmjuOUpy3OE0XVtFTeIhk64OpCCGGvcQykmaqCNgIvZc5aNkFEuufE64gGMTDBZEhGhZg-tCg2FseMap3cVzWCSUPYWo9JCUHlILTMFrcPUpMstJNv56mBefJfxmKSE6gd_Fjv8ndg6b3dGgH_Zvh70T2KI7eTLLKZQX86WqY0iymJwZk_sAwW7ekQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+solution+of+fuzzy+fractional+optimal+control+problems+with+the+Caputo+derivative&rft.jtitle=Information+sciences&rft.au=Alinezhad%2C+M.&rft.au=Allahviranloo%2C+T.&rft.date=2017-12-01&rft.issn=0020-0255&rft.volume=421&rft.spage=218&rft.epage=236&rft_id=info:doi/10.1016%2Fj.ins.2017.08.094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2017_08_094 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |