Relaxation oscillations in a slow–fast modified Leslie–Gower model
In this paper, we prove the existence and uniqueness of relaxation oscillation cycle of a slow–fast modified Leslie–Gower model via the entry–exit function and geometric singular perturbation theory. Numerical simulations are also carried out to illustrate our theoretical result.
Saved in:
Published in | Applied mathematics letters Vol. 87; pp. 147 - 153 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-9659 1873-5452 |
DOI | 10.1016/j.aml.2018.07.029 |
Cover
Loading…
Abstract | In this paper, we prove the existence and uniqueness of relaxation oscillation cycle of a slow–fast modified Leslie–Gower model via the entry–exit function and geometric singular perturbation theory. Numerical simulations are also carried out to illustrate our theoretical result. |
---|---|
AbstractList | In this paper, we prove the existence and uniqueness of relaxation oscillation cycle of a slow–fast modified Leslie–Gower model via the entry–exit function and geometric singular perturbation theory. Numerical simulations are also carried out to illustrate our theoretical result. |
Author | Wang, Cheng Zhang, Xiang |
Author_xml | – sequence: 1 givenname: Cheng surname: Wang fullname: Wang, Cheng email: mathwc@sjtu.edu.cn organization: School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, PR China – sequence: 2 givenname: Xiang orcidid: 0000-0001-5194-4077 surname: Zhang fullname: Zhang, Xiang email: xzhang@sjtu.edu.cn organization: School of Mathematical Sciences, Key Laboratory of Scientific and Engineering Computing (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, PR China |
BookMark | eNp9kMFKAzEQhoNUsK0-gLd9gV2TTTab4EmKrUJBED2HbHYCKelGksXqzXfwDX0S09aTh15mhh--YeabockQBkDomuCKYMJvNpXe-qrGRFS4rXAtz9CUiJaWDWvqCZpiIWkpeSMv0CylDcaYSiqmaPkMXn_o0YWhCMk47w9zKtxQ6CL5sPv5-rY6jcU29M466Is1JO8gx6uwg7jPwV-ic6t9gqu_Pkevy_uXxUO5flo9Lu7WpallO5bC9ILZrpWcCaptx6wBKRjDTHc18N5w3WDTadI3gjDRUK5ragRwmUtnOzpH7XGviSGlCFYZNx4uHqN2XhGs9jrURmUdaq9D4VZlHZkk_8i36LY6fp5kbo8M5JfeHUSVDcFgoHcRzKj64E7Qv3Pxfa8 |
CitedBy_id | crossref_primary_10_1016_j_physleta_2021_127542 crossref_primary_10_1016_j_nonrwa_2019_103010 crossref_primary_10_1007_s11538_021_00941_0 crossref_primary_10_1016_j_jmaa_2024_129177 crossref_primary_10_1186_s13662_024_03828_1 crossref_primary_10_1016_j_matcom_2024_07_027 crossref_primary_10_1016_j_aml_2020_106355 crossref_primary_10_1142_S0218127423501882 crossref_primary_10_1007_s11071_024_10398_0 crossref_primary_10_1142_S021812742450086X crossref_primary_10_1016_j_apm_2022_04_022 crossref_primary_10_1016_j_nonrwa_2023_103888 crossref_primary_10_1016_j_cnsns_2024_108360 crossref_primary_10_1007_s12346_022_00608_8 crossref_primary_10_1155_2020_1351397 crossref_primary_10_1016_j_aml_2020_106852 crossref_primary_10_1016_j_aml_2021_107328 crossref_primary_10_1063_5_0201887 crossref_primary_10_1007_s12346_023_00936_3 crossref_primary_10_1134_S001226612112003X crossref_primary_10_1007_s12346_022_00663_1 crossref_primary_10_1111_sapm_12492 crossref_primary_10_1142_S0218127422500717 crossref_primary_10_1007_s11071_024_10770_0 crossref_primary_10_1016_j_jmaa_2023_127418 crossref_primary_10_1142_S021812742450158X crossref_primary_10_1080_00036811_2022_2057303 crossref_primary_10_3389_fncom_2022_889235 crossref_primary_10_1007_s00707_024_04111_w crossref_primary_10_1142_S0218127422501681 |
Cites_doi | 10.1006/jdeq.2000.3778 10.1006/jdeq.2000.3929 10.1016/j.jde.2016.01.008 10.1016/S0893-9659(03)90096-6 10.1016/j.jmaa.2011.05.081 10.1016/j.jde.2007.10.021 10.1007/s00285-009-0266-7 10.1137/S0036141099360919 10.1016/j.mbs.2017.11.003 10.1007/s10884-006-9020-7 10.1016/0022-0396(79)90152-9 10.1016/j.jde.2007.08.011 10.1137/17M1130010 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd |
Copyright_xml | – notice: 2018 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.aml.2018.07.029 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-5452 |
EndPage | 153 |
ExternalDocumentID | 10_1016_j_aml_2018_07_029 S0893965918302520 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W JJJVA KOM M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSW SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-8cd84fb796483afb4fce984404ab2e6dc6a50cba1d58148536a23c8e69c8ebfb3 |
IEDL.DBID | IXB |
ISSN | 0893-9659 |
IngestDate | Thu Apr 24 23:03:55 EDT 2025 Tue Jul 01 00:38:21 EDT 2025 Fri Feb 23 02:32:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Entry–exit function Geometric singular perturbation Relaxation oscillation Slow–fast system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-8cd84fb796483afb4fce984404ab2e6dc6a50cba1d58148536a23c8e69c8ebfb3 |
ORCID | 0000-0001-5194-4077 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1016_j_aml_2018_07_029 crossref_primary_10_1016_j_aml_2018_07_029 elsevier_sciencedirect_doi_10_1016_j_aml_2018_07_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 2019-01-00 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationTitle | Applied mathematics letters |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Arditi, Ginzburg (b16) 2012; 114 Aziz-Alaoui, Daher Okiye (b1) 2003; 16 Hek (b3) 2010; 60 Kaper, Jones (b9) 2001; vol. 122 Jones (b6) 1995; vol. 1609 Liu (b8) 2006; 18 Jones, Tin (b10) 2009; 2 Schecter (b11) 2008; 245 Kuehn (b4) 2015; vol. 191 Krupa, Szmolyan (b15) 2001; 174 Fenichel (b5) 1979; 31 Dumortier, Roussarie (b13) 1996; 121 Liu (b7) 2000; 167 Wang, Zhang (b19) 2018; 17 Benoit (b20) 1981; 293 Schecter (b12) 2008; 245 De Maesschalck, Schecter (b18) 2016; 260 Ambrosio, Aziz-Alaoui, Yafia (b17) 2018; 295 Zhu, Wang (b2) 2011; 384 Krupa, Szmolyan (b14) 2001; 33 Jones (10.1016/j.aml.2018.07.029_b10) 2009; 2 De Maesschalck (10.1016/j.aml.2018.07.029_b18) 2016; 260 Schecter (10.1016/j.aml.2018.07.029_b12) 2008; 245 Hek (10.1016/j.aml.2018.07.029_b3) 2010; 60 Jones (10.1016/j.aml.2018.07.029_b6) 1995; vol. 1609 Arditi (10.1016/j.aml.2018.07.029_b16) 2012; 114 Ambrosio (10.1016/j.aml.2018.07.029_b17) 2018; 295 Kaper (10.1016/j.aml.2018.07.029_b9) 2001; vol. 122 Liu (10.1016/j.aml.2018.07.029_b7) 2000; 167 Krupa (10.1016/j.aml.2018.07.029_b15) 2001; 174 Liu (10.1016/j.aml.2018.07.029_b8) 2006; 18 Fenichel (10.1016/j.aml.2018.07.029_b5) 1979; 31 Schecter (10.1016/j.aml.2018.07.029_b11) 2008; 245 Dumortier (10.1016/j.aml.2018.07.029_b13) 1996; 121 Aziz-Alaoui (10.1016/j.aml.2018.07.029_b1) 2003; 16 Zhu (10.1016/j.aml.2018.07.029_b2) 2011; 384 Krupa (10.1016/j.aml.2018.07.029_b14) 2001; 33 Wang (10.1016/j.aml.2018.07.029_b19) 2018; 17 Benoit (10.1016/j.aml.2018.07.029_b20) 1981; 293 Kuehn (10.1016/j.aml.2018.07.029_b4) 2015; vol. 191 |
References_xml | – volume: 18 start-page: 667 year: 2006 end-page: 691 ident: b8 article-title: Geometric singular perturbations for multiple turning points: invariant manifolds and exchange lemmas publication-title: J. Dynam. Differential Equations – volume: 295 start-page: 48 year: 2018 end-page: 54 ident: b17 article-title: Canard phenomenon in a slow–fast modified Leslie–Gower model publication-title: Math. Biosci. – volume: 16 start-page: 1069 year: 2003 end-page: 1075 ident: b1 article-title: Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling–type II schemes publication-title: Appl. Math. Lett. – volume: vol. 1609 start-page: 44 year: 1995 end-page: 118 ident: b6 article-title: Geometric singular perturbation theory, in dynamical systems publication-title: Lecture Notes in Math. – volume: 2 start-page: 967 year: 2009 end-page: 1023 ident: b10 article-title: Generalized exchange lemmas and orbits heteroclinic to invariant manifolds publication-title: Discrete Contin. Dyn. Syst. Ser. S – volume: 33 start-page: 286 year: 2001 end-page: 314 ident: b14 article-title: Extending geometric singular perturbation theory to nonhyperbolic points–fold and canard points in two dimensions publication-title: SIAM J. Math. Anal. – volume: 167 start-page: 134 year: 2000 end-page: 180 ident: b7 article-title: Exchange lemmas for singular perturbation problems with certain turning points publication-title: J. Differential Equations – volume: 121 start-page: x+100 year: 1996 ident: b13 article-title: Canard cycles and center manifolds publication-title: Mem. Amer. Math. Soc. – volume: 245 start-page: 392 year: 2008 end-page: 410 ident: b11 article-title: Exchange lemmas. I. Deng’s lemma publication-title: J. Differential Equations – volume: 114 start-page: 142 year: 2012 end-page: 143 ident: b16 article-title: How species interact: Altering the standard view on trophic ecology publication-title: Environ. Health Perspect. – volume: 17 start-page: 788 year: 2018 end-page: 822 ident: b19 article-title: Stability loss delay and smoothness of the return map in slow–fast systems publication-title: SIAM J. Appl. Dyn. Syst. – volume: 260 start-page: 6697 year: 2016 end-page: 6715 ident: b18 article-title: The entry–exit function and geometric singular perturbation theory publication-title: J. Differential Equations – volume: 174 start-page: 312 year: 2001 end-page: 368 ident: b15 article-title: Relaxation oscillation and canard explosion publication-title: J. Differential Equations – volume: 60 start-page: 347 year: 2010 end-page: 386 ident: b3 article-title: Geometric singular perturbation theory in biological practice publication-title: J. Math. Biol. – volume: 245 start-page: 411 year: 2008 end-page: 441 ident: b12 article-title: Exchange lemmas. II. General exchange lemma publication-title: J. Differential Equations – volume: 31 start-page: 53 year: 1979 end-page: 98 ident: b5 article-title: Geometric singular perturbation theory for ordinary differential equations publication-title: J. Differential Equations – volume: vol. 191 start-page: xiv+814 year: 2015 ident: b4 article-title: Multiple Time Scale Dynamics publication-title: Applied Mathematical Sciences – volume: vol. 122 start-page: 65 year: 2001 end-page: 87 ident: b9 article-title: A primer on the exchange lemma for fast–slow systems publication-title: Multiple–Time–Scale Dynamical Systems (Minneapolis, MN, 1997) – volume: 293 start-page: 293 year: 1981 end-page: 296 ident: b20 article-title: Équations différentielles: relation entrée–sortie publication-title: C. R. Acad. Sci., Paris I – volume: 384 start-page: 400 year: 2011 end-page: 408 ident: b2 article-title: Existence and global attractivity of positive periodic solutions for a predator–prey model with modified Leslie–Gower Holling–type II schemes publication-title: J. Math. Anal. Appl. – volume: 167 start-page: 134 issue: 1 year: 2000 ident: 10.1016/j.aml.2018.07.029_b7 article-title: Exchange lemmas for singular perturbation problems with certain turning points publication-title: J. Differential Equations doi: 10.1006/jdeq.2000.3778 – volume: vol. 122 start-page: 65 year: 2001 ident: 10.1016/j.aml.2018.07.029_b9 article-title: A primer on the exchange lemma for fast–slow systems – volume: 174 start-page: 312 issue: 2 year: 2001 ident: 10.1016/j.aml.2018.07.029_b15 article-title: Relaxation oscillation and canard explosion publication-title: J. Differential Equations doi: 10.1006/jdeq.2000.3929 – volume: 260 start-page: 6697 issue: 8 year: 2016 ident: 10.1016/j.aml.2018.07.029_b18 article-title: The entry–exit function and geometric singular perturbation theory publication-title: J. Differential Equations doi: 10.1016/j.jde.2016.01.008 – volume: 16 start-page: 1069 issue: 7 year: 2003 ident: 10.1016/j.aml.2018.07.029_b1 article-title: Boundedness and global stability for a predator–prey model with modified Leslie–Gower and Holling–type II schemes publication-title: Appl. Math. Lett. doi: 10.1016/S0893-9659(03)90096-6 – volume: 384 start-page: 400 issue: 2 year: 2011 ident: 10.1016/j.aml.2018.07.029_b2 article-title: Existence and global attractivity of positive periodic solutions for a predator–prey model with modified Leslie–Gower Holling–type II schemes publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2011.05.081 – volume: 245 start-page: 411 issue: 2 year: 2008 ident: 10.1016/j.aml.2018.07.029_b12 article-title: Exchange lemmas. II. General exchange lemma publication-title: J. Differential Equations doi: 10.1016/j.jde.2007.10.021 – volume: 60 start-page: 347 issue: 3 year: 2010 ident: 10.1016/j.aml.2018.07.029_b3 article-title: Geometric singular perturbation theory in biological practice publication-title: J. Math. Biol. doi: 10.1007/s00285-009-0266-7 – volume: 33 start-page: 286 issue: 2 year: 2001 ident: 10.1016/j.aml.2018.07.029_b14 article-title: Extending geometric singular perturbation theory to nonhyperbolic points–fold and canard points in two dimensions publication-title: SIAM J. Math. Anal. doi: 10.1137/S0036141099360919 – volume: 295 start-page: 48 year: 2018 ident: 10.1016/j.aml.2018.07.029_b17 article-title: Canard phenomenon in a slow–fast modified Leslie–Gower model publication-title: Math. Biosci. doi: 10.1016/j.mbs.2017.11.003 – volume: 18 start-page: 667 issue: 3 year: 2006 ident: 10.1016/j.aml.2018.07.029_b8 article-title: Geometric singular perturbations for multiple turning points: invariant manifolds and exchange lemmas publication-title: J. Dynam. Differential Equations doi: 10.1007/s10884-006-9020-7 – volume: 31 start-page: 53 issue: 1 year: 1979 ident: 10.1016/j.aml.2018.07.029_b5 article-title: Geometric singular perturbation theory for ordinary differential equations publication-title: J. Differential Equations doi: 10.1016/0022-0396(79)90152-9 – volume: vol. 1609 start-page: 44 year: 1995 ident: 10.1016/j.aml.2018.07.029_b6 article-title: Geometric singular perturbation theory, in dynamical systems – volume: 2 start-page: 967 issue: 4 year: 2009 ident: 10.1016/j.aml.2018.07.029_b10 article-title: Generalized exchange lemmas and orbits heteroclinic to invariant manifolds publication-title: Discrete Contin. Dyn. Syst. Ser. S – volume: 245 start-page: 392 issue: 2 year: 2008 ident: 10.1016/j.aml.2018.07.029_b11 article-title: Exchange lemmas. I. Deng’s lemma publication-title: J. Differential Equations doi: 10.1016/j.jde.2007.08.011 – volume: 17 start-page: 788 issue: 1 year: 2018 ident: 10.1016/j.aml.2018.07.029_b19 article-title: Stability loss delay and smoothness of the return map in slow–fast systems publication-title: SIAM J. Appl. Dyn. Syst. doi: 10.1137/17M1130010 – volume: 121 start-page: x+100 issue: 577 year: 1996 ident: 10.1016/j.aml.2018.07.029_b13 article-title: Canard cycles and center manifolds publication-title: Mem. Amer. Math. Soc. – volume: vol. 191 start-page: xiv+814 year: 2015 ident: 10.1016/j.aml.2018.07.029_b4 article-title: Multiple Time Scale Dynamics – volume: 114 start-page: 142 issue: 11 year: 2012 ident: 10.1016/j.aml.2018.07.029_b16 article-title: How species interact: Altering the standard view on trophic ecology publication-title: Environ. Health Perspect. – volume: 293 start-page: 293 issue: 5 year: 1981 ident: 10.1016/j.aml.2018.07.029_b20 article-title: Équations différentielles: relation entrée–sortie publication-title: C. R. Acad. Sci., Paris I |
SSID | ssj0003938 |
Score | 2.3829489 |
Snippet | In this paper, we prove the existence and uniqueness of relaxation oscillation cycle of a slow–fast modified Leslie–Gower model via the entry–exit function and... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 147 |
SubjectTerms | Entry–exit function Geometric singular perturbation Relaxation oscillation Slow–fast system |
Title | Relaxation oscillations in a slow–fast modified Leslie–Gower model |
URI | https://dx.doi.org/10.1016/j.aml.2018.07.029 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qvehBfGJ9lD14EmLz2mT3WIu1PtqLFnpb9gmVNi02oifxP_gP_SXubpKioB68JGSZgfBtmJnNzHwDwEmShiiSOPGY1sqLlQ48LFnqSR7KNEZKI2Uzuv1B0hvG1yM0qoFO1QtjyypL21_YdGety5VWiWZrPh637nzjai0dXmAprFBoz-1RjF0T3-h8aY0j4qZZW2HPSleZTVfjxaY2-xBgx9_poswffNMXf9PdBBtloAjbxbtsgZrKtsF6f8myutgBXVvJ9uKghZaTclLWtcFxBhlcTGbPH2_vmi1yOJ3JsTbBJrxVJq5UZvnSTkeDbg7OLhh2L-47Pa-ci-CJkKS5h4XEsea2iRRHTPNYC0WwJfpjPFSJFAlDvuAskAib0w6KEhZGAquEmAvXPNoD9WyWqX0AhUh1bPaFJEqZu8-I5pJwJggWqfFtDeBXiFBRkobb2RUTWlWHPVADIrUgUj-lBsQGOF2qzAvGjL-E4wpm-m3bqbHov6sd_E_tEKyZJ1L8QTkC9fzxSR2bmCLnTbBy9ho0wWr76qY3aLpP6BMH9tAy |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcgAOiFWU1QdOSFGzObGPUFFaaHuhlXqzvEpFbVrRIDjyD_whX4LtJBVIwIFLIjljKXqOZp4z4zcAXCRpiCKJE49prbxY6cDDkqWe5KFMY6Q0Ujaj2x8knVF8N0bjGmhVZ2FsWWXp-wuf7rx1OdIs0WwuJpPmg29CrZXDC6yEFQrNvn3NsIHU9m_ojq9X7jgirp21tfaseZXadEVebGbTDwF2Ap6OZv4QnL4EnPY22CqZIrwqXmYH1FS2Czb7K5nV5R5o21K2V4cttKKU07KwDU4yyOByOn_5eHvXbJnD2VxOtGGbsKcMsVRm-Na2R4OuEc4-GLVvhq2OVzZG8ERI0tzDQuJYc3uKFEdM81gLRbBV-mM8VIkUCUO-4CyQCJvtDooSFkYCq4SYC9c8OgD1bJ6pQwCFSHVsFoYkSpm7z4jmknAmCBapCW4N4FeIUFGqhtvmFVNalYc9UgMitSBSP6UGxAa4XE1ZFJIZfxnHFcz027pT49J_n3b0v2nnYL0z7Pdorzu4PwYb5gkpfqecgHr-9KxODcHI-Zn7gD4BGijQxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relaxation+oscillations+in+a+slow%E2%80%93fast+modified+Leslie%E2%80%93Gower+model&rft.jtitle=Applied+mathematics+letters&rft.au=Wang%2C+Cheng&rft.au=Zhang%2C+Xiang&rft.date=2019-01-01&rft.pub=Elsevier+Ltd&rft.issn=0893-9659&rft.eissn=1873-5452&rft.volume=87&rft.spage=147&rft.epage=153&rft_id=info:doi/10.1016%2Fj.aml.2018.07.029&rft.externalDocID=S0893965918302520 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-9659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-9659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-9659&client=summon |