Buckling design of stiffened cylindrical shells under axial compression based on energy barrier approach

Buckling design of axially compressed cylindrical shells is still a challenging subject due to the well-known imperfection sensitivity characteristic. Compared to the unstiffened ones, design of buckling loads for the stiffened cylindrical shells composed of skins and stiffeners is more difficult co...

Full description

Saved in:
Bibliographic Details
Published inThin-walled structures Vol. 179; p. 109667
Main Authors Fan, Haigui, Li, Longhua, Gu, Wenguang, Liu, Peiqi, Hu, Dapeng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Buckling design of axially compressed cylindrical shells is still a challenging subject due to the well-known imperfection sensitivity characteristic. Compared to the unstiffened ones, design of buckling loads for the stiffened cylindrical shells composed of skins and stiffeners is more difficult considering about the complicated effects of structural parameters on the imperfection sensitivity. In this paper, the promising buckling design method based on energy barrier approach is applied to the axially compressed stiffened cylindrical shells. Three manufactured stiffened cylindrical shells from references are selected to verify the reliability of the method by comparing with the existing experimental data. In addition, various stiffened cylindrical shell models with dimple imperfections are designed and numerically researched in this paper to further prove the reliable design buckling loads provided by this method. The buckling loads designed by other similar methods are also taken for comparison. Results have verified the reliability and advantage of the method in this paper for clarifying imperfection sensitivity and designing buckling loads of stiffened cylindrical shells. Then, using this method, the complicated effects of different structural parameters on the imperfection sensitivity and design buckling loads of the stiffened cylindrical shells are systematically investigated. Based on that, the stiffened cylindrical shells with both high design buckling loads and quite low imperfection sensitivity which are always favorable in lightweight design have been successfully obtained. It also indicates a potential improvement for the load-carrying efficiency of current stiffened cylindrical shells using the buckling design method based on energy barrier approach. •Buckling design of stiffened cylindrical shells by energy barrier approach is presented.•Reliability and advantage of the buckling design method are verified by numerical and existing experimental results.•Parametric effects on design buckling loads of stiffened cylindrical shells are clarified.•The cylindrical shells with both high buckling loads and low imperfection sensitivity are obtained.
AbstractList Buckling design of axially compressed cylindrical shells is still a challenging subject due to the well-known imperfection sensitivity characteristic. Compared to the unstiffened ones, design of buckling loads for the stiffened cylindrical shells composed of skins and stiffeners is more difficult considering about the complicated effects of structural parameters on the imperfection sensitivity. In this paper, the promising buckling design method based on energy barrier approach is applied to the axially compressed stiffened cylindrical shells. Three manufactured stiffened cylindrical shells from references are selected to verify the reliability of the method by comparing with the existing experimental data. In addition, various stiffened cylindrical shell models with dimple imperfections are designed and numerically researched in this paper to further prove the reliable design buckling loads provided by this method. The buckling loads designed by other similar methods are also taken for comparison. Results have verified the reliability and advantage of the method in this paper for clarifying imperfection sensitivity and designing buckling loads of stiffened cylindrical shells. Then, using this method, the complicated effects of different structural parameters on the imperfection sensitivity and design buckling loads of the stiffened cylindrical shells are systematically investigated. Based on that, the stiffened cylindrical shells with both high design buckling loads and quite low imperfection sensitivity which are always favorable in lightweight design have been successfully obtained. It also indicates a potential improvement for the load-carrying efficiency of current stiffened cylindrical shells using the buckling design method based on energy barrier approach. •Buckling design of stiffened cylindrical shells by energy barrier approach is presented.•Reliability and advantage of the buckling design method are verified by numerical and existing experimental results.•Parametric effects on design buckling loads of stiffened cylindrical shells are clarified.•The cylindrical shells with both high buckling loads and low imperfection sensitivity are obtained.
ArticleNumber 109667
Author Li, Longhua
Hu, Dapeng
Gu, Wenguang
Liu, Peiqi
Fan, Haigui
Author_xml – sequence: 1
  givenname: Haigui
  surname: Fan
  fullname: Fan, Haigui
  email: haigui@dlut.edu.cn
– sequence: 2
  givenname: Longhua
  surname: Li
  fullname: Li, Longhua
– sequence: 3
  givenname: Wenguang
  surname: Gu
  fullname: Gu, Wenguang
– sequence: 4
  givenname: Peiqi
  surname: Liu
  fullname: Liu, Peiqi
– sequence: 5
  givenname: Dapeng
  surname: Hu
  fullname: Hu, Dapeng
BookMark eNp9kMtOwzAQRS1UJFrgA9j5B1L8aO1ErKDiJVViA2trYk9al9SJ7BTo3-OqrFh0NXceZ6R7J2QUuoCE3HA25Yyr2810-E5TwYTIfaWUPiNjXuqqkELIERkzoWRRCskvyCSlDWNc82o2JuuHnf1sfVhRh8mvAu0amgbfNBjQUbvPKxe9hZamNbZtorvgMFL48Xlku20fMSXfBVpDykAWGYyrfe5j9IfLvo8d2PUVOW-gTXj9Vy_Jx9Pj--KlWL49vy7ul4UVlR6KSgvmamAahLKADqQqUZcVspl2GqRW5dwpFDhHEFDOBdhaWYFNzWdZlvKS8ONfG7uUIjamj34LcW84M4eozMbkqMwhKnOMKjP6H2P9AEO2NUTw7Uny7khitvSV_ZpkPQaLzke0g3GdP0H_Ar-JiQc
CitedBy_id crossref_primary_10_1016_j_tws_2024_111963
crossref_primary_10_1016_j_tws_2024_111646
crossref_primary_10_1016_j_tws_2024_112889
crossref_primary_10_1007_s00158_024_03950_4
crossref_primary_10_1016_j_tws_2024_112410
crossref_primary_10_1016_j_oceaneng_2025_120950
crossref_primary_10_1016_j_apor_2024_104221
crossref_primary_10_1016_j_jcsr_2025_109439
crossref_primary_10_1016_j_ijmecsci_2022_107720
crossref_primary_10_1016_j_ijsolstr_2023_112327
crossref_primary_10_1016_j_istruc_2024_106280
crossref_primary_10_3390_pr12102120
Cites_doi 10.1016/j.tws.2019.02.034
10.2514/6.2018-1697
10.1142/S0218127415300013
10.1016/j.compstruct.2019.02.103
10.1016/j.ijsolstr.2019.01.001
10.1016/j.ijmecsci.2018.07.016
10.1007/s10409-013-0043-0
10.1016/0020-7683(83)90056-2
10.1016/j.ijmecsci.2017.11.020
10.1142/S0218127417300488
10.1016/0263-8231(95)00005-X
10.1016/j.ijsolstr.2013.10.003
10.1016/j.tws.2016.09.008
10.1016/j.ijmecsci.2019.02.047
10.2514/6.2012-1689
10.1115/1.4049806
10.2514/1.5429
10.1016/j.ijsolstr.2018.01.030
10.1115/1.4040455
10.1016/j.tws.2018.09.028
10.1016/j.ijsolstr.2017.04.026
10.1016/S1359-8368(02)00074-4
10.1016/j.ijpvp.2019.104015
10.1016/j.compstruct.2015.05.012
10.2514/6.2012-1865
10.1016/j.compstruct.2019.111152
10.1137/050635778
10.1016/j.tws.2008.01.043
10.1016/j.tws.2013.06.016
10.2514/6.2018-1987
10.1016/j.ijmecsci.2019.06.028
10.1007/s10443-016-9527-y
10.1016/j.tws.2015.04.031
10.1016/j.compstruct.2017.02.031
10.1103/PhysRevLett.119.224101
10.1016/j.compstruc.2006.08.016
10.2514/1.J051522
10.1142/S0219455421501650
10.1016/j.tws.2013.08.011
10.1016/j.ast.2016.12.002
10.1016/j.tws.2014.04.004
10.1016/j.compstruct.2015.10.022
10.2514/6.2018-1696
10.1016/j.compstruct.2005.11.047
10.1016/j.ijsolstr.2017.10.034
10.1016/0263-8231(95)00013-4
10.1016/j.tws.2021.107454
10.1016/j.tws.2020.106931
10.1007/s10443-015-9447-2
10.1016/j.compstruct.2016.05.096
10.2514/2.3952
10.1016/j.compstruct.2016.10.108
10.1016/j.compositesb.2015.09.023
10.1016/j.tws.2014.05.004
10.1016/j.tws.2019.106373
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.tws.2022.109667
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3223
ExternalDocumentID 10_1016_j_tws_2022_109667
S026382312200430X
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WH7
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-9720dba07a26caeda368e789e047d7a37685d6e2e5ea2a852acb6c2efb14acb83
IEDL.DBID .~1
ISSN 0263-8231
IngestDate Thu Apr 24 23:11:11 EDT 2025
Tue Jul 01 03:59:08 EDT 2025
Fri Feb 23 02:39:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Knockdown factor
Imperfection sensitivity
Axial compression
Buckling
Stiffened cylindrical shell
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-9720dba07a26caeda368e789e047d7a37685d6e2e5ea2a852acb6c2efb14acb83
ParticipantIDs crossref_primary_10_1016_j_tws_2022_109667
crossref_citationtrail_10_1016_j_tws_2022_109667
elsevier_sciencedirect_doi_10_1016_j_tws_2022_109667
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationTitle Thin-walled structures
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Castro, Zimmermann, Arbelo, Degenhardt (b10) 2013; 72
Jiao, Chen, Tang, Su, Wu (b31) 2018; 133
Huang, Ren, Li, Chang, Cong, Lei (b18) 2016; 85
Thompson, Hutchinson, Sieber (b50) 2017; 27
Cai, Xu, Cheng (b22) 2014; 51
Wagner, Hühne, Niemann (b25) 2020; 155
Degenhardt (b26) 2011
Yadav, Cuccia, Virot, Rubinstein, Gerasimidis (b52) 2021; 88
Sosa, Godoy, Croll (b42) 2006; 84
Hühne, Rolfes, Tessmer (b28) 2005
Wang, Du, Hao, Tian, Chao, Jiang, Zhang (b9) 2019; 164
Horák, Lord, Peletier (b60) 2006; 66
Venkataraman, Lamberti, Haftka, Johnson (b5) 2003; 40
Wagner, Hühne, Rohwer, Niemann, Wiedemann (b36) 2017; 160
Wang, Tian, Zhou, Hao, Zheng, Ma, Wang (b15) 2017; 62
Hühne, Rolfes, Breitbach, Tezmer (b27) 2008; 46
D.W. Sleight, A. Satyanarayana, M.R. Schultz, Buckling imperfection sensitivity of conical sandwich composite structures for launch-vehicles, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, p. 1696.
M.W. Hilburger, M.C. Lindell, W.A. Waters, N.W. Gardner, Test and analysis of buckling-critical stiffened metallic launch vehicle cylinders, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, p. 1697.
Wagner (b39) 2019
Croll, Ellinas (b41) 1983; 19
Wagner, Petersen, Khakimova, Hühne (b13) 2019; 225
Hutchinson, Thompson (b47) 2018; 148
Wang, Hao, Li, Tian, Wang, Zhang, Tang (b32) 2013
Hao, Wang, Li, Meng, Tian, Tang (b4) 2014; 82
Cheng, Cai, Xu (b21) 2013; 29
Song, Wen, Cui, Zhang, Xu (b17) 2016; 23
Wang, Du, Hao, Zhou, Tian, Xu, Zhang (b14) 2016; 109
Gerasimidis, Virot, Hutchinson, Rubinstein (b35) 2018; 85
Hilburger, Waters, Haynie (b56) 2015
W. Haynie, M. Hilburger, M. Bogge, M. Maspoli, B. Kriegesmann, Validation of lower-bound estimates for compression-loaded cylindrical shells, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012, p. 1689.
Wagner, Sosa, Ludwig, Croll, Hühne (b43) 2019; 156
Virot, Kreilos, Schneider, Rubinstein (b51) 2017; 119
Lanzi, Giavotto (b2) 2006; 73
M. Hilburger, A. Lovejoy, R. Thornburgh, C. Rankin, Design and analysis of subscale and full-scale buckling-critical cylinders for launch vehicle technology development, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012, 1865.
Wagner, Köke, Dähne, Niemann, Hühne, Khakimova (b8) 2019; 220
(b63) 2007
Hao, Wang, Du, Li, Tian, Sun, Ma (b30) 2016; 136
Calladine (b6) 1995; 23
Wagner, Hühne, Khakimova (b38) 2018; 146
Wang, Tian, Hao, Cai, Li, Sun (b20) 2015; 132
Evkin, Lykhachova (b49) 2021; 161
Kidane, Li, Helms, Pang, Woldesenbet (b16) 2003; 34
Hao, Wang, Li (b3) 2012; 50
Groh, Pirrera (b54) 2019; 475
Wagner, Hühne, Zhang, Tang (b45) 2020; 179
Wang, Tian, Hao, Zheng, Ma, Wang (b23) 2016; 152
M.T. Rudd, M.W. Hilburger, A.E. Lovejoy, M.C. Lindell, N.W. Gardner, M.R. Schultz, Buckling response of a large-scale, seamless, orthogrid-stiffened metallic cylinder, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, 1987.
Meng, Hao, Li, Wang, Zhang (b1) 2015; 94
Evkin (b48) 2019; 160
Hilburger, Nemeth, Starnes Jr. (b12) 2006; 44
Wang, Tian, Zhao, Hao, Zhu, Zhang, Ma (b24) 2017; 24
Wang, Du, Hao, Tian, Chao, Jiang, Zhang (b61) 2019; 164
Tian, Wang, Hao, Waas (b19) 2018; 148
Croll (b40) 1995; 23
Thompson (b46) 2015; 25
Wagner, Hühne, Niemann (b29) 2017; 173
Wagner, Hühne, Khakimova (b44) 2019; 145
Castro, Zimmermann, Arbelo, Khakimova, Hilburger, Degenhardt (b62) 2014; 74
Hao, Wang, Li, Meng, Tian, Zeng, Tang (b33) 2014; 82
Wagner, Hühne (b37) 2018; 135
Evkin, Lykhachova (b53) 2017; 118
Fan (b55) 2019; 139
Fan, Gu, Li, Liu, Hu (b7) 2021
Song (10.1016/j.tws.2022.109667_b17) 2016; 23
Jiao (10.1016/j.tws.2022.109667_b31) 2018; 133
Wagner (10.1016/j.tws.2022.109667_b39) 2019
Thompson (10.1016/j.tws.2022.109667_b46) 2015; 25
10.1016/j.tws.2022.109667_b11
Wagner (10.1016/j.tws.2022.109667_b37) 2018; 135
Wagner (10.1016/j.tws.2022.109667_b44) 2019; 145
10.1016/j.tws.2022.109667_b59
Hao (10.1016/j.tws.2022.109667_b3) 2012; 50
10.1016/j.tws.2022.109667_b57
10.1016/j.tws.2022.109667_b58
Virot (10.1016/j.tws.2022.109667_b51) 2017; 119
Fan (10.1016/j.tws.2022.109667_b55) 2019; 139
Wang (10.1016/j.tws.2022.109667_b15) 2017; 62
Evkin (10.1016/j.tws.2022.109667_b49) 2021; 161
Venkataraman (10.1016/j.tws.2022.109667_b5) 2003; 40
Hühne (10.1016/j.tws.2022.109667_b27) 2008; 46
Wagner (10.1016/j.tws.2022.109667_b43) 2019; 156
Kidane (10.1016/j.tws.2022.109667_b16) 2003; 34
Horák (10.1016/j.tws.2022.109667_b60) 2006; 66
Wang (10.1016/j.tws.2022.109667_b32) 2013
Tian (10.1016/j.tws.2022.109667_b19) 2018; 148
Castro (10.1016/j.tws.2022.109667_b62) 2014; 74
Croll (10.1016/j.tws.2022.109667_b41) 1983; 19
Thompson (10.1016/j.tws.2022.109667_b50) 2017; 27
Wang (10.1016/j.tws.2022.109667_b23) 2016; 152
Wagner (10.1016/j.tws.2022.109667_b25) 2020; 155
Evkin (10.1016/j.tws.2022.109667_b53) 2017; 118
Degenhardt (10.1016/j.tws.2022.109667_b26) 2011
Wagner (10.1016/j.tws.2022.109667_b29) 2017; 173
Wang (10.1016/j.tws.2022.109667_b24) 2017; 24
Cai (10.1016/j.tws.2022.109667_b22) 2014; 51
Wagner (10.1016/j.tws.2022.109667_b13) 2019; 225
Wagner (10.1016/j.tws.2022.109667_b38) 2018; 146
Wang (10.1016/j.tws.2022.109667_b61) 2019; 164
Evkin (10.1016/j.tws.2022.109667_b48) 2019; 160
Hühne (10.1016/j.tws.2022.109667_b28) 2005
Huang (10.1016/j.tws.2022.109667_b18) 2016; 85
10.1016/j.tws.2022.109667_b34
Hilburger (10.1016/j.tws.2022.109667_b56) 2015
Yadav (10.1016/j.tws.2022.109667_b52) 2021; 88
Wang (10.1016/j.tws.2022.109667_b14) 2016; 109
Fan (10.1016/j.tws.2022.109667_b7) 2021
Croll (10.1016/j.tws.2022.109667_b40) 1995; 23
Hao (10.1016/j.tws.2022.109667_b30) 2016; 136
(10.1016/j.tws.2022.109667_b63) 2007
Hutchinson (10.1016/j.tws.2022.109667_b47) 2018; 148
Gerasimidis (10.1016/j.tws.2022.109667_b35) 2018; 85
Wang (10.1016/j.tws.2022.109667_b9) 2019; 164
Groh (10.1016/j.tws.2022.109667_b54) 2019; 475
Calladine (10.1016/j.tws.2022.109667_b6) 1995; 23
Wagner (10.1016/j.tws.2022.109667_b45) 2020; 179
Wang (10.1016/j.tws.2022.109667_b20) 2015; 132
Hao (10.1016/j.tws.2022.109667_b4) 2014; 82
Hao (10.1016/j.tws.2022.109667_b33) 2014; 82
Cheng (10.1016/j.tws.2022.109667_b21) 2013; 29
Lanzi (10.1016/j.tws.2022.109667_b2) 2006; 73
Wagner (10.1016/j.tws.2022.109667_b8) 2019; 220
Sosa (10.1016/j.tws.2022.109667_b42) 2006; 84
Meng (10.1016/j.tws.2022.109667_b1) 2015; 94
Castro (10.1016/j.tws.2022.109667_b10) 2013; 72
Hilburger (10.1016/j.tws.2022.109667_b12) 2006; 44
Wagner (10.1016/j.tws.2022.109667_b36) 2017; 160
References_xml – reference: M.W. Hilburger, M.C. Lindell, W.A. Waters, N.W. Gardner, Test and analysis of buckling-critical stiffened metallic launch vehicle cylinders, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, p. 1697.
– volume: 44
  start-page: 654
  year: 2006
  end-page: 663
  ident: b12
  article-title: Shell buckling design criteria based on manufacturing imperfection signatures
  publication-title: AIAA J.
– volume: 156
  start-page: 205
  year: 2019
  end-page: 220
  ident: b43
  article-title: Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure
  publication-title: Int. J. Mech. Sci.
– year: 2005
  ident: b28
  article-title: A new approach for robust design of composite cylindrical shells under axial compression
  publication-title: Spacecraft Structures, Materials and Mechanical Testing, Vol. 581
– volume: 164
  start-page: 37
  year: 2019
  end-page: 51
  ident: b9
  article-title: Experimental validation of cylindrical shells under axial compression for improved knockdown factors
  publication-title: Int. J. Solids Struct.
– volume: 85
  start-page: 41
  year: 2016
  end-page: 49
  ident: b18
  article-title: Trans-scale modeling framework for failure analysis of cryogenic composite tanks
  publication-title: Composites B
– volume: 29
  start-page: 550
  year: 2013
  end-page: 556
  ident: b21
  article-title: Novel implementation of homogenization method to predict effective properties of periodic materials
  publication-title: Acta Mech. Sinica
– volume: 85
  year: 2018
  ident: b35
  article-title: On establishing buckling knockdowns for imperfection-sensitive shell structures
  publication-title: J. Appl. Mech.
– volume: 173
  start-page: 281
  year: 2017
  end-page: 303
  ident: b29
  article-title: Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells–development and validation
  publication-title: Compos. Struct.
– year: 2019
  ident: b39
  article-title: Robust Design of Buckling Critical Thin-Walled Shell Structures
– volume: 27
  year: 2017
  ident: b50
  article-title: Probing shells against buckling: a nondestructive technique for laboratory testing
  publication-title: Int. J. Bifurcation Chaos
– volume: 118
  start-page: 14
  year: 2017
  end-page: 23
  ident: b53
  article-title: Energy barrier as a criterion for stability estimation of spherical shell under uniform external pressure
  publication-title: Int. J. Solids Struct.
– volume: 62
  start-page: 114
  year: 2017
  end-page: 121
  ident: b15
  article-title: Grid-pattern optimization framework of novel hierarchical stiffened shells allowing for imperfection sensitivity
  publication-title: Aerosp. Sci. Technol.
– volume: 225
  year: 2019
  ident: b13
  article-title: Buckling analysis of an imperfection-insensitive hybrid composite cylinder under axial compression–numerical simulation, destructive and non-destructive experimental testing
  publication-title: Compos. Struct.
– year: 2007
  ident: b63
  article-title: BS EN 1993-1-6, Eurocode 3: Design of steel structures, strength and stability of shell structures, CEN, Brussels
– volume: 155
  year: 2020
  ident: b25
  article-title: Buckling of launch-vehicle cylinders under axial compression: A comparison of experimental and numerical knockdown factors
  publication-title: Thin-Walled Struct.
– volume: 73
  start-page: 208
  year: 2006
  end-page: 220
  ident: b2
  article-title: Post-buckling optimization of composite stiffened panels: computations and experiments
  publication-title: Compos. Struct.
– volume: 160
  start-page: 51
  year: 2019
  end-page: 58
  ident: b48
  article-title: Dynamic energy barrier estimation for spherical shells under external pressure
  publication-title: Int. J. Mech. Sci.
– volume: 148
  start-page: 157
  year: 2018
  end-page: 168
  ident: b47
  article-title: Imperfections and energy barriers in shell buckling
  publication-title: Int. J. Solids Struct.
– volume: 119
  year: 2017
  ident: b51
  article-title: Stability landscape of shell buckling
  publication-title: Phys. Rev. Lett.
– volume: 51
  start-page: 284
  year: 2014
  end-page: 292
  ident: b22
  article-title: Novel numerical implementation of asymptotic homogenization method for periodic plate structures
  publication-title: Int. J. Solids Struct.
– volume: 72
  start-page: 76
  year: 2013
  end-page: 87
  ident: b10
  article-title: Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors
  publication-title: Thin-Walled Struct.
– volume: 109
  start-page: 13
  year: 2016
  end-page: 24
  ident: b14
  article-title: Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression
  publication-title: Thin-Walled Struct.
– volume: 133
  start-page: 1
  year: 2018
  end-page: 16
  ident: b31
  article-title: Design of axially loaded isotropic cylindrical shells using multiple perturbation load approach–simulation and validation
  publication-title: Thin-Walled Struct.
– volume: 19
  start-page: 461
  year: 1983
  end-page: 477
  ident: b41
  article-title: Reduced stiffness axial load buckling of cylinders
  publication-title: Int. J. Solids Struct.
– volume: 136
  start-page: 405
  year: 2016
  end-page: 413
  ident: b30
  article-title: Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach
  publication-title: Compos. Struct.
– volume: 50
  start-page: 2389
  year: 2012
  end-page: 2407
  ident: b3
  article-title: Surrogate-based optimum design for stiffened shells with adaptive sampling
  publication-title: AIAA J.
– volume: 24
  start-page: 575
  year: 2017
  end-page: 592
  ident: b24
  article-title: Multilevel optimization framework for hierarchical stiffened shells accelerated by adaptive equivalent strategy
  publication-title: Appl. Compos. Mater.
– volume: 94
  start-page: 325
  year: 2015
  end-page: 333
  ident: b1
  article-title: Non-probabilistic reliability-based design optimization of stiffened shells under buckling constraint
  publication-title: Thin-Walled Struct.
– volume: 220
  start-page: 45
  year: 2019
  end-page: 63
  ident: b8
  article-title: Decision tree-based machine learning to optimize the laminate stacking of composite cylinders for maximum buckling load and minimum imperfection sensitivity
  publication-title: Compos. Struct.
– volume: 145
  year: 2019
  ident: b44
  article-title: On the development of shell buckling knockdown factors for imperfection sensitive conical shells under pure bending
  publication-title: Thin-Walled Struct.
– volume: 139
  start-page: 91
  year: 2019
  end-page: 104
  ident: b55
  article-title: Critical buckling load prediction of axially compressed cylindrical shell based on non-destructive probing method
  publication-title: Thin-Walled Struct.
– volume: 25
  year: 2015
  ident: b46
  article-title: Advances in shell buckling: theory and experiments
  publication-title: Int. J. Bifurcation Chaos
– volume: 23
  start-page: 29
  year: 2016
  end-page: 44
  ident: b17
  article-title: Finite element analysis of 2.5 D woven composites, part I: microstructure and 3D finite element model
  publication-title: Appl. Compos. Mater.
– year: 2011
  ident: b26
  article-title: New robust design guideline for imperfection sensitive composite launcher structures
– volume: 84
  start-page: 1934
  year: 2006
  end-page: 1945
  ident: b42
  article-title: Computation of lower-bound elastic buckling loads using general-purpose finite element codes
  publication-title: Comput. Struct.
– volume: 164
  start-page: 37
  year: 2019
  end-page: 51
  ident: b61
  article-title: Experimental validation of cylindrical shells under axial compression for improved knockdown factors
  publication-title: Int. J. Solids Struct.
– volume: 135
  start-page: 410
  year: 2018
  end-page: 430
  ident: b37
  article-title: Robust knockdown factors for the design of cylindrical shells under axial compression: potentials, practical application and reliability analysis
  publication-title: Int. J. Mech. Sci.
– volume: 66
  start-page: 1793
  year: 2006
  end-page: 1824
  ident: b60
  article-title: Cylinder buckling: the mountain pass as an organizing center
  publication-title: SIAM J. Appl. Math.
– reference: W. Haynie, M. Hilburger, M. Bogge, M. Maspoli, B. Kriegesmann, Validation of lower-bound estimates for compression-loaded cylindrical shells, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012, p. 1689.
– volume: 82
  start-page: 321
  year: 2014
  end-page: 330
  ident: b33
  article-title: Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors
  publication-title: Thin-Walled Struct.
– reference: M. Hilburger, A. Lovejoy, R. Thornburgh, C. Rankin, Design and analysis of subscale and full-scale buckling-critical cylinders for launch vehicle technology development, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012, 1865.
– volume: 161
  year: 2021
  ident: b49
  article-title: Energy barrier method for estimation of design buckling load of axially compressed elasto-plastic cylindrical shells
  publication-title: Thin-Walled Struct.
– volume: 475
  year: 2019
  ident: b54
  article-title: On the role of localizations in buckling of axially compressed cylinders
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 40
  start-page: 183
  year: 2003
  end-page: 192
  ident: b5
  article-title: Challenges in comparing numerical solutions for optimum weights of stiffened shells
  publication-title: J. Spacecr. Rockets
– volume: 88
  year: 2021
  ident: b52
  article-title: A nondestructive technique for the evaluation of thin cylindrical shells’ axial buckling capacity
  publication-title: J. Appl. Mech.
– volume: 23
  start-page: 215
  year: 1995
  end-page: 235
  ident: b6
  article-title: Understanding imperfection-sensitivity in the buckling of thin-walled shells
  publication-title: Thin-Walled Struct.
– volume: 152
  start-page: 807
  year: 2016
  end-page: 815
  ident: b23
  article-title: Numerical-based smeared stiffener method for global buckling analysis of grid-stiffened composite cylindrical shells
  publication-title: Compos. Struct.
– volume: 74
  start-page: 118
  year: 2014
  end-page: 132
  ident: b62
  article-title: Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells
  publication-title: Thin-Walled Struct.
– reference: D.W. Sleight, A. Satyanarayana, M.R. Schultz, Buckling imperfection sensitivity of conical sandwich composite structures for launch-vehicles, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, p. 1696.
– volume: 148
  start-page: 14
  year: 2018
  end-page: 23
  ident: b19
  article-title: A high-fidelity approximate model for determining lower-bound buckling loads for stiffened shells
  publication-title: Int. J. Solids Struct.
– volume: 146
  start-page: 60
  year: 2018
  end-page: 80
  ident: b38
  article-title: Towards robust knockdown factors for the design of conical shells under axial compression
  publication-title: Int. J. Mech. Sci.
– volume: 34
  start-page: 1
  year: 2003
  end-page: 9
  ident: b16
  article-title: Buckling load analysis of grid stiffened composite cylinders
  publication-title: Composites B
– volume: 82
  start-page: 46
  year: 2014
  end-page: 54
  ident: b4
  article-title: Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method
  publication-title: Thin-Walled Struct.
– year: 2021
  ident: b7
  article-title: Buckling design of axially compressed cylindrical shells based on energy barrier approach
  publication-title: Int. J. Struct. Stab. Dyn.
– volume: 132
  start-page: 136
  year: 2015
  end-page: 147
  ident: b20
  article-title: Hybrid analysis and optimization of hierarchical stiffened plates based on asymptotic homogenization method
  publication-title: Compos. Struct.
– volume: 160
  start-page: 1095
  year: 2017
  end-page: 1104
  ident: b36
  article-title: Stimulating the realistic worst case buckling scenario of axially compressed unstiffened cylindrical composite shells
  publication-title: Compos. Struct.
– reference: M.T. Rudd, M.W. Hilburger, A.E. Lovejoy, M.C. Lindell, N.W. Gardner, M.R. Schultz, Buckling response of a large-scale, seamless, orthogrid-stiffened metallic cylinder, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, 1987.
– start-page: 263
  year: 2013
  end-page: 266
  ident: b32
  article-title: Improved knockdown factors for cylindrical shells using worst multi-perturbation load approach
  publication-title: Shell Structures: Theory and Application, Vol. 3
– volume: 179
  year: 2020
  ident: b45
  article-title: On the imperfection sensitivity and design of spherical domes under external pressure
  publication-title: Int. J. Press. Vessels Pip.
– volume: 23
  start-page: 67
  year: 1995
  end-page: 84
  ident: b40
  article-title: Towards a rationally based elastic–plastic shell buckling design methodology
  publication-title: Thin-Walled Struct.
– volume: 46
  start-page: 947
  year: 2008
  end-page: 962
  ident: b27
  article-title: Robust design of composite cylindrical shells under axial compression—simulation and validation
  publication-title: Thin-Walled Struct.
– year: 2015
  ident: b56
  article-title: Buckling test results from the 8-foot-diameter orthogrid-stiffened cylinder test article TA01
– volume: 139
  start-page: 91
  year: 2019
  ident: 10.1016/j.tws.2022.109667_b55
  article-title: Critical buckling load prediction of axially compressed cylindrical shell based on non-destructive probing method
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2019.02.034
– ident: 10.1016/j.tws.2022.109667_b57
  doi: 10.2514/6.2018-1697
– year: 2005
  ident: 10.1016/j.tws.2022.109667_b28
  article-title: A new approach for robust design of composite cylindrical shells under axial compression
– volume: 25
  issue: 01
  year: 2015
  ident: 10.1016/j.tws.2022.109667_b46
  article-title: Advances in shell buckling: theory and experiments
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S0218127415300013
– volume: 220
  start-page: 45
  year: 2019
  ident: 10.1016/j.tws.2022.109667_b8
  article-title: Decision tree-based machine learning to optimize the laminate stacking of composite cylinders for maximum buckling load and minimum imperfection sensitivity
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.02.103
– volume: 164
  start-page: 37
  year: 2019
  ident: 10.1016/j.tws.2022.109667_b9
  article-title: Experimental validation of cylindrical shells under axial compression for improved knockdown factors
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2019.01.001
– volume: 146
  start-page: 60
  year: 2018
  ident: 10.1016/j.tws.2022.109667_b38
  article-title: Towards robust knockdown factors for the design of conical shells under axial compression
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2018.07.016
– volume: 29
  start-page: 550
  issue: 4
  year: 2013
  ident: 10.1016/j.tws.2022.109667_b21
  article-title: Novel implementation of homogenization method to predict effective properties of periodic materials
  publication-title: Acta Mech. Sinica
  doi: 10.1007/s10409-013-0043-0
– start-page: 263
  year: 2013
  ident: 10.1016/j.tws.2022.109667_b32
  article-title: Improved knockdown factors for cylindrical shells using worst multi-perturbation load approach
– volume: 19
  start-page: 461
  issue: 5
  year: 1983
  ident: 10.1016/j.tws.2022.109667_b41
  article-title: Reduced stiffness axial load buckling of cylinders
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/0020-7683(83)90056-2
– volume: 135
  start-page: 410
  year: 2018
  ident: 10.1016/j.tws.2022.109667_b37
  article-title: Robust knockdown factors for the design of cylindrical shells under axial compression: potentials, practical application and reliability analysis
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.11.020
– volume: 27
  issue: 14
  year: 2017
  ident: 10.1016/j.tws.2022.109667_b50
  article-title: Probing shells against buckling: a nondestructive technique for laboratory testing
  publication-title: Int. J. Bifurcation Chaos
  doi: 10.1142/S0218127417300488
– volume: 23
  start-page: 67
  issue: 1–4
  year: 1995
  ident: 10.1016/j.tws.2022.109667_b40
  article-title: Towards a rationally based elastic–plastic shell buckling design methodology
  publication-title: Thin-Walled Struct.
  doi: 10.1016/0263-8231(95)00005-X
– volume: 51
  start-page: 284
  issue: 1
  year: 2014
  ident: 10.1016/j.tws.2022.109667_b22
  article-title: Novel numerical implementation of asymptotic homogenization method for periodic plate structures
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2013.10.003
– volume: 109
  start-page: 13
  year: 2016
  ident: 10.1016/j.tws.2022.109667_b14
  article-title: Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2016.09.008
– volume: 156
  start-page: 205
  year: 2019
  ident: 10.1016/j.tws.2022.109667_b43
  article-title: Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2019.02.047
– ident: 10.1016/j.tws.2022.109667_b34
  doi: 10.2514/6.2012-1689
– volume: 88
  issue: 5
  year: 2021
  ident: 10.1016/j.tws.2022.109667_b52
  article-title: A nondestructive technique for the evaluation of thin cylindrical shells’ axial buckling capacity
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4049806
– volume: 44
  start-page: 654
  issue: 3
  year: 2006
  ident: 10.1016/j.tws.2022.109667_b12
  article-title: Shell buckling design criteria based on manufacturing imperfection signatures
  publication-title: AIAA J.
  doi: 10.2514/1.5429
– volume: 148
  start-page: 157
  year: 2018
  ident: 10.1016/j.tws.2022.109667_b47
  article-title: Imperfections and energy barriers in shell buckling
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2018.01.030
– volume: 85
  issue: 9
  year: 2018
  ident: 10.1016/j.tws.2022.109667_b35
  article-title: On establishing buckling knockdowns for imperfection-sensitive shell structures
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4040455
– volume: 133
  start-page: 1
  year: 2018
  ident: 10.1016/j.tws.2022.109667_b31
  article-title: Design of axially loaded isotropic cylindrical shells using multiple perturbation load approach–simulation and validation
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2018.09.028
– volume: 118
  start-page: 14
  year: 2017
  ident: 10.1016/j.tws.2022.109667_b53
  article-title: Energy barrier as a criterion for stability estimation of spherical shell under uniform external pressure
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.04.026
– volume: 34
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.tws.2022.109667_b16
  article-title: Buckling load analysis of grid stiffened composite cylinders
  publication-title: Composites B
  doi: 10.1016/S1359-8368(02)00074-4
– year: 2011
  ident: 10.1016/j.tws.2022.109667_b26
– volume: 179
  year: 2020
  ident: 10.1016/j.tws.2022.109667_b45
  article-title: On the imperfection sensitivity and design of spherical domes under external pressure
  publication-title: Int. J. Press. Vessels Pip.
  doi: 10.1016/j.ijpvp.2019.104015
– volume: 132
  start-page: 136
  year: 2015
  ident: 10.1016/j.tws.2022.109667_b20
  article-title: Hybrid analysis and optimization of hierarchical stiffened plates based on asymptotic homogenization method
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.05.012
– ident: 10.1016/j.tws.2022.109667_b59
  doi: 10.2514/6.2012-1865
– year: 2015
  ident: 10.1016/j.tws.2022.109667_b56
– volume: 225
  year: 2019
  ident: 10.1016/j.tws.2022.109667_b13
  article-title: Buckling analysis of an imperfection-insensitive hybrid composite cylinder under axial compression–numerical simulation, destructive and non-destructive experimental testing
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2019.111152
– volume: 66
  start-page: 1793
  issue: 5
  year: 2006
  ident: 10.1016/j.tws.2022.109667_b60
  article-title: Cylinder buckling: the mountain pass as an organizing center
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/050635778
– volume: 46
  start-page: 947
  issue: 7–9
  year: 2008
  ident: 10.1016/j.tws.2022.109667_b27
  article-title: Robust design of composite cylindrical shells under axial compression—simulation and validation
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2008.01.043
– volume: 72
  start-page: 76
  year: 2013
  ident: 10.1016/j.tws.2022.109667_b10
  article-title: Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2013.06.016
– ident: 10.1016/j.tws.2022.109667_b58
  doi: 10.2514/6.2018-1987
– volume: 160
  start-page: 51
  year: 2019
  ident: 10.1016/j.tws.2022.109667_b48
  article-title: Dynamic energy barrier estimation for spherical shells under external pressure
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2019.06.028
– volume: 475
  issue: 2224
  year: 2019
  ident: 10.1016/j.tws.2022.109667_b54
  article-title: On the role of localizations in buckling of axially compressed cylinders
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 24
  start-page: 575
  issue: 3
  year: 2017
  ident: 10.1016/j.tws.2022.109667_b24
  article-title: Multilevel optimization framework for hierarchical stiffened shells accelerated by adaptive equivalent strategy
  publication-title: Appl. Compos. Mater.
  doi: 10.1007/s10443-016-9527-y
– volume: 94
  start-page: 325
  year: 2015
  ident: 10.1016/j.tws.2022.109667_b1
  article-title: Non-probabilistic reliability-based design optimization of stiffened shells under buckling constraint
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2015.04.031
– volume: 173
  start-page: 281
  year: 2017
  ident: 10.1016/j.tws.2022.109667_b29
  article-title: Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells–development and validation
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.02.031
– volume: 164
  start-page: 37
  year: 2019
  ident: 10.1016/j.tws.2022.109667_b61
  article-title: Experimental validation of cylindrical shells under axial compression for improved knockdown factors
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2019.01.001
– volume: 119
  issue: 22
  year: 2017
  ident: 10.1016/j.tws.2022.109667_b51
  article-title: Stability landscape of shell buckling
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.224101
– volume: 84
  start-page: 1934
  issue: 29–30
  year: 2006
  ident: 10.1016/j.tws.2022.109667_b42
  article-title: Computation of lower-bound elastic buckling loads using general-purpose finite element codes
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2006.08.016
– volume: 50
  start-page: 2389
  issue: 11
  year: 2012
  ident: 10.1016/j.tws.2022.109667_b3
  article-title: Surrogate-based optimum design for stiffened shells with adaptive sampling
  publication-title: AIAA J.
  doi: 10.2514/1.J051522
– year: 2021
  ident: 10.1016/j.tws.2022.109667_b7
  article-title: Buckling design of axially compressed cylindrical shells based on energy barrier approach
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455421501650
– volume: 74
  start-page: 118
  year: 2014
  ident: 10.1016/j.tws.2022.109667_b62
  article-title: Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2013.08.011
– volume: 62
  start-page: 114
  year: 2017
  ident: 10.1016/j.tws.2022.109667_b15
  article-title: Grid-pattern optimization framework of novel hierarchical stiffened shells allowing for imperfection sensitivity
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2016.12.002
– volume: 82
  start-page: 46
  year: 2014
  ident: 10.1016/j.tws.2022.109667_b4
  article-title: Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2014.04.004
– volume: 136
  start-page: 405
  year: 2016
  ident: 10.1016/j.tws.2022.109667_b30
  article-title: Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2015.10.022
– ident: 10.1016/j.tws.2022.109667_b11
  doi: 10.2514/6.2018-1696
– volume: 73
  start-page: 208
  issue: 2
  year: 2006
  ident: 10.1016/j.tws.2022.109667_b2
  article-title: Post-buckling optimization of composite stiffened panels: computations and experiments
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2005.11.047
– year: 2007
  ident: 10.1016/j.tws.2022.109667_b63
– volume: 148
  start-page: 14
  year: 2018
  ident: 10.1016/j.tws.2022.109667_b19
  article-title: A high-fidelity approximate model for determining lower-bound buckling loads for stiffened shells
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2017.10.034
– volume: 23
  start-page: 215
  issue: 1–4
  year: 1995
  ident: 10.1016/j.tws.2022.109667_b6
  article-title: Understanding imperfection-sensitivity in the buckling of thin-walled shells
  publication-title: Thin-Walled Struct.
  doi: 10.1016/0263-8231(95)00013-4
– volume: 161
  year: 2021
  ident: 10.1016/j.tws.2022.109667_b49
  article-title: Energy barrier method for estimation of design buckling load of axially compressed elasto-plastic cylindrical shells
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2021.107454
– volume: 155
  year: 2020
  ident: 10.1016/j.tws.2022.109667_b25
  article-title: Buckling of launch-vehicle cylinders under axial compression: A comparison of experimental and numerical knockdown factors
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2020.106931
– volume: 23
  start-page: 29
  issue: 1
  year: 2016
  ident: 10.1016/j.tws.2022.109667_b17
  article-title: Finite element analysis of 2.5 D woven composites, part I: microstructure and 3D finite element model
  publication-title: Appl. Compos. Mater.
  doi: 10.1007/s10443-015-9447-2
– volume: 152
  start-page: 807
  year: 2016
  ident: 10.1016/j.tws.2022.109667_b23
  article-title: Numerical-based smeared stiffener method for global buckling analysis of grid-stiffened composite cylindrical shells
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.05.096
– volume: 40
  start-page: 183
  issue: 2
  year: 2003
  ident: 10.1016/j.tws.2022.109667_b5
  article-title: Challenges in comparing numerical solutions for optimum weights of stiffened shells
  publication-title: J. Spacecr. Rockets
  doi: 10.2514/2.3952
– volume: 160
  start-page: 1095
  year: 2017
  ident: 10.1016/j.tws.2022.109667_b36
  article-title: Stimulating the realistic worst case buckling scenario of axially compressed unstiffened cylindrical composite shells
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.10.108
– volume: 85
  start-page: 41
  year: 2016
  ident: 10.1016/j.tws.2022.109667_b18
  article-title: Trans-scale modeling framework for failure analysis of cryogenic composite tanks
  publication-title: Composites B
  doi: 10.1016/j.compositesb.2015.09.023
– volume: 82
  start-page: 321
  year: 2014
  ident: 10.1016/j.tws.2022.109667_b33
  article-title: Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2014.05.004
– volume: 145
  year: 2019
  ident: 10.1016/j.tws.2022.109667_b44
  article-title: On the development of shell buckling knockdown factors for imperfection sensitive conical shells under pure bending
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2019.106373
– year: 2019
  ident: 10.1016/j.tws.2022.109667_b39
SSID ssj0017194
Score 2.4159327
Snippet Buckling design of axially compressed cylindrical shells is still a challenging subject due to the well-known imperfection sensitivity characteristic. Compared...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109667
SubjectTerms Axial compression
Buckling
Imperfection sensitivity
Knockdown factor
Stiffened cylindrical shell
Title Buckling design of stiffened cylindrical shells under axial compression based on energy barrier approach
URI https://dx.doi.org/10.1016/j.tws.2022.109667
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4EuraNG3a4xiO6XAHdbhbyccrTmQb20S9-Lebl7Zjgnrw1KRNoLy-_l5Cfu_3CDkXqVIMIPAizbjHbYDyJMvBMzkPuU5lkiaYKHw7iHtDfjOKRjXSqXJhkFZZYn-B6Q6tyzut0pqt2Xjcure7B3eIxZgTrhphBjsX6OWXnyuaRyACVwwRB3s4ujrZdByv5RsqdjOGokqxKzX_Q2xaizfdHbJdLhRpu3iXXVKDyR7ZWpMP3CdP7mDWNqlxPAw6zan9Y_Pc4peh-sM-Mk4BhC6Q7rmgmDA2p_Ld-hxFLnnBgZ1QDGWG2ga4TEDbn2MhO1oJjh-QYffqodPzysoJnmapWHqpYL5R0heSxVqCkWGcgEhS8LkwQlpQSSITA4MIJJNJxKRWsWaQq4DbZhIekvpkOoEjQkGLPA-Z1soAj-yCUEZpoFILE0prSOIG8SubZbqUFcfqFi9ZxR97zqyZMzRzVpi5QS5WU2aFpsZfg3n1IbJvjpFZzP992vH_pp2QTewVbL1TUl_OX-HMrjqWquncqkk22tf93gCv_bvH_hdO7dtH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQdPJg2wbLvtkRAJyOMiJNyafUwjxhQCGPXfu7ttCSbqwdu2u5M00-0328w33wDc8UhKitjwfEWZx0yA8gRN0NMJazIViTAKbaHwcBR0J-xx6k9L0C5qYSytMsf-DNMdWud3ark3a4vZrPZk_h5cEotSJ1w13YGKVafyy1Bp9frd0SaZwBuuH6Jd71mDIrnpaF7rdyvaTanVVQpct_kfwtNWyOkcwkF-ViSt7HGOoITpMexvKQiewLPLzZoh0Y6KQeYJMR9tkhgI00R9mintREDIyjI-V8TWjC2J-DDbjlg6eUaDTYmNZpqYAbpiQHO9tL3sSKE5fgqTzsO43fXy5gmeohFfexGndS1FnQsaKIFaNIMQeRhhnXHNhcGV0NcBUvRRUBH6VCgZKIqJbDAzDJtnUE7nKZ4DQcWTpEmVkhqZb86Ewo8aMjJIIZXCMKhCvfBZrHJlcdvg4jUuKGQvsXFzbN0cZ26uwv3GZJHJavy1mBUvIv62N2ID-7-bXfzP7BZ2u-PhIB70Rv1L2LMzGXnvCsrr5Rtem0PIWt7km-wL-HvcVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buckling+design+of+stiffened+cylindrical+shells+under+axial+compression+based+on+energy+barrier+approach&rft.jtitle=Thin-walled+structures&rft.au=Fan%2C+Haigui&rft.au=Li%2C+Longhua&rft.au=Gu%2C+Wenguang&rft.au=Liu%2C+Peiqi&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.eissn=1879-3223&rft.volume=179&rft_id=info:doi/10.1016%2Fj.tws.2022.109667&rft.externalDocID=S026382312200430X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon