On the solution of fuzzy fractional optimal control problems with the Caputo derivative

This paper presents an extension to fractional optimal control problems with ambiguity. As the ambiguity is modeled with fuzzy method, we encounter with a fuzzy fractional optimal control problem. The objective in fuzzy fractional optimal control problem is to determine the best possible fuzzy contr...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 421; pp. 218 - 236
Main Authors Alinezhad, M., Allahviranloo, T.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents an extension to fractional optimal control problems with ambiguity. As the ambiguity is modeled with fuzzy method, we encounter with a fuzzy fractional optimal control problem. The objective in fuzzy fractional optimal control problem is to determine the best possible fuzzy control which satisfies the related fuzzy fractional dynamic systems and minimizes the fuzzy performance index. Here, the fractional derivative is described in the Caputo sense. To find the solution, first we state some definitions and prove some required theorems. Then, we employ the obtained result to determine the necessary conditions. Furthermore, we show that the obtained necessary optimality conditions become sufficient by considering some extra assumptions. Finally, some examples are presented for more illustration of the subject.
AbstractList This paper presents an extension to fractional optimal control problems with ambiguity. As the ambiguity is modeled with fuzzy method, we encounter with a fuzzy fractional optimal control problem. The objective in fuzzy fractional optimal control problem is to determine the best possible fuzzy control which satisfies the related fuzzy fractional dynamic systems and minimizes the fuzzy performance index. Here, the fractional derivative is described in the Caputo sense. To find the solution, first we state some definitions and prove some required theorems. Then, we employ the obtained result to determine the necessary conditions. Furthermore, we show that the obtained necessary optimality conditions become sufficient by considering some extra assumptions. Finally, some examples are presented for more illustration of the subject.
Author Allahviranloo, T.
Alinezhad, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Alinezhad
  fullname: Alinezhad, M.
  email: alinezhad@phd.pnu.ac.ir
  organization: Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
– sequence: 2
  givenname: T.
  surname: Allahviranloo
  fullname: Allahviranloo, T.
  email: tofigh@allahviranloo.com
  organization: Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
BookMark eNp9kM1qAjEUhUOxULV9gO7yAjO9yfxkQldF-geCG6HLEDM3GBknkkSLPn3H2lUXrg5c-A73fBMy6n2PhDwyyBmw-mmTuz7mHJjIoclBljdkzBrBs5pLNiJjAA4Z8Kq6I5MYNwBQiroek69FT9MaafTdPjnfU2-p3Z9OR2qDNueL7qjfJbcd0vg-Bd_RXfCrDreRfru0_sVnerdPnrYY3EEnd8B7cmt1F_HhL6dk-fa6nH1k88X75-xlnhkuRcqk4HKlLVYVY6UVAlcMuayhNbYtihKlLSuObQlN3RQMdSNlJdvCilZCIcpiStil1gQfY0CrdmF4NRwVA3UWozZqEKPOYhQ0ahAzMOIfY1zS56kpaNddJZ8vJA6LDg6DisZhb7B1AU1SrXdX6B8ILYFX
CitedBy_id crossref_primary_10_1016_j_physa_2018_03_092
crossref_primary_10_1016_j_fss_2023_108725
crossref_primary_10_1016_j_mechmachtheory_2021_104577
crossref_primary_10_1080_00207721_2019_1585999
crossref_primary_10_1016_j_isatra_2019_08_006
crossref_primary_10_3233_JIFS_213028
crossref_primary_10_1002_mma_5981
crossref_primary_10_1016_j_ins_2018_12_066
crossref_primary_10_1007_s40435_023_01317_z
crossref_primary_10_1177_1077546317751755
crossref_primary_10_3233_JIFS_210583
crossref_primary_10_1016_j_fss_2018_02_003
crossref_primary_10_1016_j_fss_2021_04_012
crossref_primary_10_1002_asjc_3639
crossref_primary_10_3233_JIFS_161474
crossref_primary_10_3390_fractalfract7120851
crossref_primary_10_1142_S1793005721500046
crossref_primary_10_1016_j_aej_2023_01_056
crossref_primary_10_1080_00207160_2022_2038368
crossref_primary_10_1007_s43674_021_00003_x
crossref_primary_10_3233_JIFS_171042
crossref_primary_10_1016_j_engappai_2024_108265
crossref_primary_10_1016_j_robot_2021_103836
crossref_primary_10_1016_j_ins_2018_10_023
crossref_primary_10_1002_asjc_2958
crossref_primary_10_1016_j_ins_2019_04_030
Cites_doi 10.1177/1077546307077467
10.1007/s00158-008-0307-7
10.1007/s11071-004-3764-6
10.1023/A:1016508704745
10.1007/s00500-011-0743-y
10.1177/1077546309353361
10.1016/S0165-0114(82)80001-8
10.1007/s11071-004-3743-y
10.1016/j.fss.2012.10.003
10.1177/1077546307087451
10.1016/j.cnsns.2011.07.005
10.1016/j.fss.2009.06.009
10.1016/j.aml.2004.06.021
10.2514/3.20641
10.1177/1077546308088565
10.3934/jimo.2014.10.363
10.1016/j.fss.2014.11.009
10.1016/0165-0114(87)90029-7
10.1016/j.ins.2010.11.027
10.1007/s11071-007-9309-z
10.1016/0165-0114(86)90026-6
10.1016/j.cam.2014.03.019
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright_xml – notice: 2017 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2017.08.094
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 236
ExternalDocumentID 10_1016_j_ins_2017_08_094
S0020025517309283
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-9729bafe55114f77eb1e2960dcfd334e9f452ed4086831ea89959d3f7d903743
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Thu Apr 24 23:10:38 EDT 2025
Tue Jul 01 04:16:37 EDT 2025
Fri Feb 23 02:33:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fuzzy fractional calculus
Generalized Hakahara differentiability
Fuzzy fractional derivative
Fuzzy fractional differential equations
Fuzzy fractional optimal control
Fuzzy integral
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-9729bafe55114f77eb1e2960dcfd334e9f452ed4086831ea89959d3f7d903743
PageCount 19
ParticipantIDs crossref_primary_10_1016_j_ins_2017_08_094
crossref_citationtrail_10_1016_j_ins_2017_08_094
elsevier_sciencedirect_doi_10_1016_j_ins_2017_08_094
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2017
2017-12-00
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: December 2017
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kirk (bib0026) 2004
Allahviranloo, Salahshour, Abbasbandy (bib0007) 2012; 16
Agrawal (bib0004) 2008; 130
Salahshour, Allahviranloo, Abbasbandy (bib0035) 2012; 17
Agrawal, Machado, Sabatier (bib0001) 2004; 38
Malinowska, Torres (bib0028) 2012
Goetschel, Voxman (bib0021) 1986; 18
Salahshour, Allahviranloo, Abbasbandy, Baleanu (bib0034) 2012; 112
Baleanu, Defterli, Agrawal (bib0010) 2009; 15
Stefanini (bib0036) 2010; 161
Agrawal, Baleanu (bib0003) 2007; 13
Fard, Salehi (bib0016) 2014; 271
Diamond, Kloeden (bib0013) 1994
Carpinteri, Mainardi (bib0012) 1997
Agrawal (bib0005) 2008; 14
Emamizadeh (bib0015) 2005; 18
Podlubny (bib0032) 1999
Frederico, Torres (bib0019) 2008; 3
Farhadinia (bib0017) 2011; 181
Kaleva (bib0025) 1987; 24
Agrawal (bib0002) 2004; 38
Hilfer (bib0022) 2000
Allahviranloo, Gouyandeha, Armanda, Hasanoglub (bib0008) 2015; 265
Frederico, Torres (bib0018) 2008; 53
Bede, Stefanini (bib0011) 2013; 230
Mordukhovich, Wang (bib0031) 2003; 32
.
Dubios, Prade (bib0014) 1982; 8
Magin (bib0030) 2006
Hunter, J.K., An introduction to real analysis
Bagley, Calico (bib0009) 1999; 14
Agrawal, Baleanu (bib0006) 2010; 16
Pooseh, Almeida, Torres (bib0033) 2014; 10
Machado (bib0029) 2002; 29
Jelicic, Petrovackim (bib0024) 2009; 38
Salahshour (10.1016/j.ins.2017.08.094_bib0035) 2012; 17
Pooseh (10.1016/j.ins.2017.08.094_bib0033) 2014; 10
Salahshour (10.1016/j.ins.2017.08.094_bib0034) 2012; 112
Agrawal (10.1016/j.ins.2017.08.094_bib0001) 2004; 38
Podlubny (10.1016/j.ins.2017.08.094_bib0032) 1999
Agrawal (10.1016/j.ins.2017.08.094_bib0005) 2008; 14
Hilfer (10.1016/j.ins.2017.08.094_bib0022) 2000
Agrawal (10.1016/j.ins.2017.08.094_bib0003) 2007; 13
Agrawal (10.1016/j.ins.2017.08.094_bib0004) 2008; 130
Jelicic (10.1016/j.ins.2017.08.094_bib0024) 2009; 38
Carpinteri (10.1016/j.ins.2017.08.094_bib0012) 1997
Magin (10.1016/j.ins.2017.08.094_bib0030) 2006
Allahviranloo (10.1016/j.ins.2017.08.094_bib0008) 2015; 265
Kaleva (10.1016/j.ins.2017.08.094_bib0025) 1987; 24
Agrawal (10.1016/j.ins.2017.08.094_bib0002) 2004; 38
Emamizadeh (10.1016/j.ins.2017.08.094_bib0015) 2005; 18
Goetschel (10.1016/j.ins.2017.08.094_bib0021) 1986; 18
Bagley (10.1016/j.ins.2017.08.094_bib0009) 1999; 14
Diamond (10.1016/j.ins.2017.08.094_bib0013) 1994
Kirk (10.1016/j.ins.2017.08.094_bib0026) 2004
Mordukhovich (10.1016/j.ins.2017.08.094_bib0031) 2003; 32
Agrawal (10.1016/j.ins.2017.08.094_bib0006) 2010; 16
10.1016/j.ins.2017.08.094_bib0023
Baleanu (10.1016/j.ins.2017.08.094_bib0010) 2009; 15
Bede (10.1016/j.ins.2017.08.094_bib0011) 2013; 230
Malinowska (10.1016/j.ins.2017.08.094_bib0028) 2012
Dubios (10.1016/j.ins.2017.08.094_bib0014) 1982; 8
Farhadinia (10.1016/j.ins.2017.08.094_bib0017) 2011; 181
Fard (10.1016/j.ins.2017.08.094_bib0016) 2014; 271
Machado (10.1016/j.ins.2017.08.094_bib0029) 2002; 29
Frederico (10.1016/j.ins.2017.08.094_bib0019) 2008; 3
Stefanini (10.1016/j.ins.2017.08.094_bib0036) 2010; 161
Allahviranloo (10.1016/j.ins.2017.08.094_bib0007) 2012; 16
Frederico (10.1016/j.ins.2017.08.094_bib0018) 2008; 53
References_xml – volume: 130
  start-page: 1
  year: 2008
  end-page: 6
  ident: bib0004
  article-title: A quadratic numerical scheme for fractional optimal control problems
  publication-title: J. Dyn. Syst., Measure. Contr.
– year: 1997
  ident: bib0012
  article-title: Fractals and Fractional Calculus in Continuum Mechanics
– volume: 181
  start-page: 1348
  year: 2011
  end-page: 1357
  ident: bib0017
  article-title: Necessary optimality conditions for fuzzy variational problems
  publication-title: Info. Sci.
– volume: 53
  start-page: 215
  year: 2008
  end-page: 222
  ident: bib0018
  article-title: Fractional conservation laws in optimal control theory
  publication-title: Nonlinear Dyn.
– reference: Hunter, J.K., An introduction to real analysis,
– volume: 38
  start-page: 571
  year: 2009
  end-page: 581
  ident: bib0024
  article-title: Optimality conditions and a solution scheme for fractional optimal control problems
  publication-title: Struct. Multidiscip. Optim
– volume: 265
  start-page: 1
  year: 2015
  end-page: 23
  ident: bib0008
  article-title: On fuzzy solutions for heat equation based on generalized Hukuhara differentiability
  publication-title: Fuzzy Sets Syst.
– volume: 38
  start-page: 1
  year: 2004
  end-page: 2
  ident: bib0001
  article-title: Special issue: fractional derivatives and their applications-introduction
  publication-title: Nonlinear Dyn.
– volume: 8
  start-page: 225
  year: 1982
  end-page: 233
  ident: bib0014
  article-title: Towards fuzzy differential calculus
  publication-title: Fuzzy Sets Syst.
– volume: 32
  start-page: 585
  year: 2003
  end-page: 609
  ident: bib0031
  article-title: Optimal control of constrained delay-differential inclusions with multivalued initial conditions
  publication-title: J. Contr. Cybern.
– volume: 230
  start-page: 119
  year: 2013
  end-page: 141
  ident: bib0011
  article-title: Generalized differentiability of fuzzy valued functions
  publication-title: Fuzzy Sets Syst.
– year: 2000
  ident: bib0022
  article-title: Applications of Fractional Calculus in Physics
– volume: 161
  start-page: 1564
  year: 2010
  end-page: 1584
  ident: bib0036
  article-title: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic
  publication-title: Fuzzy Sets Syst
– volume: 18
  start-page: 31
  year: 1986
  end-page: 42
  ident: bib0021
  article-title: Elementary fuzzy calculus
  publication-title: Fuzzy Sets Syst.
– year: 2006
  ident: bib0030
  article-title: Fractional Calculus in Bioengineering
– volume: 10
  start-page: 363
  year: 2014
  end-page: 381
  ident: bib0033
  article-title: Fractional optimal control problems with free terminal time
  publication-title: J. Ind. Manage. Optim. (JIMO)
– volume: 16
  start-page: 1967
  year: 2010
  end-page: 1976
  ident: bib0006
  article-title: Fractional optimal control problems with several state and control variables
  publication-title: J. Vib Contr.
– volume: 18
  start-page: 171
  year: 2005
  end-page: 178
  ident: bib0015
  article-title: Decreasing rearrangement and a fuzzy variational problem
  publication-title: Appl. Math. Lett
– volume: 14
  start-page: 1291
  year: 2008
  end-page: 1299
  ident: bib0005
  article-title: A formulation and numerical scheme for fractional optimal control problems
  publication-title: J. Vib. Contr..
– volume: 112
  year: 2012
  ident: bib0034
  article-title: Existence and uniqueness results for fractional differential equations with uncertainty
  publication-title: Adv. Diff. Eqn.
– volume: 29
  start-page: 1
  year: 2002
  end-page: 386
  ident: bib0029
  article-title: Special issue on fractional calculus and applications
  publication-title: Nonlinear Dyn.
– year: 1999
  ident: bib0032
  article-title: Fractional Differential Equations
– volume: 15
  start-page: 583
  year: 2009
  end-page: 597
  ident: bib0010
  article-title: A central difference numerical scheme for fractional optimal control problems
  publication-title: J. Vib. Contr.
– reference: .
– year: 2004
  ident: bib0026
  article-title: Optimal Control Theory, An Introduction
– volume: 3
  start-page: 479
  year: 2008
  end-page: 493
  ident: bib0019
  article-title: Fractional optimal control in the sense of Caputo and the fractional Noether's theorem
  publication-title: Int. Math. Forum
– year: 2012
  ident: bib0028
  article-title: Introduction to the Fractional Calculus of Variations
– volume: 16
  start-page: 297
  year: 2012
  end-page: 302
  ident: bib0007
  article-title: Explicit solutions of fractional differential equations with uncertainty
  publication-title: Soft Comput..
– volume: 13
  start-page: 1269
  year: 2007
  end-page: 1281
  ident: bib0003
  article-title: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems
  publication-title: J. Vib. Contr.
– year: 1994
  ident: bib0013
  article-title: Metric Spaces of Fuzzy Sets
– volume: 38
  start-page: 323
  year: 2004
  end-page: 337
  ident: bib0002
  article-title: A general formulation and solution scheme for fractional optimal control problems
  publication-title: Nonlinear Dyn.
– volume: 24
  start-page: 301
  year: 1987
  end-page: 317
  ident: bib0025
  article-title: Fuzzy differential equations
  publication-title: Fuzzy Sets Syst.
– volume: 17
  start-page: 1372
  year: 2012
  end-page: 1381
  ident: bib0035
  article-title: Solving fuzzy fractional differential equations by fuzzy Laplace transforms
  publication-title: Commun. Nonlinear Sci. Numer. Simul
– volume: 14
  start-page: 304
  year: 1999
  end-page: 311
  ident: bib0009
  article-title: Fractional order state equations for the control of viscoelastically damped structures
  publication-title: J. Guid., Contr. Dyn..
– volume: 271
  start-page: 71
  year: 2014
  end-page: 82
  ident: bib0016
  article-title: A survey on fuzzy fractional variational problems
  publication-title: J. Comput. Appl. Math..
– year: 1997
  ident: 10.1016/j.ins.2017.08.094_bib0012
– year: 1994
  ident: 10.1016/j.ins.2017.08.094_bib0013
– volume: 112
  year: 2012
  ident: 10.1016/j.ins.2017.08.094_bib0034
  article-title: Existence and uniqueness results for fractional differential equations with uncertainty
  publication-title: Adv. Diff. Eqn.
– volume: 13
  start-page: 1269
  issue: 9–10
  year: 2007
  ident: 10.1016/j.ins.2017.08.094_bib0003
  article-title: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems
  publication-title: J. Vib. Contr.
  doi: 10.1177/1077546307077467
– volume: 130
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.ins.2017.08.094_bib0004
  article-title: A quadratic numerical scheme for fractional optimal control problems
  publication-title: J. Dyn. Syst., Measure. Contr.
– volume: 38
  start-page: 571
  year: 2009
  ident: 10.1016/j.ins.2017.08.094_bib0024
  article-title: Optimality conditions and a solution scheme for fractional optimal control problems
  publication-title: Struct. Multidiscip. Optim
  doi: 10.1007/s00158-008-0307-7
– year: 1999
  ident: 10.1016/j.ins.2017.08.094_bib0032
– volume: 38
  start-page: 323
  issue: 1–2
  year: 2004
  ident: 10.1016/j.ins.2017.08.094_bib0002
  article-title: A general formulation and solution scheme for fractional optimal control problems
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-004-3764-6
– volume: 3
  start-page: 479
  issue: 9-12
  year: 2008
  ident: 10.1016/j.ins.2017.08.094_bib0019
  article-title: Fractional optimal control in the sense of Caputo and the fractional Noether's theorem
  publication-title: Int. Math. Forum
– volume: 29
  start-page: 1
  year: 2002
  ident: 10.1016/j.ins.2017.08.094_bib0029
  article-title: Special issue on fractional calculus and applications
  publication-title: Nonlinear Dyn.
  doi: 10.1023/A:1016508704745
– volume: 16
  start-page: 297
  year: 2012
  ident: 10.1016/j.ins.2017.08.094_bib0007
  article-title: Explicit solutions of fractional differential equations with uncertainty
  publication-title: Soft Comput..
  doi: 10.1007/s00500-011-0743-y
– volume: 16
  start-page: 1967
  issue: 13
  year: 2010
  ident: 10.1016/j.ins.2017.08.094_bib0006
  article-title: Fractional optimal control problems with several state and control variables
  publication-title: J. Vib Contr.
  doi: 10.1177/1077546309353361
– volume: 8
  start-page: 225
  year: 1982
  ident: 10.1016/j.ins.2017.08.094_bib0014
  article-title: Towards fuzzy differential calculus
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/S0165-0114(82)80001-8
– volume: 38
  start-page: 1
  issue: 1–4
  year: 2004
  ident: 10.1016/j.ins.2017.08.094_bib0001
  article-title: Special issue: fractional derivatives and their applications-introduction
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-004-3743-y
– volume: 230
  start-page: 119
  year: 2013
  ident: 10.1016/j.ins.2017.08.094_bib0011
  article-title: Generalized differentiability of fuzzy valued functions
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2012.10.003
– volume: 14
  start-page: 1291
  issue: 9-10
  year: 2008
  ident: 10.1016/j.ins.2017.08.094_bib0005
  article-title: A formulation and numerical scheme for fractional optimal control problems
  publication-title: J. Vib. Contr..
  doi: 10.1177/1077546307087451
– volume: 17
  start-page: 1372
  year: 2012
  ident: 10.1016/j.ins.2017.08.094_bib0035
  article-title: Solving fuzzy fractional differential equations by fuzzy Laplace transforms
  publication-title: Commun. Nonlinear Sci. Numer. Simul
  doi: 10.1016/j.cnsns.2011.07.005
– volume: 161
  start-page: 1564
  year: 2010
  ident: 10.1016/j.ins.2017.08.094_bib0036
  article-title: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2009.06.009
– year: 2006
  ident: 10.1016/j.ins.2017.08.094_bib0030
– volume: 18
  start-page: 171
  year: 2005
  ident: 10.1016/j.ins.2017.08.094_bib0015
  article-title: Decreasing rearrangement and a fuzzy variational problem
  publication-title: Appl. Math. Lett
  doi: 10.1016/j.aml.2004.06.021
– year: 2004
  ident: 10.1016/j.ins.2017.08.094_bib0026
– ident: 10.1016/j.ins.2017.08.094_bib0023
– volume: 14
  start-page: 304
  year: 1999
  ident: 10.1016/j.ins.2017.08.094_bib0009
  article-title: Fractional order state equations for the control of viscoelastically damped structures
  publication-title: J. Guid., Contr. Dyn..
  doi: 10.2514/3.20641
– volume: 15
  start-page: 583
  issue: 4
  year: 2009
  ident: 10.1016/j.ins.2017.08.094_bib0010
  article-title: A central difference numerical scheme for fractional optimal control problems
  publication-title: J. Vib. Contr.
  doi: 10.1177/1077546308088565
– year: 2000
  ident: 10.1016/j.ins.2017.08.094_bib0022
– volume: 10
  start-page: 363
  issue: 2
  year: 2014
  ident: 10.1016/j.ins.2017.08.094_bib0033
  article-title: Fractional optimal control problems with free terminal time
  publication-title: J. Ind. Manage. Optim. (JIMO)
  doi: 10.3934/jimo.2014.10.363
– volume: 265
  start-page: 1
  year: 2015
  ident: 10.1016/j.ins.2017.08.094_bib0008
  article-title: On fuzzy solutions for heat equation based on generalized Hukuhara differentiability
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2014.11.009
– volume: 24
  start-page: 301
  year: 1987
  ident: 10.1016/j.ins.2017.08.094_bib0025
  article-title: Fuzzy differential equations
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(87)90029-7
– volume: 181
  start-page: 1348
  year: 2011
  ident: 10.1016/j.ins.2017.08.094_bib0017
  article-title: Necessary optimality conditions for fuzzy variational problems
  publication-title: Info. Sci.
  doi: 10.1016/j.ins.2010.11.027
– volume: 53
  start-page: 215
  issue: 3
  year: 2008
  ident: 10.1016/j.ins.2017.08.094_bib0018
  article-title: Fractional conservation laws in optimal control theory
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-007-9309-z
– year: 2012
  ident: 10.1016/j.ins.2017.08.094_bib0028
– volume: 18
  start-page: 31
  year: 1986
  ident: 10.1016/j.ins.2017.08.094_bib0021
  article-title: Elementary fuzzy calculus
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(86)90026-6
– volume: 32
  start-page: 585
  year: 2003
  ident: 10.1016/j.ins.2017.08.094_bib0031
  article-title: Optimal control of constrained delay-differential inclusions with multivalued initial conditions
  publication-title: J. Contr. Cybern.
– volume: 271
  start-page: 71
  year: 2014
  ident: 10.1016/j.ins.2017.08.094_bib0016
  article-title: A survey on fuzzy fractional variational problems
  publication-title: J. Comput. Appl. Math..
  doi: 10.1016/j.cam.2014.03.019
SSID ssj0004766
Score 2.3682456
Snippet This paper presents an extension to fractional optimal control problems with ambiguity. As the ambiguity is modeled with fuzzy method, we encounter with a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 218
SubjectTerms Fuzzy fractional calculus
Fuzzy fractional derivative
Fuzzy fractional differential equations
Fuzzy fractional optimal control
Fuzzy integral
Generalized Hakahara differentiability
Title On the solution of fuzzy fractional optimal control problems with the Caputo derivative
URI https://dx.doi.org/10.1016/j.ins.2017.08.094
Volume 421
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BSsNAEB1KvehBtCpWbdmDeBBim2SbdI-lWKpivVTsLWyyu1DRpNRWsAe_3ZlkoxXUg6eQZYcNk9mZl-zMG4BT3GRxYIgBoKukg4hYO9JI7nDPcxXxgbiaTnRvR8Hwnl9POpMK9MtaGEqrtL6_8Om5t7YjLavN1mw6pRpfL0fELhqpwChJFew8JCu_eP9K88CRoEjzaDs0uzzZzHO8pikxdrthzuIp-M-xaS3eDHZg2wJF1iueZRcqOq3B1hp9YA0atuiAnTFbVURaZna77sHDXcoQ37HSvFhmmFmuVm_MzIt6BlwgQ5_xjFebs85sh5kXRn9oc_G-nC0XGVO46mtOE74P48HluD90bCMFJ_FEuHAEIuhYGo26crkJQ_TP2sNPF5UY5ftcC8M7nlYcP2-6vqtll0jIlG9CJYiexj-Aapql-hCYSDq-DlBSJorrgJNTwLEYkYKQ6Crr0C41GCWWZJx6XTxFZTbZY4RKj0jpEfW_FLwO558is4Jh46_JvHwt0TcziTAC_C529D-xY9ikuyJ75QSqi_lSNxCDLOJmbmRN2Ohd3QxHHy802-A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qe1APolWxanUP4kEINckm6R5LsVT74aVibyHN7kJFk1Jbwf56Z5KNVlAPngKbDBsms29mszNvAC5wkU18TQwATRlZGBErK9IRt7jj2JL4QGxFJ7qDod994Hdjb1yCdlELQ2mVBvtzTM_Q2ow0jDYbs-mUanydLCK20UgFeskNqBA7lVeGSuu21x1-lUcG-ZEl7ZRIoDjczNK8pgmRdttBRuQp-M_uac3ldHZhx8SKrJW_zh6UVFKF7TUGwSrUTd0Bu2SmsIgUzcyK3YfH-4RhiMcKC2OpZnq5Wr0zPc9LGnCCFGHjBa8mbZ2ZJjOvjH7SZuLtaLZcpEzirG8ZU_gBjDo3o3bXMr0UrNgRwcISGERPIq1QXTbXQYAQrRzcvchYS9flSmjuOUpy3OE0XVtFTeIhk64OpCCGGvcQykmaqCNgIvZc5aNkFEuufE64gGMTDBZEhGhZg-tCg2FseMap3cVzWCSUPYWo9JCUHlILTMFrcPUpMstJNv56mBefJfxmKSE6gd_Fjv8ndg6b3dGgH_Zvh70T2KI7eTLLKZQX86WqY0iymJwZk_sAwW7ekQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+solution+of+fuzzy+fractional+optimal+control+problems+with+the+Caputo+derivative&rft.jtitle=Information+sciences&rft.au=Alinezhad%2C+M.&rft.au=Allahviranloo%2C+T.&rft.date=2017-12-01&rft.issn=0020-0255&rft.volume=421&rft.spage=218&rft.epage=236&rft_id=info:doi/10.1016%2Fj.ins.2017.08.094&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2017_08_094
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon