RJ-RRT: Improved RRT for Path Planning in Narrow Passages

As a representative of sampling-based planning algorithms, rapidly exploring random tree (RRT), is extensively welcomed in solving robot path planning problems due to its wide application range and easy addition of nonholonomic constraints. However, it is still challenging for RRT to plan the path f...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 23; p. 12033
Main Authors Chai, Qisen, Wang, Yujun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a representative of sampling-based planning algorithms, rapidly exploring random tree (RRT), is extensively welcomed in solving robot path planning problems due to its wide application range and easy addition of nonholonomic constraints. However, it is still challenging for RRT to plan the path for configuration space with narrow passages. As a variant algorithm of RRT, rapid random discovery vine (RRV) gives a better solution, but when configuration space contains more obstacles instead of narrow passages, RRV performs slightly worse than RRT. In order to solve these problems, this paper re-examines the role of sampling points in RRT. Firstly, according to the state of the random tree expanding towards the current sampling point, a greedy sampling space reduction strategy is proposed, which decreases the redundant expansion of the random tree in space by dynamically changing the sampling space. Secondly, a new narrow passage judgment method is proposed according to the environment around of sampling point. After the narrow passage is identified, the narrow passage is explored by generating multiple subtrees inside the passage. The subtrees can be merged into the main tree that expands in a larger area by subsequent sampling. These improvements further enhance the value of sampling points. Compared with the existing RRT algorithms, the adaptability for different environments is improved, and the planning time and memory usage are saved.
AbstractList As a representative of sampling-based planning algorithms, rapidly exploring random tree (RRT), is extensively welcomed in solving robot path planning problems due to its wide application range and easy addition of nonholonomic constraints. However, it is still challenging for RRT to plan the path for configuration space with narrow passages. As a variant algorithm of RRT, rapid random discovery vine (RRV) gives a better solution, but when configuration space contains more obstacles instead of narrow passages, RRV performs slightly worse than RRT. In order to solve these problems, this paper re-examines the role of sampling points in RRT. Firstly, according to the state of the random tree expanding towards the current sampling point, a greedy sampling space reduction strategy is proposed, which decreases the redundant expansion of the random tree in space by dynamically changing the sampling space. Secondly, a new narrow passage judgment method is proposed according to the environment around of sampling point. After the narrow passage is identified, the narrow passage is explored by generating multiple subtrees inside the passage. The subtrees can be merged into the main tree that expands in a larger area by subsequent sampling. These improvements further enhance the value of sampling points. Compared with the existing RRT algorithms, the adaptability for different environments is improved, and the planning time and memory usage are saved.
Author Chai, Qisen
Wang, Yujun
Author_xml – sequence: 1
  givenname: Qisen
  orcidid: 0000-0002-8293-6763
  surname: Chai
  fullname: Chai, Qisen
– sequence: 2
  givenname: Yujun
  surname: Wang
  fullname: Wang, Yujun
BookMark eNptUE1PwzAMjdCQGGM3fkAlrhTy0TYNNzTxMTTBNI1z5KTpyNQ1JelA_HsCQ2hC-GL76fnZfsdo0LrWIHRK8AVjAl9C1xFKGaGYsQM0pJgXKcsIH-zVR2gcwhrHEISVBA-RWDyki8XyKpluOu_eTJXELqmdT-bQvyTzBtrWtqvEtskjeO_eIx4CrEw4QYc1NMGMf_IIPd_eLCf36ezpbjq5nqWaCt6nJReEq7wodGWA1jkUGSmEqqEklFVMC0NA5FgAVVrwjIIo6pwzwiDWBgs2QtOdbuVgLTtvN-A_pAMrvwHnVxJ8b3VjZJQoGdQEQFVZKUApJagWmWaYlUoXUetspxV_fd2a0Mu12_o2ni8pz8qcMlqUkXW-Y2nvQvCm_t1KsPzyWu57Hen0D13bHnrr2t6Dbf4f-gR5cICr
CitedBy_id crossref_primary_10_3390_s23177547
crossref_primary_10_1016_j_birob_2024_100207
crossref_primary_10_3390_s25020328
crossref_primary_10_3390_app14010025
crossref_primary_10_1109_ACCESS_2024_3392926
crossref_primary_10_3390_app13042030
crossref_primary_10_1016_j_compag_2025_110063
crossref_primary_10_2478_cait_2024_0026
crossref_primary_10_3390_electronics13244963
crossref_primary_10_1108_RIA_06_2023_0083
crossref_primary_10_1016_j_heliyon_2024_e32451
crossref_primary_10_1016_j_robot_2023_104570
crossref_primary_10_1007_s11432_023_4285_3
Cites_doi 10.1109/TRO.2010.2049527
10.1109/ICRA.2015.7139609
10.1007/BF01386390
10.1109/IROS.2010.5651569
10.1109/ACCESS.2014.2302442
10.3390/app112411777
10.1109/ROBOT.2004.1308756
10.1017/CBO9780511546877
10.1109/ICRA.2014.6907540
10.1109/TSSC.1968.300136
10.1109/ICRA.2019.8793618
10.1109/ROBOT.2004.1307192
10.1109/JAS.2021.1004252
10.1109/56.2083
10.1109/IROS.2011.6048865
10.1109/TASE.2020.2976560
10.1007/s10846-016-0362-z
10.1109/70.508439
10.3390/app10217716
10.1007/s10846-017-0641-3
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app122312033
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_2bc83af1aabd489abbb92c94c3038bc6
10_3390_app122312033
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c297t-87917b566cdea2f5a64169bfa8123d3c9e1a9509a2bc9742a96f57313a42ae093
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:17:25 EDT 2025
Mon Jun 30 11:17:26 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
Tue Jul 01 04:32:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-87917b566cdea2f5a64169bfa8123d3c9e1a9509a2bc9742a96f57313a42ae093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8293-6763
OpenAccessLink https://doaj.org/article/2bc83af1aabd489abbb92c94c3038bc6
PQID 2748523268
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_2bc83af1aabd489abbb92c94c3038bc6
proquest_journals_2748523268
crossref_primary_10_3390_app122312033
crossref_citationtrail_10_3390_app122312033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_13
ref_12
ref_11
Tsardoulias (ref_1) 2016; 84
ref_10
Wang (ref_26) 2018; 90
ref_19
ref_18
ref_17
Gilbert (ref_30) 1988; 4
Kavraki (ref_6) 1996; 12
ref_16
ref_15
Li (ref_28) 2021; 9
Hart (ref_3) 1968; 4
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
Jaillet (ref_2) 2010; 26
Dijkstra (ref_4) 1959; 1
ref_29
ref_8
Elbanhawi (ref_9) 2014; 2
ref_5
Wang (ref_27) 2020; 17
ref_7
References_xml – ident: ref_7
– ident: ref_11
– volume: 26
  start-page: 635
  year: 2010
  ident: ref_2
  article-title: Sampling-based path planning on configuration-space costmaps
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2010.2049527
– ident: ref_24
  doi: 10.1109/ICRA.2015.7139609
– volume: 1
  start-page: 269
  year: 1959
  ident: ref_4
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– ident: ref_25
  doi: 10.1109/IROS.2010.5651569
– volume: 2
  start-page: 56
  year: 2014
  ident: ref_9
  article-title: Sampling-based robot motion planning: A review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2302442
– ident: ref_14
– ident: ref_18
– ident: ref_19
  doi: 10.3390/app112411777
– ident: ref_20
  doi: 10.1109/ROBOT.2004.1308756
– ident: ref_8
  doi: 10.1017/CBO9780511546877
– ident: ref_23
  doi: 10.1109/ICRA.2014.6907540
– ident: ref_21
– volume: 4
  start-page: 100
  year: 1968
  ident: ref_3
  article-title: A formal basis for the heuristic determination of minimum cost paths
  publication-title: IEEE Trans. Syst. Sci. Cybern.
  doi: 10.1109/TSSC.1968.300136
– ident: ref_22
  doi: 10.1109/ICRA.2019.8793618
– ident: ref_15
  doi: 10.1109/ROBOT.2004.1307192
– volume: 9
  start-page: 283
  year: 2021
  ident: ref_28
  article-title: An adaptive rapidly-exploring random tree
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2021.1004252
– ident: ref_29
– ident: ref_12
– ident: ref_10
– volume: 4
  start-page: 193
  year: 1988
  ident: ref_30
  article-title: A fast procedure for computing the distance between complex objects in three-dimensional space
  publication-title: IEEE J. Robot. Autom.
  doi: 10.1109/56.2083
– ident: ref_16
  doi: 10.1109/IROS.2011.6048865
– ident: ref_13
– ident: ref_17
– volume: 17
  start-page: 1748
  year: 2020
  ident: ref_27
  article-title: Neural RRT*: Learning-based optimal path planning
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2020.2976560
– volume: 84
  start-page: 829
  year: 2016
  ident: ref_1
  article-title: A review of global path planning methods for occupancy grid maps regardless of obstacle density
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-016-0362-z
– volume: 12
  start-page: 566
  year: 1996
  ident: ref_6
  article-title: Probabilistic roadmaps for path planning in high-dimensional configuration spaces
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.508439
– ident: ref_5
  doi: 10.3390/app10217716
– volume: 90
  start-page: 81
  year: 2018
  ident: ref_26
  article-title: A learning-based multi-RRT approach for robot path planning in narrow passages
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-017-0641-3
SSID ssj0000913810
Score 2.3186038
Snippet As a representative of sampling-based planning algorithms, rapidly exploring random tree (RRT), is extensively welcomed in solving robot path planning problems...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 12033
SubjectTerms Algorithms
complex environment
Connectivity
Methods
narrow passage
path planning
Planning
RRT
Unmanned aerial vehicles
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA4-LnoQrYr1RQ4Kiixukn0kXkRFKQVLKS30tuQpgmyrW_-_k222VkRvu0kOSx4z3zeZ_QahM5M4ooQiEUucjZLEuEg4YSOTxkqngCBUnTz-3Ms6o6Q7Tsch4FaFtMrGJtaG2ky0j5FfA3viQJpoxm-n75GvGuVvV0MJjVW0DiaYA_lav3_s9QeLKItXveQknme8M-D3_l6YgEskNGbshy-qJft_WeTazTxto62AD_HdfEF30IotW2hzSTWwhXbCeazwRRCNvtxFYtCNBoPhDZ5HCazB8IYBkeI-YDzc1CbCryXu1bqL0F75pLJqD42eHocPnSiURYg0FfkM7BdQLAUwTBsrqUtlBqBKKCfBVzPDtLBECsABkioNbIFKkbk0Z4RJeLaxYPtorZyU9gDh3Kv3kSyn1gDRczGH_lQLrmXuMmZlG101E1TooBnuS1e8FcAd_HQWy9PZRueL0dO5VsYf4-79XC_GeIXrumHy8VKEA1PAx3MmHZFSmYQLqZQSVItEg8_lSmdtdNysVBGOXVV8b5LD_7uP0Ab1_zHUeSnHaG328WlPAF3M1GnYQl8xiszZ
  priority: 102
  providerName: ProQuest
Title RJ-RRT: Improved RRT for Path Planning in Narrow Passages
URI https://www.proquest.com/docview/2748523268
https://doaj.org/article/2bc83af1aabd489abbb92c94c3038bc6
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwED50vuiDuKk4nSMPCooUl6S_4pvK5hg4RtlgbyVJExBkipv_v5e0GxURX3xr00DLXXP3fen1O4CLIrRUCUUDHloThGFhA2GFCYqop3SECEL54vHncTychaN5NK-1-nI1YaU8cGm4W6Z0yqWlUqoiTIVUSgmmRagx9qZKe7FtzHk1MuVjsKBOuqqsdOfI6933YIqpkLIe599ykJfq_xGJfXoZHMB-hQvJffk8Tdgyixbs1dQCW9Cs1uGSXFVi0deHILJRkGXTO1LuDpiC4BlBJEomiO3IuicReVmQsddbxPGlKyZbHsFs0J8-DoOqHUKgmUhWGLeQWimEX7owktlIxgimhLISczQvuBaGSoH5X6LJkCUwKWIbJZxyicemJ_gxNBZvC3MCJHGqfTROmCmQ4NleitcjLVItExtzI9twszZQriutcNey4jVHzuDMmdfN2YbLzez3UiPjl3kPztabOU7Z2g-gv_PK3_lf_m5DZ-2pvFpuyxypdYqMmsXp6X_c4wx2mfvLwVetdKCx-vg054g9VqoL2-ngqQs7D_3xJOv6l-4LaY7X6A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD6U-mD7IHZt6WrVPLTQIkMnyVwSQcTbur0tZdlC36a5iiC7tbMi_il_oyeZmXVF2re-zUzyMJycy3eSk-8A7NrMUy01TXjmXZJl1ifSS5fYPNUmRwShY_H42agYXmTHl_nlCvzu7sKEssrOJ0ZHbWcm7JEfYvYkMGlihXh7_T0JXaPC6WrXQqNRixP36yembPWbo4-4vnuMDT5NPgyTtqtAYpgs52j-mKFoRDHGOsV8rgrEJFJ7haGOW26ko0piGFVMGwTbTMnC5yWnXOGzi-RL6PIfZJzLYFFi8HmxpxM4NgVNm_p6HE_DKTTFAExZyvk_kS82CPjP_8egNngMj1o0St416rMBK27ag_UljsIebLTWX5P9lqL64AnI8XEyHk9ek2ZPwlmCbwTxLzlHREm6Tkjk65SMIssjfq9DCVu9CRf3Iq4tWJ3Opm4bSBm4AmlRMmcxrfSpwPHcSGFU6QvuVB9edQKqTMtQHhplfKswUwnirJbF2Ye9xezrhpnjlnnvg6wXcwKfdvwwu_lSteZZ4c8LrjxVSttMSKW1lszIzGCEF9oUfdjpVqpqjbyu_qrk07uHX8LD4eTstDo9Gp08gzUWblDEipgdWJ3f_HDPEdfM9YuoTASu7lt7_wDxAAeK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSxxBEC5khZAcRDeRrJqkDxESZHC6e14dkJCNLj6SZVkUvI39FEF2V2dF8tfy66ye6dkYgrl5m34churqqq-6q78C-GgSR5VQNOKJs1GSGBcJJ2xk0ljpFBGEqpPHfw6zw7Pk-Dw9X4Lf7VsYn1bZ2sTaUJup9mfkuxg9FRg0sazYdSEtYrQ_-Dq7iXwFKX_T2pbTaFTkxP66x_Ct2jvax7XeZmxwcPr9MAoVBiLNRD5HU4DRikJEo42VzKUyQ3wilJPo9rjhWlgqBbpUyZRG4M2kyFyac8olftuaiAnN_3KOUVHcgeX-wXA0XpzweMbNgsZNtj3nIvZ30hTdMWUx53_5wbpcwD_eoHZxg1VYCdiUfGuUaQ2W7KQLrx4xFnZhLdiCinwKhNWfX4MYH0fj8ekX0pxQWEOwRRANkxHiS9LWRSJXEzKsOR-xv_IJbdUbOHsWga1DZzKd2LdAcs8cSLOcWYNBposLHE-1KLTMXcat7MFOK6BSB75yXzbjusS4xYuzfCzOHmwvZs8ano4n5vW9rBdzPLt23TG9vSzDZi3x5wsuHZVSmaQQUiklmBaJRn9fKJ31YKtdqTJs-ar8o6Ab_x_-AC9Qc8sfR8OTTXjJ_HOKOj1mCzrz2zv7DkHOXL0P2kTg4rkV-AGo8w0c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RJ-RRT%3A+Improved+RRT+for+Path+Planning+in+Narrow+Passages&rft.jtitle=Applied+sciences&rft.au=Qisen+Chai&rft.au=Yujun+Wang&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=23&rft.spage=12033&rft_id=info:doi/10.3390%2Fapp122312033&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2bc83af1aabd489abbb92c94c3038bc6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon