Relaxation oscillations in a slow–fast modified Leslie–Gower model

In this paper, we prove the existence and uniqueness of relaxation oscillation cycle of a slow–fast modified Leslie–Gower model via the entry–exit function and geometric singular perturbation theory. Numerical simulations are also carried out to illustrate our theoretical result.

Saved in:
Bibliographic Details
Published inApplied mathematics letters Vol. 87; pp. 147 - 153
Main Authors Wang, Cheng, Zhang, Xiang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2019
Subjects
Online AccessGet full text
ISSN0893-9659
1873-5452
DOI10.1016/j.aml.2018.07.029

Cover

Loading…
Abstract In this paper, we prove the existence and uniqueness of relaxation oscillation cycle of a slow–fast modified Leslie–Gower model via the entry–exit function and geometric singular perturbation theory. Numerical simulations are also carried out to illustrate our theoretical result.
AbstractList In this paper, we prove the existence and uniqueness of relaxation oscillation cycle of a slow–fast modified Leslie–Gower model via the entry–exit function and geometric singular perturbation theory. Numerical simulations are also carried out to illustrate our theoretical result.
Author Wang, Cheng
Zhang, Xiang
Author_xml – sequence: 1
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
  email: mathwc@sjtu.edu.cn
  organization: School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China
– sequence: 2
  givenname: Xiang
  orcidid: 0000-0001-5194-4077
  surname: Zhang
  fullname: Zhang, Xiang
  email: xzhang@sjtu.edu.cn
  organization: School of Mathematical Sciences, Key Laboratory of Scientific and Engineering Computing (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, PR China
BookMark eNp9kMFKAzEQhoNUsK0-gLd9gV2TTTab4EmKrUJBED2HbHYCKelGksXqzXfwDX0S09aTh15mhh--YeabockQBkDomuCKYMJvNpXe-qrGRFS4rXAtz9CUiJaWDWvqCZpiIWkpeSMv0CylDcaYSiqmaPkMXn_o0YWhCMk47w9zKtxQ6CL5sPv5-rY6jcU29M466Is1JO8gx6uwg7jPwV-ic6t9gqu_Pkevy_uXxUO5flo9Lu7WpallO5bC9ILZrpWcCaptx6wBKRjDTHc18N5w3WDTadI3gjDRUK5ragRwmUtnOzpH7XGviSGlCFYZNx4uHqN2XhGs9jrURmUdaq9D4VZlHZkk_8i36LY6fp5kbo8M5JfeHUSVDcFgoHcRzKj64E7Qv3Pxfa8
CitedBy_id crossref_primary_10_1016_j_physleta_2021_127542
crossref_primary_10_1016_j_nonrwa_2019_103010
crossref_primary_10_1007_s11538_021_00941_0
crossref_primary_10_1016_j_jmaa_2024_129177
crossref_primary_10_1186_s13662_024_03828_1
crossref_primary_10_1016_j_matcom_2024_07_027
crossref_primary_10_1016_j_aml_2020_106355
crossref_primary_10_1142_S0218127423501882
crossref_primary_10_1007_s11071_024_10398_0
crossref_primary_10_1142_S021812742450086X
crossref_primary_10_1016_j_apm_2022_04_022
crossref_primary_10_1016_j_nonrwa_2023_103888
crossref_primary_10_1016_j_cnsns_2024_108360
crossref_primary_10_1007_s12346_022_00608_8
crossref_primary_10_1155_2020_1351397
crossref_primary_10_1016_j_aml_2020_106852
crossref_primary_10_1016_j_aml_2021_107328
crossref_primary_10_1063_5_0201887
crossref_primary_10_1007_s12346_023_00936_3
crossref_primary_10_1134_S001226612112003X
crossref_primary_10_1007_s12346_022_00663_1
crossref_primary_10_1111_sapm_12492
crossref_primary_10_1142_S0218127422500717
crossref_primary_10_1007_s11071_024_10770_0
crossref_primary_10_1016_j_jmaa_2023_127418
crossref_primary_10_1142_S021812742450158X
crossref_primary_10_1080_00036811_2022_2057303
crossref_primary_10_3389_fncom_2022_889235
crossref_primary_10_1007_s00707_024_04111_w
crossref_primary_10_1142_S0218127422501681
Cites_doi 10.1006/jdeq.2000.3778
10.1006/jdeq.2000.3929
10.1016/j.jde.2016.01.008
10.1016/S0893-9659(03)90096-6
10.1016/j.jmaa.2011.05.081
10.1016/j.jde.2007.10.021
10.1007/s00285-009-0266-7
10.1137/S0036141099360919
10.1016/j.mbs.2017.11.003
10.1007/s10884-006-9020-7
10.1016/0022-0396(79)90152-9
10.1016/j.jde.2007.08.011
10.1137/17M1130010
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aml.2018.07.029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5452
EndPage 153
ExternalDocumentID 10_1016_j_aml_2018_07_029
S0893965918302520
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-8cd84fb796483afb4fce984404ab2e6dc6a50cba1d58148536a23c8e69c8ebfb3
IEDL.DBID IXB
ISSN 0893-9659
IngestDate Thu Apr 24 23:03:55 EDT 2025
Tue Jul 01 00:38:21 EDT 2025
Fri Feb 23 02:32:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Entry–exit function
Geometric singular perturbation
Relaxation oscillation
Slow–fast system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-8cd84fb796483afb4fce984404ab2e6dc6a50cba1d58148536a23c8e69c8ebfb3
ORCID 0000-0001-5194-4077
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_aml_2018_07_029
crossref_primary_10_1016_j_aml_2018_07_029
elsevier_sciencedirect_doi_10_1016_j_aml_2018_07_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationTitle Applied mathematics letters
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Arditi, Ginzburg (b16) 2012; 114
Aziz-Alaoui, Daher Okiye (b1) 2003; 16
Hek (b3) 2010; 60
Kaper, Jones (b9) 2001; vol. 122
Jones (b6) 1995; vol. 1609
Liu (b8) 2006; 18
Jones, Tin (b10) 2009; 2
Schecter (b11) 2008; 245
Kuehn (b4) 2015; vol. 191
Krupa, Szmolyan (b15) 2001; 174
Fenichel (b5) 1979; 31
Dumortier, Roussarie (b13) 1996; 121
Liu (b7) 2000; 167
Wang, Zhang (b19) 2018; 17
Benoit (b20) 1981; 293
Schecter (b12) 2008; 245
De Maesschalck, Schecter (b18) 2016; 260
Ambrosio, Aziz-Alaoui, Yafia (b17) 2018; 295
Zhu, Wang (b2) 2011; 384
Krupa, Szmolyan (b14) 2001; 33
Jones (10.1016/j.aml.2018.07.029_b10) 2009; 2
De Maesschalck (10.1016/j.aml.2018.07.029_b18) 2016; 260
Schecter (10.1016/j.aml.2018.07.029_b12) 2008; 245
Hek (10.1016/j.aml.2018.07.029_b3) 2010; 60
Jones (10.1016/j.aml.2018.07.029_b6) 1995; vol. 1609
Arditi (10.1016/j.aml.2018.07.029_b16) 2012; 114
Ambrosio (10.1016/j.aml.2018.07.029_b17) 2018; 295
Kaper (10.1016/j.aml.2018.07.029_b9) 2001; vol. 122
Liu (10.1016/j.aml.2018.07.029_b7) 2000; 167
Krupa (10.1016/j.aml.2018.07.029_b15) 2001; 174
Liu (10.1016/j.aml.2018.07.029_b8) 2006; 18
Fenichel (10.1016/j.aml.2018.07.029_b5) 1979; 31
Schecter (10.1016/j.aml.2018.07.029_b11) 2008; 245
Dumortier (10.1016/j.aml.2018.07.029_b13) 1996; 121
Aziz-Alaoui (10.1016/j.aml.2018.07.029_b1) 2003; 16
Zhu (10.1016/j.aml.2018.07.029_b2) 2011; 384
Krupa (10.1016/j.aml.2018.07.029_b14) 2001; 33
Wang (10.1016/j.aml.2018.07.029_b19) 2018; 17
Benoit (10.1016/j.aml.2018.07.029_b20) 1981; 293
Kuehn (10.1016/j.aml.2018.07.029_b4) 2015; vol. 191
References_xml – volume: 18
  start-page: 667
  year: 2006
  end-page: 691
  ident: b8
  article-title: Geometric singular perturbations for multiple turning points: invariant manifolds and exchange lemmas
  publication-title: J. Dynam. Differential Equations
– volume: 295
  start-page: 48
  year: 2018
  end-page: 54
  ident: b17
  article-title: Canard phenomenon in a slow–fast modified Leslie–Gower model
  publication-title: Math. Biosci.
– volume: 16
  start-page: 1069
  year: 2003
  end-page: 1075
  ident: b1
  article-title: Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling–type II schemes
  publication-title: Appl. Math. Lett.
– volume: vol. 1609
  start-page: 44
  year: 1995
  end-page: 118
  ident: b6
  article-title: Geometric singular perturbation theory, in dynamical systems
  publication-title: Lecture Notes in Math.
– volume: 2
  start-page: 967
  year: 2009
  end-page: 1023
  ident: b10
  article-title: Generalized exchange lemmas and orbits heteroclinic to invariant manifolds
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
– volume: 33
  start-page: 286
  year: 2001
  end-page: 314
  ident: b14
  article-title: Extending geometric singular perturbation theory to nonhyperbolic points–fold and canard points in two dimensions
  publication-title: SIAM J. Math. Anal.
– volume: 167
  start-page: 134
  year: 2000
  end-page: 180
  ident: b7
  article-title: Exchange lemmas for singular perturbation problems with certain turning points
  publication-title: J. Differential Equations
– volume: 121
  start-page: x+100
  year: 1996
  ident: b13
  article-title: Canard cycles and center manifolds
  publication-title: Mem. Amer. Math. Soc.
– volume: 245
  start-page: 392
  year: 2008
  end-page: 410
  ident: b11
  article-title: Exchange lemmas. I. Deng’s lemma
  publication-title: J. Differential Equations
– volume: 114
  start-page: 142
  year: 2012
  end-page: 143
  ident: b16
  article-title: How species interact: Altering the standard view on trophic ecology
  publication-title: Environ. Health Perspect.
– volume: 17
  start-page: 788
  year: 2018
  end-page: 822
  ident: b19
  article-title: Stability loss delay and smoothness of the return map in slow–fast systems
  publication-title: SIAM J. Appl. Dyn. Syst.
– volume: 260
  start-page: 6697
  year: 2016
  end-page: 6715
  ident: b18
  article-title: The entry–exit function and geometric singular perturbation theory
  publication-title: J. Differential Equations
– volume: 174
  start-page: 312
  year: 2001
  end-page: 368
  ident: b15
  article-title: Relaxation oscillation and canard explosion
  publication-title: J. Differential Equations
– volume: 60
  start-page: 347
  year: 2010
  end-page: 386
  ident: b3
  article-title: Geometric singular perturbation theory in biological practice
  publication-title: J. Math. Biol.
– volume: 245
  start-page: 411
  year: 2008
  end-page: 441
  ident: b12
  article-title: Exchange lemmas. II. General exchange lemma
  publication-title: J. Differential Equations
– volume: 31
  start-page: 53
  year: 1979
  end-page: 98
  ident: b5
  article-title: Geometric singular perturbation theory for ordinary differential equations
  publication-title: J. Differential Equations
– volume: vol. 191
  start-page: xiv+814
  year: 2015
  ident: b4
  article-title: Multiple Time Scale Dynamics
  publication-title: Applied Mathematical Sciences
– volume: vol. 122
  start-page: 65
  year: 2001
  end-page: 87
  ident: b9
  article-title: A primer on the exchange lemma for fast–slow systems
  publication-title: Multiple–Time–Scale Dynamical Systems (Minneapolis, MN, 1997)
– volume: 293
  start-page: 293
  year: 1981
  end-page: 296
  ident: b20
  article-title: Équations différentielles: relation entrée–sortie
  publication-title: C. R. Acad. Sci., Paris I
– volume: 384
  start-page: 400
  year: 2011
  end-page: 408
  ident: b2
  article-title: Existence and global attractivity of positive periodic solutions for a predator–prey model with modified Leslie–Gower Holling–type II schemes
  publication-title: J. Math. Anal. Appl.
– volume: 167
  start-page: 134
  issue: 1
  year: 2000
  ident: 10.1016/j.aml.2018.07.029_b7
  article-title: Exchange lemmas for singular perturbation problems with certain turning points
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.2000.3778
– volume: vol. 122
  start-page: 65
  year: 2001
  ident: 10.1016/j.aml.2018.07.029_b9
  article-title: A primer on the exchange lemma for fast–slow systems
– volume: 174
  start-page: 312
  issue: 2
  year: 2001
  ident: 10.1016/j.aml.2018.07.029_b15
  article-title: Relaxation oscillation and canard explosion
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.2000.3929
– volume: 260
  start-page: 6697
  issue: 8
  year: 2016
  ident: 10.1016/j.aml.2018.07.029_b18
  article-title: The entry–exit function and geometric singular perturbation theory
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2016.01.008
– volume: 16
  start-page: 1069
  issue: 7
  year: 2003
  ident: 10.1016/j.aml.2018.07.029_b1
  article-title: Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling–type II schemes
  publication-title: Appl. Math. Lett.
  doi: 10.1016/S0893-9659(03)90096-6
– volume: 384
  start-page: 400
  issue: 2
  year: 2011
  ident: 10.1016/j.aml.2018.07.029_b2
  article-title: Existence and global attractivity of positive periodic solutions for a predator–prey model with modified Leslie–Gower Holling–type II schemes
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.05.081
– volume: 245
  start-page: 411
  issue: 2
  year: 2008
  ident: 10.1016/j.aml.2018.07.029_b12
  article-title: Exchange lemmas. II. General exchange lemma
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2007.10.021
– volume: 60
  start-page: 347
  issue: 3
  year: 2010
  ident: 10.1016/j.aml.2018.07.029_b3
  article-title: Geometric singular perturbation theory in biological practice
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-009-0266-7
– volume: 33
  start-page: 286
  issue: 2
  year: 2001
  ident: 10.1016/j.aml.2018.07.029_b14
  article-title: Extending geometric singular perturbation theory to nonhyperbolic points–fold and canard points in two dimensions
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141099360919
– volume: 295
  start-page: 48
  year: 2018
  ident: 10.1016/j.aml.2018.07.029_b17
  article-title: Canard phenomenon in a slow–fast modified Leslie–Gower model
  publication-title: Math. Biosci.
  doi: 10.1016/j.mbs.2017.11.003
– volume: 18
  start-page: 667
  issue: 3
  year: 2006
  ident: 10.1016/j.aml.2018.07.029_b8
  article-title: Geometric singular perturbations for multiple turning points: invariant manifolds and exchange lemmas
  publication-title: J. Dynam. Differential Equations
  doi: 10.1007/s10884-006-9020-7
– volume: 31
  start-page: 53
  issue: 1
  year: 1979
  ident: 10.1016/j.aml.2018.07.029_b5
  article-title: Geometric singular perturbation theory for ordinary differential equations
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(79)90152-9
– volume: vol. 1609
  start-page: 44
  year: 1995
  ident: 10.1016/j.aml.2018.07.029_b6
  article-title: Geometric singular perturbation theory, in dynamical systems
– volume: 2
  start-page: 967
  issue: 4
  year: 2009
  ident: 10.1016/j.aml.2018.07.029_b10
  article-title: Generalized exchange lemmas and orbits heteroclinic to invariant manifolds
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
– volume: 245
  start-page: 392
  issue: 2
  year: 2008
  ident: 10.1016/j.aml.2018.07.029_b11
  article-title: Exchange lemmas. I. Deng’s lemma
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2007.08.011
– volume: 17
  start-page: 788
  issue: 1
  year: 2018
  ident: 10.1016/j.aml.2018.07.029_b19
  article-title: Stability loss delay and smoothness of the return map in slow–fast systems
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/17M1130010
– volume: 121
  start-page: x+100
  issue: 577
  year: 1996
  ident: 10.1016/j.aml.2018.07.029_b13
  article-title: Canard cycles and center manifolds
  publication-title: Mem. Amer. Math. Soc.
– volume: vol. 191
  start-page: xiv+814
  year: 2015
  ident: 10.1016/j.aml.2018.07.029_b4
  article-title: Multiple Time Scale Dynamics
– volume: 114
  start-page: 142
  issue: 11
  year: 2012
  ident: 10.1016/j.aml.2018.07.029_b16
  article-title: How species interact: Altering the standard view on trophic ecology
  publication-title: Environ. Health Perspect.
– volume: 293
  start-page: 293
  issue: 5
  year: 1981
  ident: 10.1016/j.aml.2018.07.029_b20
  article-title: Équations différentielles: relation entrée–sortie
  publication-title: C. R. Acad. Sci., Paris I
SSID ssj0003938
Score 2.3829489
Snippet In this paper, we prove the existence and uniqueness of relaxation oscillation cycle of a slow–fast modified Leslie–Gower model via the entry–exit function and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 147
SubjectTerms Entry–exit function
Geometric singular perturbation
Relaxation oscillation
Slow–fast system
Title Relaxation oscillations in a slow–fast modified Leslie–Gower model
URI https://dx.doi.org/10.1016/j.aml.2018.07.029
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvehBfGJ9lD14EmLz2mT3WIu1PtqLFnpb9gmVNi02oifxP_gP_SXubpKioB68JGSZgfBtmJnNzHwDwEmShiiSOPGY1sqLlQ48LFnqSR7KNEZKI2Uzuv1B0hvG1yM0qoFO1QtjyypL21_YdGety5VWiWZrPh637nzjai0dXmAprFBoz-1RjF0T3-h8aY0j4qZZW2HPSleZTVfjxaY2-xBgx9_poswffNMXf9PdBBtloAjbxbtsgZrKtsF6f8myutgBXVvJ9uKghZaTclLWtcFxBhlcTGbPH2_vmi1yOJ3JsTbBJrxVJq5UZvnSTkeDbg7OLhh2L-47Pa-ci-CJkKS5h4XEsea2iRRHTPNYC0WwJfpjPFSJFAlDvuAskAib0w6KEhZGAquEmAvXPNoD9WyWqX0AhUh1bPaFJEqZu8-I5pJwJggWqfFtDeBXiFBRkobb2RUTWlWHPVADIrUgUj-lBsQGOF2qzAvGjL-E4wpm-m3bqbHov6sd_E_tEKyZJ1L8QTkC9fzxSR2bmCLnTbBy9ho0wWr76qY3aLpP6BMH9tAy
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcgAOiFWU1QdOSFGzObGPUFFaaHuhlXqzvEpFbVrRIDjyD_whX4LtJBVIwIFLIjljKXqOZp4z4zcAXCRpiCKJE49prbxY6cDDkqWe5KFMY6Q0Ujaj2x8knVF8N0bjGmhVZ2FsWWXp-wuf7rx1OdIs0WwuJpPmg29CrZXDC6yEFQrNvn3NsIHU9m_ojq9X7jgirp21tfaseZXadEVebGbTDwF2Ap6OZv4QnL4EnPY22CqZIrwqXmYH1FS2Czb7K5nV5R5o21K2V4cttKKU07KwDU4yyOByOn_5eHvXbJnD2VxOtGGbsKcMsVRm-Na2R4OuEc4-GLVvhq2OVzZG8ERI0tzDQuJYc3uKFEdM81gLRbBV-mM8VIkUCUO-4CyQCJvtDooSFkYCq4SYC9c8OgD1bJ6pQwCFSHVsFoYkSpm7z4jmknAmCBapCW4N4FeIUFGqhtvmFVNalYc9UgMitSBSP6UGxAa4XE1ZFJIZfxnHFcz027pT49J_n3b0v2nnYL0z7Pdorzu4PwYb5gkpfqecgHr-9KxODcHI-Zn7gD4BGijQxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relaxation+oscillations+in+a+slow%E2%80%93fast+modified+Leslie%E2%80%93Gower+model&rft.jtitle=Applied+mathematics+letters&rft.au=Wang%2C+Cheng&rft.au=Zhang%2C+Xiang&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0893-9659&rft.eissn=1873-5452&rft.volume=87&rft.spage=147&rft.epage=153&rft_id=info:doi/10.1016%2Fj.aml.2018.07.029&rft.externalDocID=S0893965918302520
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-9659&client=summon