Buckling design of stiffened cylindrical shells under axial compression based on energy barrier approach
Buckling design of axially compressed cylindrical shells is still a challenging subject due to the well-known imperfection sensitivity characteristic. Compared to the unstiffened ones, design of buckling loads for the stiffened cylindrical shells composed of skins and stiffeners is more difficult co...
Saved in:
Published in | Thin-walled structures Vol. 179; p. 109667 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Buckling design of axially compressed cylindrical shells is still a challenging subject due to the well-known imperfection sensitivity characteristic. Compared to the unstiffened ones, design of buckling loads for the stiffened cylindrical shells composed of skins and stiffeners is more difficult considering about the complicated effects of structural parameters on the imperfection sensitivity. In this paper, the promising buckling design method based on energy barrier approach is applied to the axially compressed stiffened cylindrical shells. Three manufactured stiffened cylindrical shells from references are selected to verify the reliability of the method by comparing with the existing experimental data. In addition, various stiffened cylindrical shell models with dimple imperfections are designed and numerically researched in this paper to further prove the reliable design buckling loads provided by this method. The buckling loads designed by other similar methods are also taken for comparison. Results have verified the reliability and advantage of the method in this paper for clarifying imperfection sensitivity and designing buckling loads of stiffened cylindrical shells. Then, using this method, the complicated effects of different structural parameters on the imperfection sensitivity and design buckling loads of the stiffened cylindrical shells are systematically investigated. Based on that, the stiffened cylindrical shells with both high design buckling loads and quite low imperfection sensitivity which are always favorable in lightweight design have been successfully obtained. It also indicates a potential improvement for the load-carrying efficiency of current stiffened cylindrical shells using the buckling design method based on energy barrier approach.
•Buckling design of stiffened cylindrical shells by energy barrier approach is presented.•Reliability and advantage of the buckling design method are verified by numerical and existing experimental results.•Parametric effects on design buckling loads of stiffened cylindrical shells are clarified.•The cylindrical shells with both high buckling loads and low imperfection sensitivity are obtained. |
---|---|
AbstractList | Buckling design of axially compressed cylindrical shells is still a challenging subject due to the well-known imperfection sensitivity characteristic. Compared to the unstiffened ones, design of buckling loads for the stiffened cylindrical shells composed of skins and stiffeners is more difficult considering about the complicated effects of structural parameters on the imperfection sensitivity. In this paper, the promising buckling design method based on energy barrier approach is applied to the axially compressed stiffened cylindrical shells. Three manufactured stiffened cylindrical shells from references are selected to verify the reliability of the method by comparing with the existing experimental data. In addition, various stiffened cylindrical shell models with dimple imperfections are designed and numerically researched in this paper to further prove the reliable design buckling loads provided by this method. The buckling loads designed by other similar methods are also taken for comparison. Results have verified the reliability and advantage of the method in this paper for clarifying imperfection sensitivity and designing buckling loads of stiffened cylindrical shells. Then, using this method, the complicated effects of different structural parameters on the imperfection sensitivity and design buckling loads of the stiffened cylindrical shells are systematically investigated. Based on that, the stiffened cylindrical shells with both high design buckling loads and quite low imperfection sensitivity which are always favorable in lightweight design have been successfully obtained. It also indicates a potential improvement for the load-carrying efficiency of current stiffened cylindrical shells using the buckling design method based on energy barrier approach.
•Buckling design of stiffened cylindrical shells by energy barrier approach is presented.•Reliability and advantage of the buckling design method are verified by numerical and existing experimental results.•Parametric effects on design buckling loads of stiffened cylindrical shells are clarified.•The cylindrical shells with both high buckling loads and low imperfection sensitivity are obtained. |
ArticleNumber | 109667 |
Author | Li, Longhua Hu, Dapeng Gu, Wenguang Liu, Peiqi Fan, Haigui |
Author_xml | – sequence: 1 givenname: Haigui surname: Fan fullname: Fan, Haigui email: haigui@dlut.edu.cn – sequence: 2 givenname: Longhua surname: Li fullname: Li, Longhua – sequence: 3 givenname: Wenguang surname: Gu fullname: Gu, Wenguang – sequence: 4 givenname: Peiqi surname: Liu fullname: Liu, Peiqi – sequence: 5 givenname: Dapeng surname: Hu fullname: Hu, Dapeng |
BookMark | eNp9kMtOwzAQRS1UJFrgA9j5B1L8aO1ErKDiJVViA2trYk9al9SJ7BTo3-OqrFh0NXceZ6R7J2QUuoCE3HA25Yyr2810-E5TwYTIfaWUPiNjXuqqkELIERkzoWRRCskvyCSlDWNc82o2JuuHnf1sfVhRh8mvAu0amgbfNBjQUbvPKxe9hZamNbZtorvgMFL48Xlku20fMSXfBVpDykAWGYyrfe5j9IfLvo8d2PUVOW-gTXj9Vy_Jx9Pj--KlWL49vy7ul4UVlR6KSgvmamAahLKADqQqUZcVspl2GqRW5dwpFDhHEFDOBdhaWYFNzWdZlvKS8ONfG7uUIjamj34LcW84M4eozMbkqMwhKnOMKjP6H2P9AEO2NUTw7Uny7khitvSV_ZpkPQaLzke0g3GdP0H_Ar-JiQc |
CitedBy_id | crossref_primary_10_1016_j_tws_2024_111963 crossref_primary_10_1016_j_tws_2024_111646 crossref_primary_10_1016_j_tws_2024_112889 crossref_primary_10_1007_s00158_024_03950_4 crossref_primary_10_1016_j_tws_2024_112410 crossref_primary_10_1016_j_oceaneng_2025_120950 crossref_primary_10_1016_j_apor_2024_104221 crossref_primary_10_1016_j_jcsr_2025_109439 crossref_primary_10_1016_j_ijmecsci_2022_107720 crossref_primary_10_1016_j_ijsolstr_2023_112327 crossref_primary_10_1016_j_istruc_2024_106280 crossref_primary_10_3390_pr12102120 |
Cites_doi | 10.1016/j.tws.2019.02.034 10.2514/6.2018-1697 10.1142/S0218127415300013 10.1016/j.compstruct.2019.02.103 10.1016/j.ijsolstr.2019.01.001 10.1016/j.ijmecsci.2018.07.016 10.1007/s10409-013-0043-0 10.1016/0020-7683(83)90056-2 10.1016/j.ijmecsci.2017.11.020 10.1142/S0218127417300488 10.1016/0263-8231(95)00005-X 10.1016/j.ijsolstr.2013.10.003 10.1016/j.tws.2016.09.008 10.1016/j.ijmecsci.2019.02.047 10.2514/6.2012-1689 10.1115/1.4049806 10.2514/1.5429 10.1016/j.ijsolstr.2018.01.030 10.1115/1.4040455 10.1016/j.tws.2018.09.028 10.1016/j.ijsolstr.2017.04.026 10.1016/S1359-8368(02)00074-4 10.1016/j.ijpvp.2019.104015 10.1016/j.compstruct.2015.05.012 10.2514/6.2012-1865 10.1016/j.compstruct.2019.111152 10.1137/050635778 10.1016/j.tws.2008.01.043 10.1016/j.tws.2013.06.016 10.2514/6.2018-1987 10.1016/j.ijmecsci.2019.06.028 10.1007/s10443-016-9527-y 10.1016/j.tws.2015.04.031 10.1016/j.compstruct.2017.02.031 10.1103/PhysRevLett.119.224101 10.1016/j.compstruc.2006.08.016 10.2514/1.J051522 10.1142/S0219455421501650 10.1016/j.tws.2013.08.011 10.1016/j.ast.2016.12.002 10.1016/j.tws.2014.04.004 10.1016/j.compstruct.2015.10.022 10.2514/6.2018-1696 10.1016/j.compstruct.2005.11.047 10.1016/j.ijsolstr.2017.10.034 10.1016/0263-8231(95)00013-4 10.1016/j.tws.2021.107454 10.1016/j.tws.2020.106931 10.1007/s10443-015-9447-2 10.1016/j.compstruct.2016.05.096 10.2514/2.3952 10.1016/j.compstruct.2016.10.108 10.1016/j.compositesb.2015.09.023 10.1016/j.tws.2014.05.004 10.1016/j.tws.2019.106373 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.tws.2022.109667 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3223 |
ExternalDocumentID | 10_1016_j_tws_2022_109667 S026382312200430X |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K WH7 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-9720dba07a26caeda368e789e047d7a37685d6e2e5ea2a852acb6c2efb14acb83 |
IEDL.DBID | .~1 |
ISSN | 0263-8231 |
IngestDate | Thu Apr 24 23:11:11 EDT 2025 Tue Jul 01 03:59:08 EDT 2025 Fri Feb 23 02:39:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Knockdown factor Imperfection sensitivity Axial compression Buckling Stiffened cylindrical shell |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-9720dba07a26caeda368e789e047d7a37685d6e2e5ea2a852acb6c2efb14acb83 |
ParticipantIDs | crossref_primary_10_1016_j_tws_2022_109667 crossref_citationtrail_10_1016_j_tws_2022_109667 elsevier_sciencedirect_doi_10_1016_j_tws_2022_109667 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 2022-10-00 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationTitle | Thin-walled structures |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Castro, Zimmermann, Arbelo, Degenhardt (b10) 2013; 72 Jiao, Chen, Tang, Su, Wu (b31) 2018; 133 Huang, Ren, Li, Chang, Cong, Lei (b18) 2016; 85 Thompson, Hutchinson, Sieber (b50) 2017; 27 Cai, Xu, Cheng (b22) 2014; 51 Wagner, Hühne, Niemann (b25) 2020; 155 Degenhardt (b26) 2011 Yadav, Cuccia, Virot, Rubinstein, Gerasimidis (b52) 2021; 88 Sosa, Godoy, Croll (b42) 2006; 84 Hühne, Rolfes, Tessmer (b28) 2005 Wang, Du, Hao, Tian, Chao, Jiang, Zhang (b9) 2019; 164 Horák, Lord, Peletier (b60) 2006; 66 Venkataraman, Lamberti, Haftka, Johnson (b5) 2003; 40 Wagner, Hühne, Rohwer, Niemann, Wiedemann (b36) 2017; 160 Wang, Tian, Zhou, Hao, Zheng, Ma, Wang (b15) 2017; 62 Hühne, Rolfes, Breitbach, Tezmer (b27) 2008; 46 D.W. Sleight, A. Satyanarayana, M.R. Schultz, Buckling imperfection sensitivity of conical sandwich composite structures for launch-vehicles, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, p. 1696. M.W. Hilburger, M.C. Lindell, W.A. Waters, N.W. Gardner, Test and analysis of buckling-critical stiffened metallic launch vehicle cylinders, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, p. 1697. Wagner (b39) 2019 Croll, Ellinas (b41) 1983; 19 Wagner, Petersen, Khakimova, Hühne (b13) 2019; 225 Hutchinson, Thompson (b47) 2018; 148 Wang, Hao, Li, Tian, Wang, Zhang, Tang (b32) 2013 Hao, Wang, Li, Meng, Tian, Tang (b4) 2014; 82 Cheng, Cai, Xu (b21) 2013; 29 Song, Wen, Cui, Zhang, Xu (b17) 2016; 23 Wang, Du, Hao, Zhou, Tian, Xu, Zhang (b14) 2016; 109 Gerasimidis, Virot, Hutchinson, Rubinstein (b35) 2018; 85 Hilburger, Waters, Haynie (b56) 2015 W. Haynie, M. Hilburger, M. Bogge, M. Maspoli, B. Kriegesmann, Validation of lower-bound estimates for compression-loaded cylindrical shells, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012, p. 1689. Wagner, Sosa, Ludwig, Croll, Hühne (b43) 2019; 156 Virot, Kreilos, Schneider, Rubinstein (b51) 2017; 119 Lanzi, Giavotto (b2) 2006; 73 M. Hilburger, A. Lovejoy, R. Thornburgh, C. Rankin, Design and analysis of subscale and full-scale buckling-critical cylinders for launch vehicle technology development, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012, 1865. Wagner, Köke, Dähne, Niemann, Hühne, Khakimova (b8) 2019; 220 (b63) 2007 Hao, Wang, Du, Li, Tian, Sun, Ma (b30) 2016; 136 Calladine (b6) 1995; 23 Wagner, Hühne, Khakimova (b38) 2018; 146 Wang, Tian, Hao, Cai, Li, Sun (b20) 2015; 132 Evkin, Lykhachova (b49) 2021; 161 Kidane, Li, Helms, Pang, Woldesenbet (b16) 2003; 34 Hao, Wang, Li (b3) 2012; 50 Groh, Pirrera (b54) 2019; 475 Wagner, Hühne, Zhang, Tang (b45) 2020; 179 Wang, Tian, Hao, Zheng, Ma, Wang (b23) 2016; 152 M.T. Rudd, M.W. Hilburger, A.E. Lovejoy, M.C. Lindell, N.W. Gardner, M.R. Schultz, Buckling response of a large-scale, seamless, orthogrid-stiffened metallic cylinder, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, 1987. Meng, Hao, Li, Wang, Zhang (b1) 2015; 94 Evkin (b48) 2019; 160 Hilburger, Nemeth, Starnes Jr. (b12) 2006; 44 Wang, Tian, Zhao, Hao, Zhu, Zhang, Ma (b24) 2017; 24 Wang, Du, Hao, Tian, Chao, Jiang, Zhang (b61) 2019; 164 Tian, Wang, Hao, Waas (b19) 2018; 148 Croll (b40) 1995; 23 Thompson (b46) 2015; 25 Wagner, Hühne, Niemann (b29) 2017; 173 Wagner, Hühne, Khakimova (b44) 2019; 145 Castro, Zimmermann, Arbelo, Khakimova, Hilburger, Degenhardt (b62) 2014; 74 Hao, Wang, Li, Meng, Tian, Zeng, Tang (b33) 2014; 82 Wagner, Hühne (b37) 2018; 135 Evkin, Lykhachova (b53) 2017; 118 Fan (b55) 2019; 139 Fan, Gu, Li, Liu, Hu (b7) 2021 Song (10.1016/j.tws.2022.109667_b17) 2016; 23 Jiao (10.1016/j.tws.2022.109667_b31) 2018; 133 Wagner (10.1016/j.tws.2022.109667_b39) 2019 Thompson (10.1016/j.tws.2022.109667_b46) 2015; 25 10.1016/j.tws.2022.109667_b11 Wagner (10.1016/j.tws.2022.109667_b37) 2018; 135 Wagner (10.1016/j.tws.2022.109667_b44) 2019; 145 10.1016/j.tws.2022.109667_b59 Hao (10.1016/j.tws.2022.109667_b3) 2012; 50 10.1016/j.tws.2022.109667_b57 10.1016/j.tws.2022.109667_b58 Virot (10.1016/j.tws.2022.109667_b51) 2017; 119 Fan (10.1016/j.tws.2022.109667_b55) 2019; 139 Wang (10.1016/j.tws.2022.109667_b15) 2017; 62 Evkin (10.1016/j.tws.2022.109667_b49) 2021; 161 Venkataraman (10.1016/j.tws.2022.109667_b5) 2003; 40 Hühne (10.1016/j.tws.2022.109667_b27) 2008; 46 Wagner (10.1016/j.tws.2022.109667_b43) 2019; 156 Kidane (10.1016/j.tws.2022.109667_b16) 2003; 34 Horák (10.1016/j.tws.2022.109667_b60) 2006; 66 Wang (10.1016/j.tws.2022.109667_b32) 2013 Tian (10.1016/j.tws.2022.109667_b19) 2018; 148 Castro (10.1016/j.tws.2022.109667_b62) 2014; 74 Croll (10.1016/j.tws.2022.109667_b41) 1983; 19 Thompson (10.1016/j.tws.2022.109667_b50) 2017; 27 Wang (10.1016/j.tws.2022.109667_b23) 2016; 152 Wagner (10.1016/j.tws.2022.109667_b25) 2020; 155 Evkin (10.1016/j.tws.2022.109667_b53) 2017; 118 Degenhardt (10.1016/j.tws.2022.109667_b26) 2011 Wagner (10.1016/j.tws.2022.109667_b29) 2017; 173 Wang (10.1016/j.tws.2022.109667_b24) 2017; 24 Cai (10.1016/j.tws.2022.109667_b22) 2014; 51 Wagner (10.1016/j.tws.2022.109667_b13) 2019; 225 Wagner (10.1016/j.tws.2022.109667_b38) 2018; 146 Wang (10.1016/j.tws.2022.109667_b61) 2019; 164 Evkin (10.1016/j.tws.2022.109667_b48) 2019; 160 Hühne (10.1016/j.tws.2022.109667_b28) 2005 Huang (10.1016/j.tws.2022.109667_b18) 2016; 85 10.1016/j.tws.2022.109667_b34 Hilburger (10.1016/j.tws.2022.109667_b56) 2015 Yadav (10.1016/j.tws.2022.109667_b52) 2021; 88 Wang (10.1016/j.tws.2022.109667_b14) 2016; 109 Fan (10.1016/j.tws.2022.109667_b7) 2021 Croll (10.1016/j.tws.2022.109667_b40) 1995; 23 Hao (10.1016/j.tws.2022.109667_b30) 2016; 136 (10.1016/j.tws.2022.109667_b63) 2007 Hutchinson (10.1016/j.tws.2022.109667_b47) 2018; 148 Gerasimidis (10.1016/j.tws.2022.109667_b35) 2018; 85 Wang (10.1016/j.tws.2022.109667_b9) 2019; 164 Groh (10.1016/j.tws.2022.109667_b54) 2019; 475 Calladine (10.1016/j.tws.2022.109667_b6) 1995; 23 Wagner (10.1016/j.tws.2022.109667_b45) 2020; 179 Wang (10.1016/j.tws.2022.109667_b20) 2015; 132 Hao (10.1016/j.tws.2022.109667_b4) 2014; 82 Hao (10.1016/j.tws.2022.109667_b33) 2014; 82 Cheng (10.1016/j.tws.2022.109667_b21) 2013; 29 Lanzi (10.1016/j.tws.2022.109667_b2) 2006; 73 Wagner (10.1016/j.tws.2022.109667_b8) 2019; 220 Sosa (10.1016/j.tws.2022.109667_b42) 2006; 84 Meng (10.1016/j.tws.2022.109667_b1) 2015; 94 Castro (10.1016/j.tws.2022.109667_b10) 2013; 72 Hilburger (10.1016/j.tws.2022.109667_b12) 2006; 44 Wagner (10.1016/j.tws.2022.109667_b36) 2017; 160 |
References_xml | – reference: M.W. Hilburger, M.C. Lindell, W.A. Waters, N.W. Gardner, Test and analysis of buckling-critical stiffened metallic launch vehicle cylinders, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, p. 1697. – volume: 44 start-page: 654 year: 2006 end-page: 663 ident: b12 article-title: Shell buckling design criteria based on manufacturing imperfection signatures publication-title: AIAA J. – volume: 156 start-page: 205 year: 2019 end-page: 220 ident: b43 article-title: Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure publication-title: Int. J. Mech. Sci. – year: 2005 ident: b28 article-title: A new approach for robust design of composite cylindrical shells under axial compression publication-title: Spacecraft Structures, Materials and Mechanical Testing, Vol. 581 – volume: 164 start-page: 37 year: 2019 end-page: 51 ident: b9 article-title: Experimental validation of cylindrical shells under axial compression for improved knockdown factors publication-title: Int. J. Solids Struct. – volume: 85 start-page: 41 year: 2016 end-page: 49 ident: b18 article-title: Trans-scale modeling framework for failure analysis of cryogenic composite tanks publication-title: Composites B – volume: 29 start-page: 550 year: 2013 end-page: 556 ident: b21 article-title: Novel implementation of homogenization method to predict effective properties of periodic materials publication-title: Acta Mech. Sinica – volume: 85 year: 2018 ident: b35 article-title: On establishing buckling knockdowns for imperfection-sensitive shell structures publication-title: J. Appl. Mech. – volume: 173 start-page: 281 year: 2017 end-page: 303 ident: b29 article-title: Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells–development and validation publication-title: Compos. Struct. – year: 2019 ident: b39 article-title: Robust Design of Buckling Critical Thin-Walled Shell Structures – volume: 27 year: 2017 ident: b50 article-title: Probing shells against buckling: a nondestructive technique for laboratory testing publication-title: Int. J. Bifurcation Chaos – volume: 118 start-page: 14 year: 2017 end-page: 23 ident: b53 article-title: Energy barrier as a criterion for stability estimation of spherical shell under uniform external pressure publication-title: Int. J. Solids Struct. – volume: 62 start-page: 114 year: 2017 end-page: 121 ident: b15 article-title: Grid-pattern optimization framework of novel hierarchical stiffened shells allowing for imperfection sensitivity publication-title: Aerosp. Sci. Technol. – volume: 225 year: 2019 ident: b13 article-title: Buckling analysis of an imperfection-insensitive hybrid composite cylinder under axial compression–numerical simulation, destructive and non-destructive experimental testing publication-title: Compos. Struct. – year: 2007 ident: b63 article-title: BS EN 1993-1-6, Eurocode 3: Design of steel structures, strength and stability of shell structures, CEN, Brussels – volume: 155 year: 2020 ident: b25 article-title: Buckling of launch-vehicle cylinders under axial compression: A comparison of experimental and numerical knockdown factors publication-title: Thin-Walled Struct. – volume: 73 start-page: 208 year: 2006 end-page: 220 ident: b2 article-title: Post-buckling optimization of composite stiffened panels: computations and experiments publication-title: Compos. Struct. – volume: 160 start-page: 51 year: 2019 end-page: 58 ident: b48 article-title: Dynamic energy barrier estimation for spherical shells under external pressure publication-title: Int. J. Mech. Sci. – volume: 148 start-page: 157 year: 2018 end-page: 168 ident: b47 article-title: Imperfections and energy barriers in shell buckling publication-title: Int. J. Solids Struct. – volume: 119 year: 2017 ident: b51 article-title: Stability landscape of shell buckling publication-title: Phys. Rev. Lett. – volume: 51 start-page: 284 year: 2014 end-page: 292 ident: b22 article-title: Novel numerical implementation of asymptotic homogenization method for periodic plate structures publication-title: Int. J. Solids Struct. – volume: 72 start-page: 76 year: 2013 end-page: 87 ident: b10 article-title: Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors publication-title: Thin-Walled Struct. – volume: 109 start-page: 13 year: 2016 end-page: 24 ident: b14 article-title: Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression publication-title: Thin-Walled Struct. – volume: 133 start-page: 1 year: 2018 end-page: 16 ident: b31 article-title: Design of axially loaded isotropic cylindrical shells using multiple perturbation load approach–simulation and validation publication-title: Thin-Walled Struct. – volume: 19 start-page: 461 year: 1983 end-page: 477 ident: b41 article-title: Reduced stiffness axial load buckling of cylinders publication-title: Int. J. Solids Struct. – volume: 136 start-page: 405 year: 2016 end-page: 413 ident: b30 article-title: Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach publication-title: Compos. Struct. – volume: 50 start-page: 2389 year: 2012 end-page: 2407 ident: b3 article-title: Surrogate-based optimum design for stiffened shells with adaptive sampling publication-title: AIAA J. – volume: 24 start-page: 575 year: 2017 end-page: 592 ident: b24 article-title: Multilevel optimization framework for hierarchical stiffened shells accelerated by adaptive equivalent strategy publication-title: Appl. Compos. Mater. – volume: 94 start-page: 325 year: 2015 end-page: 333 ident: b1 article-title: Non-probabilistic reliability-based design optimization of stiffened shells under buckling constraint publication-title: Thin-Walled Struct. – volume: 220 start-page: 45 year: 2019 end-page: 63 ident: b8 article-title: Decision tree-based machine learning to optimize the laminate stacking of composite cylinders for maximum buckling load and minimum imperfection sensitivity publication-title: Compos. Struct. – volume: 145 year: 2019 ident: b44 article-title: On the development of shell buckling knockdown factors for imperfection sensitive conical shells under pure bending publication-title: Thin-Walled Struct. – volume: 139 start-page: 91 year: 2019 end-page: 104 ident: b55 article-title: Critical buckling load prediction of axially compressed cylindrical shell based on non-destructive probing method publication-title: Thin-Walled Struct. – volume: 25 year: 2015 ident: b46 article-title: Advances in shell buckling: theory and experiments publication-title: Int. J. Bifurcation Chaos – volume: 23 start-page: 29 year: 2016 end-page: 44 ident: b17 article-title: Finite element analysis of 2.5 D woven composites, part I: microstructure and 3D finite element model publication-title: Appl. Compos. Mater. – year: 2011 ident: b26 article-title: New robust design guideline for imperfection sensitive composite launcher structures – volume: 84 start-page: 1934 year: 2006 end-page: 1945 ident: b42 article-title: Computation of lower-bound elastic buckling loads using general-purpose finite element codes publication-title: Comput. Struct. – volume: 164 start-page: 37 year: 2019 end-page: 51 ident: b61 article-title: Experimental validation of cylindrical shells under axial compression for improved knockdown factors publication-title: Int. J. Solids Struct. – volume: 135 start-page: 410 year: 2018 end-page: 430 ident: b37 article-title: Robust knockdown factors for the design of cylindrical shells under axial compression: potentials, practical application and reliability analysis publication-title: Int. J. Mech. Sci. – volume: 66 start-page: 1793 year: 2006 end-page: 1824 ident: b60 article-title: Cylinder buckling: the mountain pass as an organizing center publication-title: SIAM J. Appl. Math. – reference: W. Haynie, M. Hilburger, M. Bogge, M. Maspoli, B. Kriegesmann, Validation of lower-bound estimates for compression-loaded cylindrical shells, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012, p. 1689. – volume: 82 start-page: 321 year: 2014 end-page: 330 ident: b33 article-title: Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors publication-title: Thin-Walled Struct. – reference: M. Hilburger, A. Lovejoy, R. Thornburgh, C. Rankin, Design and analysis of subscale and full-scale buckling-critical cylinders for launch vehicle technology development, in: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012, 1865. – volume: 161 year: 2021 ident: b49 article-title: Energy barrier method for estimation of design buckling load of axially compressed elasto-plastic cylindrical shells publication-title: Thin-Walled Struct. – volume: 475 year: 2019 ident: b54 article-title: On the role of localizations in buckling of axially compressed cylinders publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 40 start-page: 183 year: 2003 end-page: 192 ident: b5 article-title: Challenges in comparing numerical solutions for optimum weights of stiffened shells publication-title: J. Spacecr. Rockets – volume: 88 year: 2021 ident: b52 article-title: A nondestructive technique for the evaluation of thin cylindrical shells’ axial buckling capacity publication-title: J. Appl. Mech. – volume: 23 start-page: 215 year: 1995 end-page: 235 ident: b6 article-title: Understanding imperfection-sensitivity in the buckling of thin-walled shells publication-title: Thin-Walled Struct. – volume: 152 start-page: 807 year: 2016 end-page: 815 ident: b23 article-title: Numerical-based smeared stiffener method for global buckling analysis of grid-stiffened composite cylindrical shells publication-title: Compos. Struct. – volume: 74 start-page: 118 year: 2014 end-page: 132 ident: b62 article-title: Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells publication-title: Thin-Walled Struct. – reference: D.W. Sleight, A. Satyanarayana, M.R. Schultz, Buckling imperfection sensitivity of conical sandwich composite structures for launch-vehicles, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, p. 1696. – volume: 148 start-page: 14 year: 2018 end-page: 23 ident: b19 article-title: A high-fidelity approximate model for determining lower-bound buckling loads for stiffened shells publication-title: Int. J. Solids Struct. – volume: 146 start-page: 60 year: 2018 end-page: 80 ident: b38 article-title: Towards robust knockdown factors for the design of conical shells under axial compression publication-title: Int. J. Mech. Sci. – volume: 34 start-page: 1 year: 2003 end-page: 9 ident: b16 article-title: Buckling load analysis of grid stiffened composite cylinders publication-title: Composites B – volume: 82 start-page: 46 year: 2014 end-page: 54 ident: b4 article-title: Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method publication-title: Thin-Walled Struct. – year: 2021 ident: b7 article-title: Buckling design of axially compressed cylindrical shells based on energy barrier approach publication-title: Int. J. Struct. Stab. Dyn. – volume: 132 start-page: 136 year: 2015 end-page: 147 ident: b20 article-title: Hybrid analysis and optimization of hierarchical stiffened plates based on asymptotic homogenization method publication-title: Compos. Struct. – volume: 160 start-page: 1095 year: 2017 end-page: 1104 ident: b36 article-title: Stimulating the realistic worst case buckling scenario of axially compressed unstiffened cylindrical composite shells publication-title: Compos. Struct. – reference: M.T. Rudd, M.W. Hilburger, A.E. Lovejoy, M.C. Lindell, N.W. Gardner, M.R. Schultz, Buckling response of a large-scale, seamless, orthogrid-stiffened metallic cylinder, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018, 1987. – start-page: 263 year: 2013 end-page: 266 ident: b32 article-title: Improved knockdown factors for cylindrical shells using worst multi-perturbation load approach publication-title: Shell Structures: Theory and Application, Vol. 3 – volume: 179 year: 2020 ident: b45 article-title: On the imperfection sensitivity and design of spherical domes under external pressure publication-title: Int. J. Press. Vessels Pip. – volume: 23 start-page: 67 year: 1995 end-page: 84 ident: b40 article-title: Towards a rationally based elastic–plastic shell buckling design methodology publication-title: Thin-Walled Struct. – volume: 46 start-page: 947 year: 2008 end-page: 962 ident: b27 article-title: Robust design of composite cylindrical shells under axial compression—simulation and validation publication-title: Thin-Walled Struct. – year: 2015 ident: b56 article-title: Buckling test results from the 8-foot-diameter orthogrid-stiffened cylinder test article TA01 – volume: 139 start-page: 91 year: 2019 ident: 10.1016/j.tws.2022.109667_b55 article-title: Critical buckling load prediction of axially compressed cylindrical shell based on non-destructive probing method publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2019.02.034 – ident: 10.1016/j.tws.2022.109667_b57 doi: 10.2514/6.2018-1697 – year: 2005 ident: 10.1016/j.tws.2022.109667_b28 article-title: A new approach for robust design of composite cylindrical shells under axial compression – volume: 25 issue: 01 year: 2015 ident: 10.1016/j.tws.2022.109667_b46 article-title: Advances in shell buckling: theory and experiments publication-title: Int. J. Bifurcation Chaos doi: 10.1142/S0218127415300013 – volume: 220 start-page: 45 year: 2019 ident: 10.1016/j.tws.2022.109667_b8 article-title: Decision tree-based machine learning to optimize the laminate stacking of composite cylinders for maximum buckling load and minimum imperfection sensitivity publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.02.103 – volume: 164 start-page: 37 year: 2019 ident: 10.1016/j.tws.2022.109667_b9 article-title: Experimental validation of cylindrical shells under axial compression for improved knockdown factors publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2019.01.001 – volume: 146 start-page: 60 year: 2018 ident: 10.1016/j.tws.2022.109667_b38 article-title: Towards robust knockdown factors for the design of conical shells under axial compression publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2018.07.016 – volume: 29 start-page: 550 issue: 4 year: 2013 ident: 10.1016/j.tws.2022.109667_b21 article-title: Novel implementation of homogenization method to predict effective properties of periodic materials publication-title: Acta Mech. Sinica doi: 10.1007/s10409-013-0043-0 – start-page: 263 year: 2013 ident: 10.1016/j.tws.2022.109667_b32 article-title: Improved knockdown factors for cylindrical shells using worst multi-perturbation load approach – volume: 19 start-page: 461 issue: 5 year: 1983 ident: 10.1016/j.tws.2022.109667_b41 article-title: Reduced stiffness axial load buckling of cylinders publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(83)90056-2 – volume: 135 start-page: 410 year: 2018 ident: 10.1016/j.tws.2022.109667_b37 article-title: Robust knockdown factors for the design of cylindrical shells under axial compression: potentials, practical application and reliability analysis publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.11.020 – volume: 27 issue: 14 year: 2017 ident: 10.1016/j.tws.2022.109667_b50 article-title: Probing shells against buckling: a nondestructive technique for laboratory testing publication-title: Int. J. Bifurcation Chaos doi: 10.1142/S0218127417300488 – volume: 23 start-page: 67 issue: 1–4 year: 1995 ident: 10.1016/j.tws.2022.109667_b40 article-title: Towards a rationally based elastic–plastic shell buckling design methodology publication-title: Thin-Walled Struct. doi: 10.1016/0263-8231(95)00005-X – volume: 51 start-page: 284 issue: 1 year: 2014 ident: 10.1016/j.tws.2022.109667_b22 article-title: Novel numerical implementation of asymptotic homogenization method for periodic plate structures publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2013.10.003 – volume: 109 start-page: 13 year: 2016 ident: 10.1016/j.tws.2022.109667_b14 article-title: Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2016.09.008 – volume: 156 start-page: 205 year: 2019 ident: 10.1016/j.tws.2022.109667_b43 article-title: Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.02.047 – ident: 10.1016/j.tws.2022.109667_b34 doi: 10.2514/6.2012-1689 – volume: 88 issue: 5 year: 2021 ident: 10.1016/j.tws.2022.109667_b52 article-title: A nondestructive technique for the evaluation of thin cylindrical shells’ axial buckling capacity publication-title: J. Appl. Mech. doi: 10.1115/1.4049806 – volume: 44 start-page: 654 issue: 3 year: 2006 ident: 10.1016/j.tws.2022.109667_b12 article-title: Shell buckling design criteria based on manufacturing imperfection signatures publication-title: AIAA J. doi: 10.2514/1.5429 – volume: 148 start-page: 157 year: 2018 ident: 10.1016/j.tws.2022.109667_b47 article-title: Imperfections and energy barriers in shell buckling publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2018.01.030 – volume: 85 issue: 9 year: 2018 ident: 10.1016/j.tws.2022.109667_b35 article-title: On establishing buckling knockdowns for imperfection-sensitive shell structures publication-title: J. Appl. Mech. doi: 10.1115/1.4040455 – volume: 133 start-page: 1 year: 2018 ident: 10.1016/j.tws.2022.109667_b31 article-title: Design of axially loaded isotropic cylindrical shells using multiple perturbation load approach–simulation and validation publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2018.09.028 – volume: 118 start-page: 14 year: 2017 ident: 10.1016/j.tws.2022.109667_b53 article-title: Energy barrier as a criterion for stability estimation of spherical shell under uniform external pressure publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.04.026 – volume: 34 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.tws.2022.109667_b16 article-title: Buckling load analysis of grid stiffened composite cylinders publication-title: Composites B doi: 10.1016/S1359-8368(02)00074-4 – year: 2011 ident: 10.1016/j.tws.2022.109667_b26 – volume: 179 year: 2020 ident: 10.1016/j.tws.2022.109667_b45 article-title: On the imperfection sensitivity and design of spherical domes under external pressure publication-title: Int. J. Press. Vessels Pip. doi: 10.1016/j.ijpvp.2019.104015 – volume: 132 start-page: 136 year: 2015 ident: 10.1016/j.tws.2022.109667_b20 article-title: Hybrid analysis and optimization of hierarchical stiffened plates based on asymptotic homogenization method publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.05.012 – ident: 10.1016/j.tws.2022.109667_b59 doi: 10.2514/6.2012-1865 – year: 2015 ident: 10.1016/j.tws.2022.109667_b56 – volume: 225 year: 2019 ident: 10.1016/j.tws.2022.109667_b13 article-title: Buckling analysis of an imperfection-insensitive hybrid composite cylinder under axial compression–numerical simulation, destructive and non-destructive experimental testing publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2019.111152 – volume: 66 start-page: 1793 issue: 5 year: 2006 ident: 10.1016/j.tws.2022.109667_b60 article-title: Cylinder buckling: the mountain pass as an organizing center publication-title: SIAM J. Appl. Math. doi: 10.1137/050635778 – volume: 46 start-page: 947 issue: 7–9 year: 2008 ident: 10.1016/j.tws.2022.109667_b27 article-title: Robust design of composite cylindrical shells under axial compression—simulation and validation publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2008.01.043 – volume: 72 start-page: 76 year: 2013 ident: 10.1016/j.tws.2022.109667_b10 article-title: Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2013.06.016 – ident: 10.1016/j.tws.2022.109667_b58 doi: 10.2514/6.2018-1987 – volume: 160 start-page: 51 year: 2019 ident: 10.1016/j.tws.2022.109667_b48 article-title: Dynamic energy barrier estimation for spherical shells under external pressure publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.06.028 – volume: 475 issue: 2224 year: 2019 ident: 10.1016/j.tws.2022.109667_b54 article-title: On the role of localizations in buckling of axially compressed cylinders publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. – volume: 24 start-page: 575 issue: 3 year: 2017 ident: 10.1016/j.tws.2022.109667_b24 article-title: Multilevel optimization framework for hierarchical stiffened shells accelerated by adaptive equivalent strategy publication-title: Appl. Compos. Mater. doi: 10.1007/s10443-016-9527-y – volume: 94 start-page: 325 year: 2015 ident: 10.1016/j.tws.2022.109667_b1 article-title: Non-probabilistic reliability-based design optimization of stiffened shells under buckling constraint publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2015.04.031 – volume: 173 start-page: 281 year: 2017 ident: 10.1016/j.tws.2022.109667_b29 article-title: Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells–development and validation publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.02.031 – volume: 164 start-page: 37 year: 2019 ident: 10.1016/j.tws.2022.109667_b61 article-title: Experimental validation of cylindrical shells under axial compression for improved knockdown factors publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2019.01.001 – volume: 119 issue: 22 year: 2017 ident: 10.1016/j.tws.2022.109667_b51 article-title: Stability landscape of shell buckling publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.224101 – volume: 84 start-page: 1934 issue: 29–30 year: 2006 ident: 10.1016/j.tws.2022.109667_b42 article-title: Computation of lower-bound elastic buckling loads using general-purpose finite element codes publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2006.08.016 – volume: 50 start-page: 2389 issue: 11 year: 2012 ident: 10.1016/j.tws.2022.109667_b3 article-title: Surrogate-based optimum design for stiffened shells with adaptive sampling publication-title: AIAA J. doi: 10.2514/1.J051522 – year: 2021 ident: 10.1016/j.tws.2022.109667_b7 article-title: Buckling design of axially compressed cylindrical shells based on energy barrier approach publication-title: Int. J. Struct. Stab. Dyn. doi: 10.1142/S0219455421501650 – volume: 74 start-page: 118 year: 2014 ident: 10.1016/j.tws.2022.109667_b62 article-title: Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2013.08.011 – volume: 62 start-page: 114 year: 2017 ident: 10.1016/j.tws.2022.109667_b15 article-title: Grid-pattern optimization framework of novel hierarchical stiffened shells allowing for imperfection sensitivity publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2016.12.002 – volume: 82 start-page: 46 year: 2014 ident: 10.1016/j.tws.2022.109667_b4 article-title: Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2014.04.004 – volume: 136 start-page: 405 year: 2016 ident: 10.1016/j.tws.2022.109667_b30 article-title: Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2015.10.022 – ident: 10.1016/j.tws.2022.109667_b11 doi: 10.2514/6.2018-1696 – volume: 73 start-page: 208 issue: 2 year: 2006 ident: 10.1016/j.tws.2022.109667_b2 article-title: Post-buckling optimization of composite stiffened panels: computations and experiments publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2005.11.047 – year: 2007 ident: 10.1016/j.tws.2022.109667_b63 – volume: 148 start-page: 14 year: 2018 ident: 10.1016/j.tws.2022.109667_b19 article-title: A high-fidelity approximate model for determining lower-bound buckling loads for stiffened shells publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2017.10.034 – volume: 23 start-page: 215 issue: 1–4 year: 1995 ident: 10.1016/j.tws.2022.109667_b6 article-title: Understanding imperfection-sensitivity in the buckling of thin-walled shells publication-title: Thin-Walled Struct. doi: 10.1016/0263-8231(95)00013-4 – volume: 161 year: 2021 ident: 10.1016/j.tws.2022.109667_b49 article-title: Energy barrier method for estimation of design buckling load of axially compressed elasto-plastic cylindrical shells publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2021.107454 – volume: 155 year: 2020 ident: 10.1016/j.tws.2022.109667_b25 article-title: Buckling of launch-vehicle cylinders under axial compression: A comparison of experimental and numerical knockdown factors publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2020.106931 – volume: 23 start-page: 29 issue: 1 year: 2016 ident: 10.1016/j.tws.2022.109667_b17 article-title: Finite element analysis of 2.5 D woven composites, part I: microstructure and 3D finite element model publication-title: Appl. Compos. Mater. doi: 10.1007/s10443-015-9447-2 – volume: 152 start-page: 807 year: 2016 ident: 10.1016/j.tws.2022.109667_b23 article-title: Numerical-based smeared stiffener method for global buckling analysis of grid-stiffened composite cylindrical shells publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2016.05.096 – volume: 40 start-page: 183 issue: 2 year: 2003 ident: 10.1016/j.tws.2022.109667_b5 article-title: Challenges in comparing numerical solutions for optimum weights of stiffened shells publication-title: J. Spacecr. Rockets doi: 10.2514/2.3952 – volume: 160 start-page: 1095 year: 2017 ident: 10.1016/j.tws.2022.109667_b36 article-title: Stimulating the realistic worst case buckling scenario of axially compressed unstiffened cylindrical composite shells publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2016.10.108 – volume: 85 start-page: 41 year: 2016 ident: 10.1016/j.tws.2022.109667_b18 article-title: Trans-scale modeling framework for failure analysis of cryogenic composite tanks publication-title: Composites B doi: 10.1016/j.compositesb.2015.09.023 – volume: 82 start-page: 321 year: 2014 ident: 10.1016/j.tws.2022.109667_b33 article-title: Worst multiple perturbation load approach of stiffened shells with and without cutouts for improved knockdown factors publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2014.05.004 – volume: 145 year: 2019 ident: 10.1016/j.tws.2022.109667_b44 article-title: On the development of shell buckling knockdown factors for imperfection sensitive conical shells under pure bending publication-title: Thin-Walled Struct. doi: 10.1016/j.tws.2019.106373 – year: 2019 ident: 10.1016/j.tws.2022.109667_b39 |
SSID | ssj0017194 |
Score | 2.4159327 |
Snippet | Buckling design of axially compressed cylindrical shells is still a challenging subject due to the well-known imperfection sensitivity characteristic. Compared... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109667 |
SubjectTerms | Axial compression Buckling Imperfection sensitivity Knockdown factor Stiffened cylindrical shell |
Title | Buckling design of stiffened cylindrical shells under axial compression based on energy barrier approach |
URI | https://dx.doi.org/10.1016/j.tws.2022.109667 |
Volume | 179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuL8GDl4EuraNG3a4xiO6XAHdbhbyccrTmQb20S9-Lebl7Zjgnrw1KRNoLy-_l5Cfu_3CDkXqVIMIPAizbjHbYDyJMvBMzkPuU5lkiaYKHw7iHtDfjOKRjXSqXJhkFZZYn-B6Q6tyzut0pqt2Xjcure7B3eIxZgTrhphBjsX6OWXnyuaRyACVwwRB3s4ujrZdByv5RsqdjOGokqxKzX_Q2xaizfdHbJdLhRpu3iXXVKDyR7ZWpMP3CdP7mDWNqlxPAw6zan9Y_Pc4peh-sM-Mk4BhC6Q7rmgmDA2p_Ld-hxFLnnBgZ1QDGWG2ga4TEDbn2MhO1oJjh-QYffqodPzysoJnmapWHqpYL5R0heSxVqCkWGcgEhS8LkwQlpQSSITA4MIJJNJxKRWsWaQq4DbZhIekvpkOoEjQkGLPA-Z1soAj-yCUEZpoFILE0prSOIG8SubZbqUFcfqFi9ZxR97zqyZMzRzVpi5QS5WU2aFpsZfg3n1IbJvjpFZzP992vH_pp2QTewVbL1TUl_OX-HMrjqWquncqkk22tf93gCv_bvH_hdO7dtH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSD8RnxuQdPJg2wbLvtkRAJyOMiJNyafUwjxhQCGPXfu7ttCSbqwdu2u5M00-0328w33wDc8UhKitjwfEWZx0yA8gRN0NMJazIViTAKbaHwcBR0J-xx6k9L0C5qYSytMsf-DNMdWud3ark3a4vZrPZk_h5cEotSJ1w13YGKVafyy1Bp9frd0SaZwBuuH6Jd71mDIrnpaF7rdyvaTanVVQpct_kfwtNWyOkcwkF-ViSt7HGOoITpMexvKQiewLPLzZoh0Y6KQeYJMR9tkhgI00R9mintREDIyjI-V8TWjC2J-DDbjlg6eUaDTYmNZpqYAbpiQHO9tL3sSKE5fgqTzsO43fXy5gmeohFfexGndS1FnQsaKIFaNIMQeRhhnXHNhcGV0NcBUvRRUBH6VCgZKIqJbDAzDJtnUE7nKZ4DQcWTpEmVkhqZb86Ewo8aMjJIIZXCMKhCvfBZrHJlcdvg4jUuKGQvsXFzbN0cZ26uwv3GZJHJavy1mBUvIv62N2ID-7-bXfzP7BZ2u-PhIB70Rv1L2LMzGXnvCsrr5Rtem0PIWt7km-wL-HvcVQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Buckling+design+of+stiffened+cylindrical+shells+under+axial+compression+based+on+energy+barrier+approach&rft.jtitle=Thin-walled+structures&rft.au=Fan%2C+Haigui&rft.au=Li%2C+Longhua&rft.au=Gu%2C+Wenguang&rft.au=Liu%2C+Peiqi&rft.date=2022-10-01&rft.pub=Elsevier+Ltd&rft.issn=0263-8231&rft.eissn=1879-3223&rft.volume=179&rft_id=info:doi/10.1016%2Fj.tws.2022.109667&rft.externalDocID=S026382312200430X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8231&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8231&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8231&client=summon |