RJ-RRT: Improved RRT for Path Planning in Narrow Passages
As a representative of sampling-based planning algorithms, rapidly exploring random tree (RRT), is extensively welcomed in solving robot path planning problems due to its wide application range and easy addition of nonholonomic constraints. However, it is still challenging for RRT to plan the path f...
Saved in:
Published in | Applied sciences Vol. 12; no. 23; p. 12033 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a representative of sampling-based planning algorithms, rapidly exploring random tree (RRT), is extensively welcomed in solving robot path planning problems due to its wide application range and easy addition of nonholonomic constraints. However, it is still challenging for RRT to plan the path for configuration space with narrow passages. As a variant algorithm of RRT, rapid random discovery vine (RRV) gives a better solution, but when configuration space contains more obstacles instead of narrow passages, RRV performs slightly worse than RRT. In order to solve these problems, this paper re-examines the role of sampling points in RRT. Firstly, according to the state of the random tree expanding towards the current sampling point, a greedy sampling space reduction strategy is proposed, which decreases the redundant expansion of the random tree in space by dynamically changing the sampling space. Secondly, a new narrow passage judgment method is proposed according to the environment around of sampling point. After the narrow passage is identified, the narrow passage is explored by generating multiple subtrees inside the passage. The subtrees can be merged into the main tree that expands in a larger area by subsequent sampling. These improvements further enhance the value of sampling points. Compared with the existing RRT algorithms, the adaptability for different environments is improved, and the planning time and memory usage are saved. |
---|---|
AbstractList | As a representative of sampling-based planning algorithms, rapidly exploring random tree (RRT), is extensively welcomed in solving robot path planning problems due to its wide application range and easy addition of nonholonomic constraints. However, it is still challenging for RRT to plan the path for configuration space with narrow passages. As a variant algorithm of RRT, rapid random discovery vine (RRV) gives a better solution, but when configuration space contains more obstacles instead of narrow passages, RRV performs slightly worse than RRT. In order to solve these problems, this paper re-examines the role of sampling points in RRT. Firstly, according to the state of the random tree expanding towards the current sampling point, a greedy sampling space reduction strategy is proposed, which decreases the redundant expansion of the random tree in space by dynamically changing the sampling space. Secondly, a new narrow passage judgment method is proposed according to the environment around of sampling point. After the narrow passage is identified, the narrow passage is explored by generating multiple subtrees inside the passage. The subtrees can be merged into the main tree that expands in a larger area by subsequent sampling. These improvements further enhance the value of sampling points. Compared with the existing RRT algorithms, the adaptability for different environments is improved, and the planning time and memory usage are saved. |
Author | Chai, Qisen Wang, Yujun |
Author_xml | – sequence: 1 givenname: Qisen orcidid: 0000-0002-8293-6763 surname: Chai fullname: Chai, Qisen – sequence: 2 givenname: Yujun surname: Wang fullname: Wang, Yujun |
BookMark | eNptUE1PwzAMjdCQGGM3fkAlrhTy0TYNNzTxMTTBNI1z5KTpyNQ1JelA_HsCQ2hC-GL76fnZfsdo0LrWIHRK8AVjAl9C1xFKGaGYsQM0pJgXKcsIH-zVR2gcwhrHEISVBA-RWDyki8XyKpluOu_eTJXELqmdT-bQvyTzBtrWtqvEtskjeO_eIx4CrEw4QYc1NMGMf_IIPd_eLCf36ezpbjq5nqWaCt6nJReEq7wodGWA1jkUGSmEqqEklFVMC0NA5FgAVVrwjIIo6pwzwiDWBgs2QtOdbuVgLTtvN-A_pAMrvwHnVxJ8b3VjZJQoGdQEQFVZKUApJagWmWaYlUoXUetspxV_fd2a0Mu12_o2ni8pz8qcMlqUkXW-Y2nvQvCm_t1KsPzyWu57Hen0D13bHnrr2t6Dbf4f-gR5cICr |
CitedBy_id | crossref_primary_10_3390_s23177547 crossref_primary_10_1016_j_birob_2024_100207 crossref_primary_10_3390_s25020328 crossref_primary_10_3390_app14010025 crossref_primary_10_1109_ACCESS_2024_3392926 crossref_primary_10_3390_app13042030 crossref_primary_10_1016_j_compag_2025_110063 crossref_primary_10_2478_cait_2024_0026 crossref_primary_10_3390_electronics13244963 crossref_primary_10_1108_RIA_06_2023_0083 crossref_primary_10_1016_j_heliyon_2024_e32451 crossref_primary_10_1016_j_robot_2023_104570 crossref_primary_10_1007_s11432_023_4285_3 |
Cites_doi | 10.1109/TRO.2010.2049527 10.1109/ICRA.2015.7139609 10.1007/BF01386390 10.1109/IROS.2010.5651569 10.1109/ACCESS.2014.2302442 10.3390/app112411777 10.1109/ROBOT.2004.1308756 10.1017/CBO9780511546877 10.1109/ICRA.2014.6907540 10.1109/TSSC.1968.300136 10.1109/ICRA.2019.8793618 10.1109/ROBOT.2004.1307192 10.1109/JAS.2021.1004252 10.1109/56.2083 10.1109/IROS.2011.6048865 10.1109/TASE.2020.2976560 10.1007/s10846-016-0362-z 10.1109/70.508439 10.3390/app10217716 10.1007/s10846-017-0641-3 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.3390/app122312033 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_2bc83af1aabd489abbb92c94c3038bc6 10_3390_app122312033 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c297t-87917b566cdea2f5a64169bfa8123d3c9e1a9509a2bc9742a96f57313a42ae093 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:17:25 EDT 2025 Mon Jun 30 11:17:26 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Tue Jul 01 04:32:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-87917b566cdea2f5a64169bfa8123d3c9e1a9509a2bc9742a96f57313a42ae093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8293-6763 |
OpenAccessLink | https://doaj.org/article/2bc83af1aabd489abbb92c94c3038bc6 |
PQID | 2748523268 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2bc83af1aabd489abbb92c94c3038bc6 proquest_journals_2748523268 crossref_primary_10_3390_app122312033 crossref_citationtrail_10_3390_app122312033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 ref_13 ref_12 ref_11 Tsardoulias (ref_1) 2016; 84 ref_10 Wang (ref_26) 2018; 90 ref_19 ref_18 ref_17 Gilbert (ref_30) 1988; 4 Kavraki (ref_6) 1996; 12 ref_16 ref_15 Li (ref_28) 2021; 9 Hart (ref_3) 1968; 4 ref_25 ref_24 ref_23 ref_22 ref_21 ref_20 Jaillet (ref_2) 2010; 26 Dijkstra (ref_4) 1959; 1 ref_29 ref_8 Elbanhawi (ref_9) 2014; 2 ref_5 Wang (ref_27) 2020; 17 ref_7 |
References_xml | – ident: ref_7 – ident: ref_11 – volume: 26 start-page: 635 year: 2010 ident: ref_2 article-title: Sampling-based path planning on configuration-space costmaps publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2010.2049527 – ident: ref_24 doi: 10.1109/ICRA.2015.7139609 – volume: 1 start-page: 269 year: 1959 ident: ref_4 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. doi: 10.1007/BF01386390 – ident: ref_25 doi: 10.1109/IROS.2010.5651569 – volume: 2 start-page: 56 year: 2014 ident: ref_9 article-title: Sampling-based robot motion planning: A review publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2302442 – ident: ref_14 – ident: ref_18 – ident: ref_19 doi: 10.3390/app112411777 – ident: ref_20 doi: 10.1109/ROBOT.2004.1308756 – ident: ref_8 doi: 10.1017/CBO9780511546877 – ident: ref_23 doi: 10.1109/ICRA.2014.6907540 – ident: ref_21 – volume: 4 start-page: 100 year: 1968 ident: ref_3 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1968.300136 – ident: ref_22 doi: 10.1109/ICRA.2019.8793618 – ident: ref_15 doi: 10.1109/ROBOT.2004.1307192 – volume: 9 start-page: 283 year: 2021 ident: ref_28 article-title: An adaptive rapidly-exploring random tree publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2021.1004252 – ident: ref_29 – ident: ref_12 – ident: ref_10 – volume: 4 start-page: 193 year: 1988 ident: ref_30 article-title: A fast procedure for computing the distance between complex objects in three-dimensional space publication-title: IEEE J. Robot. Autom. doi: 10.1109/56.2083 – ident: ref_16 doi: 10.1109/IROS.2011.6048865 – ident: ref_13 – ident: ref_17 – volume: 17 start-page: 1748 year: 2020 ident: ref_27 article-title: Neural RRT*: Learning-based optimal path planning publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2020.2976560 – volume: 84 start-page: 829 year: 2016 ident: ref_1 article-title: A review of global path planning methods for occupancy grid maps regardless of obstacle density publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-016-0362-z – volume: 12 start-page: 566 year: 1996 ident: ref_6 article-title: Probabilistic roadmaps for path planning in high-dimensional configuration spaces publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.508439 – ident: ref_5 doi: 10.3390/app10217716 – volume: 90 start-page: 81 year: 2018 ident: ref_26 article-title: A learning-based multi-RRT approach for robot path planning in narrow passages publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-017-0641-3 |
SSID | ssj0000913810 |
Score | 2.3186038 |
Snippet | As a representative of sampling-based planning algorithms, rapidly exploring random tree (RRT), is extensively welcomed in solving robot path planning problems... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 12033 |
SubjectTerms | Algorithms complex environment Connectivity Methods narrow passage path planning Planning RRT Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-LnoQrYr1RQ4Kiixukn0kXkRFKQVLKS30tuQpgmyrW_-_k222VkRvu0kOSx4z3zeZ_QahM5M4ooQiEUucjZLEuEg4YSOTxkqngCBUnTz-3Ms6o6Q7Tsch4FaFtMrGJtaG2ky0j5FfA3viQJpoxm-n75GvGuVvV0MJjVW0DiaYA_lav3_s9QeLKItXveQknme8M-D3_l6YgEskNGbshy-qJft_WeTazTxto62AD_HdfEF30IotW2hzSTWwhXbCeazwRRCNvtxFYtCNBoPhDZ5HCazB8IYBkeI-YDzc1CbCryXu1bqL0F75pLJqD42eHocPnSiURYg0FfkM7BdQLAUwTBsrqUtlBqBKKCfBVzPDtLBECsABkioNbIFKkbk0Z4RJeLaxYPtorZyU9gDh3Kv3kSyn1gDRczGH_lQLrmXuMmZlG101E1TooBnuS1e8FcAd_HQWy9PZRueL0dO5VsYf4-79XC_GeIXrumHy8VKEA1PAx3MmHZFSmYQLqZQSVItEg8_lSmdtdNysVBGOXVV8b5LD_7uP0Ab1_zHUeSnHaG328WlPAF3M1GnYQl8xiszZ priority: 102 providerName: ProQuest |
Title | RJ-RRT: Improved RRT for Path Planning in Narrow Passages |
URI | https://www.proquest.com/docview/2748523268 https://doaj.org/article/2bc83af1aabd489abbb92c94c3038bc6 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwED50vuiDuKk4nSMPCooUl6S_4pvK5hg4RtlgbyVJExBkipv_v5e0GxURX3xr00DLXXP3fen1O4CLIrRUCUUDHloThGFhA2GFCYqop3SECEL54vHncTychaN5NK-1-nI1YaU8cGm4W6Z0yqWlUqoiTIVUSgmmRagx9qZKe7FtzHk1MuVjsKBOuqqsdOfI6933YIqpkLIe599ykJfq_xGJfXoZHMB-hQvJffk8Tdgyixbs1dQCW9Cs1uGSXFVi0deHILJRkGXTO1LuDpiC4BlBJEomiO3IuicReVmQsddbxPGlKyZbHsFs0J8-DoOqHUKgmUhWGLeQWimEX7owktlIxgimhLISczQvuBaGSoH5X6LJkCUwKWIbJZxyicemJ_gxNBZvC3MCJHGqfTROmCmQ4NleitcjLVItExtzI9twszZQriutcNey4jVHzuDMmdfN2YbLzez3UiPjl3kPztabOU7Z2g-gv_PK3_lf_m5DZ-2pvFpuyxypdYqMmsXp6X_c4wx2mfvLwVetdKCx-vg054g9VqoL2-ngqQs7D_3xJOv6l-4LaY7X6A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD6U-mD7IHZt6WrVPLTQIkMnyVwSQcTbur0tZdlC36a5iiC7tbMi_il_oyeZmXVF2re-zUzyMJycy3eSk-8A7NrMUy01TXjmXZJl1ifSS5fYPNUmRwShY_H42agYXmTHl_nlCvzu7sKEssrOJ0ZHbWcm7JEfYvYkMGlihXh7_T0JXaPC6WrXQqNRixP36yembPWbo4-4vnuMDT5NPgyTtqtAYpgs52j-mKFoRDHGOsV8rgrEJFJ7haGOW26ko0piGFVMGwTbTMnC5yWnXOGzi-RL6PIfZJzLYFFi8HmxpxM4NgVNm_p6HE_DKTTFAExZyvk_kS82CPjP_8egNngMj1o0St416rMBK27ag_UljsIebLTWX5P9lqL64AnI8XEyHk9ek2ZPwlmCbwTxLzlHREm6Tkjk65SMIssjfq9DCVu9CRf3Iq4tWJ3Opm4bSBm4AmlRMmcxrfSpwPHcSGFU6QvuVB9edQKqTMtQHhplfKswUwnirJbF2Ye9xezrhpnjlnnvg6wXcwKfdvwwu_lSteZZ4c8LrjxVSttMSKW1lszIzGCEF9oUfdjpVqpqjbyu_qrk07uHX8LD4eTstDo9Gp08gzUWblDEipgdWJ3f_HDPEdfM9YuoTASu7lt7_wDxAAeK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC5khZAcRDeRrJqkDxESZHC6e14dkJCNLj6SZVkUvI39FEF2V2dF8tfy66ye6dkYgrl5m34churqqq-6q78C-GgSR5VQNOKJs1GSGBcJJ2xk0ljpFBGEqpPHfw6zw7Pk-Dw9X4Lf7VsYn1bZ2sTaUJup9mfkuxg9FRg0sazYdSEtYrQ_-Dq7iXwFKX_T2pbTaFTkxP66x_Ct2jvax7XeZmxwcPr9MAoVBiLNRD5HU4DRikJEo42VzKUyQ3wilJPo9rjhWlgqBbpUyZRG4M2kyFyac8olftuaiAnN_3KOUVHcgeX-wXA0XpzweMbNgsZNtj3nIvZ30hTdMWUx53_5wbpcwD_eoHZxg1VYCdiUfGuUaQ2W7KQLrx4xFnZhLdiCinwKhNWfX4MYH0fj8ekX0pxQWEOwRRANkxHiS9LWRSJXEzKsOR-xv_IJbdUbOHsWga1DZzKd2LdAcs8cSLOcWYNBposLHE-1KLTMXcat7MFOK6BSB75yXzbjusS4xYuzfCzOHmwvZs8ano4n5vW9rBdzPLt23TG9vSzDZi3x5wsuHZVSmaQQUiklmBaJRn9fKJ31YKtdqTJs-ar8o6Ab_x_-AC9Qc8sfR8OTTXjJ_HOKOj1mCzrz2zv7DkHOXL0P2kTg4rkV-AGo8w0c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RJ-RRT%3A+Improved+RRT+for+Path+Planning+in+Narrow+Passages&rft.jtitle=Applied+sciences&rft.au=Qisen+Chai&rft.au=Yujun+Wang&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=23&rft.spage=12033&rft_id=info:doi/10.3390%2Fapp122312033&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2bc83af1aabd489abbb92c94c3038bc6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |