5G cascaded channel estimation using convolutional neural networks
Cascaded channels have been considered in several physical multipath propagation scenarios. However they are subject to phenomena such as multipath scattering, time dispersion and Doppler shift between the different links, which impose great challenges in relation to the channel estimation processin...
Saved in:
Published in | Digital signal processing Vol. 126; p. 103483 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
30.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cascaded channels have been considered in several physical multipath propagation scenarios. However they are subject to phenomena such as multipath scattering, time dispersion and Doppler shift between the different links, which impose great challenges in relation to the channel estimation processing function in the receiver. In this paper we propose to tackle the problem of cascaded channels estimation in the fifth-generation and beyond (5G+) systems using convolutional neural networks (CNNs), without forward error correction (FEC) codes. The results show that the CNN-based framework reaches very close to perfect (theoretical) channel estimation levels, in terms of bit error rate (BER) values, and outperforms the least square (LS) practical estimation, measured in mean squared error (MSE). The benefits of CNN-based wireless cascaded channels estimation are particularly relevant for increasing number of links and modulation order. These findings are further confirmed at the CNN implementation stage on a field programmable gate array (FPGA) platform for a number of realistic quantization scenarios. |
---|---|
AbstractList | Cascaded channels have been considered in several physical multipath propagation scenarios. However they are subject to phenomena such as multipath scattering, time dispersion and Doppler shift between the different links, which impose great challenges in relation to the channel estimation processing function in the receiver. In this paper we propose to tackle the problem of cascaded channels estimation in the fifth-generation and beyond (5G+) systems using convolutional neural networks (CNNs), without forward error correction (FEC) codes. The results show that the CNN-based framework reaches very close to perfect (theoretical) channel estimation levels, in terms of bit error rate (BER) values, and outperforms the least square (LS) practical estimation, measured in mean squared error (MSE). The benefits of CNN-based wireless cascaded channels estimation are particularly relevant for increasing number of links and modulation order. These findings are further confirmed at the CNN implementation stage on a field programmable gate array (FPGA) platform for a number of realistic quantization scenarios. |
ArticleNumber | 103483 |
Author | Silva, Hugerles S. Georgieva, Petia Oliveira, Arnaldo S.R. Coutinho, Fábio D.L. |
Author_xml | – sequence: 1 givenname: Fábio D.L. orcidid: 0000-0002-7790-3924 surname: Coutinho fullname: Coutinho, Fábio D.L. email: fabiocoutinho@av.it.pt organization: Instituto de Telecomunicações e Departamento de Electrónica, Telecomunicações e Informática, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal – sequence: 2 givenname: Hugerles S. orcidid: 0000-0003-0165-5853 surname: Silva fullname: Silva, Hugerles S. organization: Instituto de Telecomunicações e Departamento de Electrónica, Telecomunicações e Informática, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal – sequence: 3 givenname: Petia orcidid: 0000-0002-6424-6590 surname: Georgieva fullname: Georgieva, Petia organization: Instituto de Engenharia Electrónica e Telemática de Aveiro e Departamento de Electrónica, Telecomunicações e Informática, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal – sequence: 4 givenname: Arnaldo S.R. orcidid: 0000-0002-8759-3456 surname: Oliveira fullname: Oliveira, Arnaldo S.R. organization: Instituto de Telecomunicações e Departamento de Electrónica, Telecomunicações e Informática, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal |
BookMark | eNp9kL1OAzEQhC0UJBLgAejuBS74L3ZOVBBBQIpEA7Vl1nvgcPgi2wni7fElVBSpZmelb7UzEzIKfUBCrhidMsrU9Xrq0mbKKefFCzkXJ2TMaDOrpRBiNMwzVnNK5RmZpLSmlGrJ1ZjczZYV2ATWoavgw4aAXYUp-y-bfR-qbfLhvYI-7PpuO2xsVwXcxr3k7z5-pgty2tou4eWfnpPXh_uXxWO9el4-LW5XNfBG57pRynLKHEXOBG-sFha1bThKmKNWWjkJIBkTLRPQ0FbIkusNW3RorSr-nOjDXYh9ShFbAz7vv8zR-s4waoYqzNqUKsxQhTlUUUj2j9zEEjD-HGVuDgyWSDuP0STwGACdjwjZuN4foX8BVjt5YQ |
CitedBy_id | crossref_primary_10_1007_s11276_023_03615_y crossref_primary_10_32604_cmes_2022_022246 crossref_primary_10_1007_s13198_023_02211_9 crossref_primary_10_1007_s11082_023_05812_7 crossref_primary_10_3390_electronics14020307 |
Cites_doi | 10.1109/TWC.2011.041311.101477 10.1007/s11277-015-2389-z 10.1109/ACCESS.2020.3006518 10.1109/JSTSP.2019.2925975 10.1109/TVT.2013.2262104 10.1109/JSAC.2020.3007057 10.1109/LCOMM.2019.2898944 10.1109/OJVT.2020.3045470 10.1109/ACCESS.2019.2892051 10.1109/TCOMM.2015.2481897 10.1109/TCCN.2017.2758370 10.1109/LWC.2020.3034388 10.1109/LWC.2017.2757490 10.1109/TVT.2015.2399295 10.1109/TVT.2016.2529661 10.1109/LWC.2021.3092147 10.1109/CC.2017.8233654 10.1109/TSP.2004.831028 10.1109/TWC.2015.2487268 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Inc. |
Copyright_xml | – notice: 2022 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.dsp.2022.103483 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1095-4333 |
ExternalDocumentID | 10_1016_j_dsp_2022_103483 S1051200422001002 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K ZMT ZU3 ~G- 29G AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CAG CITATION COF EJD F0J FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- RIG SBC SET SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c297t-966a201d0e21329a73ae7a92e4c8e7676d4cc4113f13c90f34016befedeaa60f3 |
IEDL.DBID | .~1 |
ISSN | 1051-2004 |
IngestDate | Thu Apr 24 23:03:40 EDT 2025 Tue Jul 01 03:49:55 EDT 2025 Fri Feb 23 02:40:27 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | 5G Cascaded channel Convolutional neural networks FPGA Channel estimation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-966a201d0e21329a73ae7a92e4c8e7676d4cc4113f13c90f34016befedeaa60f3 |
ORCID | 0000-0002-8759-3456 0000-0003-0165-5853 0000-0002-7790-3924 0000-0002-6424-6590 |
ParticipantIDs | crossref_citationtrail_10_1016_j_dsp_2022_103483 crossref_primary_10_1016_j_dsp_2022_103483 elsevier_sciencedirect_doi_10_1016_j_dsp_2022_103483 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-30 |
PublicationDateYYYYMMDD | 2022-06-30 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Digital signal processing |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Khattabi, Matalgah (br0030) Jan. 2016; 65 Wang, Mehrpouyan, Tao, Hua (br0070) Feb. 2016; 15 Ma, Orlik, Zhang, Li. Pilot (br0040) Jun. 2011; 10 Sanchez-Fernandez, de-Prado-Cumplido, Arenas-Garcia, Perez-Cruz (br0130) Aug. 2004; 52 Tseng, Huang, Wu (br0060) Oct. 2013; 62 Kang, Chun, Kim (br0170) Jul. 2020; 8 Liu, Yuan, Zhang (br0100) Nov. 2020; 38 O'Shea, Hoydis (br0120) Dec. 2017; 3 Marinberg, Cohen, Ben-Dror, Permuter (br0190) 2020 Soltani, Pourahmadi, Mirzaei, Sheikhzadeh (br0150) Apr. 2019; 23 Millar, Weiss, Stewart (br0050) Dec. 2015; 63 (br0210) Jun. 2018 Liu, Zhang, Gao, Tang, Dobre (br0080) Sept. 2021; 10 Arti (br0020) Dec. 2016; 65 Krizhevsky, Sutskever, Hinton (br0220) Dec. 2012; 25 Sun, Chen, Wang, Tang (br0230) Jun. 2014; 2 Saikrishna, Chavva, Beniwal, Goyal (br0200) 2021 Dong, Zhang, Li, Gaspar, NaderiAlizadeh (br0180) Sep. 2019; 13 Hirose, Ohtsuki, Gui (br0160) Dec. 2020; 2 Myint, Yu, Sato (br0240) Jan. 2019; 7 Ilhan (br0010) Feb. 2015; 83 Wang, Wen, Wang, Gao, Jiang, Jin (br0110) Oct. 2017; 14 You, Zheng, Zhang (br0090) Feb. 2021; 10 Ye, Li, Juang (br0140) Feb. 2018; 7 Marinberg (10.1016/j.dsp.2022.103483_br0190) 2020 Sun (10.1016/j.dsp.2022.103483_br0230) 2014; 2 Khattabi (10.1016/j.dsp.2022.103483_br0030) 2016; 65 Hirose (10.1016/j.dsp.2022.103483_br0160) 2020; 2 Krizhevsky (10.1016/j.dsp.2022.103483_br0220) 2012; 25 Ye (10.1016/j.dsp.2022.103483_br0140) 2018; 7 Myint (10.1016/j.dsp.2022.103483_br0240) 2019; 7 Liu (10.1016/j.dsp.2022.103483_br0100) 2020; 38 Kang (10.1016/j.dsp.2022.103483_br0170) 2020; 8 Tseng (10.1016/j.dsp.2022.103483_br0060) 2013; 62 Wang (10.1016/j.dsp.2022.103483_br0110) 2017; 14 (10.1016/j.dsp.2022.103483_br0210) 2018 Arti (10.1016/j.dsp.2022.103483_br0020) 2016; 65 Soltani (10.1016/j.dsp.2022.103483_br0150) 2019; 23 Wang (10.1016/j.dsp.2022.103483_br0070) 2016; 15 You (10.1016/j.dsp.2022.103483_br0090) 2021; 10 Dong (10.1016/j.dsp.2022.103483_br0180) 2019; 13 Saikrishna (10.1016/j.dsp.2022.103483_br0200) 2021 Millar (10.1016/j.dsp.2022.103483_br0050) 2015; 63 Ilhan (10.1016/j.dsp.2022.103483_br0010) 2015; 83 Sanchez-Fernandez (10.1016/j.dsp.2022.103483_br0130) 2004; 52 Liu (10.1016/j.dsp.2022.103483_br0080) 2021; 10 Ma (10.1016/j.dsp.2022.103483_br0040) 2011; 10 O'Shea (10.1016/j.dsp.2022.103483_br0120) 2017; 3 |
References_xml | – volume: 3 start-page: 563 year: Dec. 2017 end-page: 575 ident: br0120 article-title: An introduction to deep learning for the physical layer publication-title: IEEE Trans. Cogn. Commun. Netw. – volume: 23 start-page: 652 year: Apr. 2019 end-page: 655 ident: br0150 article-title: Deep learning-based channel estimation publication-title: IEEE Commun. Lett. – volume: 65 start-page: 10173 year: Dec. 2016 end-page: 10179 ident: br0020 article-title: Channel estimation and detection in satellite communication systems publication-title: IEEE Trans. Veh. Technol. – volume: 10 start-page: 431 year: Feb. 2021 end-page: 435 ident: br0090 article-title: Wireless communication via double IRS: channel estimation and passive beamforming designs publication-title: IEEE Wirel. Commun. Lett. – volume: 52 start-page: 2298 year: Aug. 2004 end-page: 2307 ident: br0130 article-title: SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems publication-title: IEEE Trans. Signal Process. – volume: 2 start-page: 1988 year: Jun. 2014 end-page: 1996 ident: br0230 article-title: Deep learning face representation by joint identification-verification publication-title: Adv. Neural Inf. Process. Syst. – volume: 8 start-page: 121162 year: Jul. 2020 end-page: 121181 ident: br0170 article-title: Deep learning based channel estimation for MIMO systems with received SNR feedback publication-title: IEEE Access – volume: 25 start-page: 1097 year: Dec. 2012 end-page: 1105 ident: br0220 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 38 start-page: 2621 year: Nov. 2020 end-page: 2636 ident: br0100 article-title: Matrix-calibration-based cascaded channel estimation for reconfigurable intelligent surface assisted multiuser MIMO publication-title: IEEE J. Sel. Areas Commun. – volume: 10 start-page: 1956 year: Jun. 2011 end-page: 1965 ident: br0040 article-title: Matrix design for estimating cascaded channels in two-hop MIMO amplify-and-forward relay systems publication-title: IEEE Trans. Wirel. Commun. – volume: 15 start-page: 1186 year: Feb. 2016 end-page: 1205 ident: br0070 article-title: Channel estimation, carrier recovery, and data detection in the presence of phase noise in OFDM relay systems publication-title: IEEE Trans. Wirel. Commun. – start-page: 1 year: 2020 end-page: 6 ident: br0190 article-title: A study on MIMO channel estimation by 2D and 3D convolutional neural networks publication-title: Proceedings of the IEEE International Conference on Advanced Networks and Telecommunications Systems – volume: 7 start-page: 26391 year: Jan. 2019 end-page: 26401 ident: br0240 article-title: Modeling and analysis of error process in 5G wireless communication using two-state Markov chain publication-title: IEEE Access – volume: 63 start-page: 4711 year: Dec. 2015 end-page: 4726 ident: br0050 article-title: Training-based channel estimation algorithms for dual hop MIMO OFDM relay systems publication-title: IEEE Trans. Commun. – volume: 62 start-page: 3752 year: Oct. 2013 end-page: 3766 ident: br0060 article-title: Robust far-end channel estimation in three-node amplify-and-forward MIMO relay systems publication-title: IEEE Trans. Veh. Technol. – volume: 10 start-page: 2065 year: Sept. 2021 end-page: 2069 ident: br0080 article-title: Cascaded channel estimation for RIS assisted mmWave MIMO transmissions publication-title: IEEE Wirel. Commun. Lett. – start-page: 1 year: 2021 end-page: 6 ident: br0200 article-title: Deep learning based channel estimation with flexible delay and Doppler networks for 5G NR publication-title: Proceedings of the IEEE Wireless Communications and Networking Conference – volume: 7 start-page: 114 year: Feb. 2018 end-page: 117 ident: br0140 article-title: Power of deep learning for channel estimation and signal detection in OFDM systems publication-title: IEEE Wirel. Commun. Lett. – volume: 83 start-page: 203 year: Feb. 2015 end-page: 214 ident: br0010 article-title: Performance analysis of cooperative vehicular systems with co-channel interference over cascaded Nakagami- publication-title: Wirel. Pers. Commun. – volume: 13 start-page: 989 year: Sep. 2019 end-page: 1000 ident: br0180 article-title: Deep CNN-based channel estimation for mmWave massive MIMO systems publication-title: IEEE J. Sel. Top. Signal Process. – year: Jun. 2018 ident: br0210 – volume: 2 start-page: 67 year: Dec. 2020 end-page: 77 ident: br0160 article-title: Deep learning-based channel estimation for massive MIMO systems with pilot contamination publication-title: IEEE Open J. Veh. Technol. – volume: 14 start-page: 92 year: Oct. 2017 end-page: 111 ident: br0110 article-title: Deep learning for wireless physical layer: opportunities and challenges publication-title: China Commun. – volume: 65 start-page: 427 year: Jan. 2016 end-page: 434 ident: br0030 article-title: Performance analysis of multiple-relay AF cooperative systems over Rayleigh time-selective fading channels with imperfect channel estimation publication-title: IEEE Trans. Veh. Technol. – volume: 10 start-page: 1956 issue: 6 year: 2011 ident: 10.1016/j.dsp.2022.103483_br0040 article-title: Matrix design for estimating cascaded channels in two-hop MIMO amplify-and-forward relay systems publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2011.041311.101477 – volume: 83 start-page: 203 year: 2015 ident: 10.1016/j.dsp.2022.103483_br0010 article-title: Performance analysis of cooperative vehicular systems with co-channel interference over cascaded Nakagami-m fading channels publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-015-2389-z – volume: 8 start-page: 121162 year: 2020 ident: 10.1016/j.dsp.2022.103483_br0170 article-title: Deep learning based channel estimation for MIMO systems with received SNR feedback publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006518 – volume: 13 start-page: 989 issue: 5 year: 2019 ident: 10.1016/j.dsp.2022.103483_br0180 article-title: Deep CNN-based channel estimation for mmWave massive MIMO systems publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2019.2925975 – volume: 62 start-page: 3752 issue: 8 year: 2013 ident: 10.1016/j.dsp.2022.103483_br0060 article-title: Robust far-end channel estimation in three-node amplify-and-forward MIMO relay systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2013.2262104 – volume: 38 start-page: 2621 issue: 11 year: 2020 ident: 10.1016/j.dsp.2022.103483_br0100 article-title: Matrix-calibration-based cascaded channel estimation for reconfigurable intelligent surface assisted multiuser MIMO publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2020.3007057 – volume: 23 start-page: 652 issue: 4 year: 2019 ident: 10.1016/j.dsp.2022.103483_br0150 article-title: Deep learning-based channel estimation publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2019.2898944 – volume: 2 start-page: 67 year: 2020 ident: 10.1016/j.dsp.2022.103483_br0160 article-title: Deep learning-based channel estimation for massive MIMO systems with pilot contamination publication-title: IEEE Open J. Veh. Technol. doi: 10.1109/OJVT.2020.3045470 – volume: 7 start-page: 26391 year: 2019 ident: 10.1016/j.dsp.2022.103483_br0240 article-title: Modeling and analysis of error process in 5G wireless communication using two-state Markov chain publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2892051 – volume: 63 start-page: 4711 issue: 12 year: 2015 ident: 10.1016/j.dsp.2022.103483_br0050 article-title: Training-based channel estimation algorithms for dual hop MIMO OFDM relay systems publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2015.2481897 – volume: 3 start-page: 563 issue: 4 year: 2017 ident: 10.1016/j.dsp.2022.103483_br0120 article-title: An introduction to deep learning for the physical layer publication-title: IEEE Trans. Cogn. Commun. Netw. doi: 10.1109/TCCN.2017.2758370 – volume: 10 start-page: 431 issue: 2 year: 2021 ident: 10.1016/j.dsp.2022.103483_br0090 article-title: Wireless communication via double IRS: channel estimation and passive beamforming designs publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2020.3034388 – start-page: 1 year: 2021 ident: 10.1016/j.dsp.2022.103483_br0200 article-title: Deep learning based channel estimation with flexible delay and Doppler networks for 5G NR – volume: 7 start-page: 114 issue: 1 year: 2018 ident: 10.1016/j.dsp.2022.103483_br0140 article-title: Power of deep learning for channel estimation and signal detection in OFDM systems publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2017.2757490 – volume: 65 start-page: 427 issue: 1 year: 2016 ident: 10.1016/j.dsp.2022.103483_br0030 article-title: Performance analysis of multiple-relay AF cooperative systems over Rayleigh time-selective fading channels with imperfect channel estimation publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2015.2399295 – volume: 65 start-page: 10173 issue: 12 year: 2016 ident: 10.1016/j.dsp.2022.103483_br0020 article-title: Channel estimation and detection in satellite communication systems publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2016.2529661 – volume: 10 start-page: 2065 issue: 9 year: 2021 ident: 10.1016/j.dsp.2022.103483_br0080 article-title: Cascaded channel estimation for RIS assisted mmWave MIMO transmissions publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2021.3092147 – start-page: 1 year: 2020 ident: 10.1016/j.dsp.2022.103483_br0190 article-title: A study on MIMO channel estimation by 2D and 3D convolutional neural networks – volume: 2 start-page: 1988 year: 2014 ident: 10.1016/j.dsp.2022.103483_br0230 article-title: Deep learning face representation by joint identification-verification publication-title: Adv. Neural Inf. Process. Syst. – volume: 14 start-page: 92 issue: 11 year: 2017 ident: 10.1016/j.dsp.2022.103483_br0110 article-title: Deep learning for wireless physical layer: opportunities and challenges publication-title: China Commun. doi: 10.1109/CC.2017.8233654 – volume: 52 start-page: 2298 issue: 8 year: 2004 ident: 10.1016/j.dsp.2022.103483_br0130 article-title: SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2004.831028 – volume: 15 start-page: 1186 issue: 2 year: 2016 ident: 10.1016/j.dsp.2022.103483_br0070 article-title: Channel estimation, carrier recovery, and data detection in the presence of phase noise in OFDM relay systems publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2015.2487268 – year: 2018 ident: 10.1016/j.dsp.2022.103483_br0210 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.dsp.2022.103483_br0220 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. |
SSID | ssj0007426 |
Score | 2.3652763 |
Snippet | Cascaded channels have been considered in several physical multipath propagation scenarios. However they are subject to phenomena such as multipath scattering,... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103483 |
SubjectTerms | 5G Cascaded channel Channel estimation Convolutional neural networks FPGA |
Title | 5G cascaded channel estimation using convolutional neural networks |
URI | https://dx.doi.org/10.1016/j.dsp.2022.103483 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1VZYEB8SnKR5WBCSk0id04HktFKSC6QKVukWM7qKhKK1pWfjt3TgJFAgamyJFtJc-nO1t-9w7gPDM5490k9GMbM58brn2FUcNnQSIxwjMjXUmWh1E8HPO7SXfSgH6dC0O0ysr3lz7deevqTadCs7OYTjuPuDMII6dhRQcbJyjJuSArv3z_onng0c9lGGFnZxH1zabjeJklSVZGEaWe84T9HJvW4s1gB7arjaLXK79lFxq22IOtNfnAfbjq3nhaLYnhbjzK4C3szCPVjDId0SNO-7NHvPLKvnA-0q90D8f-Xh7AeHD91B_6VU0EX0dSrEhMU2HMNoGNqES8EkxZoWRkuU6siEWMaGsehiwPmZYBLgT-aWZza6xSMbYPoVnMC3sEHk7BQy01hmzDVaKk0UHCpc2FinmWiBYENRqprgTDqW7FLK2ZYS8pApgSgGkJYAsuPocsSrWMvzrzGuL025Kn6M1_H3b8v2EnsEmtkup3Cs3V65s9w_3EKms7g2nDRu_2fjj6AG4ayEA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5V7QAMiKcozwxMSFGT2Hl4LBUlpY-FVuoWObaDiqpQ0fL_8TkOKhIwMEVJbCv5fLqz5e--A7jNZUFomPhupCLiUkmFy3XUcImXMB3hiWSmJMt4EqUz-jQP5w3o1bkwSKu0vr_y6cZb2ycdi2ZntVh0nvXKwA-MhhVubFBQsoXqVGETWt3BMJ18OWS9-zNJRrq9MYr6cNPQvOQaVSuDALPPaUJ-Dk9bIad_APt2reh0q885hIYqj2BvS0HwGO7DR0fwNZLcpYNJvKVaOiicUWUkOkhrf3GQWm5NTI-HEpbmYgjg6xOY9R-mvdS1ZRFcEbB4g3qaXIdt6akAq8TzmHAVcxYoKhIVR3GkARfU90nhE8E8PRf6T3NVKKk4j_T9KTTLt1KdgaOHoL5gQkdtSXnCmRReQpkqYh7RPInb4NVoZMJqhmPpimVWk8NeMw1ghgBmFYBtuPvqsqoEM_5qTGuIs2-znmmH_nu38_91u4GddDoeZaPBZHgBu_imYv5dQnPz_qGu9PJik19b8_kEYTfK8Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=5G+cascaded+channel+estimation+using+convolutional+neural+networks&rft.jtitle=Digital+signal+processing&rft.au=Coutinho%2C+F%C3%A1bio+D.L.&rft.au=Silva%2C+Hugerles+S.&rft.au=Georgieva%2C+Petia&rft.au=Oliveira%2C+Arnaldo+S.R.&rft.date=2022-06-30&rft.pub=Elsevier+Inc&rft.issn=1051-2004&rft.eissn=1095-4333&rft.volume=126&rft_id=info:doi/10.1016%2Fj.dsp.2022.103483&rft.externalDocID=S1051200422001002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon |