5G cascaded channel estimation using convolutional neural networks

Cascaded channels have been considered in several physical multipath propagation scenarios. However they are subject to phenomena such as multipath scattering, time dispersion and Doppler shift between the different links, which impose great challenges in relation to the channel estimation processin...

Full description

Saved in:
Bibliographic Details
Published inDigital signal processing Vol. 126; p. 103483
Main Authors Coutinho, Fábio D.L., Silva, Hugerles S., Georgieva, Petia, Oliveira, Arnaldo S.R.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 30.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cascaded channels have been considered in several physical multipath propagation scenarios. However they are subject to phenomena such as multipath scattering, time dispersion and Doppler shift between the different links, which impose great challenges in relation to the channel estimation processing function in the receiver. In this paper we propose to tackle the problem of cascaded channels estimation in the fifth-generation and beyond (5G+) systems using convolutional neural networks (CNNs), without forward error correction (FEC) codes. The results show that the CNN-based framework reaches very close to perfect (theoretical) channel estimation levels, in terms of bit error rate (BER) values, and outperforms the least square (LS) practical estimation, measured in mean squared error (MSE). The benefits of CNN-based wireless cascaded channels estimation are particularly relevant for increasing number of links and modulation order. These findings are further confirmed at the CNN implementation stage on a field programmable gate array (FPGA) platform for a number of realistic quantization scenarios.
AbstractList Cascaded channels have been considered in several physical multipath propagation scenarios. However they are subject to phenomena such as multipath scattering, time dispersion and Doppler shift between the different links, which impose great challenges in relation to the channel estimation processing function in the receiver. In this paper we propose to tackle the problem of cascaded channels estimation in the fifth-generation and beyond (5G+) systems using convolutional neural networks (CNNs), without forward error correction (FEC) codes. The results show that the CNN-based framework reaches very close to perfect (theoretical) channel estimation levels, in terms of bit error rate (BER) values, and outperforms the least square (LS) practical estimation, measured in mean squared error (MSE). The benefits of CNN-based wireless cascaded channels estimation are particularly relevant for increasing number of links and modulation order. These findings are further confirmed at the CNN implementation stage on a field programmable gate array (FPGA) platform for a number of realistic quantization scenarios.
ArticleNumber 103483
Author Silva, Hugerles S.
Georgieva, Petia
Oliveira, Arnaldo S.R.
Coutinho, Fábio D.L.
Author_xml – sequence: 1
  givenname: Fábio D.L.
  orcidid: 0000-0002-7790-3924
  surname: Coutinho
  fullname: Coutinho, Fábio D.L.
  email: fabiocoutinho@av.it.pt
  organization: Instituto de Telecomunicações e Departamento de Electrónica, Telecomunicações e Informática, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
– sequence: 2
  givenname: Hugerles S.
  orcidid: 0000-0003-0165-5853
  surname: Silva
  fullname: Silva, Hugerles S.
  organization: Instituto de Telecomunicações e Departamento de Electrónica, Telecomunicações e Informática, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
– sequence: 3
  givenname: Petia
  orcidid: 0000-0002-6424-6590
  surname: Georgieva
  fullname: Georgieva, Petia
  organization: Instituto de Engenharia Electrónica e Telemática de Aveiro e Departamento de Electrónica, Telecomunicações e Informática, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
– sequence: 4
  givenname: Arnaldo S.R.
  orcidid: 0000-0002-8759-3456
  surname: Oliveira
  fullname: Oliveira, Arnaldo S.R.
  organization: Instituto de Telecomunicações e Departamento de Electrónica, Telecomunicações e Informática, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
BookMark eNp9kL1OAzEQhC0UJBLgAejuBS74L3ZOVBBBQIpEA7Vl1nvgcPgi2wni7fElVBSpZmelb7UzEzIKfUBCrhidMsrU9Xrq0mbKKefFCzkXJ2TMaDOrpRBiNMwzVnNK5RmZpLSmlGrJ1ZjczZYV2ATWoavgw4aAXYUp-y-bfR-qbfLhvYI-7PpuO2xsVwXcxr3k7z5-pgty2tou4eWfnpPXh_uXxWO9el4-LW5XNfBG57pRynLKHEXOBG-sFha1bThKmKNWWjkJIBkTLRPQ0FbIkusNW3RorSr-nOjDXYh9ShFbAz7vv8zR-s4waoYqzNqUKsxQhTlUUUj2j9zEEjD-HGVuDgyWSDuP0STwGACdjwjZuN4foX8BVjt5YQ
CitedBy_id crossref_primary_10_1007_s11276_023_03615_y
crossref_primary_10_32604_cmes_2022_022246
crossref_primary_10_1007_s13198_023_02211_9
crossref_primary_10_1007_s11082_023_05812_7
crossref_primary_10_3390_electronics14020307
Cites_doi 10.1109/TWC.2011.041311.101477
10.1007/s11277-015-2389-z
10.1109/ACCESS.2020.3006518
10.1109/JSTSP.2019.2925975
10.1109/TVT.2013.2262104
10.1109/JSAC.2020.3007057
10.1109/LCOMM.2019.2898944
10.1109/OJVT.2020.3045470
10.1109/ACCESS.2019.2892051
10.1109/TCOMM.2015.2481897
10.1109/TCCN.2017.2758370
10.1109/LWC.2020.3034388
10.1109/LWC.2017.2757490
10.1109/TVT.2015.2399295
10.1109/TVT.2016.2529661
10.1109/LWC.2021.3092147
10.1109/CC.2017.8233654
10.1109/TSP.2004.831028
10.1109/TWC.2015.2487268
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.dsp.2022.103483
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1095-4333
ExternalDocumentID 10_1016_j_dsp_2022_103483
S1051200422001002
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
ZMT
ZU3
~G-
29G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CAG
CITATION
COF
EJD
F0J
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
RIG
SBC
SET
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c297t-966a201d0e21329a73ae7a92e4c8e7676d4cc4113f13c90f34016befedeaa60f3
IEDL.DBID .~1
ISSN 1051-2004
IngestDate Thu Apr 24 23:03:40 EDT 2025
Tue Jul 01 03:49:55 EDT 2025
Fri Feb 23 02:40:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 5G
Cascaded channel
Convolutional neural networks
FPGA
Channel estimation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-966a201d0e21329a73ae7a92e4c8e7676d4cc4113f13c90f34016befedeaa60f3
ORCID 0000-0002-8759-3456
0000-0003-0165-5853
0000-0002-7790-3924
0000-0002-6424-6590
ParticipantIDs crossref_citationtrail_10_1016_j_dsp_2022_103483
crossref_primary_10_1016_j_dsp_2022_103483
elsevier_sciencedirect_doi_10_1016_j_dsp_2022_103483
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-30
PublicationDateYYYYMMDD 2022-06-30
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-30
  day: 30
PublicationDecade 2020
PublicationTitle Digital signal processing
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Khattabi, Matalgah (br0030) Jan. 2016; 65
Wang, Mehrpouyan, Tao, Hua (br0070) Feb. 2016; 15
Ma, Orlik, Zhang, Li. Pilot (br0040) Jun. 2011; 10
Sanchez-Fernandez, de-Prado-Cumplido, Arenas-Garcia, Perez-Cruz (br0130) Aug. 2004; 52
Tseng, Huang, Wu (br0060) Oct. 2013; 62
Kang, Chun, Kim (br0170) Jul. 2020; 8
Liu, Yuan, Zhang (br0100) Nov. 2020; 38
O'Shea, Hoydis (br0120) Dec. 2017; 3
Marinberg, Cohen, Ben-Dror, Permuter (br0190) 2020
Soltani, Pourahmadi, Mirzaei, Sheikhzadeh (br0150) Apr. 2019; 23
Millar, Weiss, Stewart (br0050) Dec. 2015; 63
(br0210) Jun. 2018
Liu, Zhang, Gao, Tang, Dobre (br0080) Sept. 2021; 10
Arti (br0020) Dec. 2016; 65
Krizhevsky, Sutskever, Hinton (br0220) Dec. 2012; 25
Sun, Chen, Wang, Tang (br0230) Jun. 2014; 2
Saikrishna, Chavva, Beniwal, Goyal (br0200) 2021
Dong, Zhang, Li, Gaspar, NaderiAlizadeh (br0180) Sep. 2019; 13
Hirose, Ohtsuki, Gui (br0160) Dec. 2020; 2
Myint, Yu, Sato (br0240) Jan. 2019; 7
Ilhan (br0010) Feb. 2015; 83
Wang, Wen, Wang, Gao, Jiang, Jin (br0110) Oct. 2017; 14
You, Zheng, Zhang (br0090) Feb. 2021; 10
Ye, Li, Juang (br0140) Feb. 2018; 7
Marinberg (10.1016/j.dsp.2022.103483_br0190) 2020
Sun (10.1016/j.dsp.2022.103483_br0230) 2014; 2
Khattabi (10.1016/j.dsp.2022.103483_br0030) 2016; 65
Hirose (10.1016/j.dsp.2022.103483_br0160) 2020; 2
Krizhevsky (10.1016/j.dsp.2022.103483_br0220) 2012; 25
Ye (10.1016/j.dsp.2022.103483_br0140) 2018; 7
Myint (10.1016/j.dsp.2022.103483_br0240) 2019; 7
Liu (10.1016/j.dsp.2022.103483_br0100) 2020; 38
Kang (10.1016/j.dsp.2022.103483_br0170) 2020; 8
Tseng (10.1016/j.dsp.2022.103483_br0060) 2013; 62
Wang (10.1016/j.dsp.2022.103483_br0110) 2017; 14
(10.1016/j.dsp.2022.103483_br0210) 2018
Arti (10.1016/j.dsp.2022.103483_br0020) 2016; 65
Soltani (10.1016/j.dsp.2022.103483_br0150) 2019; 23
Wang (10.1016/j.dsp.2022.103483_br0070) 2016; 15
You (10.1016/j.dsp.2022.103483_br0090) 2021; 10
Dong (10.1016/j.dsp.2022.103483_br0180) 2019; 13
Saikrishna (10.1016/j.dsp.2022.103483_br0200) 2021
Millar (10.1016/j.dsp.2022.103483_br0050) 2015; 63
Ilhan (10.1016/j.dsp.2022.103483_br0010) 2015; 83
Sanchez-Fernandez (10.1016/j.dsp.2022.103483_br0130) 2004; 52
Liu (10.1016/j.dsp.2022.103483_br0080) 2021; 10
Ma (10.1016/j.dsp.2022.103483_br0040) 2011; 10
O'Shea (10.1016/j.dsp.2022.103483_br0120) 2017; 3
References_xml – volume: 3
  start-page: 563
  year: Dec. 2017
  end-page: 575
  ident: br0120
  article-title: An introduction to deep learning for the physical layer
  publication-title: IEEE Trans. Cogn. Commun. Netw.
– volume: 23
  start-page: 652
  year: Apr. 2019
  end-page: 655
  ident: br0150
  article-title: Deep learning-based channel estimation
  publication-title: IEEE Commun. Lett.
– volume: 65
  start-page: 10173
  year: Dec. 2016
  end-page: 10179
  ident: br0020
  article-title: Channel estimation and detection in satellite communication systems
  publication-title: IEEE Trans. Veh. Technol.
– volume: 10
  start-page: 431
  year: Feb. 2021
  end-page: 435
  ident: br0090
  article-title: Wireless communication via double IRS: channel estimation and passive beamforming designs
  publication-title: IEEE Wirel. Commun. Lett.
– volume: 52
  start-page: 2298
  year: Aug. 2004
  end-page: 2307
  ident: br0130
  article-title: SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems
  publication-title: IEEE Trans. Signal Process.
– volume: 2
  start-page: 1988
  year: Jun. 2014
  end-page: 1996
  ident: br0230
  article-title: Deep learning face representation by joint identification-verification
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 8
  start-page: 121162
  year: Jul. 2020
  end-page: 121181
  ident: br0170
  article-title: Deep learning based channel estimation for MIMO systems with received SNR feedback
  publication-title: IEEE Access
– volume: 25
  start-page: 1097
  year: Dec. 2012
  end-page: 1105
  ident: br0220
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 38
  start-page: 2621
  year: Nov. 2020
  end-page: 2636
  ident: br0100
  article-title: Matrix-calibration-based cascaded channel estimation for reconfigurable intelligent surface assisted multiuser MIMO
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 10
  start-page: 1956
  year: Jun. 2011
  end-page: 1965
  ident: br0040
  article-title: Matrix design for estimating cascaded channels in two-hop MIMO amplify-and-forward relay systems
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 15
  start-page: 1186
  year: Feb. 2016
  end-page: 1205
  ident: br0070
  article-title: Channel estimation, carrier recovery, and data detection in the presence of phase noise in OFDM relay systems
  publication-title: IEEE Trans. Wirel. Commun.
– start-page: 1
  year: 2020
  end-page: 6
  ident: br0190
  article-title: A study on MIMO channel estimation by 2D and 3D convolutional neural networks
  publication-title: Proceedings of the IEEE International Conference on Advanced Networks and Telecommunications Systems
– volume: 7
  start-page: 26391
  year: Jan. 2019
  end-page: 26401
  ident: br0240
  article-title: Modeling and analysis of error process in 5G wireless communication using two-state Markov chain
  publication-title: IEEE Access
– volume: 63
  start-page: 4711
  year: Dec. 2015
  end-page: 4726
  ident: br0050
  article-title: Training-based channel estimation algorithms for dual hop MIMO OFDM relay systems
  publication-title: IEEE Trans. Commun.
– volume: 62
  start-page: 3752
  year: Oct. 2013
  end-page: 3766
  ident: br0060
  article-title: Robust far-end channel estimation in three-node amplify-and-forward MIMO relay systems
  publication-title: IEEE Trans. Veh. Technol.
– volume: 10
  start-page: 2065
  year: Sept. 2021
  end-page: 2069
  ident: br0080
  article-title: Cascaded channel estimation for RIS assisted mmWave MIMO transmissions
  publication-title: IEEE Wirel. Commun. Lett.
– start-page: 1
  year: 2021
  end-page: 6
  ident: br0200
  article-title: Deep learning based channel estimation with flexible delay and Doppler networks for 5G NR
  publication-title: Proceedings of the IEEE Wireless Communications and Networking Conference
– volume: 7
  start-page: 114
  year: Feb. 2018
  end-page: 117
  ident: br0140
  article-title: Power of deep learning for channel estimation and signal detection in OFDM systems
  publication-title: IEEE Wirel. Commun. Lett.
– volume: 83
  start-page: 203
  year: Feb. 2015
  end-page: 214
  ident: br0010
  article-title: Performance analysis of cooperative vehicular systems with co-channel interference over cascaded Nakagami-
  publication-title: Wirel. Pers. Commun.
– volume: 13
  start-page: 989
  year: Sep. 2019
  end-page: 1000
  ident: br0180
  article-title: Deep CNN-based channel estimation for mmWave massive MIMO systems
  publication-title: IEEE J. Sel. Top. Signal Process.
– year: Jun. 2018
  ident: br0210
– volume: 2
  start-page: 67
  year: Dec. 2020
  end-page: 77
  ident: br0160
  article-title: Deep learning-based channel estimation for massive MIMO systems with pilot contamination
  publication-title: IEEE Open J. Veh. Technol.
– volume: 14
  start-page: 92
  year: Oct. 2017
  end-page: 111
  ident: br0110
  article-title: Deep learning for wireless physical layer: opportunities and challenges
  publication-title: China Commun.
– volume: 65
  start-page: 427
  year: Jan. 2016
  end-page: 434
  ident: br0030
  article-title: Performance analysis of multiple-relay AF cooperative systems over Rayleigh time-selective fading channels with imperfect channel estimation
  publication-title: IEEE Trans. Veh. Technol.
– volume: 10
  start-page: 1956
  issue: 6
  year: 2011
  ident: 10.1016/j.dsp.2022.103483_br0040
  article-title: Matrix design for estimating cascaded channels in two-hop MIMO amplify-and-forward relay systems
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2011.041311.101477
– volume: 83
  start-page: 203
  year: 2015
  ident: 10.1016/j.dsp.2022.103483_br0010
  article-title: Performance analysis of cooperative vehicular systems with co-channel interference over cascaded Nakagami-m fading channels
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-015-2389-z
– volume: 8
  start-page: 121162
  year: 2020
  ident: 10.1016/j.dsp.2022.103483_br0170
  article-title: Deep learning based channel estimation for MIMO systems with received SNR feedback
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006518
– volume: 13
  start-page: 989
  issue: 5
  year: 2019
  ident: 10.1016/j.dsp.2022.103483_br0180
  article-title: Deep CNN-based channel estimation for mmWave massive MIMO systems
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2019.2925975
– volume: 62
  start-page: 3752
  issue: 8
  year: 2013
  ident: 10.1016/j.dsp.2022.103483_br0060
  article-title: Robust far-end channel estimation in three-node amplify-and-forward MIMO relay systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2013.2262104
– volume: 38
  start-page: 2621
  issue: 11
  year: 2020
  ident: 10.1016/j.dsp.2022.103483_br0100
  article-title: Matrix-calibration-based cascaded channel estimation for reconfigurable intelligent surface assisted multiuser MIMO
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.3007057
– volume: 23
  start-page: 652
  issue: 4
  year: 2019
  ident: 10.1016/j.dsp.2022.103483_br0150
  article-title: Deep learning-based channel estimation
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2019.2898944
– volume: 2
  start-page: 67
  year: 2020
  ident: 10.1016/j.dsp.2022.103483_br0160
  article-title: Deep learning-based channel estimation for massive MIMO systems with pilot contamination
  publication-title: IEEE Open J. Veh. Technol.
  doi: 10.1109/OJVT.2020.3045470
– volume: 7
  start-page: 26391
  year: 2019
  ident: 10.1016/j.dsp.2022.103483_br0240
  article-title: Modeling and analysis of error process in 5G wireless communication using two-state Markov chain
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2892051
– volume: 63
  start-page: 4711
  issue: 12
  year: 2015
  ident: 10.1016/j.dsp.2022.103483_br0050
  article-title: Training-based channel estimation algorithms for dual hop MIMO OFDM relay systems
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2015.2481897
– volume: 3
  start-page: 563
  issue: 4
  year: 2017
  ident: 10.1016/j.dsp.2022.103483_br0120
  article-title: An introduction to deep learning for the physical layer
  publication-title: IEEE Trans. Cogn. Commun. Netw.
  doi: 10.1109/TCCN.2017.2758370
– volume: 10
  start-page: 431
  issue: 2
  year: 2021
  ident: 10.1016/j.dsp.2022.103483_br0090
  article-title: Wireless communication via double IRS: channel estimation and passive beamforming designs
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2020.3034388
– start-page: 1
  year: 2021
  ident: 10.1016/j.dsp.2022.103483_br0200
  article-title: Deep learning based channel estimation with flexible delay and Doppler networks for 5G NR
– volume: 7
  start-page: 114
  issue: 1
  year: 2018
  ident: 10.1016/j.dsp.2022.103483_br0140
  article-title: Power of deep learning for channel estimation and signal detection in OFDM systems
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2017.2757490
– volume: 65
  start-page: 427
  issue: 1
  year: 2016
  ident: 10.1016/j.dsp.2022.103483_br0030
  article-title: Performance analysis of multiple-relay AF cooperative systems over Rayleigh time-selective fading channels with imperfect channel estimation
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2015.2399295
– volume: 65
  start-page: 10173
  issue: 12
  year: 2016
  ident: 10.1016/j.dsp.2022.103483_br0020
  article-title: Channel estimation and detection in satellite communication systems
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2016.2529661
– volume: 10
  start-page: 2065
  issue: 9
  year: 2021
  ident: 10.1016/j.dsp.2022.103483_br0080
  article-title: Cascaded channel estimation for RIS assisted mmWave MIMO transmissions
  publication-title: IEEE Wirel. Commun. Lett.
  doi: 10.1109/LWC.2021.3092147
– start-page: 1
  year: 2020
  ident: 10.1016/j.dsp.2022.103483_br0190
  article-title: A study on MIMO channel estimation by 2D and 3D convolutional neural networks
– volume: 2
  start-page: 1988
  year: 2014
  ident: 10.1016/j.dsp.2022.103483_br0230
  article-title: Deep learning face representation by joint identification-verification
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 14
  start-page: 92
  issue: 11
  year: 2017
  ident: 10.1016/j.dsp.2022.103483_br0110
  article-title: Deep learning for wireless physical layer: opportunities and challenges
  publication-title: China Commun.
  doi: 10.1109/CC.2017.8233654
– volume: 52
  start-page: 2298
  issue: 8
  year: 2004
  ident: 10.1016/j.dsp.2022.103483_br0130
  article-title: SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.831028
– volume: 15
  start-page: 1186
  issue: 2
  year: 2016
  ident: 10.1016/j.dsp.2022.103483_br0070
  article-title: Channel estimation, carrier recovery, and data detection in the presence of phase noise in OFDM relay systems
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2015.2487268
– year: 2018
  ident: 10.1016/j.dsp.2022.103483_br0210
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.dsp.2022.103483_br0220
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0007426
Score 2.3652763
Snippet Cascaded channels have been considered in several physical multipath propagation scenarios. However they are subject to phenomena such as multipath scattering,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103483
SubjectTerms 5G
Cascaded channel
Channel estimation
Convolutional neural networks
FPGA
Title 5G cascaded channel estimation using convolutional neural networks
URI https://dx.doi.org/10.1016/j.dsp.2022.103483
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1VZYEB8SnKR5WBCSk0id04HktFKSC6QKVukWM7qKhKK1pWfjt3TgJFAgamyJFtJc-nO1t-9w7gPDM5490k9GMbM58brn2FUcNnQSIxwjMjXUmWh1E8HPO7SXfSgH6dC0O0ysr3lz7deevqTadCs7OYTjuPuDMII6dhRQcbJyjJuSArv3z_onng0c9lGGFnZxH1zabjeJklSVZGEaWe84T9HJvW4s1gB7arjaLXK79lFxq22IOtNfnAfbjq3nhaLYnhbjzK4C3szCPVjDId0SNO-7NHvPLKvnA-0q90D8f-Xh7AeHD91B_6VU0EX0dSrEhMU2HMNoGNqES8EkxZoWRkuU6siEWMaGsehiwPmZYBLgT-aWZza6xSMbYPoVnMC3sEHk7BQy01hmzDVaKk0UHCpc2FinmWiBYENRqprgTDqW7FLK2ZYS8pApgSgGkJYAsuPocsSrWMvzrzGuL025Kn6M1_H3b8v2EnsEmtkup3Cs3V65s9w_3EKms7g2nDRu_2fjj6AG4ayEA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5V7QAMiKcozwxMSFGT2Hl4LBUlpY-FVuoWObaDiqpQ0fL_8TkOKhIwMEVJbCv5fLqz5e--A7jNZUFomPhupCLiUkmFy3XUcImXMB3hiWSmJMt4EqUz-jQP5w3o1bkwSKu0vr_y6cZb2ycdi2ZntVh0nvXKwA-MhhVubFBQsoXqVGETWt3BMJ18OWS9-zNJRrq9MYr6cNPQvOQaVSuDALPPaUJ-Dk9bIad_APt2reh0q885hIYqj2BvS0HwGO7DR0fwNZLcpYNJvKVaOiicUWUkOkhrf3GQWm5NTI-HEpbmYgjg6xOY9R-mvdS1ZRFcEbB4g3qaXIdt6akAq8TzmHAVcxYoKhIVR3GkARfU90nhE8E8PRf6T3NVKKk4j_T9KTTLt1KdgaOHoL5gQkdtSXnCmRReQpkqYh7RPInb4NVoZMJqhmPpimVWk8NeMw1ghgBmFYBtuPvqsqoEM_5qTGuIs2-znmmH_nu38_91u4GddDoeZaPBZHgBu_imYv5dQnPz_qGu9PJik19b8_kEYTfK8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=5G+cascaded+channel+estimation+using+convolutional+neural+networks&rft.jtitle=Digital+signal+processing&rft.au=Coutinho%2C+F%C3%A1bio+D.L.&rft.au=Silva%2C+Hugerles+S.&rft.au=Georgieva%2C+Petia&rft.au=Oliveira%2C+Arnaldo+S.R.&rft.date=2022-06-30&rft.pub=Elsevier+Inc&rft.issn=1051-2004&rft.eissn=1095-4333&rft.volume=126&rft_id=info:doi/10.1016%2Fj.dsp.2022.103483&rft.externalDocID=S1051200422001002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon