A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs)
[Display omitted] •The application of SR-AOPs for IWW treatment was systematically reviewed.•The theoretical (reactive species) and practical aspects (IWW composition) were analyzed.•SR-AOPs are vastly studied in landfill leachate and petrochemical IWW effluents.•Its advantages include the simultane...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 406; p. 127083 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The application of SR-AOPs for IWW treatment was systematically reviewed.•The theoretical (reactive species) and practical aspects (IWW composition) were analyzed.•SR-AOPs are vastly studied in landfill leachate and petrochemical IWW effluents.•Its advantages include the simultaneous HO/SO4− generation with non-radical pathways.•Limitations include the difficulty to apply heating, microwave and ultrasound activation.
Over the last years, Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) have received considerable attention due to their high versatility and efficacy in disinfection and decontamination. Their advantages over classical AOPs, the generation of sulfate radicals (SO4∙-) from peroxydisulfate (PDS, S2O82-), or joint sulfate and hydroxyl radicals (HO∙) production from peroxymonosulfate (PMS, HSO5-) and their abundant activation methods have facilitated their introduction into various remediation and effluent decontamination processes. In this review, we present the advances in the field of industrial wastewater (IWW) treatment by SR-AOPs, by activation of either PMS or PDS via any suitable method, in homogeneous or heterogeneous (photo)catalytic processes. This review aims to present the state of the art in SR-AOPs application for IWW treatment, and act as a guideline of the field advances, summarize the previous application experiences, hence avoid research pitfalls and empower better IWW treatment practices. After an integrated presentation of the dominant pathways towards IWW decontamination, we discuss the SR-AOPs application in the treatment of effluents such as landfill leachate, petrochemical and pharmaceutical WW, pulp or paper industry effluents, textile and winery WW, as well as less studied processes such as coking, olive mill or soil washing effluents. Finally, the advantages and shortcomings of SR-AOPs for IWW treatment, as well as their perspectives are discussed. |
---|---|
AbstractList | [Display omitted]
•The application of SR-AOPs for IWW treatment was systematically reviewed.•The theoretical (reactive species) and practical aspects (IWW composition) were analyzed.•SR-AOPs are vastly studied in landfill leachate and petrochemical IWW effluents.•Its advantages include the simultaneous HO/SO4− generation with non-radical pathways.•Limitations include the difficulty to apply heating, microwave and ultrasound activation.
Over the last years, Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) have received considerable attention due to their high versatility and efficacy in disinfection and decontamination. Their advantages over classical AOPs, the generation of sulfate radicals (SO4∙-) from peroxydisulfate (PDS, S2O82-), or joint sulfate and hydroxyl radicals (HO∙) production from peroxymonosulfate (PMS, HSO5-) and their abundant activation methods have facilitated their introduction into various remediation and effluent decontamination processes. In this review, we present the advances in the field of industrial wastewater (IWW) treatment by SR-AOPs, by activation of either PMS or PDS via any suitable method, in homogeneous or heterogeneous (photo)catalytic processes. This review aims to present the state of the art in SR-AOPs application for IWW treatment, and act as a guideline of the field advances, summarize the previous application experiences, hence avoid research pitfalls and empower better IWW treatment practices. After an integrated presentation of the dominant pathways towards IWW decontamination, we discuss the SR-AOPs application in the treatment of effluents such as landfill leachate, petrochemical and pharmaceutical WW, pulp or paper industry effluents, textile and winery WW, as well as less studied processes such as coking, olive mill or soil washing effluents. Finally, the advantages and shortcomings of SR-AOPs for IWW treatment, as well as their perspectives are discussed. |
ArticleNumber | 127083 |
Author | Lin, Kun-Yi Andrew Ghanbari, Farshid Giannakis, Stefanos |
Author_xml | – sequence: 1 givenname: Stefanos surname: Giannakis fullname: Giannakis, Stefanos organization: Universidad Politécnica de Madrid (UPM), E.T.S. Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, c/Profesor Aranguren, s/n, ES-28040 Madrid, Spain – sequence: 2 givenname: Kun-Yi Andrew surname: Lin fullname: Lin, Kun-Yi Andrew organization: Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250, Kuo-Kuang Road, Taichung, Taiwan – sequence: 3 givenname: Farshid surname: Ghanbari fullname: Ghanbari, Farshid email: Ghanbari.env@gmail.com organization: Department of Environmental Health Engineering, Abadan Faculty of Medical Sciences, Abadan, Iran |
BookMark | eNp9kMtOAyEUhonRRKs-gDuWupjKZW7EVdN4S0zaVF2TM3Am0owzBmhrX8GnllpXLlzBD3w_8I3IYT_0SMgFZ2POeHm9HBtcjgUTKYuK1fKAnPC6kpkUXBymuayLrFZ5dUxGISwZY6Xi6oR8TajHtcMNHVoa3zAlg32kYNfQGwx06H-Wo0eI77uddM71dhWid9DRDYSIG4joA2229HnVtSnQBVhnoMsaCGjpZF9m6ezTWYgudc79kNpDuuDyeZFNZvNwdUaOWugCnv-Op-T17vZl-pA9ze4fp5OnzAhVxUwxZbExCKAkry0qaQWD2tSyKfNWoGrKsuWqEqIA5DljBSKXLUDFlcxFIU9Jte81fgjBY6uNiz-vih5cpznTO6V6qZNSvVOq90oTyf-QH969g9_-y9zsGUxfSqK9DsbhzoZLqqO2g_uH_gZIdpI0 |
CitedBy_id | crossref_primary_10_1039_D4DT03000A crossref_primary_10_1007_s11270_024_07632_1 crossref_primary_10_1007_s13726_022_01021_3 crossref_primary_10_1039_D1EW00965F crossref_primary_10_1016_j_colsurfa_2023_131231 crossref_primary_10_1016_j_jhazmat_2021_125308 crossref_primary_10_1016_j_envpol_2023_123205 crossref_primary_10_1016_j_jcis_2022_12_110 crossref_primary_10_1016_j_jenvman_2023_118242 crossref_primary_10_1016_j_eti_2023_103337 crossref_primary_10_1007_s11270_023_06608_x crossref_primary_10_1016_j_watres_2022_119054 crossref_primary_10_1016_j_apcatb_2024_124966 crossref_primary_10_1016_j_jcis_2023_08_091 crossref_primary_10_1016_j_jscs_2023_101648 crossref_primary_10_1016_j_seppur_2022_122849 crossref_primary_10_1007_s11356_021_16295_y crossref_primary_10_1016_j_chemosphere_2021_131981 crossref_primary_10_1021_acs_iecr_2c04393 crossref_primary_10_1111_wej_12887 crossref_primary_10_5004_dwt_2022_28362 crossref_primary_10_3390_catal13020401 crossref_primary_10_1016_j_cej_2025_159685 crossref_primary_10_1016_j_scitotenv_2023_169755 crossref_primary_10_1080_01496395_2021_1982978 crossref_primary_10_1007_s11783_024_1797_2 crossref_primary_10_1039_D3EW00009E crossref_primary_10_1016_j_scitotenv_2022_155063 crossref_primary_10_1039_D5DT00058K crossref_primary_10_1016_j_dwt_2024_100195 crossref_primary_10_1039_D3QM00344B crossref_primary_10_1016_j_scowo_2025_100053 crossref_primary_10_3390_pr11082360 crossref_primary_10_1016_j_cej_2022_134546 crossref_primary_10_1016_j_cej_2025_161768 crossref_primary_10_1016_j_jelechem_2022_116330 crossref_primary_10_1080_09593330_2021_2008517 crossref_primary_10_1016_j_jece_2023_110095 crossref_primary_10_1080_09593330_2023_2218042 crossref_primary_10_1016_j_cej_2023_144837 crossref_primary_10_1016_j_jenvman_2024_121716 crossref_primary_10_1016_j_mssp_2023_107321 crossref_primary_10_1016_j_jece_2024_114537 crossref_primary_10_1007_s11270_021_05039_w crossref_primary_10_1002_wer_70040 crossref_primary_10_1016_j_cej_2024_149562 crossref_primary_10_1016_j_jes_2023_06_034 crossref_primary_10_1016_j_cherd_2023_04_056 crossref_primary_10_2139_ssrn_3968873 crossref_primary_10_1016_j_watres_2023_120555 crossref_primary_10_1007_s11356_023_31567_5 crossref_primary_10_1016_j_chemosphere_2021_130610 crossref_primary_10_1016_j_ccr_2024_216241 crossref_primary_10_3390_molecules26195748 crossref_primary_10_1016_j_colsurfa_2025_136261 crossref_primary_10_1016_j_jhazmat_2021_127938 crossref_primary_10_3390_w16010121 crossref_primary_10_1016_j_jhazmat_2022_129172 crossref_primary_10_1016_j_cej_2025_161747 crossref_primary_10_1016_j_cej_2022_136986 crossref_primary_10_1016_j_apcatb_2025_125290 crossref_primary_10_1016_j_jece_2023_111165 crossref_primary_10_1016_j_indcrop_2024_120060 crossref_primary_10_1016_j_jcis_2024_08_171 crossref_primary_10_1007_s11356_021_13982_8 crossref_primary_10_1016_j_molliq_2024_124885 crossref_primary_10_1016_j_seppur_2023_125193 crossref_primary_10_1016_j_cej_2025_161715 crossref_primary_10_1016_j_cej_2022_134579 crossref_primary_10_3390_w16172405 crossref_primary_10_1039_D2EW00717G crossref_primary_10_1016_j_cej_2022_136755 crossref_primary_10_1016_j_scitotenv_2022_158799 crossref_primary_10_3390_w14162531 crossref_primary_10_1515_revce_2021_0094 crossref_primary_10_1007_s11814_021_1046_3 crossref_primary_10_1016_j_jcis_2022_03_126 crossref_primary_10_1016_j_inoche_2024_113199 crossref_primary_10_1016_j_cej_2024_156074 crossref_primary_10_1039_D0NJ05640E crossref_primary_10_1016_j_jenvman_2022_115735 crossref_primary_10_3390_molecules27072248 crossref_primary_10_1016_j_carbpol_2022_119630 crossref_primary_10_1007_s42247_024_00735_9 crossref_primary_10_1016_j_apcatb_2023_123323 crossref_primary_10_1080_01496395_2021_1967393 crossref_primary_10_1002_app_54033 crossref_primary_10_1039_D4EN00155A crossref_primary_10_3390_c9040107 crossref_primary_10_1016_j_chemosphere_2024_143380 crossref_primary_10_1016_j_psep_2023_09_067 crossref_primary_10_1016_j_enzmictec_2023_110369 crossref_primary_10_1063_5_0197850 crossref_primary_10_3390_molecules26164821 crossref_primary_10_1007_s11356_021_15146_0 crossref_primary_10_1016_j_cej_2022_135201 crossref_primary_10_1039_D2TA02767D crossref_primary_10_61186_jehe_9_4_417 crossref_primary_10_1016_j_chemosphere_2023_138516 crossref_primary_10_1016_j_jallcom_2021_161625 crossref_primary_10_1016_j_ceja_2023_100472 crossref_primary_10_1016_j_jece_2025_116192 crossref_primary_10_1016_j_jenvman_2022_114859 crossref_primary_10_1016_j_eti_2021_101403 crossref_primary_10_1016_j_fbio_2024_105505 crossref_primary_10_1016_j_jwpe_2024_105950 crossref_primary_10_1016_j_envpol_2023_121074 crossref_primary_10_1016_j_jece_2024_112540 crossref_primary_10_1016_j_jece_2024_112545 crossref_primary_10_1039_D4TB01311E crossref_primary_10_1016_j_jhazmat_2021_126803 crossref_primary_10_1016_j_jece_2024_113634 crossref_primary_10_1016_j_jiec_2022_04_023 crossref_primary_10_1021_acs_iecr_1c04918 crossref_primary_10_1016_j_cej_2022_139812 crossref_primary_10_1016_j_jwpe_2024_104857 crossref_primary_10_1016_j_chemosphere_2021_132600 crossref_primary_10_1016_j_cej_2021_128872 crossref_primary_10_1016_j_cej_2022_139382 crossref_primary_10_1016_j_seppur_2021_119791 crossref_primary_10_1016_j_scitotenv_2024_175401 crossref_primary_10_1016_j_ces_2024_120095 crossref_primary_10_1016_j_chemosphere_2021_130806 crossref_primary_10_1016_j_chemosphere_2022_134214 crossref_primary_10_1016_j_ijmst_2021_11_008 crossref_primary_10_1016_j_jece_2022_109204 crossref_primary_10_1039_D3RA00323J crossref_primary_10_1051_bioconf_20248601002 crossref_primary_10_1016_j_jhazmat_2025_137810 crossref_primary_10_1002_aoc_7994 crossref_primary_10_1016_j_jece_2022_108112 crossref_primary_10_1007_s10876_023_02507_7 crossref_primary_10_1016_j_jece_2024_114591 crossref_primary_10_1080_09593330_2022_2143285 crossref_primary_10_1680_jenes_23_00095 crossref_primary_10_1016_j_jece_2025_115735 crossref_primary_10_1016_j_jobe_2021_103029 crossref_primary_10_1007_s11270_024_06910_2 crossref_primary_10_1016_j_colsurfa_2025_136639 crossref_primary_10_1007_s11356_022_22234_2 crossref_primary_10_1016_j_hazadv_2023_100305 crossref_primary_10_1016_j_seppur_2021_120313 crossref_primary_10_1016_j_jallcom_2025_179675 crossref_primary_10_1016_j_jece_2024_113045 crossref_primary_10_1016_j_colsurfa_2022_128640 crossref_primary_10_1016_j_cej_2023_145524 crossref_primary_10_1016_j_memsci_2024_122826 crossref_primary_10_1016_j_psep_2022_10_073 crossref_primary_10_1016_j_seppur_2024_130605 crossref_primary_10_1016_j_jece_2021_106233 crossref_primary_10_1016_j_cej_2024_152342 crossref_primary_10_1016_j_jece_2022_108335 crossref_primary_10_1016_j_cej_2022_141009 crossref_primary_10_1016_j_seppur_2024_129612 crossref_primary_10_1016_j_seppur_2023_124002 crossref_primary_10_1016_j_apcatb_2025_125278 crossref_primary_10_1021_acsestwater_2c00501 crossref_primary_10_31857_S0044453723070294 crossref_primary_10_1016_j_envpol_2024_124682 crossref_primary_10_1016_j_cej_2023_145511 crossref_primary_10_1016_j_gee_2024_01_004 crossref_primary_10_1016_j_dwt_2024_100133 crossref_primary_10_1016_j_jece_2022_108560 crossref_primary_10_1016_j_seppur_2021_119548 crossref_primary_10_1016_j_jics_2022_100519 crossref_primary_10_1016_j_ijbiomac_2024_133385 crossref_primary_10_1016_j_seppur_2022_120834 crossref_primary_10_1016_j_seppur_2023_123168 crossref_primary_10_1002_open_202400130 crossref_primary_10_1016_j_cej_2023_141390 crossref_primary_10_1016_j_colsurfa_2023_131606 crossref_primary_10_1016_j_seppur_2024_129845 crossref_primary_10_1039_D1NJ02307A crossref_primary_10_1016_j_cej_2023_147920 crossref_primary_10_3390_molecules28083622 crossref_primary_10_1016_j_seppur_2022_120862 crossref_primary_10_1016_j_seppur_2021_119351 crossref_primary_10_1016_j_watres_2022_119014 crossref_primary_10_1016_j_apsusc_2023_156593 crossref_primary_10_1016_j_cej_2023_144897 crossref_primary_10_1016_j_cej_2023_142479 crossref_primary_10_1016_j_mtsust_2023_100561 crossref_primary_10_3390_nano14010074 crossref_primary_10_1016_j_cej_2024_152568 crossref_primary_10_1016_j_seppur_2023_126203 crossref_primary_10_1016_j_jhazmat_2022_130302 crossref_primary_10_1016_j_apcatb_2022_121259 crossref_primary_10_1016_j_seppur_2021_120345 crossref_primary_10_1007_s11356_022_20277_z crossref_primary_10_1016_j_seppur_2023_125359 crossref_primary_10_1016_j_jhazmat_2022_129780 crossref_primary_10_2139_ssrn_4089364 crossref_primary_10_1016_j_cej_2020_127863 crossref_primary_10_1016_j_cej_2023_144641 crossref_primary_10_1016_j_scitotenv_2022_155029 crossref_primary_10_1016_j_watres_2023_120772 crossref_primary_10_1134_S0036024423050199 crossref_primary_10_1016_j_ceramint_2021_10_059 crossref_primary_10_1016_j_jece_2024_112368 crossref_primary_10_3390_catal13010007 crossref_primary_10_1016_j_jece_2024_113457 crossref_primary_10_1016_j_ijbiomac_2024_134453 crossref_primary_10_1016_j_jcis_2024_06_183 crossref_primary_10_1007_s11814_024_00108_2 crossref_primary_10_1016_j_chemosphere_2024_142452 crossref_primary_10_1039_D4NJ03277B crossref_primary_10_1016_j_chemosphere_2023_138906 crossref_primary_10_1007_s11814_021_0782_8 crossref_primary_10_1016_j_cej_2024_156900 crossref_primary_10_1016_j_jece_2022_108532 crossref_primary_10_1016_j_seppur_2023_125135 crossref_primary_10_1016_j_apcatb_2022_121234 crossref_primary_10_1016_j_seppur_2024_129813 crossref_primary_10_1016_j_jwpe_2024_105794 crossref_primary_10_1016_j_cej_2023_143774 crossref_primary_10_1016_j_jclepro_2024_141548 crossref_primary_10_1016_j_cej_2023_144629 crossref_primary_10_2166_wst_2021_147 crossref_primary_10_1016_j_apcatb_2023_122852 crossref_primary_10_1016_j_cej_2022_136941 crossref_primary_10_1016_j_cej_2021_134467 crossref_primary_10_1016_j_seppur_2023_126231 crossref_primary_10_1007_s10570_024_05855_3 crossref_primary_10_1016_j_resconrec_2024_107880 crossref_primary_10_1039_D1NJ04790F crossref_primary_10_1016_j_jhazmat_2022_130618 crossref_primary_10_1016_j_jece_2025_115324 crossref_primary_10_1016_j_jenvman_2022_116584 crossref_primary_10_1016_j_jes_2023_03_038 crossref_primary_10_1016_j_jenvman_2022_116587 crossref_primary_10_1016_j_colsurfa_2022_129315 crossref_primary_10_1016_j_jece_2025_115320 crossref_primary_10_2139_ssrn_4045297 crossref_primary_10_1016_j_heliyon_2024_e30402 crossref_primary_10_1016_j_cej_2020_128081 crossref_primary_10_1016_j_cej_2022_140774 crossref_primary_10_1039_D1TA02953C crossref_primary_10_1016_j_scitotenv_2022_157940 crossref_primary_10_2166_ws_2024_004 crossref_primary_10_1021_acs_est_4c10364 crossref_primary_10_1016_j_jmst_2021_03_071 crossref_primary_10_1002_advs_202103764 crossref_primary_10_1016_j_energy_2024_131252 crossref_primary_10_1007_s11356_025_36100_4 crossref_primary_10_1016_j_jhazmat_2022_128549 crossref_primary_10_1016_j_hazadv_2023_100385 crossref_primary_10_1016_j_seppur_2022_122398 crossref_primary_10_1007_s11270_021_05086_3 crossref_primary_10_1016_j_jwpe_2021_102122 crossref_primary_10_1016_j_jwpe_2021_102359 crossref_primary_10_1016_j_cej_2022_139556 crossref_primary_10_1016_j_chemosphere_2024_141943 crossref_primary_10_1016_j_chemosphere_2024_141945 crossref_primary_10_1016_j_envpol_2022_119597 crossref_primary_10_1016_j_jclepro_2023_139037 crossref_primary_10_1016_j_cej_2022_137380 crossref_primary_10_1016_j_inoche_2024_112112 crossref_primary_10_1016_j_jece_2024_111941 crossref_primary_10_1080_09593330_2024_2415723 crossref_primary_10_3390_jfb13040227 crossref_primary_10_1016_j_seppur_2024_127154 crossref_primary_10_1016_j_chemosphere_2022_133741 crossref_primary_10_1016_j_jece_2023_109304 crossref_primary_10_1016_j_jhazmat_2021_127384 crossref_primary_10_1016_j_cej_2022_140795 crossref_primary_10_1016_j_seppur_2024_128007 crossref_primary_10_1016_j_cej_2023_143063 crossref_primary_10_1016_j_seppur_2023_123314 crossref_primary_10_1016_j_cej_2021_131329 crossref_primary_10_1016_j_watcyc_2022_04_001 crossref_primary_10_5004_dwt_2023_29544 crossref_primary_10_1007_s11270_023_06099_w crossref_primary_10_3390_membranes12020116 crossref_primary_10_1016_j_scitotenv_2023_164966 crossref_primary_10_3390_molecules28104237 crossref_primary_10_1016_j_jallcom_2023_171896 crossref_primary_10_1016_j_jenvman_2024_120184 crossref_primary_10_1016_j_cej_2024_158838 crossref_primary_10_1016_j_colsurfa_2024_133249 crossref_primary_10_1016_j_jallcom_2024_178348 crossref_primary_10_1016_j_jece_2024_114158 crossref_primary_10_1016_j_chemosphere_2024_141985 crossref_primary_10_1016_j_jhazmat_2022_128973 crossref_primary_10_1016_j_cherd_2023_07_013 crossref_primary_10_1016_j_chemosphere_2023_140376 crossref_primary_10_1016_j_seppur_2021_118665 crossref_primary_10_1021_acs_jpcb_4c00013 crossref_primary_10_3390_ma14185284 crossref_primary_10_1016_j_cclet_2023_109413 crossref_primary_10_1016_j_chemosphere_2022_135501 crossref_primary_10_1016_j_cej_2024_156402 crossref_primary_10_1016_j_cej_2024_153378 crossref_primary_10_1016_j_cej_2023_143280 crossref_primary_10_1016_j_seppur_2023_124423 crossref_primary_10_1016_j_cej_2023_145698 crossref_primary_10_1016_j_psep_2022_12_030 crossref_primary_10_1016_j_jhazmat_2021_128202 crossref_primary_10_3390_w15071347 crossref_primary_10_1016_j_cej_2023_144128 crossref_primary_10_3390_ijerph19116852 crossref_primary_10_1016_j_mser_2025_100969 crossref_primary_10_1016_j_jwpe_2023_103810 crossref_primary_10_1016_j_jwpe_2024_106141 crossref_primary_10_1016_j_jwpe_2024_106385 crossref_primary_10_1016_j_cej_2022_137177 crossref_primary_10_1016_j_seppur_2024_127122 crossref_primary_10_1016_j_jallcom_2023_171234 crossref_primary_10_1016_j_jece_2023_111605 crossref_primary_10_1016_j_cej_2022_140589 crossref_primary_10_1016_j_chemosphere_2022_134667 crossref_primary_10_1016_j_jece_2023_111608 crossref_primary_10_3390_nano14090786 crossref_primary_10_1016_j_electacta_2023_142924 crossref_primary_10_1016_j_clay_2023_107231 crossref_primary_10_3390_toxics12050359 crossref_primary_10_1016_j_inoche_2024_113634 crossref_primary_10_1016_j_inoche_2024_112305 crossref_primary_10_2166_wst_2022_320 crossref_primary_10_1016_j_cej_2022_134904 crossref_primary_10_1016_j_scitotenv_2024_172676 crossref_primary_10_1016_j_cej_2022_138271 crossref_primary_10_1016_j_ceramint_2024_06_008 crossref_primary_10_1016_j_jece_2024_115024 crossref_primary_10_1016_j_watres_2024_122049 crossref_primary_10_1016_j_sciaf_2022_e01312 crossref_primary_10_1016_j_seppur_2021_119975 crossref_primary_10_2139_ssrn_4068158 crossref_primary_10_1016_j_jhazmat_2024_135854 crossref_primary_10_1039_D4EW00368C crossref_primary_10_1016_j_watres_2022_118425 crossref_primary_10_1016_j_jclepro_2023_138375 crossref_primary_10_1016_j_jcis_2023_03_202 crossref_primary_10_1021_acsomega_3c06278 crossref_primary_10_1016_j_wri_2021_100160 crossref_primary_10_1016_j_seppur_2024_128674 crossref_primary_10_1016_j_seppur_2024_130751 crossref_primary_10_1021_acsestengg_4c00195 crossref_primary_10_1016_j_seppur_2024_127349 crossref_primary_10_1016_j_apt_2022_103509 crossref_primary_10_3390_w16213109 crossref_primary_10_1016_j_seppur_2022_122563 crossref_primary_10_1016_j_jwpe_2025_107549 crossref_primary_10_1016_j_watres_2024_121773 crossref_primary_10_3390_w13172445 crossref_primary_10_1016_j_indcrop_2025_120786 crossref_primary_10_29244_jpsl_14_2_298 crossref_primary_10_1016_j_envres_2021_112417 crossref_primary_10_3390_coatings14081060 crossref_primary_10_1016_j_cej_2022_137767 crossref_primary_10_1016_j_apcatb_2023_123197 crossref_primary_10_1002_slct_202204785 crossref_primary_10_1016_j_cogsc_2021_100456 crossref_primary_10_1016_j_matpr_2022_11_192 crossref_primary_10_1016_j_cej_2023_146198 crossref_primary_10_3390_ijerph20032486 crossref_primary_10_1016_j_cej_2024_150506 crossref_primary_10_1016_j_envres_2022_113451 crossref_primary_10_3390_su16104057 crossref_primary_10_3390_catal13040679 crossref_primary_10_1007_s11356_021_15500_2 crossref_primary_10_1016_j_jwpe_2025_107538 crossref_primary_10_1016_j_cej_2024_150500 crossref_primary_10_1016_j_envres_2022_114786 crossref_primary_10_1016_j_seppur_2024_129195 crossref_primary_10_3390_ijerph20064883 crossref_primary_10_1021_acsestengg_3c00380 crossref_primary_10_3390_catal11111414 crossref_primary_10_1016_j_apsusc_2021_151145 crossref_primary_10_1002_adem_202400122 crossref_primary_10_1021_acsestengg_4c00333 crossref_primary_10_1016_j_envres_2022_114789 crossref_primary_10_1080_03067319_2024_2317424 crossref_primary_10_1016_j_jhazmat_2022_128913 crossref_primary_10_1016_j_psep_2022_01_031 crossref_primary_10_1016_j_seppur_2022_122105 crossref_primary_10_1016_j_seppur_2022_121255 crossref_primary_10_1016_j_seppur_2024_126905 crossref_primary_10_1016_j_enganabound_2023_05_014 crossref_primary_10_1016_j_jhazmat_2021_127307 crossref_primary_10_1016_j_jece_2023_110371 crossref_primary_10_1016_j_chemosphere_2021_130104 crossref_primary_10_1016_j_fuel_2025_134537 crossref_primary_10_1016_j_seppur_2022_122341 crossref_primary_10_1007_s11157_023_09645_4 crossref_primary_10_1016_j_cej_2022_137784 crossref_primary_10_1016_j_jwpe_2025_107323 crossref_primary_10_1016_j_mssp_2021_106311 crossref_primary_10_1016_j_colsurfa_2023_131173 crossref_primary_10_1016_j_jcis_2022_05_105 crossref_primary_10_1016_j_jwpe_2023_103836 crossref_primary_10_1016_j_ultsonch_2025_107281 crossref_primary_10_1016_j_cej_2024_148631 crossref_primary_10_1016_j_jhazmat_2023_132228 crossref_primary_10_1016_j_scitotenv_2023_169580 crossref_primary_10_1016_j_cep_2024_109982 crossref_primary_10_1016_j_jece_2023_111470 crossref_primary_10_1016_j_jenvman_2024_122514 crossref_primary_10_1016_j_jece_2023_110383 crossref_primary_10_1016_j_jece_2024_114804 crossref_primary_10_1002_cssc_202301139 crossref_primary_10_1016_j_chemosphere_2023_140978 crossref_primary_10_1016_j_jcis_2024_09_118 crossref_primary_10_1016_j_jcis_2022_07_162 crossref_primary_10_1002_ep_14140 crossref_primary_10_1016_j_chemosphere_2022_137278 crossref_primary_10_1016_j_seppur_2023_125900 crossref_primary_10_1021_acs_iecr_3c00592 crossref_primary_10_1007_s44371_024_00059_x crossref_primary_10_1016_j_jenvman_2022_116301 crossref_primary_10_3390_coatings12050585 crossref_primary_10_1007_s11356_022_21419_z crossref_primary_10_1016_j_jece_2022_109084 crossref_primary_10_1016_j_cej_2024_156245 crossref_primary_10_1016_j_jwpe_2023_104506 crossref_primary_10_1016_j_seppur_2024_129157 crossref_primary_10_1021_acs_inorgchem_3c01698 crossref_primary_10_1007_s11814_021_0997_8 crossref_primary_10_1016_j_watres_2024_121564 crossref_primary_10_1016_j_envres_2021_112463 crossref_primary_10_1016_j_molliq_2024_125468 crossref_primary_10_3390_catal12101207 crossref_primary_10_1016_j_synthmet_2024_117699 crossref_primary_10_1016_j_jenvman_2022_115462 crossref_primary_10_1002_adsu_202400434 crossref_primary_10_1016_j_cej_2022_136485 crossref_primary_10_1016_j_jenvman_2023_119089 crossref_primary_10_1016_j_cej_2024_155149 crossref_primary_10_1016_j_jphotochem_2024_116105 crossref_primary_10_1002_advs_202308632 crossref_primary_10_1016_j_bej_2024_109384 crossref_primary_10_1016_j_ese_2024_100469 crossref_primary_10_1016_j_seppur_2022_122145 crossref_primary_10_1016_j_jece_2023_111664 crossref_primary_10_1016_j_matchemphys_2021_124784 crossref_primary_10_1016_j_cej_2022_136250 crossref_primary_10_1007_s40789_023_00659_5 crossref_primary_10_1016_j_jece_2022_109065 crossref_primary_10_1016_j_jwpe_2024_106199 crossref_primary_10_1155_2021_7248402 crossref_primary_10_1016_j_cej_2024_158885 crossref_primary_10_1016_j_cej_2022_137587 crossref_primary_10_1142_S1793604722510328 crossref_primary_10_3390_w14172604 crossref_primary_10_1016_j_cej_2023_145282 crossref_primary_10_1002_jctb_7207 crossref_primary_10_1002_cben_202300079 crossref_primary_10_1016_j_jcis_2022_05_141 crossref_primary_10_1016_j_seppur_2023_123996 crossref_primary_10_1016_j_cej_2021_131525 crossref_primary_10_1080_01932691_2023_2222823 crossref_primary_10_1016_j_jwpe_2023_104722 crossref_primary_10_1111_wej_12784 crossref_primary_10_1007_s11356_022_22229_z crossref_primary_10_1016_j_chemosphere_2022_133704 crossref_primary_10_1016_j_jece_2023_111677 crossref_primary_10_1016_j_apcatb_2023_123149 crossref_primary_10_1016_j_cej_2022_137114 crossref_primary_10_1016_j_jwpe_2022_103327 crossref_primary_10_1016_j_jece_2023_109355 crossref_primary_10_3390_catal13111440 crossref_primary_10_1016_j_jallcom_2024_176366 crossref_primary_10_1038_s41545_023_00245_x crossref_primary_10_1016_j_ceramint_2022_09_363 crossref_primary_10_1016_j_mtchem_2022_100974 crossref_primary_10_3390_app13053182 crossref_primary_10_1016_j_seppur_2022_122962 crossref_primary_10_1016_j_isci_2023_108054 crossref_primary_10_1016_j_jwpe_2022_103064 crossref_primary_10_1016_j_seppur_2025_132371 crossref_primary_10_1016_j_colsurfa_2023_131599 crossref_primary_10_1016_j_envres_2024_118198 crossref_primary_10_1016_j_cej_2024_151300 crossref_primary_10_1016_j_eti_2024_103978 crossref_primary_10_1016_j_mtcomm_2022_105107 crossref_primary_10_1002_adfm_202306014 crossref_primary_10_1016_j_cclet_2022_02_058 crossref_primary_10_1016_j_coche_2022_100830 crossref_primary_10_1016_j_catcom_2024_106844 crossref_primary_10_1016_j_jwpe_2023_104428 crossref_primary_10_1080_09593330_2024_2433729 crossref_primary_10_1016_j_scitotenv_2023_166376 crossref_primary_10_1016_j_jcis_2022_05_045 crossref_primary_10_1007_s11356_022_24928_z crossref_primary_10_1016_j_cej_2023_142782 crossref_primary_10_1016_j_cej_2022_141191 crossref_primary_10_1016_j_jcis_2025_03_024 crossref_primary_10_1016_j_enganabound_2023_03_017 crossref_primary_10_1007_s11164_023_05019_1 crossref_primary_10_1016_j_wri_2024_100241 crossref_primary_10_1016_j_chemosphere_2020_129480 crossref_primary_10_1016_j_eng_2023_06_010 crossref_primary_10_1016_j_jclepro_2023_136442 crossref_primary_10_1007_s11356_022_19435_0 crossref_primary_10_1016_j_apcatb_2023_123001 crossref_primary_10_1007_s10311_024_01798_0 crossref_primary_10_1021_acsanm_3c05372 crossref_primary_10_1016_j_seppur_2025_132593 crossref_primary_10_1039_D4RA05590J crossref_primary_10_1016_j_jclepro_2022_133926 crossref_primary_10_1007_s10934_022_01285_3 crossref_primary_10_1016_j_jhazmat_2022_130281 crossref_primary_10_1016_j_scitotenv_2022_157162 crossref_primary_10_1016_j_jallcom_2024_177944 crossref_primary_10_1016_j_seppur_2024_127714 crossref_primary_10_1016_j_cej_2021_128713 crossref_primary_10_1016_j_ese_2024_100416 crossref_primary_10_1016_j_envpol_2023_122488 crossref_primary_10_1016_j_jece_2024_114647 crossref_primary_10_1016_j_cej_2021_134386 crossref_primary_10_1016_j_jhazmat_2022_129052 crossref_primary_10_1016_j_jece_2022_107997 crossref_primary_10_3390_catal13030575 crossref_primary_10_3390_w16010008 crossref_primary_10_1016_j_carbpol_2021_118548 crossref_primary_10_1016_j_apcatb_2024_124850 crossref_primary_10_1016_j_jre_2021_04_001 crossref_primary_10_1016_j_seppur_2022_122734 crossref_primary_10_1080_10962247_2021_1985012 crossref_primary_10_1016_j_jenvman_2022_115851 crossref_primary_10_1016_j_cej_2024_151981 crossref_primary_10_1016_j_jwpe_2024_104996 crossref_primary_10_1016_j_jece_2024_113742 crossref_primary_10_1039_D3GC05108K crossref_primary_10_1016_j_electacta_2021_138521 crossref_primary_10_1016_j_cej_2022_138814 crossref_primary_10_1016_j_cej_2025_159513 crossref_primary_10_1016_j_cej_2023_148050 crossref_primary_10_1016_j_scitotenv_2022_159762 crossref_primary_10_1039_D1EW00731A crossref_primary_10_1021_acsestwater_3c00257 crossref_primary_10_1016_j_apsusc_2023_157955 crossref_primary_10_1016_j_hazadv_2025_100599 crossref_primary_10_1007_s11356_022_19087_0 crossref_primary_10_1016_j_seppur_2021_119088 crossref_primary_10_1016_j_jwpe_2023_104462 crossref_primary_10_1016_j_seppur_2022_120576 crossref_primary_10_1016_j_chemosphere_2021_130313 crossref_primary_10_1016_j_jece_2023_111053 crossref_primary_10_1016_j_cej_2022_135553 crossref_primary_10_1016_j_psep_2023_10_013 crossref_primary_10_1134_S003602442312004X crossref_primary_10_1016_j_seppur_2022_121454 crossref_primary_10_1007_s40974_023_00312_6 crossref_primary_10_1016_j_cej_2023_141641 crossref_primary_10_1016_j_cej_2021_134191 crossref_primary_10_1016_j_envpol_2023_122059 crossref_primary_10_1021_acs_iecr_3c01624 crossref_primary_10_1016_j_chemosphere_2023_138639 crossref_primary_10_1016_j_carbpol_2022_119969 crossref_primary_10_3390_ijerph19063270 crossref_primary_10_3390_w13213010 crossref_primary_10_1016_j_jallcom_2023_173061 crossref_primary_10_3390_mining4020020 crossref_primary_10_1016_j_apcatb_2021_120463 crossref_primary_10_1016_j_jece_2023_111270 crossref_primary_10_1016_j_seppur_2021_120058 crossref_primary_10_1016_j_desal_2024_118294 crossref_primary_10_1016_j_chemosphere_2021_132954 crossref_primary_10_1016_j_envres_2024_120488 crossref_primary_10_1016_j_jelechem_2021_115493 crossref_primary_10_1039_D2RA06653J crossref_primary_10_1016_j_apcatb_2022_122034 crossref_primary_10_5004_dwt_2022_28669 crossref_primary_10_3390_catal11080974 crossref_primary_10_1016_j_jcis_2025_02_200 crossref_primary_10_5004_dwt_2022_28660 crossref_primary_10_1016_j_hazadv_2022_100108 crossref_primary_10_1002_eem2_12701 crossref_primary_10_1080_00986445_2024_2358372 crossref_primary_10_1016_j_ceja_2021_100201 crossref_primary_10_1016_j_envres_2023_117663 crossref_primary_10_1039_D3RA04271E crossref_primary_10_1007_s10311_022_01390_4 crossref_primary_10_1016_j_cej_2020_127957 crossref_primary_10_1016_j_cej_2021_130165 crossref_primary_10_1016_j_cej_2021_133682 crossref_primary_10_1016_j_seppur_2024_128424 crossref_primary_10_2139_ssrn_4135026 crossref_primary_10_1039_D3RA02865H crossref_primary_10_1016_j_jclepro_2023_137702 crossref_primary_10_1016_j_jece_2021_105249 crossref_primary_10_1016_j_chemosphere_2022_134573 crossref_primary_10_1016_j_cej_2021_131028 crossref_primary_10_1080_03067319_2021_1935915 crossref_primary_10_1016_j_jece_2024_112044 crossref_primary_10_3390_molecules26040924 crossref_primary_10_1007_s11164_022_04673_1 crossref_primary_10_3390_ijerph18031152 crossref_primary_10_1016_j_cej_2024_151156 crossref_primary_10_1016_j_chemosphere_2023_140044 crossref_primary_10_1016_j_seppur_2024_128894 crossref_primary_10_1016_j_apcatb_2022_121165 crossref_primary_10_1016_j_cej_2021_132340 crossref_primary_10_3390_nano15060471 crossref_primary_10_1016_j_jhazmat_2021_125809 crossref_primary_10_3390_catal14020102 crossref_primary_10_1016_j_apcatb_2023_122550 crossref_primary_10_1016_j_jhazmat_2023_130999 crossref_primary_10_1016_j_jhazmat_2022_128383 crossref_primary_10_1016_j_jphotochem_2022_114357 crossref_primary_10_1016_j_cej_2022_138194 crossref_primary_10_1021_acsestwater_2c00616 crossref_primary_10_1016_j_cej_2022_138199 crossref_primary_10_1016_j_apcatb_2023_122518 crossref_primary_10_1080_09593330_2021_1944325 crossref_primary_10_1016_j_chemosphere_2023_140079 crossref_primary_10_2139_ssrn_4197766 crossref_primary_10_1016_j_colsurfa_2024_134291 crossref_primary_10_1016_j_jaap_2021_105071 crossref_primary_10_1016_j_jwpe_2024_104772 crossref_primary_10_1016_j_efmat_2022_12_001 crossref_primary_10_1016_j_jcis_2024_06_033 crossref_primary_10_1016_j_psep_2023_11_047 crossref_primary_10_1016_j_seppur_2023_125690 crossref_primary_10_1016_j_seppur_2022_122908 crossref_primary_10_1016_j_apcato_2024_207024 crossref_primary_10_1016_j_seppur_2023_125455 crossref_primary_10_1016_j_cej_2024_156825 crossref_primary_10_1016_j_cej_2024_155738 crossref_primary_10_1016_j_apcatb_2025_125155 crossref_primary_10_1038_s41598_024_67352_8 crossref_primary_10_1016_j_chemosphere_2021_132099 crossref_primary_10_3390_toxics11020088 crossref_primary_10_1016_j_jhazmat_2023_132907 crossref_primary_10_1016_j_cej_2023_143698 crossref_primary_10_1016_j_seppur_2020_118276 crossref_primary_10_1016_j_jcis_2020_12_043 crossref_primary_10_1007_s11051_022_05545_w crossref_primary_10_1016_j_cej_2024_151371 crossref_primary_10_3390_catal14020121 crossref_primary_10_1016_j_seppur_2024_126454 crossref_primary_10_1016_j_jcis_2024_03_141 crossref_primary_10_1016_j_jece_2023_109839 crossref_primary_10_1016_j_colsurfa_2023_131728 crossref_primary_10_1016_j_colsurfa_2021_127152 crossref_primary_10_1016_j_biortech_2024_130841 crossref_primary_10_1016_j_surfin_2024_105347 crossref_primary_10_1016_j_cej_2020_127993 crossref_primary_10_2139_ssrn_4150458 crossref_primary_10_1002_clen_202100095 crossref_primary_10_1016_j_jwpe_2024_106779 crossref_primary_10_1016_j_cej_2023_142115 crossref_primary_10_1016_j_chemosphere_2024_142799 crossref_primary_10_1016_j_optmat_2022_112089 crossref_primary_10_1007_s10661_022_10503_z crossref_primary_10_6023_A23100459 crossref_primary_10_1016_j_cej_2021_131292 crossref_primary_10_1016_j_cej_2021_133000 crossref_primary_10_1021_acs_energyfuels_1c00803 crossref_primary_10_1016_j_envres_2025_121442 crossref_primary_10_1016_j_jcis_2021_07_019 crossref_primary_10_1016_j_apsusc_2021_149300 crossref_primary_10_1016_j_chemosphere_2022_137648 crossref_primary_10_1016_j_seppur_2024_127779 crossref_primary_10_1007_s13762_023_04867_z crossref_primary_10_1016_j_jece_2024_113331 crossref_primary_10_1021_acsestwater_2c00448 crossref_primary_10_1016_j_colsurfa_2022_129640 crossref_primary_10_1016_j_chemosphere_2024_141477 crossref_primary_10_1016_j_ultsonch_2024_106886 crossref_primary_10_1016_j_watres_2022_118271 crossref_primary_10_3390_nano15060432 crossref_primary_10_1080_09593330_2021_2000037 crossref_primary_10_1016_j_cej_2024_149030 crossref_primary_10_1016_j_apcatb_2021_120291 crossref_primary_10_1039_D0RA10178H crossref_primary_10_1021_acsami_2c12036 crossref_primary_10_1007_s11356_024_32735_x crossref_primary_10_1016_j_seppur_2022_120733 crossref_primary_10_1016_j_chemosphere_2021_129957 crossref_primary_10_1016_j_jphotochem_2023_114678 crossref_primary_10_1007_s43938_024_00059_4 crossref_primary_10_1016_j_psep_2022_04_003 crossref_primary_10_1016_j_jwpe_2023_104295 crossref_primary_10_1016_j_cej_2024_150239 crossref_primary_10_1016_j_scitotenv_2024_174456 crossref_primary_10_1039_D4EN00430B crossref_primary_10_1016_j_jtice_2025_105990 crossref_primary_10_1016_j_optmat_2023_114122 crossref_primary_10_4491_eer_2023_458 crossref_primary_10_1016_j_chemosphere_2021_130949 crossref_primary_10_1021_acsapm_3c01765 crossref_primary_10_1016_j_cej_2022_137904 crossref_primary_10_1007_s11164_021_04523_6 crossref_primary_10_1016_j_jclepro_2022_131143 crossref_primary_10_1016_j_chemosphere_2024_141255 crossref_primary_10_31857_S004445372312004X crossref_primary_10_1016_j_jece_2024_112028 crossref_primary_10_1039_D3EN00906H crossref_primary_10_1016_j_envpol_2024_124365 crossref_primary_10_1016_j_tifs_2025_104866 crossref_primary_10_1016_j_jcis_2023_10_077 crossref_primary_10_1016_j_jcis_2023_02_002 crossref_primary_10_1016_j_jece_2022_108641 crossref_primary_10_1016_j_colsurfa_2023_131925 crossref_primary_10_1016_j_jallcom_2024_173771 crossref_primary_10_1016_j_coche_2022_100826 crossref_primary_10_1016_j_jece_2021_106608 crossref_primary_10_1016_j_watres_2021_117397 crossref_primary_10_1007_s11274_022_03481_4 crossref_primary_10_1039_D2EN00294A crossref_primary_10_1016_j_jwpe_2021_102496 crossref_primary_10_1016_j_chemosphere_2021_132031 crossref_primary_10_1016_j_cej_2022_136399 crossref_primary_10_1016_j_jclepro_2022_135641 crossref_primary_10_1016_j_jhazmat_2021_128134 crossref_primary_10_1016_j_ceja_2022_100331 crossref_primary_10_1002_adfm_202406417 crossref_primary_10_1007_s10854_024_13894_6 crossref_primary_10_1016_j_jcis_2023_11_045 crossref_primary_10_1016_j_seppur_2022_122032 crossref_primary_10_1016_j_cclet_2023_108472 crossref_primary_10_1016_j_cej_2021_130331 crossref_primary_10_1016_j_seppur_2024_130459 crossref_primary_10_1021_acs_iecr_2c02419 crossref_primary_10_1016_j_jtice_2022_104279 crossref_primary_10_1016_j_seppur_2024_130458 crossref_primary_10_1016_j_cej_2022_138104 crossref_primary_10_3390_w16131796 crossref_primary_10_1016_j_jece_2024_115188 crossref_primary_10_1016_j_jhazmat_2022_129722 crossref_primary_10_1007_s11356_023_29432_6 crossref_primary_10_1002_gch2_202300125 crossref_primary_10_1016_j_cej_2024_154120 crossref_primary_10_1016_j_scitotenv_2023_164847 crossref_primary_10_3390_separations9120444 crossref_primary_10_1016_j_jece_2024_112907 crossref_primary_10_1016_j_memsci_2023_121383 crossref_primary_10_1016_j_cej_2021_129590 crossref_primary_10_1016_j_jece_2021_106870 crossref_primary_10_3389_fmicb_2022_1083974 crossref_primary_10_1016_j_surfin_2024_104352 crossref_primary_10_1021_acs_est_4c11311 crossref_primary_10_1016_j_jwpe_2024_106687 crossref_primary_10_1016_j_jwpe_2024_106446 crossref_primary_10_1039_D2GC03100K crossref_primary_10_1016_j_seppur_2022_122056 crossref_primary_10_1016_j_cej_2022_136180 crossref_primary_10_1007_s11356_023_30914_w crossref_primary_10_4491_eer_2023_548 crossref_primary_10_1039_D3CY01698F crossref_primary_10_1016_j_cej_2022_136187 crossref_primary_10_1016_j_envres_2021_112160 crossref_primary_10_1016_j_envres_2023_116041 crossref_primary_10_1016_j_cej_2024_156532 crossref_primary_10_1016_j_envres_2022_112868 crossref_primary_10_1016_j_seppur_2024_130431 crossref_primary_10_1016_j_colsurfa_2024_135784 crossref_primary_10_1016_j_jece_2022_109134 crossref_primary_10_1021_acsestwater_2c00471 crossref_primary_10_1016_j_seppur_2023_124770 crossref_primary_10_2139_ssrn_4191828 crossref_primary_10_1007_s12598_022_02170_3 crossref_primary_10_2166_wst_2024_016 crossref_primary_10_1016_j_jclepro_2024_140885 crossref_primary_10_1016_j_cej_2021_130126 crossref_primary_10_1016_j_surfin_2024_104539 crossref_primary_10_35812_CelluloseChemTechnol_2024_58_96 crossref_primary_10_5004_dwt_2021_27492 crossref_primary_10_1016_j_chemosphere_2021_132074 crossref_primary_10_1016_j_cej_2022_140216 crossref_primary_10_1016_j_jece_2023_109400 crossref_primary_10_1016_j_cej_2024_153019 crossref_primary_10_1016_j_psep_2023_04_032 crossref_primary_10_1016_j_seppur_2023_123694 crossref_primary_10_1007_s10661_024_12938_y crossref_primary_10_1016_j_seppur_2023_125630 crossref_primary_10_1016_j_cej_2023_143161 crossref_primary_10_1016_j_cej_2023_142075 crossref_primary_10_1016_j_chemosphere_2023_139025 crossref_primary_10_1016_j_jhazmat_2025_138031 crossref_primary_10_1016_j_cej_2023_145577 crossref_primary_10_1016_j_jtice_2023_105229 crossref_primary_10_1007_s10570_023_05530_z crossref_primary_10_1016_j_cherd_2024_09_030 crossref_primary_10_1016_j_jece_2022_108264 crossref_primary_10_1016_j_jwpe_2022_102740 crossref_primary_10_1016_j_psep_2023_05_060 crossref_primary_10_1016_j_envres_2021_112184 crossref_primary_10_1016_j_jwpe_2021_102202 crossref_primary_10_1016_j_jwpe_2024_106022 crossref_primary_10_2166_wst_2021_641 crossref_primary_10_1016_j_jece_2025_115416 crossref_primary_10_1021_acs_langmuir_4c03632 crossref_primary_10_1016_j_jece_2023_109659 crossref_primary_10_1021_acs_est_3c06376 crossref_primary_10_1016_j_jece_2022_109116 crossref_primary_10_1016_j_jece_2021_106660 crossref_primary_10_5004_dwt_2021_27489 crossref_primary_10_1016_j_watres_2022_118317 crossref_primary_10_3390_pr11020373 crossref_primary_10_1016_j_jece_2021_106669 crossref_primary_10_1016_j_cej_2023_146655 crossref_primary_10_1016_j_jwpe_2024_105142 crossref_primary_10_1016_j_apsusc_2022_152891 crossref_primary_10_1016_j_seppur_2021_119850 crossref_primary_10_1016_j_seppur_2021_119619 crossref_primary_10_1016_j_jwpe_2023_103916 crossref_primary_10_2166_wst_2022_219 crossref_primary_10_1016_j_seppur_2023_125890 crossref_primary_10_1016_j_jallcom_2023_172898 crossref_primary_10_1016_j_colsurfa_2024_135733 crossref_primary_10_1016_j_chemosphere_2024_142727 crossref_primary_10_1016_j_seppur_2022_120922 crossref_primary_10_3390_nano12172920 crossref_primary_10_3390_catal11050557 crossref_primary_10_3390_pr12020384 crossref_primary_10_1016_j_envres_2023_116243 crossref_primary_10_1007_s00706_022_02897_w crossref_primary_10_1016_j_chemosphere_2024_141656 crossref_primary_10_3390_environments10080147 crossref_primary_10_1016_j_chemosphere_2022_136937 crossref_primary_10_1039_D1NJ05439B crossref_primary_10_1016_j_scitotenv_2021_147724 crossref_primary_10_1039_D1RA04995J crossref_primary_10_2139_ssrn_4049521 crossref_primary_10_1016_j_cej_2024_156731 crossref_primary_10_1016_j_seppur_2024_129645 crossref_primary_10_1016_j_seppur_2023_123481 crossref_primary_10_1016_j_chemosphere_2023_140017 crossref_primary_10_3390_w14182913 crossref_primary_10_1016_j_cjche_2022_07_032 crossref_primary_10_1007_s41742_023_00561_7 crossref_primary_10_1016_j_gee_2024_12_008 crossref_primary_10_1016_j_seppur_2022_121115 crossref_primary_10_1016_j_envres_2022_113340 crossref_primary_10_1016_j_jhazmat_2021_126113 crossref_primary_10_1016_j_jtice_2023_104722 crossref_primary_10_1021_acs_est_1c01531 crossref_primary_10_1016_j_chemosphere_2021_131579 crossref_primary_10_1039_D2NJ02044K crossref_primary_10_1016_j_jhazmat_2022_128818 crossref_primary_10_2139_ssrn_4087417 crossref_primary_10_1134_S0036024423070294 crossref_primary_10_1016_j_jhazmat_2022_129905 crossref_primary_10_1016_j_cej_2024_158349 crossref_primary_10_1016_j_jece_2024_112727 crossref_primary_10_1016_j_cej_2023_148490 crossref_primary_10_1016_j_cej_2022_138976 crossref_primary_10_1016_j_chemosphere_2022_136073 crossref_primary_10_1016_j_cej_2023_148250 crossref_primary_10_1016_j_colsurfa_2024_134867 crossref_primary_10_2139_ssrn_4073253 crossref_primary_10_1016_j_chemosphere_2023_140609 crossref_primary_10_2139_ssrn_4134859 crossref_primary_10_1021_acsestengg_4c00219 crossref_primary_10_1007_s11356_023_25911_y crossref_primary_10_3390_ijerph192416790 crossref_primary_10_1002_slct_202301574 crossref_primary_10_1016_j_jwpe_2022_103234 crossref_primary_10_1016_j_colsurfa_2023_132395 crossref_primary_10_1021_acsestengg_3c00260 crossref_primary_10_1016_j_cej_2022_135474 crossref_primary_10_3390_catal10121373 crossref_primary_10_1016_j_jwpe_2023_103727 crossref_primary_10_1007_s11270_023_06690_1 crossref_primary_10_1016_j_chemosphere_2021_132421 crossref_primary_10_1002_jctb_7518 crossref_primary_10_1007_s10853_022_07683_x crossref_primary_10_1016_j_seppur_2022_121347 crossref_primary_10_1007_s13762_022_04036_8 crossref_primary_10_1016_j_scitotenv_2023_169471 crossref_primary_10_3390_catal12101114 crossref_primary_10_1016_j_chemosphere_2021_132646 crossref_primary_10_1016_j_cej_2022_140828 crossref_primary_10_1016_j_cej_2023_141846 crossref_primary_10_1016_j_ica_2024_122214 crossref_primary_10_1016_j_envres_2022_114414 crossref_primary_10_1016_j_jes_2021_08_002 crossref_primary_10_1021_acssuschemeng_4c08215 crossref_primary_10_1016_j_cej_2024_149613 crossref_primary_10_37394_232033_2023_1_21 crossref_primary_10_1016_j_cclet_2023_109140 crossref_primary_10_1016_j_jece_2023_110263 crossref_primary_10_1016_j_psep_2023_01_069 crossref_primary_10_3390_w16213024 crossref_primary_10_1016_j_cej_2023_142922 crossref_primary_10_3390_toxics10090539 crossref_primary_10_1016_j_jece_2023_110027 crossref_primary_10_1016_j_envres_2024_118362 crossref_primary_10_1016_j_jenvman_2024_123727 crossref_primary_10_1039_D4EN00516C crossref_primary_10_1016_j_jes_2021_09_035 crossref_primary_10_1016_j_jwpe_2023_103702 crossref_primary_10_1016_j_seppur_2025_132509 crossref_primary_10_1007_s11356_022_24950_1 crossref_primary_10_1016_j_jenvman_2022_114664 crossref_primary_10_1016_j_ecoenv_2024_117126 crossref_primary_10_1016_j_scitotenv_2023_169043 crossref_primary_10_3390_w14071084 crossref_primary_10_1007_s11270_024_07718_w crossref_primary_10_1002_jctb_7786 crossref_primary_10_1002_jctb_7300 crossref_primary_10_1155_2022_1812776 crossref_primary_10_3390_su142114300 crossref_primary_10_1177_0734242X221126390 crossref_primary_10_3390_nano13182565 crossref_primary_10_3390_toxics10090512 crossref_primary_10_1016_j_nanoen_2023_108515 crossref_primary_10_1016_j_cej_2021_133802 crossref_primary_10_1016_j_cej_2023_144094 crossref_primary_10_1016_j_seppur_2022_122008 crossref_primary_10_1016_j_cej_2024_151915 crossref_primary_10_1149_1945_7111_ac5b35 crossref_primary_10_1016_j_jwpe_2025_107458 crossref_primary_10_1021_acs_iecr_4c02875 crossref_primary_10_1016_j_scitotenv_2021_151120 crossref_primary_10_1016_j_cej_2021_128459 crossref_primary_10_1016_j_jece_2025_115495 crossref_primary_10_1016_j_scitotenv_2024_172740 crossref_primary_10_1016_j_colsurfa_2023_132353 crossref_primary_10_1016_j_jhazmat_2023_131480 crossref_primary_10_1016_j_apsusc_2024_161317 crossref_primary_10_1016_j_aquaculture_2023_740224 crossref_primary_10_1016_j_jwpe_2023_103526 crossref_primary_10_1016_j_jwpe_2023_103768 crossref_primary_10_1016_j_carpta_2022_100239 crossref_primary_10_1016_j_chemosphere_2023_139418 crossref_primary_10_1016_j_chemosphere_2023_139659 crossref_primary_10_3390_catal12030329 crossref_primary_10_5004_dwt_2021_27649 crossref_primary_10_1016_j_jece_2024_115193 crossref_primary_10_1016_j_apmt_2023_101983 crossref_primary_10_1016_j_cej_2023_147591 crossref_primary_10_1016_j_apcatb_2021_120850 crossref_primary_10_1016_j_colsurfa_2024_133507 crossref_primary_10_1007_s43938_024_00052_x crossref_primary_10_1016_j_seppur_2023_123637 crossref_primary_10_3390_w14030357 crossref_primary_10_1016_j_jcis_2025_02_054 crossref_primary_10_1016_j_envres_2025_120932 crossref_primary_10_1016_j_eti_2023_103117 crossref_primary_10_1016_j_chemosphere_2021_130271 crossref_primary_10_1016_j_jece_2023_110449 crossref_primary_10_1016_j_jhazmat_2022_130085 crossref_primary_10_1016_j_cej_2024_158523 crossref_primary_10_1016_j_seppur_2025_131869 crossref_primary_10_1016_j_chemosphere_2023_140666 crossref_primary_10_1016_j_wasman_2022_09_030 crossref_primary_10_1016_j_cej_2021_133822 crossref_primary_10_1016_j_cej_2023_147343 crossref_primary_10_1016_j_surfin_2023_103581 crossref_primary_10_1016_j_chemosphere_2023_138112 crossref_primary_10_1016_j_apsusc_2023_159178 crossref_primary_10_1016_j_jenvman_2022_116894 crossref_primary_10_1016_j_jenvman_2022_116895 crossref_primary_10_1016_j_jwpe_2023_103511 crossref_primary_10_1016_j_surfin_2023_103338 crossref_primary_10_1007_s11783_024_1907_1 crossref_primary_10_1016_j_cej_2022_139659 crossref_primary_10_1016_j_jece_2023_111307 crossref_primary_10_3390_inorganics9120088 crossref_primary_10_1039_D4LF00051J crossref_primary_10_1007_s12221_024_00494_8 crossref_primary_10_1016_j_chemosphere_2023_139677 crossref_primary_10_1021_acsestwater_4c01181 |
Cites_doi | 10.1016/j.watres.2015.11.049 10.1016/j.watres.2011.09.015 10.1016/j.cej.2019.03.256 10.1080/09593330.2017.1408694 10.1016/j.materresbull.2018.10.027 10.1007/s00027-007-0881-6 10.1021/es1010225 10.1016/j.seppur.2019.115732 10.1016/j.wasman.2015.07.046 10.1016/j.jhazmat.2008.03.011 10.1021/es051236b 10.1016/j.jwpe.2014.06.007 10.1016/j.wasman.2013.01.039 10.1016/j.psep.2010.11.003 10.1016/j.apcatb.2018.03.077 10.2166/wrd.2016.188 10.1016/j.cej.2019.122447 10.1016/j.jhazmat.2009.07.047 10.1007/s42452-020-2868-z 10.1016/j.psep.2019.07.019 10.1016/j.cattod.2019.02.014 10.1080/09593330.2016.1221472 10.1021/acs.est.9b07082 10.1016/j.psep.2018.11.016 10.1016/j.cej.2015.09.093 10.1016/j.chemosphere.2019.125139 10.1016/j.chemosphere.2018.10.168 10.1016/j.watres.2015.02.044 10.1016/j.jcis.2020.03.041 10.1007/s42250-019-00094-7 10.1016/j.jhazmat.2017.12.011 10.1007/s11356-017-0936-8 10.1016/j.cej.2017.07.137 10.1016/j.jenvman.2017.02.031 10.1016/j.watres.2019.02.013 10.1016/j.jclepro.2019.118544 10.1016/j.scitotenv.2010.08.061 10.1016/j.jece.2014.08.003 10.1016/j.cej.2013.02.038 10.1016/j.cej.2016.04.135 10.1016/j.jhazmat.2020.123032 10.1002/jctb.1553 10.1016/j.dib.2018.05.111 10.1016/j.jtice.2019.02.001 10.1016/j.cej.2019.122536 10.1016/j.cej.2018.07.037 10.1063/1.555805 10.1016/j.jece.2018.10.011 10.2166/wst.2015.468 10.1016/j.procbio.2019.05.031 10.1016/j.apcatb.2017.03.079 10.1007/s10163-009-0262-4 10.1016/j.jenvman.2011.09.012 10.1016/j.jece.2020.103849 10.1504/IJEWM.2009.027402 10.1016/j.cej.2014.03.114 10.1515/pac-2014-0502 10.1016/j.apcatb.2016.04.003 10.1016/j.sjbs.2017.07.009 10.1016/j.cej.2016.12.094 10.1016/j.watres.2020.115605 10.1021/acs.est.6b03560 10.30955/gnj.002239 10.1016/j.molliq.2017.11.045 10.1016/j.ultsonch.2019.01.036 10.1016/S0043-1354(02)00458-X 10.1007/s11270-014-2076-9 10.1016/j.seppur.2009.07.002 10.1016/j.cej.2016.01.007 10.1111/j.1755-0238.2011.00132.x 10.1007/s13762-018-2130-z 10.1016/j.seppur.2018.07.089 10.1016/j.jhazmat.2018.04.044 10.1016/j.scitotenv.2020.138863 10.1016/j.cej.2018.06.111 10.1016/j.jclepro.2020.121014 10.1063/1.555843 10.1007/s13201-014-0225-3 10.1016/j.chemosphere.2019.124478 10.1039/C9EW00803A 10.1016/j.cej.2019.04.213 10.1016/j.watres.2009.06.043 10.1016/j.watres.2013.10.049 10.1016/j.jclepro.2018.05.207 10.1016/j.cej.2011.12.010 10.1016/j.seppur.2019.116253 10.1063/1.555808 10.1016/j.apcatb.2019.02.025 10.1016/j.jclepro.2017.02.135 10.1016/j.rser.2017.10.029 10.1016/j.jenvman.2015.10.051 10.1016/j.chemosphere.2019.125326 10.1016/j.cej.2016.08.048 10.1007/s40710-020-00440-9 10.1002/kin.550270610 10.1016/j.cej.2019.122434 10.1016/j.biortech.2010.06.124 10.1021/es0263792 10.1016/j.chemosphere.2019.125390 10.1039/C5RA21781D 10.1016/j.wasman.2020.03.005 10.1016/j.seppur.2020.116828 10.1016/j.chemosphere.2020.126652 10.1016/j.wasman.2018.10.007 10.1016/j.chemosphere.2019.124649 10.1016/j.scitotenv.2016.07.032 10.1016/j.watres.2018.10.011 10.1016/j.matpr.2019.08.083 10.1039/C8RA10094B 10.1016/j.seppur.2020.117479 10.1016/j.envpol.2016.09.002 10.1016/j.jece.2017.07.069 10.1016/j.psep.2018.01.015 10.1016/j.wasman.2018.12.014 10.1016/j.watres.2013.09.033 10.1007/s11356-019-07367-1 10.30955/gnj.002035 10.1002/jctb.3876 10.1016/j.psep.2016.04.019 10.1016/j.jelechem.2019.05.064 10.1007/s11356-020-08046-2 10.1016/j.bej.2006.11.029 10.5004/dwt.2019.24682 10.1016/j.ejop.2017.02.004 10.1016/j.cej.2014.10.043 10.1016/j.apcatb.2019.02.018 10.1016/j.scitotenv.2013.11.008 10.2166/wst.2016.458 10.1016/j.microc.2019.04.020 10.1016/j.microc.2019.104430 10.1016/j.chemosphere.2019.125438 10.1080/08327823.2019.1643652 10.1016/j.jhazmat.2018.07.083 10.2166/wst.2018.069 10.5004/dwt.2017.21530 10.1061/(ASCE)HZ.2153-5515.0000328 10.1016/j.cej.2016.09.015 10.1016/j.procbio.2014.11.005 10.1080/09593330.2016.1218553 10.3390/ijerph16030441 10.1016/j.biortech.2004.04.014 10.1007/s13762-017-1567-9 10.3390/catal8050218 10.1016/j.cej.2017.10.162 10.1016/j.molliq.2020.113002 10.1016/j.watres.2018.08.052 10.1016/j.seppur.2018.06.071 10.1016/j.watres.2018.04.054 10.1016/j.jtice.2016.07.021 10.1016/j.wasman.2016.09.003 10.1016/j.wasman.2019.07.016 10.1016/j.cej.2018.04.074 10.1016/j.serj.2017.06.001 10.3390/w10121828 10.1007/s42452-019-0812-x 10.1016/j.chemosphere.2019.124366 10.1021/es2017363 10.1016/j.psep.2019.09.009 10.1016/j.cej.2018.09.136 10.1063/1.555739 10.1016/j.cej.2018.08.168 10.1016/j.seppur.2019.115928 10.1016/j.watres.2020.115504 10.1016/j.watres.2009.06.030 10.1016/j.cej.2019.03.296 10.1016/j.biortech.2007.08.081 10.1021/es062529n 10.1016/j.psep.2015.08.009 10.1007/s11356-016-7139-6 10.1016/j.jhazmat.2014.12.043 10.1016/j.jhazmat.2020.122785 10.1007/s10646-011-0806-y 10.1016/j.cej.2019.122361 10.1016/j.jenvman.2018.11.030 10.1016/j.chemosphere.2018.04.175 10.1016/j.jhazmat.2011.09.007 10.1039/a907133d 10.1002/clen.201900198 10.1021/ie9002848 10.1016/j.cej.2017.07.132 10.1016/j.seppur.2017.07.046 10.1016/j.chemosphere.2018.02.143 10.1016/j.watres.2019.01.013 10.1016/j.scitotenv.2018.12.348 10.1039/f19888401113 10.2166/wst.2020.115 10.1016/j.jhazmat.2006.05.018 10.1021/ie501210j 10.1016/j.watres.2015.05.019 10.1007/s11356-015-5951-z 10.1016/j.cej.2019.122803 10.1016/j.envres.2020.109367 10.1016/j.chemosphere.2017.07.084 10.1021/es503496u 10.1016/j.jhazmat.2014.10.043 10.1021/es052206b 10.1016/j.jhazmat.2014.01.010 10.1016/j.ecoenv.2014.05.005 10.1016/j.desal.2010.04.062 10.1016/j.cej.2016.10.064 10.1080/09593330.2012.689367 10.1080/10934529.2017.1377584 10.1016/j.jclepro.2018.10.081 10.1016/j.scitotenv.2015.09.151 10.1016/j.apcatb.2018.12.012 10.1016/j.watres.2018.12.065 10.15244/pjoes/62645 10.1007/s13762-020-02651-x 10.1016/j.jenvman.2017.12.023 10.1016/j.biortech.2019.122667 10.1016/j.jwpe.2019.101084 10.1016/j.wasman.2019.07.037 10.1016/j.jclepro.2018.05.137 10.1007/s13762-019-02324-4 10.1016/j.chemosphere.2009.07.040 10.1016/j.apcatb.2020.118877 10.1007/s11356-017-9896-2 10.1007/s42452-020-1986-y 10.1002/ep.13508 10.1016/j.cej.2018.05.062 10.1039/C8RA08134D 10.1016/j.seppur.2020.117043 10.1016/j.wasman.2018.02.047 10.1016/j.jece.2015.07.019 10.1016/j.psep.2019.03.034 10.1021/es991406i 10.1016/j.seppur.2020.116931 10.1016/j.jhazmat.2012.11.060 10.1016/j.jhazmat.2007.09.077 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2020.127083 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2020_127083 S1385894720332113 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-909debceaa9318de93d20a8c83b64f2e9b66f197225ae14005ee13faa71934253 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 23:11:32 EDT 2025 Tue Jul 01 04:27:06 EDT 2025 Fri Feb 23 02:47:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Advanced oxidation processes Industrial wastewater Sulfate radical Persulfate activation Peroxymonosulfate (PMS) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-909debceaa9318de93d20a8c83b64f2e9b66f197225ae14005ee13faa71934253 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2020_127083 crossref_primary_10_1016_j_cej_2020_127083 elsevier_sciencedirect_doi_10_1016_j_cej_2020_127083 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-15 |
PublicationDateYYYYMMDD | 2021-02-15 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Zhao, Cao, Wang, Zhu (b0085) 2017; 211 Chen, Luo, Ran, Li (b0610) 2019; 97 Gu, Wang, Feng, Zhang (b1110) 2019; 130 Hassan, Zhao, Xie (b0135) 2016; 285 Jaafarzadeh, Ghanbari, Alvandi (b0910) 2017; 27 Bandala, Velasco, Torres (b1120) 2008; 160 Liu, Zhao, Shao, Cui (b0335) 2015; 262 Yu, Cui, Li, Zhang, Pei (b0680) 2020; 243 Guo, Wang, Luo, Yao, Qiu, Li (b0560) 2020; 243 Gadipelly, Pérez-González, Yadav, Ortiz, Ibáñez, Rathod, Marathe (b0150) 2014; 53 Antony, Niveditha, Gandhimathi, Ramesh, Nidheesh (b0685) 2020; 106 Gholami, Abbasi Sourak, Pendashteh, Pourkarim Mozhdehi, Bagherian Marzouni (b0935) 2017; 95 Guo, Meng, Zhang, Zhang, Li, Cheng, Cheng (b0665) 2019; 355 Yang, Zhong, Zhong, Li, Du, Li, Chen, Zeng (b0730) 2015; 98 Wacławek, Lutze, Grübel, Padil, Černík, Dionysiou (b0015) 2017; 330 Soubh, Baghdadi, Abdoli, Aminzadeh (b0660) 2018; 8 Flores, García, Pena, Garfí (b0990) 2019; 659 Reza Samarghandi, Tari, Shabanloo, Salari, Zolghadr Nasab (b0970) 2020; 247 Gholami, Abbasi Souraki, Pendashteh, Bagherian Marzouni (b0920) 2017; 38 Mandal, Prabhu, Pakshirajan, Veeranki Dasu (b0305) 2019; 84 Liu, Zhan, Nie (b0740) 2016; 25 Ghanbari, Ahmadi, Gohari (b0975) 2019; 228 Bashir, Wei, Aun, Abu Amr (b1070) 2017; 193 Buxton, Bydder, Arthur Salmon, Williams (b0505) 2000; 2 Varank, Yazici Guvenc, Demir (b0780) 2020; 17 Shah, Khan, Sayed, Khan, Rizwan, Muhammad, Boczkaj, Murtaza, Imran, Khan, Zaman (b0460) 2018; 351 Oh, Shin (b1135) 2013; 88 Justino, Pereira, Freitas, Rocha-Santos, Panteleitchouk, Duarte (b0250) 2012; 21 Keen, McKay, Mezyk, Linden, Rosario-Ortiz (b0400) 2014; 50 Ahmadi, Ghanbari (b0490) 2019; 111 Kohantorabi, Giannakis, Gholami, Feng, Pulgarin (b0420) 2019; 244 Sbardella, Velo Gala, Comas, Morera Carbonell, Rodríguez-Roda, Gernjak (b0890) 2020; 260 Guerra-Rodríguez, Rodríguez, Singh, Rodríguez-Chueca (b0110) 2018; 10 Soubh, Baghdadi, Abdoli, Aminzadeh (b0645) 2018; 6 Tripathy, Ramesh, Debnath, Kumar (b0725) 2019; 54 Wardman (b0525) 1989; 18 Wang, Gu, Yang, Zhang (b1105) 2020; 6 Sun, Li, Feng, Tian (b0545) 2009; 43 Wang, Liao, Ifthikar, Shi, Du, Zhu, Xi, Chen, Chen (b0655) 2017; 185 Lee, von Gunten, Kim (b0070) 2020; 54 El Mrabet, Benzina, Zaitan (b0750) 2020; 2 Abedinzadeh, Shariat, Monavari, Pendashteh (b0165) 2018; 116 Yang, Chen, Peng, Yu, Chu, Zhou (b1040) 2019; 9 Wu, Yang, Zhou, Zhou, Ai, Yang, Wan, Luo, Tang, Tsang (b0320) 2020; 399 Nihemaiti, Miklos, Hübner, Linden, Drewes, Croué (b1175) 2018; 145 Babaei, Ghanbari (b0790) 2016; 6 Tan, Bai, Zheng, Zhang, Li, Zhou, Xia, Xu, Zhou (b0045) 2019; 335 Nachiappan, Muthukumar (b0855) 2013; 34 Xiao, Liu, Bai, Minakata, Seo, Kaya Göktaş, Dionysiou, Tang, Wei, Spinney (b0105) 2019; 371 Rodríguez-Chueca, García-Cañibano, Lepistö, Encinas, Pellinen, Marugán (b1170) 2019; 372 Li, Yang, Zhong, Li, Zhou, Li, Zeng (b0650) 2016; 6 Yaseen, Scholz (b0190) 2019; 16 Zhang, Ren, Li, Lei, Yang, Blatchley (b0500) 2019; 152 Yousefi, Pourfadakari, Esmaeili, Babaei (b0820) 2019; 147 Reshadi, Bazargan, McKay (b0120) 2020; 731 Peternel, Kusic, Marin, Koprivanac (b0510) 2013; 108 Xie, Guo, Chen, Wang, Shang, Wang, Ding, Wan, Jiang, Ma (b0940) 2017; 314 Yang, Lan, Lin, Yuan, Fu (b0350) 2016; 289 Wang, Shao, Gao, Chu, Chen, Lu, Zhu, An (b0055) 2017; 189 Buxton, Greenstock, Helman, Ross (b0380) 1988; 17 Yeh, Lo, Kuo, Chou (b0605) 2018; 15 Xiao, Zhang, Yue, Webster, Lim (b0375) 2015; 75 Vione, Falletti, Maurino, Minero, Pelizzetti, Malandrino, Ajassa, Olariu, Arsene (b0395) 2006; 40 Kattel, Dulova (b0590) 2017; 38 Hilles, Abu Amr, Hussein, Arafa, El-Sebaie (b0615) 2015; 44 Yang, Cui, Liu, Liu, Li (b0040) 2018; 207 Ghanbari, Martínez-Huitle (b1160) 2019; 847 Guan, Ma, Li, Fang, Chen (b0345) 2011; 45 Welz, le Roes-Hill (b0300) 2014; 3 Jiang, Qiu, Sun (b0755) 2018; 349 Minero, Chiron, Falletti, Maurino, Pelizzetti, Ajassa, Carlotti, Vione (b0440) 2007; 69 David, Robert, Willem, Sergei, Gábor, Pedatsur, Branko, David, Steen, Peter (b0520) 2015; 87 Rodríguez-Chueca, Amor, Mota, Lucas, Peres (b1000) 2017; 24 Rana, Singh, Kandari, Singh, Dobhal, Gupta (b0155) 2017; 7 Gągol, Cako, Fedorov, Soltani, Przyjazny, Boczkaj (b0035) 2020; 307 Zhou, Zhou, Yang (b0295) 2019; 210 Ma, Wang, Miao, Dong, Zhang (b1195) 2020; 252 Amor, Rodríguez-Chueca, Fernandes, Domínguez, Lucas, Peres (b1010) 2019; 122 Varank, Yazici Guvenc, Demir, Kavan, Donmez, Onen (b0925) 2020; 81 Neta, Huie, Ross (b0455) 1988; 17 Abu Amr, Aziz, Adlan (b0630) 2013; 33 Khatri, Nidheesh, Anantha Singh, Suresh Kumar (b0985) 2018; 348 Qiu, Xu, Sun, Li (b1125) 2019; 16 Sponza, Oztekin (b0840) 2010; 101 Bougdour, Tiskatine, Bakas, Assabbane (b0945) 2020; 3 Silveira, Zazo, Pliego, Casas (b0540) 2018; 81 Deng, Ge, Tan, Wang, Li, Zhou, Zhang (b0900) 2017; 330 Zhu, Ni, Lai (b1045) 2009; 43 Chen, Luo, Ran, Li (b1090) 2020; 382 Hilles, Abu Amr, Hussein, El-Sebaie, Arafa (b0625) 2016; 166 Zhang, Wang, Liu, Guo, Shan, Meng, Sun (b0765) 2014; 250 Serna-Galvis, Troyon, Giannakis, Torres-Palma, Minero, Vione, Pulgarin (b0425) 2018; 147 Liu, Wu, Chen (b0100) 2018; 335 Khatebasreh, Kiani, Minaee Tabrizi, Barzegar, Bahmani, Yousefi, Ghanbari (b1155) 2020; 7 Ren, Zhou, Zhang, Xu, Li, Su, Paidar, Bouzek (b0235) 2019; 154 Grebel, Pignatello, Mitch (b0465) 2010; 44 Westerhoff, Mezyk, Cooper, Minakata (b0405) 2007; 41 Wang, Wang (b1050) 2020; 379 Devi, Das, Dalai (b0285) 2016; 571 Yuan, Jiang, Gao, Wang, Wang, Boczkaj, Liu, Ma, Li (b0485) 2020; 380 Deng (b0555) 2009; 4 Ioannou, Puma, Fatta-Kassinos (b0195) 2015; 286 Tripathy, Kumar (b0550) 2019; 85 Yuan, Ramjaun, Wang, Liu (b0475) 2011; 196 Anipsitakis, Dionysiou (b0010) 2003; 37 Gong, Zhao, Zhang, Yang, Xiao, Guo, Zhang, Shao, Wang, Yu (b0090) 2018; 233 Buxton, Wood, Dyster (b0450) 1988; 84 Luo, Ma, Jiang, Liu, Song, Yang, Guan, Wu (b0050) 2015; 80 Ahmadi, Ghanbari (b1145) 2016; 23 Barzegar, Jorfi, Zarezade, Khatebasreh, Mehdipour, Ghanbari (b0815) 2018; 201 Duan, Yang, Wacławek, Fang, Xiao, Dionysiou (b0065) 2020; 8 Babuponnusami, Muthukumar (b0355) 2012; 183 Karimipourfard, Eslamloueyan, Mehranbod (b0640) 2019; 131 Abu Amr, Alkarkhi, Alslaibi, Abujazar (b0745) 2018; 19 Lin, Bashir, Abu Amr, Sim (b1075) 2016; 74 Candia-Onfray, Espinoza, Sabino da Silva, Toledo-Neira, Espinoza, Santander, García, Salazar (b0205) 2018; 206 Expósito, Monteagudo, Díaz, Durán (b1140) 2016; 306 Oh, Dong, Lim (b0060) 2016; 194 Ghanbari, Wu, Khatebasreh, Ding, Lin (b0670) 2020; 242 Stanisław, Vinod, Miroslav (b0095) 2018; 25 Ishak, Hamid, Mohamad, Tay (b0530) 2018; 76 Chen, Wang, He, Li (b0705) 2020; 397 Rodríguez-Chueca, Moreira, Lucas, Fernandes, Tavares, Sampaio, Peres (b1015) 2017; 149 Song, Wang, Liu, Zhang (b1025) 2018; 77 Chou, Lo, Kuo, Yeh (b0700) 2013; 246–247 Ran, Li (b1100) 2020; 27 Marañón, Vázquez, Rodríguez, Castrillón, Fernández, López (b0220) 2008; 99 Fernandes, Makoś, Boczkaj (b0845) 2018; 195 Takdastan, Ravanbakhsh, Hazrati, Safapour (b0800) 2019; 1 Zeng, Zhang, Deng, Shi (b0330) 2020; 33 Rommozzi, Giannakis, Giovannetti, Vione, Pulgarin (b0430) 2020; 270 Staib, Lant (b0215) 2007; 34 Zhou, Xiang, He, Yang, Zhang, Luo, Peng, Dai, Zhu, Tang (b0515) 2018; 359 Zhou, Liu, Sun, Lin, Ma, He, Ouyang (b0290) 2019; 372 Hilles, Abu Amr, Hussein, Arafa, El-Sebaie (b0620) 2015; 73 Ghanbari, Khatebasreh, Mahdavianpour, Lin (b0830) 2020; 244 Renou, Givaudan, Poulain, Dirassouyan, Moulin (b0130) 2008; 150 Y.-B. Kim, J.-H. Ahn, Microwave-Assisted Decomposition of Landfill Leachate with Persulfate, 142 (2016) 04015084. Wu, Lin, Yang, Du, Teng, Ma, Zhang, Nie, Zhong (b0325) 2019; 237 Wang, Gu, Yang, Zhang (b1085) 2020; 236 Rodríguez-Chueca, Giannakis, Marjanovic, Kohantorabi, Gholami, Grandjean, de Alencastro, Pulgarín (b0115) 2019; 248 Liang, Su (b0340) 2009; 48 Zhang, Li, Yang, Wang, Wu, Zhu, Wei, Liu, Hou, Chen (b0775) 2019; 216 Vázquez, Rodríguez, Marañón, Castrillón, Fernández (b0210) 2006; 137 Oller, Malato, Sánchez-Pérez (b0275) 2011; 409 Ahmed, Chiron (b0880) 2014; 48 Joo (b1165) 2014; 225 Yazici Guvenc (b0695) 2019; 126 Jaafarzadeh, Omidinasab, Ghanbari (b0915) 2016; 102 Deng, Ezyske (b0690) 2011; 45 Dinesh, Anandan, Sivasankar (b0960) 2016; 23 Anotai, Wasukran, Boonrattanakij (b1185) 2018; 352 Lutze, Bircher, Rapp, Kerlin, Bakkour, Geisler, von Sonntag, Schmidt (b0415) 2015; 49 Ahmadi, Haghighifard, Soltani, Tobeishi, Jorfi (b0825) 2019; 169 Xu, Zhao, Cao, Zhang, Sheng, Li, Zhou, Li (b0230) 2020; 300 Abu Amr, Aziz, Adlan, Bashir (b0635) 2013; 221 Ahmed, Rasul, Martens, Brown, Hashib (b0075) 2010; 261 Eslami, Hashemi, Ghanbari (b0810) 2018; 195 Criquet, Leitner (b0365) 2009; 77 Rao, Qu, Yang, Chu (b0435) 2014; 268 F. Ji, H. Zhang, J. Li, B. Lai, Treatment of reverse osmosis (RO) concentrate from an old landfill site by Fe0/PS/O3 process, 92 (2017) 2616-2625. Poblete, Oller, Maldonado, Cortes (b0565) 2019; 232 Zuo, Li, Xu, Xia (b0860) 2020; 380 Chou, Lo, Kuo, Yeh (b0715) 2015; 284 Görmez, Görmez, Yabalak, Gözmen (b1065) 2020; 2 Liu, Li, Rao, Hu (b0535) 2018; 208 Zhang, Fu, Zhang (b0080) 2009; 172 Xue, Cui, Liu, Yang, Li, Guo (b0580) 2020; 231 Liu, Pan, Hu, Hu (b0785) 2020; 27 Tao, Brigante, Zhang, Mailhot (b1115) 2019; 236 Jaafarzadeh, Ghanbari, Ahmadi, Omidinasab (b0905) 2017; 308 Razmi, Ramavandi, Ardjmand, Heydarinasab (b0795) 2019; 40 Ike, Foster, Shinn, Watson, Orbell, Greenlee, Duke (b0025) 2017; 5 Aljuboury, Palaniandy, Abdul Aziz, Feroz (b0145) 2017; 19 Fazal, Mushtaq, Rehman, Ullah Khan, Rashid, Farooq, Rehman, Xu (b0180) 2018; 82 Karimipourfard, Eslamloueyan, Mehranbod (b0575) 2019 Can-Güven, Yazici Guvenc, Kavan, Varank (b0930) 2020 Pulido (b0255) 2016; 563–564 Karadag, Köroğlu, Ozkaya, Cakmakci (b0260) 2015; 50 Naveen, Mahapatra, Sitharam, Sivapullaiah, Ramachandra (b0125) 2017; 220 Y.-B. Kim, J.-H.J.K.J.o.C.E. Ahn, Changes of absorption spectra, SUVA254, and color in treating landfill leachate using microwave-assisted persulfate oxidation, 34 (2017) 1980-1984. Hassan, Wang, Wang, Wu, Hussain, Xie (b0770) 2017; 63 Zhang, Yue, Duan, Zhang, Gao, Zhu, Cui (b1035) 2018; 8 Wang, Qiu, Pang, Gao, Zhou, Cao, Jiang (b0030) 2020; 172 Ghanbari, Moradi (b0280) 2017; 310 X. Song, M. Liu, Advanced treatment of biotreated coking wastewater with peroxymonosulfate oxidation catalyzed by granular activated c Asha (10.1016/j.cej.2020.127083_b0735) 2017; 21 Grebel (10.1016/j.cej.2020.127083_b0465) 2010; 44 Karadag (10.1016/j.cej.2020.127083_b0260) 2015; 50 Babaei (10.1016/j.cej.2020.127083_b0790) 2016; 6 Wang (10.1016/j.cej.2020.127083_b1050) 2020; 379 10.1016/j.cej.2020.127083_b1020 Vázquez (10.1016/j.cej.2020.127083_b0210) 2006; 137 Nachiappan (10.1016/j.cej.2020.127083_b0855) 2013; 34 Qiu (10.1016/j.cej.2020.127083_b1125) 2019; 16 Rana (10.1016/j.cej.2020.127083_b0155) 2017; 7 Eslami (10.1016/j.cej.2020.127083_b0810) 2018; 195 Justino (10.1016/j.cej.2020.127083_b0250) 2012; 21 Soubh (10.1016/j.cej.2020.127083_b0660) 2018; 8 Wang (10.1016/j.cej.2020.127083_b0030) 2020; 172 Verma (10.1016/j.cej.2020.127083_b0185) 2012; 93 Chen (10.1016/j.cej.2020.127083_b0710) 2020; 117111 Ahmadi (10.1016/j.cej.2020.127083_b1145) 2016; 23 Li (10.1016/j.cej.2020.127083_b0650) 2016; 6 10.1016/j.cej.2020.127083_b0720 Renou (10.1016/j.cej.2020.127083_b0130) 2008; 150 Duan (10.1016/j.cej.2020.127083_b0065) 2020; 8 Rodríguez-Chueca (10.1016/j.cej.2020.127083_b0115) 2019; 248 Karimipourfard (10.1016/j.cej.2020.127083_b0640) 2019; 131 Ioannou (10.1016/j.cej.2020.127083_b0195) 2015; 286 Xiao (10.1016/j.cej.2020.127083_b0375) 2015; 75 Chen (10.1016/j.cej.2020.127083_b0570) 2019; 153 Minero (10.1016/j.cej.2020.127083_b0440) 2007; 69 Yuan (10.1016/j.cej.2020.127083_b0485) 2020; 380 Babuponnusami (10.1016/j.cej.2020.127083_b0355) 2012; 183 Luo (10.1016/j.cej.2020.127083_b0050) 2015; 80 Neta (10.1016/j.cej.2020.127083_b0455) 1988; 17 Jaafarzadeh (10.1016/j.cej.2020.127083_b0915) 2016; 102 Bandala (10.1016/j.cej.2020.127083_b1120) 2008; 160 Fernandes (10.1016/j.cej.2020.127083_b1150) 2019; 208 Nachiappan (10.1016/j.cej.2020.127083_b0850) 2015; 3 Ike (10.1016/j.cej.2020.127083_b0025) 2017; 5 Pirsaheb (10.1016/j.cej.2020.127083_b0875) 2020; 153 Ghanbari (10.1016/j.cej.2020.127083_b1160) 2019; 847 Naveen (10.1016/j.cej.2020.127083_b0125) 2017; 220 Yousefi (10.1016/j.cej.2020.127083_b0820) 2019; 147 Ghanbari (10.1016/j.cej.2020.127083_b0670) 2020; 242 Changotra (10.1016/j.cej.2020.127083_b0865) 2019; 370 Bashir (10.1016/j.cej.2020.127083_b1070) 2017; 193 Sponza (10.1016/j.cej.2020.127083_b0840) 2010; 101 Candia-Onfray (10.1016/j.cej.2020.127083_b0205) 2018; 206 Liu (10.1016/j.cej.2020.127083_b0335) 2015; 262 Wu (10.1016/j.cej.2020.127083_b0320) 2020; 399 Liu (10.1016/j.cej.2020.127083_b0100) 2018; 335 Kamali (10.1016/j.cej.2020.127083_b0170) 2015; 114 Gong (10.1016/j.cej.2020.127083_b0090) 2018; 233 Chen (10.1016/j.cej.2020.127083_b0705) 2020; 397 Bernat (10.1016/j.cej.2020.127083_b0160) 2017; 58 Lutze (10.1016/j.cej.2020.127083_b0415) 2015; 49 Xie (10.1016/j.cej.2020.127083_b0940) 2017; 314 Ghanbari (10.1016/j.cej.2020.127083_b0980) 2014; 2 Yang (10.1016/j.cej.2020.127083_b0730) 2015; 98 Ahmadi (10.1016/j.cej.2020.127083_b0490) 2019; 111 Nihemaiti (10.1016/j.cej.2020.127083_b1175) 2018; 145 Keen (10.1016/j.cej.2020.127083_b0400) 2014; 50 Abu Amr (10.1016/j.cej.2020.127083_b0630) 2013; 33 Abu Amr (10.1016/j.cej.2020.127083_b0745) 2018; 19 Joo (10.1016/j.cej.2020.127083_b1165) 2014; 225 Meyssami (10.1016/j.cej.2020.127083_b0310) 2005; 96 Wang (10.1016/j.cej.2020.127083_b0085) 2017; 211 Can-Güven (10.1016/j.cej.2020.127083_b0930) 2020 Asgari (10.1016/j.cej.2020.127083_b0965) 2020; 184 Hilles (10.1016/j.cej.2020.127083_b0620) 2015; 73 He (10.1016/j.cej.2020.127083_b0835) 2019; 26 Kiwi (10.1016/j.cej.2020.127083_b0470) 2000; 34 Yang (10.1016/j.cej.2020.127083_b0350) 2016; 289 Pulido (10.1016/j.cej.2020.127083_b0255) 2016; 563–564 Anipsitakis (10.1016/j.cej.2020.127083_b0010) 2003; 37 Soubh (10.1016/j.cej.2020.127083_b0645) 2018; 6 Changotra (10.1016/j.cej.2020.127083_b0870) 2020; 242 Hilles (10.1016/j.cej.2020.127083_b0585) 2016; 18 Criquet (10.1016/j.cej.2020.127083_b0365) 2009; 77 Gholami (10.1016/j.cej.2020.127083_b0920) 2017; 38 Wang (10.1016/j.cej.2020.127083_b0360) 2020; 174 Anotai (10.1016/j.cej.2020.127083_b1185) 2018; 352 Expósito (10.1016/j.cej.2020.127083_b1140) 2016; 306 Chuang (10.1016/j.cej.2020.127083_b0385) 2016; 50 Varank (10.1016/j.cej.2020.127083_b0780) 2020; 17 Görmez (10.1016/j.cej.2020.127083_b1065) 2020; 2 10.1016/j.cej.2020.127083_b0760 Liu (10.1016/j.cej.2020.127083_b0535) 2018; 208 Gholami (10.1016/j.cej.2020.127083_b0935) 2017; 95 Wang (10.1016/j.cej.2020.127083_b0055) 2017; 189 Sun (10.1016/j.cej.2020.127083_b0545) 2009; 43 Yaseen (10.1016/j.cej.2020.127083_b0190) 2019; 16 Bielski (10.1016/j.cej.2020.127083_b0390) 1985; 14 Peternel (10.1016/j.cej.2020.127083_b0510) 2013; 108 Yu (10.1016/j.cej.2020.127083_b0680) 2020; 243 Iskurt (10.1016/j.cej.2020.127083_b0240) 2020; 248 Liu (10.1016/j.cej.2020.127083_b0740) 2016; 25 Oh (10.1016/j.cej.2020.127083_b0060) 2016; 194 Reshadi (10.1016/j.cej.2020.127083_b0120) 2020; 731 Bruguera-Casamada (10.1016/j.cej.2020.127083_b0270) 2019; 376 Mandal (10.1016/j.cej.2020.127083_b0305) 2019; 84 Reza Samarghandi (10.1016/j.cej.2020.127083_b0970) 2020; 247 Yang (10.1016/j.cej.2020.127083_b0040) 2018; 207 Jaafarzadeh (10.1016/j.cej.2020.127083_b0910) 2017; 27 Jaafarzadeh (10.1016/j.cej.2020.127083_b0905) 2017; 308 Tripathy (10.1016/j.cej.2020.127083_b0550) 2019; 85 Amor (10.1016/j.cej.2020.127083_b1010) 2019; 122 Zhang (10.1016/j.cej.2020.127083_b0500) 2019; 152 Paraskeva (10.1016/j.cej.2020.127083_b0245) 2006; 81 Champagne (10.1016/j.cej.2020.127083_b0315) 2009; 11 10.1016/j.cej.2020.127083_b1030 Gadipelly (10.1016/j.cej.2020.127083_b0150) 2014; 53 Wang (10.1016/j.cej.2020.127083_b1085) 2020; 236 Hassan (10.1016/j.cej.2020.127083_b0135) 2016; 285 Garcia-Segura (10.1016/j.cej.2020.127083_b1180) 2016; 67 Silveira (10.1016/j.cej.2020.127083_b0540) 2018; 81 El Mrabet (10.1016/j.cej.2020.127083_b0750) 2020; 2 Lee (10.1016/j.cej.2020.127083_b0070) 2020; 54 Gągol (10.1016/j.cej.2020.127083_b0035) 2020; 307 Kohantorabi (10.1016/j.cej.2020.127083_b0420) 2019; 244 Zhang (10.1016/j.cej.2020.127083_b0775) 2019; 216 Ji (10.1016/j.cej.2020.127083_b0895) 2014; 472 Abu Amr (10.1016/j.cej.2020.127083_b0635) 2013; 221 Flores (10.1016/j.cej.2020.127083_b0990) 2019; 659 Buxton (10.1016/j.cej.2020.127083_b0380) 1988; 17 Silveira (10.1016/j.cej.2020.127083_b0675) 2019; 97 Rommozzi (10.1016/j.cej.2020.127083_b0430) 2020; 270 Buxton (10.1016/j.cej.2020.127083_b0505) 2000; 2 Lin (10.1016/j.cej.2020.127083_b1130) 2020; 380 Westerhoff (10.1016/j.cej.2020.127083_b0405) 2007; 41 Yazici Guvenc (10.1016/j.cej.2020.127083_b0695) 2019; 126 Liang (10.1016/j.cej.2020.127083_b0340) 2009; 48 Yuan (10.1016/j.cej.2020.127083_b0480) 2020; 571 Guan (10.1016/j.cej.2020.127083_b0345) 2011; 45 Zhang (10.1016/j.cej.2020.127083_b0080) 2009; 172 Ishak (10.1016/j.cej.2020.127083_b0530) 2018; 76 Xiao (10.1016/j.cej.2020.127083_b0105) 2019; 371 Zhou (10.1016/j.cej.2020.127083_b0295) 2019; 210 Aljuboury (10.1016/j.cej.2020.127083_b0145) 2017; 19 Lin (10.1016/j.cej.2020.127083_b1075) 2016; 74 Ahmadi (10.1016/j.cej.2020.127083_b0955) 2018; 25 Marjanovic (10.1016/j.cej.2020.127083_b1190) 2018; 140 Giannakis (10.1016/j.cej.2020.127083_b0005) 2019; 248 Stanisław (10.1016/j.cej.2020.127083_b0095) 2018; 25 Akansha (10.1016/j.cej.2020.127083_b0265) 2020; 253 Tripathy (10.1016/j.cej.2020.127083_b0725) 2019; 54 Zeng (10.1016/j.cej.2020.127083_b0330) 2020; 33 Mosse (10.1016/j.cej.2020.127083_b0200) 2011; 17 Fernandes (10.1016/j.cej.2020.127083_b0845) 2018; 195 Khatri (10.1016/j.cej.2020.127083_b0985) 2018; 348 Barzegar (10.1016/j.cej.2020.127083_b0815) 2018; 201 Bajpai (10.1016/j.cej.2020.127083_b0020) 2012 Guerra-Rodríguez (10.1016/j.cej.2020.127083_b0110) 2018; 10 Marañón (10.1016/j.cej.2020.127083_b0220) 2008; 99 Ahmed (10.1016/j.cej.2020.127083_b0880) 2014; 48 Karimipourfard (10.1016/j.cej.2020.127083_b0575) 2019 Canonica (10.1016/j.cej.2020.127083_b0445) 2005; 39 Rodríguez-Chueca (10.1016/j.cej.2020.127083_b1000) 2017; 24 Rodríguez-Chueca (10.1016/j.cej.2020.127083_b1015) 2017; 149 Wacławek (10.1016/j.cej.2020.127083_b0015) 2017; 330 Hassan (10.1016/j.cej.2020.127083_b0770) 2017; 63 Wang (10.1016/j.cej.2020.127083_b0655) 2017; 185 Soloman (10.1016/j.cej.2020.127083_b0175) 2009; 69 Yang (10.1016/j.cej.2020.127083_b1040) 2019; 9 Takdastan (10.1016/j.cej.2020.127083_b0800) 2019; 1 Devi (10.1016/j.cej.2020.127083_b0285) 2016; 571 Varank (10.1016/j.cej.2020.127083_b0925) 2020; 81 Yuan (10.1016/j.cej.2020.127083_b0475) 2011; 196 Guo (10.1016/j.cej.2020.127083_b0665) 2019; 355 Wardman (10.1016/j.cej.2020.127083_b0525) 1989; 18 Dinesh (10.1016/j.cej.2020.127083_b0960) 2016; 23 Fazal (10.1016/j.cej.2020.127083_b0180) 2018; 82 Solís (10.1016/j.cej.2020.127083_b1005) 2018; 53 Razmi (10.1016/j.cej.2020.127083_b0795) 2019; 40 Yeh (10.1016/j.cej.2020.127083_b0605) 2018; 15 Zhang (10.1016/j.cej.2020.127083_b0765) 2014; 250 Sbardella (10.1016/j.cej.2020.127083_b0890) 2020; 260 Abedinzadeh (10.1016/j.cej.2020.127083_b0165) 2018; 116 Zhou (10.1016/j.cej.2020.127083_b0290) 2019; 372 Rao (10.1016/j.cej.2020.127083_b0435) 2014; 268 Jiang (10.1016/j.cej.2020.127083_b0755) 2018; 349 Oller (10.1016/j.cej.2020.127083_b0275) 2011; 409 Oh (10.1016/j.cej.2020.127083_b1135) 2013; 88 David (10.1016/j.cej.2020.127083_b0520) 2015; 87 Ren (10.1016/j.cej.2020.127083_b0235) 2019; 154 Liu (10.1016/j.cej.2020.127083_b0785) 2020; 27 Ma (10.1016/j.cej.2020.127083_b1195) 2020; 252 Tan (10.1016/j.cej.2020.127083_b0045) 2019; 335 Zuo (10.1016/j.cej.2020.127083_b0860) 2020; 380 Ghanbari (10.1016/j.cej.2020.127083_b0975) 2019; 228 Song (10.1016/j.cej.2020.127083_b1025) 2018; 77 Deng (10.1016/j.cej.2020.127083_b0555) 2009; 4 Ran (10.1016/j.cej.2020.127083_b1100) 2020; 27 Khatebasreh (10.1016/j.cej.2020.127083_b1155) 2020; 7 Zhou (10.1016/j.cej.2020.127083_b0515) 2018; 359 Wang (10.1016/j.cej.2020.127083_b1105) 2020; 6 Gu (10.1016/j.cej.2020.127083_b1110) 2019; 130 Staib (10.1016/j.cej.2020.127083_b0215) 2007; 34 Shah (10.1016/j.cej.2020.127083_b0460) 2018; 351 Hilles (10.1016/j.cej.2020.127083_b0615) 2015; 44 Zhou (10.1016/j.cej.2020.127083_b0225) 2020; 238 Ahmadi (10.1016/j.cej.2020.127083_b0825) 2019; 169 Yang (10.1016/j.cej.2020.127083_b0410) 2016; 89 Chou (10.1016/j.cej.2020.127083_b0700) 2013; 246–247 Wu (10.1016/j.cej.2020.127083_b0325) 2019; 237 Welz (10.1016/j.cej.2020.127083_b0300) 2014; |
References_xml | – volume: 41 start-page: 4640 year: 2007 end-page: 4646 ident: b0405 article-title: Electron pulse radiolysis determination of hydroxyl radical rate constants with suwannee river fulvic acid and other dissolved organic matter isolates publication-title: Environ. Sci. Technol. – volume: 130 start-page: 39 year: 2019 end-page: 47 ident: b1110 article-title: A comparative study of dinitrodiazophenol industrial wastewater treatment: ozone/hydrogen peroxide versus microwave/persulfate publication-title: Process Saf. Environ. Prot. – volume: 185 start-page: 754 year: 2017 end-page: 763 ident: b0655 article-title: Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process publication-title: Chemosphere – volume: 140 start-page: 220 year: 2018 end-page: 231 ident: b1190 article-title: Effect of μM Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water publication-title: Water Res. – volume: 7 start-page: 1 year: 2017 end-page: 12 ident: b0155 article-title: A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective publication-title: Appl. Water Sci. – volume: 147 start-page: 242 year: 2018 end-page: 253 ident: b0425 article-title: Photoinduced disinfection in sunlit natural waters: measurement of the second order inactivation rate constants between E. coli and photogenerated transient species publication-title: Water Res. – volume: 2 start-page: 178 year: 2020 ident: b1065 article-title: Application of the central composite design to mineralization of olive mill wastewater by the electro/FeII/persulfate oxidation method publication-title: SN Appl. Sci. – volume: 314 start-page: 240 year: 2017 end-page: 248 ident: b0940 article-title: Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants publication-title: Chem. Eng. J. – volume: 4 start-page: 366 year: 2009 end-page: 384 ident: b0555 article-title: Advanced oxidation processes (AOPs) for reduction of organic pollutants in landfill leachate: a review publication-title: Int. J. Environ. Waste Manage. – volume: 145 start-page: 487 year: 2018 end-page: 497 ident: b1175 article-title: Removal of trace organic chemicals in wastewater effluent by UV/H2O2 and UV/PDS publication-title: Water Res. – volume: 300 year: 2020 ident: b0230 article-title: New insights of enhanced anaerobic degradation of refractory pollutants in coking wastewater: role of zero-valent iron in metagenomic functions publication-title: Bioresour. Technol. – volume: 244 start-page: 983 year: 2019 end-page: 995 ident: b0420 article-title: A systematic investigation on the bactericidal transient species generated by photo-sensitization of natural organic matter (NOM) during solar and photo-Fenton disinfection of surface waters publication-title: Appl. Catal. B – volume: 244 year: 2020 ident: b0830 article-title: Oxidative removal of benzotriazole using peroxymonosulfate/ozone/ultrasound: synergy, optimization, degradation intermediates and utilizing for real wastewater publication-title: Chemosphere – volume: 40 start-page: 822 year: 2019 end-page: 834 ident: b0795 article-title: Efficient phenol removal from petrochemical wastewater using biochar-La/ultrasonic/persulphate system: characteristics, reusability, and kinetic study publication-title: Environ. Technol. – volume: 376 year: 2019 ident: b0270 article-title: Advantages of electro-Fenton over electrocoagulation for disinfection of dairy wastewater publication-title: Chem. Eng. J. – volume: 248 year: 2020 ident: b0240 article-title: Treatment of coking wastewater by aeration assisted electrochemical oxidation process at controlled and uncontrolled initial pH conditions publication-title: Sep. Purif. Technol. – volume: 153 year: 2020 ident: b0875 article-title: Reclamation of hospital secondary treatment effluent by sulfate radicals based–advanced oxidation processes (SR-AOPs) for removal of antibiotics publication-title: Microchem. J. – volume: 194 start-page: 169 year: 2016 end-page: 201 ident: b0060 article-title: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects publication-title: Appl. Catal. B – volume: 2 start-page: 237 year: 2000 end-page: 245 ident: b0505 article-title: The reactivity of chlorine atoms in aqueous solution. Part III. The reactions of Cl• with solutes publication-title: PCCP – volume: 111 start-page: 43 year: 2019 end-page: 52 ident: b0490 article-title: Organic dye degradation through peroxymonosulfate catalyzed by reusable graphite felt/ferriferrous oxide: Mechanism and identification of intermediates publication-title: Mater. Res. Bull. – volume: 247 year: 2020 ident: b0970 article-title: Synergistic degradation of acid blue 113 dye in a thermally activated persulfate (TAP)/ZnO-GAC oxidation system: degradation pathway and application for real textile wastewater publication-title: Sep. Purif. Technol. – volume: 9 start-page: 15277 year: 2019 end-page: 15287 ident: b1040 article-title: Performance and properties of coking nanofiltration concentrate treatment and membrane fouling mitigation by an Fe(ii)/persulfate-coagulation-ultrafiltration process publication-title: RSC Adv. – volume: 2 start-page: 1846 year: 2014 end-page: 1851 ident: b0980 article-title: Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: compared with zero valent copper publication-title: J. Environ. Chem. Eng. – volume: 67 start-page: 211 year: 2016 end-page: 225 ident: b1180 article-title: Fluidized-bed Fenton process as alternative wastewater treatment technology—A review publication-title: J. Taiwan Inst. Chem. Eng. – volume: 54 start-page: 210 year: 2019 end-page: 219 ident: b0725 article-title: Mature landfill leachate treatment using sonolytic-persulfate/hydrogen peroxide oxidation: Optimization of process parameters publication-title: Ultrason. Sonochem. – volume: 16 start-page: 1193 year: 2019 end-page: 1226 ident: b0190 article-title: Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review publication-title: Int. J. Environ. Sci. Technol. – reference: F. Ji, H. Zhang, J. Li, B. Lai, Treatment of reverse osmosis (RO) concentrate from an old landfill site by Fe0/PS/O3 process, 92 (2017) 2616-2625. – volume: 238 year: 2020 ident: b0225 article-title: Electro-Fenton with peroxi-coagulation as a feasible pre-treatment for high-strength refractory coke plant wastewater: parameters optimization, removal behavior and kinetics analysis publication-title: Chemosphere – volume: 3 start-page: 155 year: 2014 end-page: 163 ident: b0300 article-title: Biodegradation of organics and accumulation of metabolites in experimental biological sand filters used for the treatment of synthetic winery wastewater: a mesocosm study publication-title: J. Water Process Eng. – volume: 195 start-page: 374 year: 2018 end-page: 384 ident: b0845 article-title: Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions publication-title: J. Cleaner Prod. – volume: 307 year: 2020 ident: b0035 article-title: Hydrodynamic cavitation based advanced oxidation processes: Studies on specific effects of inorganic acids on the degradation effectiveness of organic pollutants publication-title: J. Mol. Liq. – volume: 69 start-page: 71 year: 2007 end-page: 85 ident: b0440 article-title: Photochemincal processes involving nitrite in surface water samples publication-title: Aquat. Sci. – volume: 44 start-page: 172 year: 2015 end-page: 177 ident: b0615 article-title: Effect of persulfate and persulfate/H2O2 on biodegradability of an anaerobic stabilized landfill leachate publication-title: Waste Manage. – volume: 346 start-page: 159 year: 2018 end-page: 166 ident: b0885 article-title: Activation of persulfate by irradiated laterite for removal of fluoroquinolones in multi-component systems publication-title: J. Hazard. Mater. – volume: 27 start-page: 223 year: 2017 end-page: 229 ident: b0910 article-title: Integration of coagulation and electro-activated HSO5− to treat pulp and paper wastewater publication-title: Sustain. Environ. Res. – volume: 45 start-page: 6189 year: 2011 end-page: 6194 ident: b0690 article-title: Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate publication-title: Water Res. – volume: 126 start-page: 7 year: 2019 end-page: 17 ident: b0695 article-title: Optimization of COD removal from leachate nanofiltration concentrate using H2O2/Fe+2/heat Activated persulfate oxidation processes publication-title: Process Saf. Environ. Prot. – volume: 25 start-page: 9 year: 2018 end-page: 34 ident: b0095 article-title: Major advances and challenges in heterogeneous catalysis for environmental applications: a review publication-title: Ecol. Chem. Eng. S – volume: 243 year: 2020 ident: b0680 article-title: Electrochemical treatment of organic pollutants in landfill leachate using a three-dimensional electrode system publication-title: Chemosphere – volume: 82 start-page: 3107 year: 2018 end-page: 3126 ident: b0180 article-title: Bioremediation of textile wastewater and successive biodiesel production using microalgae publication-title: Renew. Sustain. Energy Rev. – volume: 84 start-page: 1113 year: 1988 end-page: 1121 ident: b0450 article-title: Ionisation constants of ̇OH and HO in aqueous solution up to 200 °C. A pulse radiolysis study publication-title: J. Chem. Soc., Faraday Trans. 1 F – volume: 248 start-page: 62 year: 2019 end-page: 72 ident: b0115 article-title: Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5- vs. S2O82- in drinking water publication-title: Appl. Catal. B – volume: 98 start-page: 268 year: 2015 end-page: 275 ident: b0730 article-title: A novel pretreatment process of mature landfill leachate with ultrasonic activated persulfate: Optimization using integrated Taguchi method and response surface methodology publication-title: Process Saf. Environ. Prot. – volume: 99 start-page: 4192 year: 2008 end-page: 4198 ident: b0220 article-title: Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale publication-title: Bioresour. Technol. – volume: 207 start-page: 461 year: 2018 end-page: 469 ident: b0040 article-title: Electrochemical generation of persulfate and its performance on 4-bromophenol treatment publication-title: Sep. Purif. Technol. – volume: 249 start-page: 463 year: 2018 end-page: 469 ident: b0805 article-title: Photo-Fenton like degradation of catechol using persulfate activated by UV and ferrous ions: Influencing operational parameters and feasibility studies publication-title: J. Mol. Liq. – year: 2020 ident: b0930 article-title: Paper mill wastewater treatment by Fe2+ and heat-activated persulfate oxidation: process modeling and optimization publication-title: Environ. Progr. Sustain. Energy – volume: 242 year: 2020 ident: b0870 article-title: Techno-economical evaluation of coupling ionizing radiation and biological treatment process for the remediation of real pharmaceutical wastewater publication-title: J. Cleaner Prod. – volume: 472 start-page: 800 year: 2014 end-page: 808 ident: b0895 article-title: Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics publication-title: Sci. Total Environ. – volume: 38 start-page: 1223 year: 2017 end-page: 1231 ident: b0590 article-title: Ferrous ion-activated persulphate process for landfill leachate treatment: removal of organic load, phenolic micropollutants and nitrogen publication-title: Environ. Technol. – volume: 216 start-page: 749 year: 2019 end-page: 756 ident: b0775 article-title: Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system publication-title: Chemosphere – volume: 153 start-page: 100 year: 2019 end-page: 107 ident: b0570 article-title: Re-evaluation of sulfate radical based–advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate publication-title: Water Res. – volume: 76 start-page: 575 year: 2018 end-page: 581 ident: b0530 article-title: Stabilized landfill leachate treatment by coagulation-flocculation coupled with UV-based sulfate radical oxidation process publication-title: Waste Manage. – volume: 73 start-page: 102 year: 2015 end-page: 112 ident: b0620 article-title: Optimization of leachate treatment using persulfate/H2O2 based advanced oxidation process: case study: Deir El-Balah Landfill Site, Gaza Strip, Palestine publication-title: Water Sci. Technol. – volume: 147 start-page: 1075 year: 2019 end-page: 1082 ident: b0820 article-title: Mineralization of high saline petrochemical wastewater using Sonoelectro-activated persulfate: Degradation mechanisms and reaction kinetics publication-title: Microchem. J. – volume: 380 year: 2020 ident: b0485 article-title: 3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: a new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation publication-title: Chem. Eng. J. – reference: Y.-B. Kim, J.-H.J.K.J.o.C.E. Ahn, Changes of absorption spectra, SUVA254, and color in treating landfill leachate using microwave-assisted persulfate oxidation, 34 (2017) 1980-1984. – volume: 242 year: 2020 ident: b1095 article-title: Comparison study on microwave irradiation-activated persulfate and hydrogen peroxide systems in the treatment of dinitrodiazophenol industrial wastewater publication-title: Chemosphere – volume: 81 start-page: 345 year: 2020 end-page: 357 ident: b0925 article-title: Modeling and optimizing electro-persulfate processes using Fe and Al electrodes for paper industry wastewater treatment publication-title: Water Sci. Technol. – volume: 195 start-page: 1389 year: 2018 end-page: 1397 ident: b0810 article-title: Degradation of 4-chlorophenol using catalyzed peroxymonosulfate with nano-MnO2/UV irradiation: toxicity assessment and evaluation for industrial wastewater treatment publication-title: J. Cleaner Prod. – volume: 40 start-page: 3775 year: 2006 end-page: 3781 ident: b0395 article-title: Sources and sinks of hydroxyl radicals upon irradiation of natural water samples publication-title: Environ. Sci. Technol. – volume: 289 start-page: 296 year: 2016 end-page: 305 ident: b0350 article-title: Synthetic conditions-regulated catalytic Oxone efficacy of MnOx/SBA-15 towards butyl paraben (BPB) removal under heterogeneous conditions publication-title: Chem. Eng. J. – volume: 58 start-page: 143 year: 2017 end-page: 151 ident: b0160 article-title: Microfauna community during pulp and paper wastewater treatment in a UNOX system publication-title: Eur. J. Protistol. – volume: 116 start-page: 82 year: 2018 end-page: 91 ident: b0165 article-title: Evaluation of color and COD removal by Fenton from biologically (SBR) pre-treated pulp and paper wastewater publication-title: Process Saf. Environ. Prot. – volume: 49 start-page: 1673 year: 2015 end-page: 1680 ident: b0415 article-title: Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter publication-title: Environ. Sci. Technol. – volume: 225 start-page: 2076 year: 2014 ident: b1165 article-title: Advanced treatment of reverse osmosis concentrate by integrated activated carbon and iron-activated persulfate oxidation publication-title: Water Air Soil Pollut. – volume: 232 start-page: 45 year: 2019 end-page: 51 ident: b0565 article-title: Improved landfill leachate quality using ozone, UV solar radiation, hydrogen peroxide, persulfate and adsorption processes publication-title: J. Environ. Manage. – volume: 43 start-page: 4347 year: 2009 end-page: 4355 ident: b1045 article-title: Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes publication-title: Water Res. – volume: 17 start-page: 93 year: 2020 end-page: 98 ident: b1080 article-title: Survey of sono-activated persulfate process for treatment of real dairy wastewater publication-title: Int. J. Environ. Sci. Technol. – volume: 44 start-page: 6822 year: 2010 end-page: 6828 ident: b0465 article-title: Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters publication-title: Environ. Sci. Technol. – volume: 25 start-page: 1615 year: 2016 end-page: 1622 ident: b0740 article-title: Advanced treatment of leachate secondary effluent by a combined process of MFPFS coagulation and sulfate radical oxidation publication-title: Pol. J. Environ. Stud. – volume: 16 year: 2019 ident: b1125 article-title: Remediation of PAH-contaminated soil by combining surfactant enhanced soil washing and iron-activated persulfate oxidation process publication-title: Int. J. Environ. Res. Public Health – volume: 268 start-page: 23 year: 2014 end-page: 32 ident: b0435 article-title: Degradation of carbamazepine by Fe(II)-activated persulfate process publication-title: J. Hazard. Mater. – volume: 8 start-page: 218 year: 2018 ident: b0660 article-title: Activation of persulfate using an industrial iron-rich sludge as an efficient nanocatalyst for landfill leachate treatment publication-title: Catalysts – volume: 372 start-page: 94 year: 2019 end-page: 102 ident: b1170 article-title: Intensification of UV-C tertiary treatment: disinfection and removal of micropollutants by sulfate radical based Advanced Oxidation Processes publication-title: J. Hazard. Mater. – volume: 17 start-page: 513 year: 1988 end-page: 886 ident: b0380 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in aqueous solution publication-title: J. Phys. Chem. Ref. Data – volume: 348 start-page: 67 year: 2018 end-page: 73 ident: b0985 article-title: Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater publication-title: Chem. Eng. J. – volume: 208 start-page: 159 year: 2018 end-page: 168 ident: b0535 article-title: Treatment of landfill leachate biochemical effluent using the nano-Fe3O4/Na2S2O8 system: Oxidation performance, wastewater spectral analysis, and activator characterization publication-title: J. Environ. Manage. – reference: Y. Tao, L. Li, L. Ren, Y. Liang, X.J.M.W.C. Wang, Effect of calcination temperature on the catalytic performance of CoFe2O4/Nitrogen doped sludge based activated carbon in activation of peroxymonosulfate for degradation of coking wastewater, 238 (2018) 03009. – volume: 330 start-page: 44 year: 2017 end-page: 62 ident: b0015 article-title: Chemistry of persulfates in water and wastewater treatment: a review publication-title: Chem. Eng. J. – volume: 50 start-page: 11209 year: 2016 end-page: 11217 ident: b0385 article-title: Development of predictive models for the degradation of halogenated disinfection byproducts during the UV/H2O2 advanced oxidation process publication-title: Environ. Sci. Technol. – reference: Y.-B. Kim, J.-H. Ahn, Microwave-Assisted Decomposition of Landfill Leachate with Persulfate, 142 (2016) 04015084. – volume: 349 start-page: 338 year: 2018 end-page: 346 ident: b0755 article-title: Advanced degradation of refractory pollutants in incineration leachate by UV/Peroxymonosulfate publication-title: Chem. Eng. J. – volume: 659 start-page: 1567 year: 2019 end-page: 1576 ident: b0990 article-title: Constructed wetlands for winery wastewater treatment: a comparative life cycle assessment publication-title: Sci. Total Environ. – volume: 252 year: 2020 ident: b1195 article-title: Integration of membrane filtration and peroxymonosulfate activation on CNT@nitrogen doped carbon/Al2O3 membrane for enhanced water treatment: insight into the synergistic mechanism publication-title: Sep. Purif. Technol. – volume: 208 start-page: 54 year: 2019 end-page: 64 ident: b1150 article-title: Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes publication-title: J. Cleaner Prod. – volume: 172 year: 2020 ident: b0030 article-title: Relative contribution of ferryl ion species (Fe(IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes publication-title: Water Res. – volume: 38 start-page: 1127 year: 2017 end-page: 1138 ident: b0920 article-title: Efficiency evaluation of the membrane/AOPs for paper mill wastewater treatment publication-title: Environ. Technol. – volume: 253 year: 2020 ident: b0265 article-title: Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process publication-title: Chemosphere – volume: 117111 year: 2020 ident: b0710 article-title: Microwave irradiation activated persulfate and hydrogen peroxide for the treatment of mature landfill leachate effluent from a membrane bioreactor publication-title: Sep. Purif. Technol. – volume: 19 start-page: 951 year: 2018 end-page: 958 ident: b0745 article-title: Performance of combined persulfate/aluminum sulfate for landfill leachate treatment publication-title: Data Brief – volume: 8 year: 2020 ident: b0065 article-title: Limitations and prospects of sulfate-radical based advanced oxidation processes publication-title: J. Environ. Chem. Eng. – volume: 409 start-page: 4141 year: 2011 end-page: 4166 ident: b0275 article-title: Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review publication-title: Sci. Total Environ. – volume: 260 year: 2020 ident: b0890 article-title: Integrated assessment of sulfate-based AOPs for pharmaceutical active compound removal from wastewater publication-title: J. Cleaner Prod. – volume: 48 start-page: 1900198 year: 2020 ident: b1060 article-title: Response surface modeling and optimization of microwave-activated persulfate oxidation of olive oil mill wastewater, CLEAN Soil publication-title: Air Water – volume: 23 start-page: 19350 year: 2016 end-page: 19361 ident: b1145 article-title: Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption publication-title: Environ. Sci. Pollut. Res. – volume: 27 start-page: 605 year: 1995 end-page: 612 ident: b0370 article-title: Rate constants for some reactions of free radicals with haloacetates in aqueous solution publication-title: Int. J. Chem. Kinet. – volume: 15 start-page: 2075 year: 2018 end-page: 2086 ident: b0605 article-title: Optimization of landfill leachate treatment by microwave oxidation using the Taguchi method publication-title: Int. J. Environ. Sci. Technol. – volume: 261 start-page: 3 year: 2010 end-page: 18 ident: b0075 article-title: Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments publication-title: Desalination – volume: 95 start-page: 96 year: 2017 end-page: 108 ident: b0935 article-title: Treatment of pulp and paper wastewater by lab-scale coagulation/SR-AOPs/ultrafiltration process: optimization by Taguchi publication-title: Desalin. Water Treat. – volume: 6 start-page: 987 year: 2016 end-page: 994 ident: b0650 article-title: Granular activated carbon supported iron as a heterogeneous persulfate catalyst for the pretreatment of mature landfill leachate publication-title: RSC Adv. – volume: 210 start-page: 93 year: 2019 end-page: 99 ident: b0295 article-title: Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment publication-title: Sep. Purif. Technol. – volume: 50 start-page: 262 year: 2015 end-page: 271 ident: b0260 article-title: A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater publication-title: Process Biochem. – volume: 63 start-page: 292 year: 2017 end-page: 298 ident: b0770 article-title: Coupling ARB-based biological and photochemical (UV/TiO2 and UV/S2O82−) techniques to deal with sanitary landfill leachate publication-title: Waste Manage. – volume: 397 year: 2020 ident: b0705 article-title: Molecular-level comparison study on microwave irradiation-activated persulfate and hydrogen peroxide processes for the treatment of refractory organics in mature landfill leachate publication-title: J. Hazard. Mater. – volume: 108 start-page: 17 year: 2013 end-page: 39 ident: b0510 article-title: UV-assisted persulfate oxidation: the influence of cation type in the persulfate salt on the degradation kinetics of an azo dye pollutant Reaction Kinetics publication-title: Mech. Catal. – volume: 11 start-page: 339 year: 2009 end-page: 347 ident: b0315 article-title: Use of Sphagnum peat moss and crushed mollusk shells in fixed-bed columns for the treatment of synthetic landfill leachate publication-title: J. Mater. Cycles Waste Manage. – volume: 34 start-page: 209 year: 2013 end-page: 217 ident: b0855 article-title: Treatment of pharmaceutical effluent by ultrasound coupled with dual oxidant system publication-title: Environ. Technol. – volume: 306 start-page: 1203 year: 2016 end-page: 1211 ident: b1140 article-title: Photo-fenton degradation of a beverage industrial effluent: intensification with persulfate and the study of radicals publication-title: Chem. Eng. J. – volume: 201 start-page: 370 year: 2018 end-page: 379 ident: b0815 article-title: 4-Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron: Reusability, identification of degradation intermediates and potential application for real wastewater publication-title: Chemosphere – volume: 3 start-page: 153 year: 2020 end-page: 160 ident: b0945 article-title: Textile wastewater treatment by peroxydisulfate/Fe(II)/UV: operating cost evaluation and phytotoxicity studies publication-title: Chem. Afr. – volume: 21 start-page: 04016012 year: 2017 ident: b0735 article-title: Treatment of stabilized leachate by ferrous-activated persulfate oxidative system publication-title: J. Hazard. Toxic Radioact. Waste – volume: 26 start-page: 849 year: 2019 end-page: 853 ident: b0835 article-title: Refractory petrochemical wastewater treatment by K2S2O8 assisted photocatalysis publication-title: Saudi J. Biol. Sci. – volume: 81 start-page: 1475 year: 2006 end-page: 1485 ident: b0245 article-title: Technologies for olive mill wastewater (OMW) treatment: a review publication-title: J. Chem. Technol. Biotechnol. – volume: 102 start-page: 462 year: 2016 end-page: 472 ident: b0915 article-title: Combined electrocoagulation and UV-based sulfate radical oxidation processes for treatment of pulp and paper wastewater publication-title: Process Saf. Environ. Prot. – volume: 228 year: 2019 ident: b0975 article-title: Heterogeneous activation of peroxymonosulfate via nanocomposite CeO2-Fe3O4 for organic pollutants removal: the effect of UV and US irradiation and application for real wastewater publication-title: Sep. Purif. Technol. – volume: 48 start-page: 229 year: 2014 end-page: 236 ident: b0880 article-title: Solar photo-fenton like using persulphate for carbamazepine removal from domestic wastewater publication-title: Water Res. – volume: 352 start-page: 247 year: 2018 end-page: 254 ident: b1185 article-title: Heterogeneous fluidized-bed Fenton process: factors affecting iron removal and tertiary treatment application publication-title: Chem. Eng. J. – volume: 196 start-page: 173 year: 2011 end-page: 179 ident: b0475 article-title: Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds publication-title: J. Hazard. Mater. – volume: 335 start-page: 865 year: 2018 end-page: 875 ident: b0100 article-title: Sulfate radical-based oxidation for sludge treatment: a review publication-title: Chem. Eng. J. – volume: 169 start-page: 241 year: 2019 end-page: 250 ident: b0825 article-title: Treatment of a saline petrochemical wastewater containing recalcitrant organics using electro-fenton Process: persulfate and ultrasonic intensification publication-title: Desalin. Water Treat. – volume: 21 start-page: 615 year: 2012 end-page: 629 ident: b0250 article-title: Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view publication-title: Ecotoxicology – volume: 399 year: 2020 ident: b0320 article-title: Simultaneous degradation of p-arsanilic acid and inorganic arsenic removal using M-rGO/PS Fenton-like system under neutral conditions publication-title: J. Hazard. Mater. – volume: 237 year: 2019 ident: b0325 article-title: Enhanced activation of peroxymonosulfte by LaFeO3 perovskite supported on Al2O3 for degradation of organic pollutants publication-title: Chemosphere – volume: 85 start-page: 18 year: 2019 end-page: 29 ident: b0550 article-title: Sequential coagulation/flocculation and microwave-persulfate processes for landfill leachate treatment: assessment of bio-toxicity, effect of pretreatment and cost-analysis publication-title: Waste Manage. – volume: 6 start-page: 581 year: 2020 end-page: 592 ident: b1105 article-title: Activation of persulfate by microwave radiation combined with FeS for treatment of wastewater from explosives production publication-title: Environ. Sci. Water Res. Technol. – volume: 81 start-page: 220 year: 2018 end-page: 225 ident: b0540 article-title: Landfill leachate treatment by sequential combination of activated persulfate and Fenton oxidation publication-title: Waste Manage. – volume: 97 start-page: 247 year: 2019 end-page: 254 ident: b1055 article-title: Chemical oxidation methods for treatment of real industrial olive oil mill wastewater publication-title: J. Taiwan Inst. Chem. Eng. – volume: 89 start-page: 192 year: 2016 end-page: 200 ident: b0410 article-title: Effect of matrix components on UV/H2O2 and UV/S2O82− advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities publication-title: Water Res. – volume: 149 start-page: 805 year: 2017 end-page: 817 ident: b1015 article-title: Disinfection of simulated and real winery wastewater using sulphate radicals: peroxymonosulphate/transition metal/UV-A LED oxidation publication-title: J. Cleaner Prod. – volume: 53 start-page: 11571 year: 2014 end-page: 11592 ident: b0150 article-title: Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse publication-title: Ind. Eng. Chem. Res. – volume: 270 year: 2020 ident: b0430 article-title: Detrimental vs. beneficial influence of ions during solar (SODIS) and photo-Fenton disinfection of E. coli in water: (Bi)carbonate, chloride, nitrate and nitrite effects publication-title: Appl. Catal. B – volume: 74 start-page: 2675 year: 2016 end-page: 2682 ident: b1075 article-title: Post-treatment of palm oil mill effluent (POME) using combined persulphate with hydrogen peroxide (S2O82−/H2O2) oxidation publication-title: Water Sci. Technol. – volume: 77 start-page: 194 year: 2009 end-page: 200 ident: b0365 article-title: Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis publication-title: Chemosphere – volume: 231 year: 2020 ident: b0580 article-title: Treatment of landfill leachate nanofiltration concentrate after ultrafiltration by electrochemically assisted heat activation of peroxydisulfate publication-title: Sep. Purif. Technol. – volume: 152 start-page: 226 year: 2019 end-page: 233 ident: b0500 article-title: Synergistic removal of ammonium by monochloramine photolysis publication-title: Water Res. – volume: 211 start-page: 79 year: 2017 end-page: 88 ident: b0085 article-title: Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid publication-title: Appl. Catal. B – volume: 88 start-page: 145 year: 2013 end-page: 152 ident: b1135 article-title: Degradation of spent caustic by Fenton and persulfate oxidation with zero-valent iron publication-title: J. Chem. Technol. Biotechnol. – volume: 39 start-page: 9182 year: 2005 end-page: 9188 ident: b0445 article-title: Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds publication-title: Environ. Sci. Technol. – volume: 27 start-page: 15337 year: 2020 end-page: 15349 ident: b0785 article-title: Advanced landfill leachate biochemical effluent treatment using Fe-Mn/AC activates O3/Na2S2O8 process: process optimization, wastewater quality analysis, and activator characterization publication-title: Environ. Sci. Pollut. Res. – volume: 233 start-page: 35 year: 2018 end-page: 45 ident: b0090 article-title: MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation publication-title: Appl. Catal. B – volume: 84 start-page: 9 year: 2019 end-page: 21 ident: b0305 article-title: Construction and parameters modulation of a novel variant Rhodococcus opacus BM985 to achieve enhanced triacylglycerol-a biodiesel precursor, using synthetic dairy wastewater publication-title: Process Biochem. – volume: 1 start-page: 794 year: 2019 ident: b0800 article-title: Removal of dinitrotoluene from petrochemical wastewater by Fenton oxidation, kinetics and the optimum experiment conditions publication-title: SN Appl. Sci. – volume: 284 start-page: 83 year: 2015 end-page: 91 ident: b0715 article-title: Microwave-enhanced persulfate oxidation to treat mature landfill leachate publication-title: J. Hazard. Mater. – volume: 310 start-page: 473 year: 2017 end-page: 483 ident: b0995 article-title: Treatment of winery wastewater by sulphate radicals: HSO5−/transition metal/UV-A LEDs publication-title: Chem. Eng. J. – volume: 37 start-page: 4790 year: 2003 end-page: 4797 ident: b0010 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. – volume: 24 start-page: 22414 year: 2017 end-page: 22426 ident: b1000 article-title: Oxidation of winery wastewater by sulphate radicals: catalytic and solar photocatalytic activations publication-title: Environ. Sci. Pollut. Res. – volume: 8 start-page: 38765 year: 2018 end-page: 38772 ident: b1035 article-title: Sulfate radical oxidation combined with iron flocculation for upgrading biological effluent of coking wastewater publication-title: RSC Adv. – volume: 93 start-page: 154 year: 2012 end-page: 168 ident: b0185 article-title: A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters publication-title: J. Environ. Manage. – volume: 3 start-page: 2229 year: 2015 end-page: 2235 ident: b0850 article-title: Treatment of pharmaceutical effluent using novel heterogeneous fly ash activated persulfate system publication-title: J. Environ. Chem. Eng. – volume: 246–247 start-page: 79 year: 2013 end-page: 86 ident: b0700 article-title: A study on microwave oxidation of landfill leachate—Contributions of microwave-specific effects publication-title: J. Hazard. Mater. – volume: 7 start-page: 537 year: 2020 end-page: 551 ident: b1155 article-title: Remediation of washing machine wastewater by photo-enhanced persulfate/hematite process publication-title: Environ. Process. – volume: 379 year: 2020 ident: b1050 article-title: Treatment of membrane filtration concentrate of coking wastewater using PMS/chloridion oxidation process publication-title: Chem. Eng. J. – volume: 571 start-page: 643 year: 2016 end-page: 657 ident: b0285 article-title: In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems publication-title: Sci. Total Environ. – volume: 382 year: 2020 ident: b1090 article-title: Microwave-induced persulfate-hydrogen peroxide binary oxidant process for the treatment of dinitrodiazophenol industrial wastewater publication-title: Chem. Eng. J. – volume: 172 start-page: 654 year: 2009 end-page: 660 ident: b0080 article-title: Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process publication-title: J. Hazard. Mater. – volume: 359 start-page: 396 year: 2018 end-page: 407 ident: b0515 article-title: Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds publication-title: J. Hazard. Mater. – volume: 248 start-page: 309 year: 2019 end-page: 319 ident: b0005 article-title: A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: Surface functionalization, biomass treatment, combatting cancer and other medical uses publication-title: Appl. Catal. B – volume: 372 start-page: 836 year: 2019 end-page: 851 ident: b0290 article-title: Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review publication-title: Chem. Eng. J. – volume: 150 start-page: 468 year: 2008 end-page: 493 ident: b0130 article-title: Landfill leachate treatment: review and opportunity publication-title: J. Hazard. Mater. – volume: 355 start-page: 952 year: 2019 end-page: 962 ident: b0665 article-title: Construction of Fe2O3/Co3O4/exfoliated graphite composite and its high efficient treatment of landfill leachate by activation of potassium persulfate publication-title: Chem. Eng. J. – volume: 166 start-page: 493 year: 2016 end-page: 498 ident: b0625 article-title: Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment publication-title: J. Environ. Manage. – volume: 380 year: 2020 ident: b0860 article-title: An integrated microwave-ultraviolet catalysis process of four peroxides for wastewater treatment: Free radical generation rate and mechanism publication-title: Chem. Eng. J. – volume: 18 start-page: 842 year: 2016 end-page: 854 ident: b0585 article-title: Factorialdesign and optimization of leachate treatment using persulfate oxidatioN publication-title: Global NEST J. – volume: 53 start-page: 124 year: 2018 end-page: 131 ident: b1005 article-title: Integrated aerobic biological–chemical treatment of winery wastewater diluted with urban wastewater. LED-based photocatalysis in the presence of monoperoxysulfate publication-title: J. Environ. Sci. Health Part A – volume: 335 start-page: 485 year: 2019 end-page: 491 ident: b0045 article-title: Photocatalytic fuel cell based on sulfate radicals converted from sulfates in situ for wastewater treatment and chemical energy utilization publication-title: Catal. Today – volume: 89 start-page: 95 year: 2011 end-page: 105 ident: b0140 article-title: Treatment technologies for petroleum refinery effluents: a review publication-title: Process Saf. Environ. Prot. – volume: 27 start-page: 6042 year: 2020 end-page: 6051 ident: b1100 article-title: Degradation of refractory organic compounds from dinitrodiazophenol containing industrial wastewater through UV/H2O2 and UV/PS processes publication-title: Environ. Sci. Pollut. Res. – volume: 206 start-page: 709 year: 2018 end-page: 717 ident: b0205 article-title: Treatment of winery wastewater by anodic oxidation using BDD electrode publication-title: Chemosphere – reference: X. Song, M. Liu, Advanced treatment of biotreated coking wastewater with peroxymonosulfate oxidation catalyzed by granular activated carbon, 93 (2018) 2191–2198. – volume: 243 year: 2020 ident: b0560 article-title: Hydroxyl radical-based and sulfate radical-based photocatalytic advanced oxidation processes for treatment of refractory organic matter in semi-aerobic aged refuse biofilter effluent arising from treating landfill leachate publication-title: Chemosphere – volume: 236 year: 2020 ident: b1085 article-title: Performance of a microwave radiation induced persulfate-hydrogen peroxide binary-oxidant process in treating dinitrodiazophenol wastewater publication-title: Sep. Purif. Technol. – volume: 174 year: 2020 ident: b0360 article-title: Some issues limiting photo(cata)lysis application in water pollutant control: a critical review from chemistry perspectives publication-title: Water Res. – volume: 17 start-page: 1027 year: 1988 end-page: 1284 ident: b0455 article-title: Rate constants for reactions of inorganic radicals in aqueous solution publication-title: J. Phys. Chem. Ref. Data – volume: 563–564 start-page: 664 year: 2016 end-page: 675 ident: b0255 article-title: A review on the use of membrane technology and fouling control for olive mill wastewater treatment publication-title: Sci. Total Environ. – volume: 45 start-page: 9308 year: 2011 end-page: 9314 ident: b0345 article-title: Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System publication-title: Environ. Sci. Technol. – volume: 48 start-page: 5558 year: 2009 end-page: 5562 ident: b0340 article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate publication-title: Ind. Eng. Chem. Res. – volume: 34 start-page: 2162 year: 2000 end-page: 2168 ident: b0470 article-title: Mechanism and kinetics of the OH-radical intervention during fenton oxidation in the presence of a significant amount of radical scavenger Cl- publication-title: Environ. Sci. Technol. – year: 2019 ident: b0575 article-title: Heterogeneous degradation of stabilized landfill leachate using persulfate activation by CuFe2O4 nanocatalyst: an experimental investigation, Journal of Environmental publication-title: Chem. Eng. – volume: 19 start-page: 439 year: 2017 end-page: 1352 ident: b0145 article-title: Treatment of petroleum wastewater by conventional and new technologies-A review publication-title: Global NEST J. – volume: 53 start-page: 155 year: 2019 end-page: 170 ident: b0600 article-title: Simultaneous optimization of treatment efficiency and operating cost in leachate concentrate degradation by thermal-activated persulfate catalysed with Ag (I): comparison of microwave and conventional heating publication-title: J. Microw. Power Electromagn. Energy – volume: 308 start-page: 142 year: 2017 end-page: 150 ident: b0905 article-title: Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: permanganate, electro-Fenton and Co3O4/UV/peroxymonosulfate publication-title: Chem. Eng. J. – volume: 122 start-page: 94 year: 2019 end-page: 101 ident: b1010 article-title: Winery wastewater treatment by sulphate radical based-advanced oxidation processes (SR-AOP): thermally vs UV-assisted persulphate activation publication-title: Process Saf. Environ. Prot. – volume: 10 year: 2018 ident: b0110 article-title: Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review publication-title: Water – volume: 351 start-page: 841 year: 2018 end-page: 855 ident: b0460 article-title: Solar light driven degradation of norfloxacin using as-synthesized Bi3+ and Fe2+ co-doped ZnO with the addition of HSO5−: toxicities and degradation pathways investigation publication-title: Chem. Eng. J. – volume: 242 year: 2020 ident: b0670 article-title: Efficient treatment for landfill leachate through sequential electrocoagulation, electrooxidation and PMS/UV/CuFe2O4 process publication-title: Sep. Purif. Technol. – volume: 6 start-page: 484 year: 2016 end-page: 494 ident: b0790 article-title: COD removal from petrochemical wastewater by UV/hydrogen peroxide UV/persulfate and UV/percarbonate: biodegradability improvement and cost evaluation publication-title: J. Water Reuse Desalin. – volume: 106 start-page: 1 year: 2020 end-page: 11 ident: b0685 article-title: Stabilized landfill leachate treatment by zero valent aluminium-acid system combined with hydrogen peroxide and persulfate based advanced oxidation process publication-title: Waste Manage. – volume: 184 year: 2020 ident: b0965 article-title: Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: modeling by response surface methodology and artificial neural network publication-title: Environ. Res. – volume: 731 year: 2020 ident: b0120 article-title: A review of the application of adsorbents for landfill leachate treatment: focus on magnetic adsorption publication-title: Sci. Total Environ. – volume: 101 start-page: 8639 year: 2010 end-page: 8648 ident: b0840 article-title: Destruction of some more and less hydrophobic PAHs and their toxicities in a petrochemical industry wastewater with sonication in Turkey publication-title: Bioresour. Technol. – volume: 137 start-page: 1773 year: 2006 end-page: 1780 ident: b0210 article-title: Simultaneous removal of phenol, ammonium and thiocyanate from coke wastewater by aerobic biodegradation publication-title: J. Hazard. Mater. – volume: 34 start-page: 122 year: 2007 end-page: 130 ident: b0215 article-title: Thiocyanate degradation during activated sludge treatment of coke-ovens wastewater publication-title: Biochem. Eng. J. – volume: 96 start-page: 303 year: 2005 end-page: 307 ident: b0310 article-title: Use of coagulants in treatment of olive oil wastewater model solutions by induced air flotation publication-title: Bioresour. Technol. – volume: 5 start-page: 4014 year: 2017 end-page: 4023 ident: b0025 article-title: Advanced oxidation of orange G using phosphonic acid stabilised zerovalent iron publication-title: J. Environ. Chem. Eng. – volume: 236 year: 2019 ident: b1115 article-title: Phenanthrene degradation using Fe(III)-EDDS photoactivation under simulated solar light: a model for soil washing effluent treatment publication-title: Chemosphere – volume: 160 start-page: 402 year: 2008 end-page: 407 ident: b1120 article-title: Decontamination of soil washing wastewater using solar driven advanced oxidation processes publication-title: J. Hazard. Mater. – volume: 33 start-page: 1434 year: 2013 end-page: 1441 ident: b0630 article-title: Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process publication-title: Waste Manage. – volume: 220 start-page: 1 year: 2017 end-page: 12 ident: b0125 article-title: Physico-chemical and biological characterization of urban municipal landfill leachate publication-title: Environ. Pollut. – volume: 154 start-page: 336 year: 2019 end-page: 348 ident: b0235 article-title: Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load publication-title: Water Res. – volume: 69 start-page: 109 year: 2009 end-page: 117 ident: b0175 article-title: Augmentation of biodegradability of pulp and paper industry wastewater by electrochemical pre-treatment and optimization by RSM publication-title: Sep. Purif. Technol. – volume: 183 start-page: 1 year: 2012 end-page: 9 ident: b0355 article-title: Advanced oxidation of phenol: a comparison between fenton, electro-fenton, sono-electro-fenton and photo-electro-fenton processes publication-title: Chem. Eng. J. – volume: 262 start-page: 854 year: 2015 end-page: 861 ident: b0335 article-title: Activation of peroxymonosulfate with magnetic Fe3O4–MnO2 core–shell nanocomposites for 4-chlorophenol degradation publication-title: Chem. Eng. J. – volume: 77 start-page: 1891 year: 2018 end-page: 1898 ident: b1025 article-title: Advanced treatment of biologically treated coking wastewater by persulfate oxidation with magnetic activated carbon composite as a catalyst publication-title: Water Sci. Technol. – volume: 250 start-page: 76 year: 2014 end-page: 82 ident: b0765 article-title: Removal of COD from landfill leachate by an electro/Fe2+/peroxydisulfate process publication-title: Chem. Eng. J. – volume: 33 year: 2020 ident: b0330 article-title: Peroxymonosulfate-assisted photocatalytic degradation of sulfadiazine using self-assembled multi-layered CoAl-LDH/g-C3N4 heterostructures: performance, mechanism and eco-toxicity evaluation publication-title: J. Water Process Eng. – volume: 37 start-page: 1469 year: 2003 end-page: 1487 ident: b0495 article-title: Ozonation of drinking water: Part II Disinfection and by-product formation in presence of bromide, iodide or chlorine publication-title: Water Res. – volume: 221 start-page: 492 year: 2013 end-page: 499 ident: b0635 article-title: Pretreatment of stabilized leachate using ozone/persulfate oxidation process publication-title: Chem. Eng. J. – volume: 43 start-page: 4363 year: 2009 end-page: 4369 ident: b0545 article-title: Oxone/Co2+ oxidation as an advanced oxidation process: comparison with traditional Fenton oxidation for treatment of landfill leachate publication-title: Water Res. – volume: 25 start-page: 6003 year: 2018 end-page: 6014 ident: b0955 article-title: Combination of UVC-LEDs and ultrasound for peroxymonosulfate activation to degrade synthetic dye: influence of promotional and inhibitory agents and application for real wastewater publication-title: Environ. Sci. Pollut. Res. – volume: 50 start-page: 408 year: 2014 end-page: 419 ident: b0400 article-title: Identifying the factors that influence the reactivity of effluent organic matter with hydroxyl radicals publication-title: Water Res. – volume: 310 start-page: 41 year: 2017 end-page: 62 ident: b0280 article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review publication-title: Chem. Eng. J. – volume: 571 start-page: 142 year: 2020 end-page: 154 ident: b0480 article-title: Hierarchical MnO2 nanoflowers blooming on 3D nickel foam: a novel micro-macro catalyst for peroxymonosulfate activation publication-title: J. Colloid Interface Sci. – volume: 193 start-page: 458 year: 2017 end-page: 469 ident: b1070 article-title: Electro persulphate oxidation for polishing of biologically treated palm oil mill effluent (POME) publication-title: J. Environ. Manage. – volume: 2 start-page: 1042 year: 2020 ident: b0750 article-title: Optimization of persulfate/iron(II)/UV-A irradiation process for the treatment of landfill leachate from Fez City (Morocco) publication-title: SN Appl. Sci. – volume: 114 start-page: 326 year: 2015 end-page: 342 ident: b0170 article-title: Review on recent developments on pulp and paper mill wastewater treatment publication-title: Ecotoxicol. Environ. Saf. – volume: 6 start-page: 6568 year: 2018 end-page: 6579 ident: b0645 article-title: Zero-valent iron nanofibers (ZVINFs) immobilized on the surface of reduced ultra-large graphene oxide (rULGO) as a persulfate activator for treatment of landfill leachate publication-title: J. Environ. Chem. Eng. – volume: 23 start-page: 20100 year: 2016 end-page: 20110 ident: b0960 article-title: Synthesis of Fe-doped Bi2O3 nanocatalyst and its sonophotocatalytic activity on synthetic dye and real textile wastewater publication-title: Environ. Sci. Pollut. Res. – volume: 17 start-page: 2707 year: 2020 end-page: 2720 ident: b0780 article-title: Electro-activated peroxymonosulfate and peroxydisulfate oxidation of leachate nanofiltration concentrate: multiple-response optimization publication-title: Int. J. Environ. Sci. Technol. – volume: 17 start-page: 111 year: 2011 end-page: 122 ident: b0200 article-title: Review: winery wastewater quality and treatment options in Australia publication-title: Aust. J. Grape Wine Res. – volume: 80 start-page: 99 year: 2015 end-page: 108 ident: b0050 article-title: Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5− and UV/S2O82− publication-title: Water Res. – volume: 847 year: 2019 ident: b1160 article-title: Electrochemical advanced oxidation processes coupled with peroxymonosulfate for the treatment of real washing machine effluent: a comparative study publication-title: J. Electroanal. Chem. – start-page: 167 year: 2012 end-page: 188 ident: b0020 article-title: Chapter seven peroxyacids bleaching publication-title: Environmentally Benign Approaches for Pulp Bleaching (Second Edition) – volume: 18 start-page: 1637 year: 1989 end-page: 1755 ident: b0525 article-title: Reduction potentials of one-electron couples involving free radicals in aqueous solution publication-title: J. Phys. Chem. Ref. Data – volume: 14 start-page: 1041 year: 1985 end-page: 1100 ident: b0390 article-title: Reactivity of HO2/O−2 radicals in aqueous solution publication-title: J. Phys. Chem. Ref. Data – volume: 97 start-page: 47 year: 2019 end-page: 51 ident: b0675 article-title: Coupled heat-activated persulfate Electrolysis for the abatement of organic matter and total nitrogen from landfill leachate publication-title: Waste Manage. – volume: 371 start-page: 222 year: 2019 end-page: 232 ident: b0105 article-title: Inactivation of pathogenic microorganisms by sulfate radical: present and future publication-title: Chem. Eng. J. – volume: 286 start-page: 343 year: 2015 end-page: 368 ident: b0195 article-title: Treatment of winery wastewater by physicochemical, biological and advanced processes: a review publication-title: J. Hazard. Mater. – volume: 97 start-page: 1 year: 2019 end-page: 9 ident: b0610 article-title: An investigation of refractory organics in membrane bioreactor effluent following the treatment of landfill leachate by the O3/H2O2 and MW/PS processes publication-title: Waste Manage. – volume: 189 start-page: 176 year: 2017 end-page: 185 ident: b0055 article-title: Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: Kinetics and mechanism publication-title: Sep. Purif. Technol. – volume: 380 year: 2020 ident: b1130 article-title: Treatment of organosilicon wastewater by UV-based advanced oxidation processes: performance comparison and fluorescence parallel factor analysis publication-title: Chem. Eng. J. – volume: 22 start-page: 69 year: 2020 end-page: 72 ident: b0950 article-title: Photocatalytic degradation of industrial textile wastewater using S2O82−/Fe2+ process publication-title: Mater. Today:. Proc. – volume: 87 start-page: 1139 year: 2015 end-page: 1150 ident: b0520 article-title: Standard electrode potentials involving radicals in aqueous solution: inorganic radicals IUPAC Technical Report publication-title: Pure Appl. Chem. – volume: 330 start-page: 1390 year: 2017 end-page: 1400 ident: b0900 article-title: Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: effect of water constituents, degradation intermediates and toxicity evaluation publication-title: Chem. Eng. J. – volume: 370 start-page: 595 year: 2019 end-page: 605 ident: b0865 article-title: Hybrid coagulation, gamma irradiation and biological treatment of real pharmaceutical wastewater publication-title: Chem. Eng. J. – volume: 131 start-page: 212 year: 2019 end-page: 222 ident: b0640 article-title: Novel heterogeneous degradation of mature landfill leachate using persulfate and magnetic CuFe2O4/RGO nanocatalyst publication-title: Process Saf. Environ. Prot. – volume: 75 start-page: 259 year: 2015 end-page: 269 ident: b0375 article-title: Kinetic modeling and energy efficiency of UV/H2O2 treatment of iodinated trihalomethanes publication-title: Water Res. – volume: 54 start-page: 3064 year: 2020 end-page: 3081 ident: b0070 article-title: Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks publication-title: Environ. Sci. Technol. – volume: 285 start-page: 264 year: 2016 end-page: 275 ident: b0135 article-title: Employing TiO2 photocatalysis to deal with landfill leachate: Current status and development publication-title: Chem. Eng. J. – volume: 89 start-page: 192 year: 2016 ident: 10.1016/j.cej.2020.127083_b0410 article-title: Effect of matrix components on UV/H2O2 and UV/S2O82− advanced oxidation processes for trace organic degradation in reverse osmosis brines from municipal wastewater reuse facilities publication-title: Water Res. doi: 10.1016/j.watres.2015.11.049 – volume: 45 start-page: 6189 year: 2011 ident: 10.1016/j.cej.2020.127083_b0690 article-title: Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate publication-title: Water Res. doi: 10.1016/j.watres.2011.09.015 – volume: 370 start-page: 595 year: 2019 ident: 10.1016/j.cej.2020.127083_b0865 article-title: Hybrid coagulation, gamma irradiation and biological treatment of real pharmaceutical wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.256 – volume: 40 start-page: 822 year: 2019 ident: 10.1016/j.cej.2020.127083_b0795 article-title: Efficient phenol removal from petrochemical wastewater using biochar-La/ultrasonic/persulphate system: characteristics, reusability, and kinetic study publication-title: Environ. Technol. doi: 10.1080/09593330.2017.1408694 – volume: 111 start-page: 43 year: 2019 ident: 10.1016/j.cej.2020.127083_b0490 article-title: Organic dye degradation through peroxymonosulfate catalyzed by reusable graphite felt/ferriferrous oxide: Mechanism and identification of intermediates publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2018.10.027 – volume: 69 start-page: 71 year: 2007 ident: 10.1016/j.cej.2020.127083_b0440 article-title: Photochemincal processes involving nitrite in surface water samples publication-title: Aquat. Sci. doi: 10.1007/s00027-007-0881-6 – volume: 44 start-page: 6822 year: 2010 ident: 10.1016/j.cej.2020.127083_b0465 article-title: Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters publication-title: Environ. Sci. Technol. doi: 10.1021/es1010225 – volume: 228 year: 2019 ident: 10.1016/j.cej.2020.127083_b0975 article-title: Heterogeneous activation of peroxymonosulfate via nanocomposite CeO2-Fe3O4 for organic pollutants removal: the effect of UV and US irradiation and application for real wastewater publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115732 – year: 2019 ident: 10.1016/j.cej.2020.127083_b0575 article-title: Heterogeneous degradation of stabilized landfill leachate using persulfate activation by CuFe2O4 nanocatalyst: an experimental investigation, Journal of Environmental publication-title: Chem. Eng. – volume: 44 start-page: 172 year: 2015 ident: 10.1016/j.cej.2020.127083_b0615 article-title: Effect of persulfate and persulfate/H2O2 on biodegradability of an anaerobic stabilized landfill leachate publication-title: Waste Manage. doi: 10.1016/j.wasman.2015.07.046 – volume: 160 start-page: 402 year: 2008 ident: 10.1016/j.cej.2020.127083_b1120 article-title: Decontamination of soil washing wastewater using solar driven advanced oxidation processes publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.03.011 – volume: 39 start-page: 9182 year: 2005 ident: 10.1016/j.cej.2020.127083_b0445 article-title: Photosensitizer method to determine rate constants for the reaction of carbonate radical with organic compounds publication-title: Environ. Sci. Technol. doi: 10.1021/es051236b – volume: 3 start-page: 155 year: 2014 ident: 10.1016/j.cej.2020.127083_b0300 article-title: Biodegradation of organics and accumulation of metabolites in experimental biological sand filters used for the treatment of synthetic winery wastewater: a mesocosm study publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2014.06.007 – volume: 33 start-page: 1434 year: 2013 ident: 10.1016/j.cej.2020.127083_b0630 article-title: Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process publication-title: Waste Manage. doi: 10.1016/j.wasman.2013.01.039 – volume: 89 start-page: 95 year: 2011 ident: 10.1016/j.cej.2020.127083_b0140 article-title: Treatment technologies for petroleum refinery effluents: a review publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2010.11.003 – volume: 233 start-page: 35 year: 2018 ident: 10.1016/j.cej.2020.127083_b0090 article-title: MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.03.077 – volume: 6 start-page: 484 year: 2016 ident: 10.1016/j.cej.2020.127083_b0790 article-title: COD removal from petrochemical wastewater by UV/hydrogen peroxide UV/persulfate and UV/percarbonate: biodegradability improvement and cost evaluation publication-title: J. Water Reuse Desalin. doi: 10.2166/wrd.2016.188 – volume: 380 year: 2020 ident: 10.1016/j.cej.2020.127083_b0485 article-title: 3D mesoporous α-Co(OH)2 nanosheets electrodeposited on nickel foam: a new generation of macroscopic cobalt-based hybrid for peroxymonosulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122447 – volume: 172 start-page: 654 year: 2009 ident: 10.1016/j.cej.2020.127083_b0080 article-title: Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.07.047 – volume: 2 start-page: 1042 year: 2020 ident: 10.1016/j.cej.2020.127083_b0750 article-title: Optimization of persulfate/iron(II)/UV-A irradiation process for the treatment of landfill leachate from Fez City (Morocco) publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-2868-z – volume: 130 start-page: 39 year: 2019 ident: 10.1016/j.cej.2020.127083_b1110 article-title: A comparative study of dinitrodiazophenol industrial wastewater treatment: ozone/hydrogen peroxide versus microwave/persulfate publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2019.07.019 – volume: 335 start-page: 485 year: 2019 ident: 10.1016/j.cej.2020.127083_b0045 article-title: Photocatalytic fuel cell based on sulfate radicals converted from sulfates in situ for wastewater treatment and chemical energy utilization publication-title: Catal. Today doi: 10.1016/j.cattod.2019.02.014 – volume: 38 start-page: 1223 year: 2017 ident: 10.1016/j.cej.2020.127083_b0590 article-title: Ferrous ion-activated persulphate process for landfill leachate treatment: removal of organic load, phenolic micropollutants and nitrogen publication-title: Environ. Technol. doi: 10.1080/09593330.2016.1221472 – volume: 54 start-page: 3064 year: 2020 ident: 10.1016/j.cej.2020.127083_b0070 article-title: Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b07082 – volume: 122 start-page: 94 year: 2019 ident: 10.1016/j.cej.2020.127083_b1010 article-title: Winery wastewater treatment by sulphate radical based-advanced oxidation processes (SR-AOP): thermally vs UV-assisted persulphate activation publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2018.11.016 – volume: 285 start-page: 264 year: 2016 ident: 10.1016/j.cej.2020.127083_b0135 article-title: Employing TiO2 photocatalysis to deal with landfill leachate: Current status and development publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.09.093 – volume: 242 year: 2020 ident: 10.1016/j.cej.2020.127083_b1095 article-title: Comparison study on microwave irradiation-activated persulfate and hydrogen peroxide systems in the treatment of dinitrodiazophenol industrial wastewater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125139 – volume: 216 start-page: 749 year: 2019 ident: 10.1016/j.cej.2020.127083_b0775 article-title: Pretreatment of landfill leachate in near-neutral pH condition by persulfate activated Fe-C micro-electrolysis system publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.10.168 – volume: 75 start-page: 259 year: 2015 ident: 10.1016/j.cej.2020.127083_b0375 article-title: Kinetic modeling and energy efficiency of UV/H2O2 treatment of iodinated trihalomethanes publication-title: Water Res. doi: 10.1016/j.watres.2015.02.044 – volume: 571 start-page: 142 year: 2020 ident: 10.1016/j.cej.2020.127083_b0480 article-title: Hierarchical MnO2 nanoflowers blooming on 3D nickel foam: a novel micro-macro catalyst for peroxymonosulfate activation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.03.041 – volume: 3 start-page: 153 year: 2020 ident: 10.1016/j.cej.2020.127083_b0945 article-title: Textile wastewater treatment by peroxydisulfate/Fe(II)/UV: operating cost evaluation and phytotoxicity studies publication-title: Chem. Afr. doi: 10.1007/s42250-019-00094-7 – volume: 346 start-page: 159 year: 2018 ident: 10.1016/j.cej.2020.127083_b0885 article-title: Activation of persulfate by irradiated laterite for removal of fluoroquinolones in multi-component systems publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.12.011 – volume: 25 start-page: 6003 year: 2018 ident: 10.1016/j.cej.2020.127083_b0955 article-title: Combination of UVC-LEDs and ultrasound for peroxymonosulfate activation to degrade synthetic dye: influence of promotional and inhibitory agents and application for real wastewater publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0936-8 – volume: 330 start-page: 1390 year: 2017 ident: 10.1016/j.cej.2020.127083_b0900 article-title: Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: effect of water constituents, degradation intermediates and toxicity evaluation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.137 – volume: 193 start-page: 458 year: 2017 ident: 10.1016/j.cej.2020.127083_b1070 article-title: Electro persulphate oxidation for polishing of biologically treated palm oil mill effluent (POME) publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2017.02.031 – volume: 154 start-page: 336 year: 2019 ident: 10.1016/j.cej.2020.127083_b0235 article-title: Cost-efficient improvement of coking wastewater biodegradability by multi-stages flow through peroxi-coagulation under low current load publication-title: Water Res. doi: 10.1016/j.watres.2019.02.013 – volume: 242 year: 2020 ident: 10.1016/j.cej.2020.127083_b0870 article-title: Techno-economical evaluation of coupling ionizing radiation and biological treatment process for the remediation of real pharmaceutical wastewater publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2019.118544 – volume: 409 start-page: 4141 year: 2011 ident: 10.1016/j.cej.2020.127083_b0275 article-title: Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2010.08.061 – volume: 2 start-page: 1846 year: 2014 ident: 10.1016/j.cej.2020.127083_b0980 article-title: Textile wastewater decolorization by zero valent iron activated peroxymonosulfate: compared with zero valent copper publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2014.08.003 – volume: 108 start-page: 17 year: 2013 ident: 10.1016/j.cej.2020.127083_b0510 article-title: UV-assisted persulfate oxidation: the influence of cation type in the persulfate salt on the degradation kinetics of an azo dye pollutant Reaction Kinetics publication-title: Mech. Catal. – volume: 221 start-page: 492 year: 2013 ident: 10.1016/j.cej.2020.127083_b0635 article-title: Pretreatment of stabilized leachate using ozone/persulfate oxidation process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.02.038 – volume: 310 start-page: 473 year: 2017 ident: 10.1016/j.cej.2020.127083_b0995 article-title: Treatment of winery wastewater by sulphate radicals: HSO5−/transition metal/UV-A LEDs publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.04.135 – volume: 399 year: 2020 ident: 10.1016/j.cej.2020.127083_b0320 article-title: Simultaneous degradation of p-arsanilic acid and inorganic arsenic removal using M-rGO/PS Fenton-like system under neutral conditions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123032 – ident: 10.1016/j.cej.2020.127083_b1020 – volume: 81 start-page: 1475 year: 2006 ident: 10.1016/j.cej.2020.127083_b0245 article-title: Technologies for olive mill wastewater (OMW) treatment: a review publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1553 – volume: 19 start-page: 951 year: 2018 ident: 10.1016/j.cej.2020.127083_b0745 article-title: Performance of combined persulfate/aluminum sulfate for landfill leachate treatment publication-title: Data Brief doi: 10.1016/j.dib.2018.05.111 – volume: 97 start-page: 247 year: 2019 ident: 10.1016/j.cej.2020.127083_b1055 article-title: Chemical oxidation methods for treatment of real industrial olive oil mill wastewater publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2019.02.001 – volume: 380 year: 2020 ident: 10.1016/j.cej.2020.127083_b1130 article-title: Treatment of organosilicon wastewater by UV-based advanced oxidation processes: performance comparison and fluorescence parallel factor analysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122536 – volume: 352 start-page: 247 year: 2018 ident: 10.1016/j.cej.2020.127083_b1185 article-title: Heterogeneous fluidized-bed Fenton process: factors affecting iron removal and tertiary treatment application publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.07.037 – volume: 17 start-page: 513 year: 1988 ident: 10.1016/j.cej.2020.127083_b0380 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in aqueous solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555805 – volume: 6 start-page: 6568 year: 2018 ident: 10.1016/j.cej.2020.127083_b0645 article-title: Zero-valent iron nanofibers (ZVINFs) immobilized on the surface of reduced ultra-large graphene oxide (rULGO) as a persulfate activator for treatment of landfill leachate publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2018.10.011 – volume: 73 start-page: 102 year: 2015 ident: 10.1016/j.cej.2020.127083_b0620 article-title: Optimization of leachate treatment using persulfate/H2O2 based advanced oxidation process: case study: Deir El-Balah Landfill Site, Gaza Strip, Palestine publication-title: Water Sci. Technol. doi: 10.2166/wst.2015.468 – volume: 84 start-page: 9 year: 2019 ident: 10.1016/j.cej.2020.127083_b0305 article-title: Construction and parameters modulation of a novel variant Rhodococcus opacus BM985 to achieve enhanced triacylglycerol-a biodiesel precursor, using synthetic dairy wastewater publication-title: Process Biochem. doi: 10.1016/j.procbio.2019.05.031 – volume: 211 start-page: 79 year: 2017 ident: 10.1016/j.cej.2020.127083_b0085 article-title: Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.03.079 – volume: 11 start-page: 339 year: 2009 ident: 10.1016/j.cej.2020.127083_b0315 article-title: Use of Sphagnum peat moss and crushed mollusk shells in fixed-bed columns for the treatment of synthetic landfill leachate publication-title: J. Mater. Cycles Waste Manage. doi: 10.1007/s10163-009-0262-4 – volume: 93 start-page: 154 year: 2012 ident: 10.1016/j.cej.2020.127083_b0185 article-title: A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2011.09.012 – volume: 8 year: 2020 ident: 10.1016/j.cej.2020.127083_b0065 article-title: Limitations and prospects of sulfate-radical based advanced oxidation processes publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.103849 – volume: 4 start-page: 366 year: 2009 ident: 10.1016/j.cej.2020.127083_b0555 article-title: Advanced oxidation processes (AOPs) for reduction of organic pollutants in landfill leachate: a review publication-title: Int. J. Environ. Waste Manage. doi: 10.1504/IJEWM.2009.027402 – volume: 250 start-page: 76 year: 2014 ident: 10.1016/j.cej.2020.127083_b0765 article-title: Removal of COD from landfill leachate by an electro/Fe2+/peroxydisulfate process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.03.114 – volume: 87 start-page: 1139 year: 2015 ident: 10.1016/j.cej.2020.127083_b0520 article-title: Standard electrode potentials involving radicals in aqueous solution: inorganic radicals IUPAC Technical Report publication-title: Pure Appl. Chem. doi: 10.1515/pac-2014-0502 – volume: 194 start-page: 169 year: 2016 ident: 10.1016/j.cej.2020.127083_b0060 article-title: Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.04.003 – volume: 26 start-page: 849 year: 2019 ident: 10.1016/j.cej.2020.127083_b0835 article-title: Refractory petrochemical wastewater treatment by K2S2O8 assisted photocatalysis publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2017.07.009 – volume: 314 start-page: 240 year: 2017 ident: 10.1016/j.cej.2020.127083_b0940 article-title: Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.094 – volume: 174 year: 2020 ident: 10.1016/j.cej.2020.127083_b0360 article-title: Some issues limiting photo(cata)lysis application in water pollutant control: a critical review from chemistry perspectives publication-title: Water Res. doi: 10.1016/j.watres.2020.115605 – volume: 50 start-page: 11209 year: 2016 ident: 10.1016/j.cej.2020.127083_b0385 article-title: Development of predictive models for the degradation of halogenated disinfection byproducts during the UV/H2O2 advanced oxidation process publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03560 – volume: 19 start-page: 439 year: 2017 ident: 10.1016/j.cej.2020.127083_b0145 article-title: Treatment of petroleum wastewater by conventional and new technologies-A review publication-title: Global NEST J. doi: 10.30955/gnj.002239 – volume: 249 start-page: 463 year: 2018 ident: 10.1016/j.cej.2020.127083_b0805 article-title: Photo-Fenton like degradation of catechol using persulfate activated by UV and ferrous ions: Influencing operational parameters and feasibility studies publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.11.045 – volume: 54 start-page: 210 year: 2019 ident: 10.1016/j.cej.2020.127083_b0725 article-title: Mature landfill leachate treatment using sonolytic-persulfate/hydrogen peroxide oxidation: Optimization of process parameters publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2019.01.036 – ident: 10.1016/j.cej.2020.127083_b0595 – volume: 37 start-page: 1469 year: 2003 ident: 10.1016/j.cej.2020.127083_b0495 article-title: Ozonation of drinking water: Part II Disinfection and by-product formation in presence of bromide, iodide or chlorine publication-title: Water Res. doi: 10.1016/S0043-1354(02)00458-X – volume: 225 start-page: 2076 year: 2014 ident: 10.1016/j.cej.2020.127083_b1165 article-title: Advanced treatment of reverse osmosis concentrate by integrated activated carbon and iron-activated persulfate oxidation publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-014-2076-9 – volume: 69 start-page: 109 year: 2009 ident: 10.1016/j.cej.2020.127083_b0175 article-title: Augmentation of biodegradability of pulp and paper industry wastewater by electrochemical pre-treatment and optimization by RSM publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2009.07.002 – volume: 289 start-page: 296 year: 2016 ident: 10.1016/j.cej.2020.127083_b0350 article-title: Synthetic conditions-regulated catalytic Oxone efficacy of MnOx/SBA-15 towards butyl paraben (BPB) removal under heterogeneous conditions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.01.007 – volume: 17 start-page: 111 year: 2011 ident: 10.1016/j.cej.2020.127083_b0200 article-title: Review: winery wastewater quality and treatment options in Australia publication-title: Aust. J. Grape Wine Res. doi: 10.1111/j.1755-0238.2011.00132.x – volume: 16 start-page: 1193 year: 2019 ident: 10.1016/j.cej.2020.127083_b0190 article-title: Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-018-2130-z – volume: 210 start-page: 93 year: 2019 ident: 10.1016/j.cej.2020.127083_b0295 article-title: Preparation and performance of a novel starch-based inorganic/organic composite coagulant for textile wastewater treatment publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.07.089 – volume: 372 start-page: 94 year: 2019 ident: 10.1016/j.cej.2020.127083_b1170 article-title: Intensification of UV-C tertiary treatment: disinfection and removal of micropollutants by sulfate radical based Advanced Oxidation Processes publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.04.044 – volume: 731 year: 2020 ident: 10.1016/j.cej.2020.127083_b0120 article-title: A review of the application of adsorbents for landfill leachate treatment: focus on magnetic adsorption publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138863 – volume: 351 start-page: 841 year: 2018 ident: 10.1016/j.cej.2020.127083_b0460 article-title: Solar light driven degradation of norfloxacin using as-synthesized Bi3+ and Fe2+ co-doped ZnO with the addition of HSO5−: toxicities and degradation pathways investigation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.06.111 – volume: 260 year: 2020 ident: 10.1016/j.cej.2020.127083_b0890 article-title: Integrated assessment of sulfate-based AOPs for pharmaceutical active compound removal from wastewater publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.121014 – volume: 18 start-page: 1637 year: 1989 ident: 10.1016/j.cej.2020.127083_b0525 article-title: Reduction potentials of one-electron couples involving free radicals in aqueous solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555843 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.cej.2020.127083_b0155 article-title: A review on characterization and bioremediation of pharmaceutical industries’ wastewater: an Indian perspective publication-title: Appl. Water Sci. doi: 10.1007/s13201-014-0225-3 – volume: 237 year: 2019 ident: 10.1016/j.cej.2020.127083_b0325 article-title: Enhanced activation of peroxymonosulfte by LaFeO3 perovskite supported on Al2O3 for degradation of organic pollutants publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124478 – ident: 10.1016/j.cej.2020.127083_b0720 – volume: 6 start-page: 581 year: 2020 ident: 10.1016/j.cej.2020.127083_b1105 article-title: Activation of persulfate by microwave radiation combined with FeS for treatment of wastewater from explosives production publication-title: Environ. Sci. Water Res. Technol. doi: 10.1039/C9EW00803A – volume: 372 start-page: 836 year: 2019 ident: 10.1016/j.cej.2020.127083_b0290 article-title: Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.213 – volume: 43 start-page: 4363 year: 2009 ident: 10.1016/j.cej.2020.127083_b0545 article-title: Oxone/Co2+ oxidation as an advanced oxidation process: comparison with traditional Fenton oxidation for treatment of landfill leachate publication-title: Water Res. doi: 10.1016/j.watres.2009.06.043 – volume: 50 start-page: 408 year: 2014 ident: 10.1016/j.cej.2020.127083_b0400 article-title: Identifying the factors that influence the reactivity of effluent organic matter with hydroxyl radicals publication-title: Water Res. doi: 10.1016/j.watres.2013.10.049 – volume: 195 start-page: 374 year: 2018 ident: 10.1016/j.cej.2020.127083_b0845 article-title: Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.05.207 – volume: 183 start-page: 1 year: 2012 ident: 10.1016/j.cej.2020.127083_b0355 article-title: Advanced oxidation of phenol: a comparison between fenton, electro-fenton, sono-electro-fenton and photo-electro-fenton processes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.12.010 – volume: 236 year: 2020 ident: 10.1016/j.cej.2020.127083_b1085 article-title: Performance of a microwave radiation induced persulfate-hydrogen peroxide binary-oxidant process in treating dinitrodiazophenol wastewater publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.116253 – volume: 17 start-page: 1027 year: 1988 ident: 10.1016/j.cej.2020.127083_b0455 article-title: Rate constants for reactions of inorganic radicals in aqueous solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555808 – volume: 248 start-page: 309 year: 2019 ident: 10.1016/j.cej.2020.127083_b0005 article-title: A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: Surface functionalization, biomass treatment, combatting cancer and other medical uses publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.02.025 – volume: 149 start-page: 805 year: 2017 ident: 10.1016/j.cej.2020.127083_b1015 article-title: Disinfection of simulated and real winery wastewater using sulphate radicals: peroxymonosulphate/transition metal/UV-A LED oxidation publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2017.02.135 – volume: 82 start-page: 3107 year: 2018 ident: 10.1016/j.cej.2020.127083_b0180 article-title: Bioremediation of textile wastewater and successive biodiesel production using microalgae publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.10.029 – volume: 166 start-page: 493 year: 2016 ident: 10.1016/j.cej.2020.127083_b0625 article-title: Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2015.10.051 – volume: 244 year: 2020 ident: 10.1016/j.cej.2020.127083_b0830 article-title: Oxidative removal of benzotriazole using peroxymonosulfate/ozone/ultrasound: synergy, optimization, degradation intermediates and utilizing for real wastewater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125326 – volume: 306 start-page: 1203 year: 2016 ident: 10.1016/j.cej.2020.127083_b1140 article-title: Photo-fenton degradation of a beverage industrial effluent: intensification with persulfate and the study of radicals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.08.048 – volume: 7 start-page: 537 year: 2020 ident: 10.1016/j.cej.2020.127083_b1155 article-title: Remediation of washing machine wastewater by photo-enhanced persulfate/hematite process publication-title: Environ. Process. doi: 10.1007/s40710-020-00440-9 – volume: 27 start-page: 605 year: 1995 ident: 10.1016/j.cej.2020.127083_b0370 article-title: Rate constants for some reactions of free radicals with haloacetates in aqueous solution publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.550270610 – volume: 380 year: 2020 ident: 10.1016/j.cej.2020.127083_b0860 article-title: An integrated microwave-ultraviolet catalysis process of four peroxides for wastewater treatment: Free radical generation rate and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122434 – volume: 117111 year: 2020 ident: 10.1016/j.cej.2020.127083_b0710 article-title: Microwave irradiation activated persulfate and hydrogen peroxide for the treatment of mature landfill leachate effluent from a membrane bioreactor publication-title: Sep. Purif. Technol. – volume: 101 start-page: 8639 year: 2010 ident: 10.1016/j.cej.2020.127083_b0840 article-title: Destruction of some more and less hydrophobic PAHs and their toxicities in a petrochemical industry wastewater with sonication in Turkey publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.124 – volume: 37 start-page: 4790 year: 2003 ident: 10.1016/j.cej.2020.127083_b0010 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. doi: 10.1021/es0263792 – volume: 243 year: 2020 ident: 10.1016/j.cej.2020.127083_b0560 article-title: Hydroxyl radical-based and sulfate radical-based photocatalytic advanced oxidation processes for treatment of refractory organic matter in semi-aerobic aged refuse biofilter effluent arising from treating landfill leachate publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125390 – volume: 6 start-page: 987 year: 2016 ident: 10.1016/j.cej.2020.127083_b0650 article-title: Granular activated carbon supported iron as a heterogeneous persulfate catalyst for the pretreatment of mature landfill leachate publication-title: RSC Adv. doi: 10.1039/C5RA21781D – volume: 106 start-page: 1 year: 2020 ident: 10.1016/j.cej.2020.127083_b0685 article-title: Stabilized landfill leachate treatment by zero valent aluminium-acid system combined with hydrogen peroxide and persulfate based advanced oxidation process publication-title: Waste Manage. doi: 10.1016/j.wasman.2020.03.005 – volume: 242 year: 2020 ident: 10.1016/j.cej.2020.127083_b0670 article-title: Efficient treatment for landfill leachate through sequential electrocoagulation, electrooxidation and PMS/UV/CuFe2O4 process publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116828 – volume: 253 year: 2020 ident: 10.1016/j.cej.2020.127083_b0265 article-title: Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126652 – volume: 81 start-page: 220 year: 2018 ident: 10.1016/j.cej.2020.127083_b0540 article-title: Landfill leachate treatment by sequential combination of activated persulfate and Fenton oxidation publication-title: Waste Manage. doi: 10.1016/j.wasman.2018.10.007 – volume: 238 year: 2020 ident: 10.1016/j.cej.2020.127083_b0225 article-title: Electro-Fenton with peroxi-coagulation as a feasible pre-treatment for high-strength refractory coke plant wastewater: parameters optimization, removal behavior and kinetics analysis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124649 – ident: 10.1016/j.cej.2020.127083_b0760 – volume: 571 start-page: 643 year: 2016 ident: 10.1016/j.cej.2020.127083_b0285 article-title: In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.032 – volume: 147 start-page: 242 year: 2018 ident: 10.1016/j.cej.2020.127083_b0425 article-title: Photoinduced disinfection in sunlit natural waters: measurement of the second order inactivation rate constants between E. coli and photogenerated transient species publication-title: Water Res. doi: 10.1016/j.watres.2018.10.011 – volume: 22 start-page: 69 year: 2020 ident: 10.1016/j.cej.2020.127083_b0950 article-title: Photocatalytic degradation of industrial textile wastewater using S2O82−/Fe2+ process publication-title: Mater. Today:. Proc. doi: 10.1016/j.matpr.2019.08.083 – volume: 9 start-page: 15277 year: 2019 ident: 10.1016/j.cej.2020.127083_b1040 article-title: Performance and properties of coking nanofiltration concentrate treatment and membrane fouling mitigation by an Fe(ii)/persulfate-coagulation-ultrafiltration process publication-title: RSC Adv. doi: 10.1039/C8RA10094B – volume: 252 year: 2020 ident: 10.1016/j.cej.2020.127083_b1195 article-title: Integration of membrane filtration and peroxymonosulfate activation on CNT@nitrogen doped carbon/Al2O3 membrane for enhanced water treatment: insight into the synergistic mechanism publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117479 – volume: 220 start-page: 1 year: 2017 ident: 10.1016/j.cej.2020.127083_b0125 article-title: Physico-chemical and biological characterization of urban municipal landfill leachate publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.09.002 – volume: 5 start-page: 4014 year: 2017 ident: 10.1016/j.cej.2020.127083_b0025 article-title: Advanced oxidation of orange G using phosphonic acid stabilised zerovalent iron publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2017.07.069 – volume: 116 start-page: 82 year: 2018 ident: 10.1016/j.cej.2020.127083_b0165 article-title: Evaluation of color and COD removal by Fenton from biologically (SBR) pre-treated pulp and paper wastewater publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2018.01.015 – volume: 85 start-page: 18 year: 2019 ident: 10.1016/j.cej.2020.127083_b0550 article-title: Sequential coagulation/flocculation and microwave-persulfate processes for landfill leachate treatment: assessment of bio-toxicity, effect of pretreatment and cost-analysis publication-title: Waste Manage. doi: 10.1016/j.wasman.2018.12.014 – volume: 48 start-page: 229 year: 2014 ident: 10.1016/j.cej.2020.127083_b0880 article-title: Solar photo-fenton like using persulphate for carbamazepine removal from domestic wastewater publication-title: Water Res. doi: 10.1016/j.watres.2013.09.033 – volume: 27 start-page: 6042 year: 2020 ident: 10.1016/j.cej.2020.127083_b1100 article-title: Degradation of refractory organic compounds from dinitrodiazophenol containing industrial wastewater through UV/H2O2 and UV/PS processes publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-07367-1 – volume: 18 start-page: 842 year: 2016 ident: 10.1016/j.cej.2020.127083_b0585 article-title: Factorialdesign and optimization of leachate treatment using persulfate oxidatioN publication-title: Global NEST J. doi: 10.30955/gnj.002035 – volume: 88 start-page: 145 year: 2013 ident: 10.1016/j.cej.2020.127083_b1135 article-title: Degradation of spent caustic by Fenton and persulfate oxidation with zero-valent iron publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.3876 – volume: 102 start-page: 462 year: 2016 ident: 10.1016/j.cej.2020.127083_b0915 article-title: Combined electrocoagulation and UV-based sulfate radical oxidation processes for treatment of pulp and paper wastewater publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2016.04.019 – volume: 847 year: 2019 ident: 10.1016/j.cej.2020.127083_b1160 article-title: Electrochemical advanced oxidation processes coupled with peroxymonosulfate for the treatment of real washing machine effluent: a comparative study publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2019.05.064 – volume: 27 start-page: 15337 year: 2020 ident: 10.1016/j.cej.2020.127083_b0785 article-title: Advanced landfill leachate biochemical effluent treatment using Fe-Mn/AC activates O3/Na2S2O8 process: process optimization, wastewater quality analysis, and activator characterization publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-020-08046-2 – volume: 34 start-page: 122 year: 2007 ident: 10.1016/j.cej.2020.127083_b0215 article-title: Thiocyanate degradation during activated sludge treatment of coke-ovens wastewater publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2006.11.029 – volume: 169 start-page: 241 year: 2019 ident: 10.1016/j.cej.2020.127083_b0825 article-title: Treatment of a saline petrochemical wastewater containing recalcitrant organics using electro-fenton Process: persulfate and ultrasonic intensification publication-title: Desalin. Water Treat. doi: 10.5004/dwt.2019.24682 – start-page: 167 year: 2012 ident: 10.1016/j.cej.2020.127083_b0020 article-title: Chapter seven peroxyacids bleaching – volume: 58 start-page: 143 year: 2017 ident: 10.1016/j.cej.2020.127083_b0160 article-title: Microfauna community during pulp and paper wastewater treatment in a UNOX system publication-title: Eur. J. Protistol. doi: 10.1016/j.ejop.2017.02.004 – volume: 262 start-page: 854 year: 2015 ident: 10.1016/j.cej.2020.127083_b0335 article-title: Activation of peroxymonosulfate with magnetic Fe3O4–MnO2 core–shell nanocomposites for 4-chlorophenol degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.10.043 – volume: 248 start-page: 62 year: 2019 ident: 10.1016/j.cej.2020.127083_b0115 article-title: Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5- vs. S2O82- in drinking water publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2019.02.018 – volume: 472 start-page: 800 year: 2014 ident: 10.1016/j.cej.2020.127083_b0895 article-title: Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.11.008 – volume: 74 start-page: 2675 year: 2016 ident: 10.1016/j.cej.2020.127083_b1075 article-title: Post-treatment of palm oil mill effluent (POME) using combined persulphate with hydrogen peroxide (S2O82−/H2O2) oxidation publication-title: Water Sci. Technol. doi: 10.2166/wst.2016.458 – volume: 147 start-page: 1075 year: 2019 ident: 10.1016/j.cej.2020.127083_b0820 article-title: Mineralization of high saline petrochemical wastewater using Sonoelectro-activated persulfate: Degradation mechanisms and reaction kinetics publication-title: Microchem. J. doi: 10.1016/j.microc.2019.04.020 – volume: 153 year: 2020 ident: 10.1016/j.cej.2020.127083_b0875 article-title: Reclamation of hospital secondary treatment effluent by sulfate radicals based–advanced oxidation processes (SR-AOPs) for removal of antibiotics publication-title: Microchem. J. doi: 10.1016/j.microc.2019.104430 – volume: 243 year: 2020 ident: 10.1016/j.cej.2020.127083_b0680 article-title: Electrochemical treatment of organic pollutants in landfill leachate using a three-dimensional electrode system publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125438 – volume: 53 start-page: 155 year: 2019 ident: 10.1016/j.cej.2020.127083_b0600 article-title: Simultaneous optimization of treatment efficiency and operating cost in leachate concentrate degradation by thermal-activated persulfate catalysed with Ag (I): comparison of microwave and conventional heating publication-title: J. Microw. Power Electromagn. Energy doi: 10.1080/08327823.2019.1643652 – volume: 359 start-page: 396 year: 2018 ident: 10.1016/j.cej.2020.127083_b0515 article-title: Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.07.083 – volume: 77 start-page: 1891 year: 2018 ident: 10.1016/j.cej.2020.127083_b1025 article-title: Advanced treatment of biologically treated coking wastewater by persulfate oxidation with magnetic activated carbon composite as a catalyst publication-title: Water Sci. Technol. doi: 10.2166/wst.2018.069 – volume: 95 start-page: 96 year: 2017 ident: 10.1016/j.cej.2020.127083_b0935 article-title: Treatment of pulp and paper wastewater by lab-scale coagulation/SR-AOPs/ultrafiltration process: optimization by Taguchi publication-title: Desalin. Water Treat. doi: 10.5004/dwt.2017.21530 – volume: 21 start-page: 04016012 year: 2017 ident: 10.1016/j.cej.2020.127083_b0735 article-title: Treatment of stabilized leachate by ferrous-activated persulfate oxidative system publication-title: J. Hazard. Toxic Radioact. Waste doi: 10.1061/(ASCE)HZ.2153-5515.0000328 – volume: 308 start-page: 142 year: 2017 ident: 10.1016/j.cej.2020.127083_b0905 article-title: Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: permanganate, electro-Fenton and Co3O4/UV/peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.015 – volume: 50 start-page: 262 year: 2015 ident: 10.1016/j.cej.2020.127083_b0260 article-title: A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater publication-title: Process Biochem. doi: 10.1016/j.procbio.2014.11.005 – volume: 38 start-page: 1127 year: 2017 ident: 10.1016/j.cej.2020.127083_b0920 article-title: Efficiency evaluation of the membrane/AOPs for paper mill wastewater treatment publication-title: Environ. Technol. doi: 10.1080/09593330.2016.1218553 – volume: 16 year: 2019 ident: 10.1016/j.cej.2020.127083_b1125 article-title: Remediation of PAH-contaminated soil by combining surfactant enhanced soil washing and iron-activated persulfate oxidation process publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph16030441 – volume: 96 start-page: 303 year: 2005 ident: 10.1016/j.cej.2020.127083_b0310 article-title: Use of coagulants in treatment of olive oil wastewater model solutions by induced air flotation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2004.04.014 – volume: 15 start-page: 2075 year: 2018 ident: 10.1016/j.cej.2020.127083_b0605 article-title: Optimization of landfill leachate treatment by microwave oxidation using the Taguchi method publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-017-1567-9 – volume: 8 start-page: 218 year: 2018 ident: 10.1016/j.cej.2020.127083_b0660 article-title: Activation of persulfate using an industrial iron-rich sludge as an efficient nanocatalyst for landfill leachate treatment publication-title: Catalysts doi: 10.3390/catal8050218 – volume: 335 start-page: 865 year: 2018 ident: 10.1016/j.cej.2020.127083_b0100 article-title: Sulfate radical-based oxidation for sludge treatment: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.162 – volume: 307 year: 2020 ident: 10.1016/j.cej.2020.127083_b0035 article-title: Hydrodynamic cavitation based advanced oxidation processes: Studies on specific effects of inorganic acids on the degradation effectiveness of organic pollutants publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113002 – volume: 145 start-page: 487 year: 2018 ident: 10.1016/j.cej.2020.127083_b1175 article-title: Removal of trace organic chemicals in wastewater effluent by UV/H2O2 and UV/PDS publication-title: Water Res. doi: 10.1016/j.watres.2018.08.052 – volume: 207 start-page: 461 year: 2018 ident: 10.1016/j.cej.2020.127083_b0040 article-title: Electrochemical generation of persulfate and its performance on 4-bromophenol treatment publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2018.06.071 – volume: 140 start-page: 220 year: 2018 ident: 10.1016/j.cej.2020.127083_b1190 article-title: Effect of μM Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water publication-title: Water Res. doi: 10.1016/j.watres.2018.04.054 – volume: 67 start-page: 211 year: 2016 ident: 10.1016/j.cej.2020.127083_b1180 article-title: Fluidized-bed Fenton process as alternative wastewater treatment technology—A review publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2016.07.021 – volume: 63 start-page: 292 year: 2017 ident: 10.1016/j.cej.2020.127083_b0770 article-title: Coupling ARB-based biological and photochemical (UV/TiO2 and UV/S2O82−) techniques to deal with sanitary landfill leachate publication-title: Waste Manage. doi: 10.1016/j.wasman.2016.09.003 – volume: 97 start-page: 1 year: 2019 ident: 10.1016/j.cej.2020.127083_b0610 article-title: An investigation of refractory organics in membrane bioreactor effluent following the treatment of landfill leachate by the O3/H2O2 and MW/PS processes publication-title: Waste Manage. doi: 10.1016/j.wasman.2019.07.016 – volume: 348 start-page: 67 year: 2018 ident: 10.1016/j.cej.2020.127083_b0985 article-title: Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.074 – volume: 27 start-page: 223 year: 2017 ident: 10.1016/j.cej.2020.127083_b0910 article-title: Integration of coagulation and electro-activated HSO5− to treat pulp and paper wastewater publication-title: Sustain. Environ. Res. doi: 10.1016/j.serj.2017.06.001 – volume: 10 year: 2018 ident: 10.1016/j.cej.2020.127083_b0110 article-title: Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review publication-title: Water doi: 10.3390/w10121828 – volume: 1 start-page: 794 year: 2019 ident: 10.1016/j.cej.2020.127083_b0800 article-title: Removal of dinitrotoluene from petrochemical wastewater by Fenton oxidation, kinetics and the optimum experiment conditions publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-0812-x – volume: 236 year: 2019 ident: 10.1016/j.cej.2020.127083_b1115 article-title: Phenanthrene degradation using Fe(III)-EDDS photoactivation under simulated solar light: a model for soil washing effluent treatment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124366 – volume: 45 start-page: 9308 year: 2011 ident: 10.1016/j.cej.2020.127083_b0345 article-title: Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System publication-title: Environ. Sci. Technol. doi: 10.1021/es2017363 – volume: 131 start-page: 212 year: 2019 ident: 10.1016/j.cej.2020.127083_b0640 article-title: Novel heterogeneous degradation of mature landfill leachate using persulfate and magnetic CuFe2O4/RGO nanocatalyst publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2019.09.009 – volume: 376 year: 2019 ident: 10.1016/j.cej.2020.127083_b0270 article-title: Advantages of electro-Fenton over electrocoagulation for disinfection of dairy wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.136 – volume: 14 start-page: 1041 year: 1985 ident: 10.1016/j.cej.2020.127083_b0390 article-title: Reactivity of HO2/O−2 radicals in aqueous solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555739 – volume: 355 start-page: 952 year: 2019 ident: 10.1016/j.cej.2020.127083_b0665 article-title: Construction of Fe2O3/Co3O4/exfoliated graphite composite and its high efficient treatment of landfill leachate by activation of potassium persulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.168 – volume: 231 year: 2020 ident: 10.1016/j.cej.2020.127083_b0580 article-title: Treatment of landfill leachate nanofiltration concentrate after ultrafiltration by electrochemically assisted heat activation of peroxydisulfate publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.115928 – volume: 172 year: 2020 ident: 10.1016/j.cej.2020.127083_b0030 article-title: Relative contribution of ferryl ion species (Fe(IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes publication-title: Water Res. doi: 10.1016/j.watres.2020.115504 – volume: 43 start-page: 4347 year: 2009 ident: 10.1016/j.cej.2020.127083_b1045 article-title: Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes publication-title: Water Res. doi: 10.1016/j.watres.2009.06.030 – volume: 371 start-page: 222 year: 2019 ident: 10.1016/j.cej.2020.127083_b0105 article-title: Inactivation of pathogenic microorganisms by sulfate radical: present and future publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.296 – volume: 99 start-page: 4192 year: 2008 ident: 10.1016/j.cej.2020.127083_b0220 article-title: Treatment of coke wastewater in a sequential batch reactor (SBR) at pilot plant scale publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.08.081 – volume: 41 start-page: 4640 year: 2007 ident: 10.1016/j.cej.2020.127083_b0405 article-title: Electron pulse radiolysis determination of hydroxyl radical rate constants with suwannee river fulvic acid and other dissolved organic matter isolates publication-title: Environ. Sci. Technol. doi: 10.1021/es062529n – volume: 98 start-page: 268 year: 2015 ident: 10.1016/j.cej.2020.127083_b0730 article-title: A novel pretreatment process of mature landfill leachate with ultrasonic activated persulfate: Optimization using integrated Taguchi method and response surface methodology publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2015.08.009 – volume: 23 start-page: 19350 year: 2016 ident: 10.1016/j.cej.2020.127083_b1145 article-title: Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-7139-6 – volume: 286 start-page: 343 year: 2015 ident: 10.1016/j.cej.2020.127083_b0195 article-title: Treatment of winery wastewater by physicochemical, biological and advanced processes: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.12.043 – volume: 397 year: 2020 ident: 10.1016/j.cej.2020.127083_b0705 article-title: Molecular-level comparison study on microwave irradiation-activated persulfate and hydrogen peroxide processes for the treatment of refractory organics in mature landfill leachate publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122785 – volume: 21 start-page: 615 year: 2012 ident: 10.1016/j.cej.2020.127083_b0250 article-title: Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view publication-title: Ecotoxicology doi: 10.1007/s10646-011-0806-y – volume: 379 year: 2020 ident: 10.1016/j.cej.2020.127083_b1050 article-title: Treatment of membrane filtration concentrate of coking wastewater using PMS/chloridion oxidation process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122361 – volume: 232 start-page: 45 year: 2019 ident: 10.1016/j.cej.2020.127083_b0565 article-title: Improved landfill leachate quality using ozone, UV solar radiation, hydrogen peroxide, persulfate and adsorption processes publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2018.11.030 – volume: 206 start-page: 709 year: 2018 ident: 10.1016/j.cej.2020.127083_b0205 article-title: Treatment of winery wastewater by anodic oxidation using BDD electrode publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.04.175 – volume: 196 start-page: 173 year: 2011 ident: 10.1016/j.cej.2020.127083_b0475 article-title: Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.09.007 – volume: 2 start-page: 237 year: 2000 ident: 10.1016/j.cej.2020.127083_b0505 article-title: The reactivity of chlorine atoms in aqueous solution. Part III. The reactions of Cl• with solutes publication-title: PCCP doi: 10.1039/a907133d – volume: 48 start-page: 1900198 year: 2020 ident: 10.1016/j.cej.2020.127083_b1060 article-title: Response surface modeling and optimization of microwave-activated persulfate oxidation of olive oil mill wastewater, CLEAN Soil publication-title: Air Water doi: 10.1002/clen.201900198 – volume: 48 start-page: 5558 year: 2009 ident: 10.1016/j.cej.2020.127083_b0340 article-title: Identification of sulfate and hydroxyl radicals in thermally activated persulfate publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9002848 – volume: 330 start-page: 44 year: 2017 ident: 10.1016/j.cej.2020.127083_b0015 article-title: Chemistry of persulfates in water and wastewater treatment: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.132 – volume: 189 start-page: 176 year: 2017 ident: 10.1016/j.cej.2020.127083_b0055 article-title: Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: Kinetics and mechanism publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2017.07.046 – volume: 201 start-page: 370 year: 2018 ident: 10.1016/j.cej.2020.127083_b0815 article-title: 4-Chlorophenol degradation using ultrasound/peroxymonosulfate/nanoscale zero valent iron: Reusability, identification of degradation intermediates and potential application for real wastewater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.02.143 – volume: 153 start-page: 100 year: 2019 ident: 10.1016/j.cej.2020.127083_b0570 article-title: Re-evaluation of sulfate radical based–advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate publication-title: Water Res. doi: 10.1016/j.watres.2019.01.013 – volume: 659 start-page: 1567 year: 2019 ident: 10.1016/j.cej.2020.127083_b0990 article-title: Constructed wetlands for winery wastewater treatment: a comparative life cycle assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.348 – volume: 84 start-page: 1113 year: 1988 ident: 10.1016/j.cej.2020.127083_b0450 article-title: Ionisation constants of ̇OH and HO in aqueous solution up to 200 °C. A pulse radiolysis study publication-title: J. Chem. Soc., Faraday Trans. 1 F doi: 10.1039/f19888401113 – volume: 81 start-page: 345 year: 2020 ident: 10.1016/j.cej.2020.127083_b0925 article-title: Modeling and optimizing electro-persulfate processes using Fe and Al electrodes for paper industry wastewater treatment publication-title: Water Sci. Technol. doi: 10.2166/wst.2020.115 – volume: 137 start-page: 1773 year: 2006 ident: 10.1016/j.cej.2020.127083_b0210 article-title: Simultaneous removal of phenol, ammonium and thiocyanate from coke wastewater by aerobic biodegradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.05.018 – volume: 53 start-page: 11571 year: 2014 ident: 10.1016/j.cej.2020.127083_b0150 article-title: Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie501210j – volume: 80 start-page: 99 year: 2015 ident: 10.1016/j.cej.2020.127083_b0050 article-title: Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5− and UV/S2O82− publication-title: Water Res. doi: 10.1016/j.watres.2015.05.019 – volume: 23 start-page: 20100 year: 2016 ident: 10.1016/j.cej.2020.127083_b0960 article-title: Synthesis of Fe-doped Bi2O3 nanocatalyst and its sonophotocatalytic activity on synthetic dye and real textile wastewater publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-5951-z – ident: 10.1016/j.cej.2020.127083_b1030 – volume: 382 year: 2020 ident: 10.1016/j.cej.2020.127083_b1090 article-title: Microwave-induced persulfate-hydrogen peroxide binary oxidant process for the treatment of dinitrodiazophenol industrial wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122803 – volume: 184 year: 2020 ident: 10.1016/j.cej.2020.127083_b0965 article-title: Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: modeling by response surface methodology and artificial neural network publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109367 – volume: 185 start-page: 754 year: 2017 ident: 10.1016/j.cej.2020.127083_b0655 article-title: Treatment of refractory contaminants by sludge-derived biochar/persulfate system via both adsorption and advanced oxidation process publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.07.084 – volume: 49 start-page: 1673 year: 2015 ident: 10.1016/j.cej.2020.127083_b0415 article-title: Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter publication-title: Environ. Sci. Technol. doi: 10.1021/es503496u – volume: 284 start-page: 83 year: 2015 ident: 10.1016/j.cej.2020.127083_b0715 article-title: Microwave-enhanced persulfate oxidation to treat mature landfill leachate publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.10.043 – volume: 40 start-page: 3775 year: 2006 ident: 10.1016/j.cej.2020.127083_b0395 article-title: Sources and sinks of hydroxyl radicals upon irradiation of natural water samples publication-title: Environ. Sci. Technol. doi: 10.1021/es052206b – volume: 268 start-page: 23 year: 2014 ident: 10.1016/j.cej.2020.127083_b0435 article-title: Degradation of carbamazepine by Fe(II)-activated persulfate process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.01.010 – volume: 114 start-page: 326 year: 2015 ident: 10.1016/j.cej.2020.127083_b0170 article-title: Review on recent developments on pulp and paper mill wastewater treatment publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2014.05.005 – volume: 261 start-page: 3 year: 2010 ident: 10.1016/j.cej.2020.127083_b0075 article-title: Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments publication-title: Desalination doi: 10.1016/j.desal.2010.04.062 – volume: 310 start-page: 41 year: 2017 ident: 10.1016/j.cej.2020.127083_b0280 article-title: Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.064 – volume: 34 start-page: 209 year: 2013 ident: 10.1016/j.cej.2020.127083_b0855 article-title: Treatment of pharmaceutical effluent by ultrasound coupled with dual oxidant system publication-title: Environ. Technol. doi: 10.1080/09593330.2012.689367 – volume: 53 start-page: 124 year: 2018 ident: 10.1016/j.cej.2020.127083_b1005 article-title: Integrated aerobic biological–chemical treatment of winery wastewater diluted with urban wastewater. LED-based photocatalysis in the presence of monoperoxysulfate publication-title: J. Environ. Sci. Health Part A doi: 10.1080/10934529.2017.1377584 – volume: 208 start-page: 54 year: 2019 ident: 10.1016/j.cej.2020.127083_b1150 article-title: Pilot scale degradation study of 16 selected volatile organic compounds by hydroxyl and sulfate radical based advanced oxidation processes publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.10.081 – volume: 563–564 start-page: 664 year: 2016 ident: 10.1016/j.cej.2020.127083_b0255 article-title: A review on the use of membrane technology and fouling control for olive mill wastewater treatment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.09.151 – volume: 244 start-page: 983 year: 2019 ident: 10.1016/j.cej.2020.127083_b0420 article-title: A systematic investigation on the bactericidal transient species generated by photo-sensitization of natural organic matter (NOM) during solar and photo-Fenton disinfection of surface waters publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.12.012 – volume: 152 start-page: 226 year: 2019 ident: 10.1016/j.cej.2020.127083_b0500 article-title: Synergistic removal of ammonium by monochloramine photolysis publication-title: Water Res. doi: 10.1016/j.watres.2018.12.065 – volume: 25 start-page: 1615 year: 2016 ident: 10.1016/j.cej.2020.127083_b0740 article-title: Advanced treatment of leachate secondary effluent by a combined process of MFPFS coagulation and sulfate radical oxidation publication-title: Pol. J. Environ. Stud. doi: 10.15244/pjoes/62645 – volume: 17 start-page: 2707 year: 2020 ident: 10.1016/j.cej.2020.127083_b0780 article-title: Electro-activated peroxymonosulfate and peroxydisulfate oxidation of leachate nanofiltration concentrate: multiple-response optimization publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-020-02651-x – volume: 208 start-page: 159 year: 2018 ident: 10.1016/j.cej.2020.127083_b0535 article-title: Treatment of landfill leachate biochemical effluent using the nano-Fe3O4/Na2S2O8 system: Oxidation performance, wastewater spectral analysis, and activator characterization publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2017.12.023 – volume: 300 year: 2020 ident: 10.1016/j.cej.2020.127083_b0230 article-title: New insights of enhanced anaerobic degradation of refractory pollutants in coking wastewater: role of zero-valent iron in metagenomic functions publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122667 – volume: 33 year: 2020 ident: 10.1016/j.cej.2020.127083_b0330 article-title: Peroxymonosulfate-assisted photocatalytic degradation of sulfadiazine using self-assembled multi-layered CoAl-LDH/g-C3N4 heterostructures: performance, mechanism and eco-toxicity evaluation publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2019.101084 – volume: 97 start-page: 47 year: 2019 ident: 10.1016/j.cej.2020.127083_b0675 article-title: Coupled heat-activated persulfate Electrolysis for the abatement of organic matter and total nitrogen from landfill leachate publication-title: Waste Manage. doi: 10.1016/j.wasman.2019.07.037 – volume: 195 start-page: 1389 year: 2018 ident: 10.1016/j.cej.2020.127083_b0810 article-title: Degradation of 4-chlorophenol using catalyzed peroxymonosulfate with nano-MnO2/UV irradiation: toxicity assessment and evaluation for industrial wastewater treatment publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.05.137 – volume: 17 start-page: 93 year: 2020 ident: 10.1016/j.cej.2020.127083_b1080 article-title: Survey of sono-activated persulfate process for treatment of real dairy wastewater publication-title: Int. J. Environ. Sci. Technol. doi: 10.1007/s13762-019-02324-4 – volume: 77 start-page: 194 year: 2009 ident: 10.1016/j.cej.2020.127083_b0365 article-title: Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.07.040 – volume: 270 year: 2020 ident: 10.1016/j.cej.2020.127083_b0430 article-title: Detrimental vs. beneficial influence of ions during solar (SODIS) and photo-Fenton disinfection of E. coli in water: (Bi)carbonate, chloride, nitrate and nitrite effects publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.118877 – volume: 24 start-page: 22414 year: 2017 ident: 10.1016/j.cej.2020.127083_b1000 article-title: Oxidation of winery wastewater by sulphate radicals: catalytic and solar photocatalytic activations publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9896-2 – volume: 25 start-page: 9 year: 2018 ident: 10.1016/j.cej.2020.127083_b0095 article-title: Major advances and challenges in heterogeneous catalysis for environmental applications: a review publication-title: Ecol. Chem. Eng. S – volume: 2 start-page: 178 year: 2020 ident: 10.1016/j.cej.2020.127083_b1065 article-title: Application of the central composite design to mineralization of olive mill wastewater by the electro/FeII/persulfate oxidation method publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-1986-y – year: 2020 ident: 10.1016/j.cej.2020.127083_b0930 article-title: Paper mill wastewater treatment by Fe2+ and heat-activated persulfate oxidation: process modeling and optimization publication-title: Environ. Progr. Sustain. Energy doi: 10.1002/ep.13508 – volume: 349 start-page: 338 year: 2018 ident: 10.1016/j.cej.2020.127083_b0755 article-title: Advanced degradation of refractory pollutants in incineration leachate by UV/Peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.062 – volume: 8 start-page: 38765 year: 2018 ident: 10.1016/j.cej.2020.127083_b1035 article-title: Sulfate radical oxidation combined with iron flocculation for upgrading biological effluent of coking wastewater publication-title: RSC Adv. doi: 10.1039/C8RA08134D – volume: 248 year: 2020 ident: 10.1016/j.cej.2020.127083_b0240 article-title: Treatment of coking wastewater by aeration assisted electrochemical oxidation process at controlled and uncontrolled initial pH conditions publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117043 – volume: 76 start-page: 575 year: 2018 ident: 10.1016/j.cej.2020.127083_b0530 article-title: Stabilized landfill leachate treatment by coagulation-flocculation coupled with UV-based sulfate radical oxidation process publication-title: Waste Manage. doi: 10.1016/j.wasman.2018.02.047 – volume: 3 start-page: 2229 year: 2015 ident: 10.1016/j.cej.2020.127083_b0850 article-title: Treatment of pharmaceutical effluent using novel heterogeneous fly ash activated persulfate system publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2015.07.019 – volume: 126 start-page: 7 year: 2019 ident: 10.1016/j.cej.2020.127083_b0695 article-title: Optimization of COD removal from leachate nanofiltration concentrate using H2O2/Fe+2/heat Activated persulfate oxidation processes publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2019.03.034 – volume: 34 start-page: 2162 year: 2000 ident: 10.1016/j.cej.2020.127083_b0470 article-title: Mechanism and kinetics of the OH-radical intervention during fenton oxidation in the presence of a significant amount of radical scavenger Cl- publication-title: Environ. Sci. Technol. doi: 10.1021/es991406i – volume: 247 year: 2020 ident: 10.1016/j.cej.2020.127083_b0970 article-title: Synergistic degradation of acid blue 113 dye in a thermally activated persulfate (TAP)/ZnO-GAC oxidation system: degradation pathway and application for real textile wastewater publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.116931 – volume: 246–247 start-page: 79 year: 2013 ident: 10.1016/j.cej.2020.127083_b0700 article-title: A study on microwave oxidation of landfill leachate—Contributions of microwave-specific effects publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.11.060 – volume: 150 start-page: 468 year: 2008 ident: 10.1016/j.cej.2020.127083_b0130 article-title: Landfill leachate treatment: review and opportunity publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.09.077 |
SSID | ssj0006919 |
Score | 2.7277224 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•The application of SR-AOPs for IWW treatment was systematically reviewed.•The theoretical (reactive species) and practical aspects (IWW... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 127083 |
SubjectTerms | Advanced oxidation processes Industrial wastewater Peroxymonosulfate (PMS) Persulfate activation Sulfate radical |
Title | A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) |
URI | https://dx.doi.org/10.1016/j.cej.2020.127083 |
Volume | 406 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14UGFtmqSb7DEUS7XYSmuxt7BJNpBS0mJb1Is_wF_tTLKpFdSD5BCyzJKwM7szk_lmhpBzp65iMONjxrltMDuQsKWsMGQmyLIZhU7EFSYn33d5e2jfjRqjEmkWuTAIq9Rnf36mZ6e1Hqnp1azNkqQ2qGNMS9gYR7TAjcGKn7btoJRfv3_BPLjImnsgMUPqIrKZYbxCNQYX0cQaC47hWj_rpjV909oh29pQpF7-LbukpNI9srVWPnCffHg0zzyh05iCIQdPiLWkOq4_p9M0G16ByZEuWfXqoC9yjr_OsL4mDd7oYDmJ4YH2ZRa7YajgIuppkADtvSZ5_yWqkwvgBReDPvN6D_PLAzJs3Tw220z3VmChKZwFE4aIVBAqKQXs6kgJKzIN6YauFXA7NpUIOI-xJZnZkAqcMKOhVN2KpXTA4oN9bh2ScjpN1RFmfavIcCMOlorEvFzh4BWA68m5ANZUiFGsqh_qwuPY_2LiFwizsQ-M8JERfs6ICrlaTZnlVTf-IrYLVvnfRMcHrfD7tOP_TTshmybCWrAnTOOUlBfPS3UGdskiqGaCVyUb3m2n3cV7p__U-QRK3OJ8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELWgHIADYhU7PoAESKapkzr1gUPEopayqQWJW3ASRwqq2oq2Ai58AL_DDzKTOKVIwAEJ5WTLThzPxJ6J38wjZNst6RjM-JgJ4VjMCRR8UnYYMg66zKPQjYTG4OSLS1G9dc7uyndj5D2PhUFYpVn7szU9Xa1NTdHMZrGbJMVmCc-0pIPniDa4MTmDdV2_PIHf1jusHYOQdzg_Pbk5qjJDLcBCLt0-k5aMdBBqpSQodaSlHXFLVcKKHQgn5loGQsTIyMXLSoMPYpW1LtmxUi4YPKDmNtx3nEw4sFwgbcLB6yeuRMiUTQRHx3B4-VFqCioL9QP4pByTOrhWxf5-MxzZ4E5nyYyxTKmXvfwcGdPteTI9kq9wgbx5NAt1oZ2YguUIJQR3UgMk6NFOO60eotexXTIkB6FPqof_6jChJw1eaHPQiqFAGyo9LGK4o0bUM6gEevWcZIRP1EQzwAN2mw3mXV339hbJ7b_M-BIptDttvYxh5jqyKpEA00hhILB08QrA1xVCgi6sECufVT80mc6RcKPl55C2Bx8E4aMg_EwQK2R_2KWbpfn4rbGTi8r_oqs-bEM_d1v9W7ctMlm9uTj3z2uX9TUyxRFTg4Q05XVS6D8O9AYYRf1gM1VCSu7_W-s_AC6XHFY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+the+recent+advances+on+the+treatment+of+industrial+wastewaters+by+Sulfate+Radical-based+Advanced+Oxidation+Processes+%28SR-AOPs%29&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Giannakis%2C+Stefanos&rft.au=Lin%2C+Kun-Yi+Andrew&rft.au=Ghanbari%2C+Farshid&rft.date=2021-02-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=406&rft_id=info:doi/10.1016%2Fj.cej.2020.127083&rft.externalDocID=S1385894720332113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |