Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants
[Display omitted] •Effect of inorganic anions (IA) on the performance of AOPs was summarized.•Effect of IA on the formation and transformation of reactive species was discussed.•Effect of IA on the stability of oxidants (H2O2 and persulfate) was evaluated.•Effect of IA on the catalytic activity of c...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 411; p. 128392 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Effect of inorganic anions (IA) on the performance of AOPs was summarized.•Effect of IA on the formation and transformation of reactive species was discussed.•Effect of IA on the stability of oxidants (H2O2 and persulfate) was evaluated.•Effect of IA on the catalytic activity of catalysts was analyzed.•Inorganic anions have influence on comprehensive performance on AOPs.
Inorganic anions, such as chloridion, carbonate, phosphate, sulfate and nitrate are ubiquitous in water, they will react with hydroxyl radical and sulfate radical produced during advanced oxidation processes (AOPs), to form chlorine radical, carbonate radical nitrate radical, phosphate radical and sulfate radical, which have a significant influence on the transformation of organic pollutants. It is generally believed that the quenching effect of inorganic anions on reactive species produced in AOPs was the main reason to influence the performance of AOPs. While this reason cannot explain all the results. In addition, at present most of studies only focused on the effect of inorganic anions on the removal efficiency of targeted organic pollutant by AOPs. For better understanding the effect of inorganic anions on the performance of AOPs, it is crucial to comprehensively evaluate the effect of inorganic anions on AOPs. In this review paper, the effect of inorganic anions (such as chloridion, carbonate, phosphate, sulfate and nitrate) on the performance of AOPs, including the transformation of reactive species, stability of oxidants, catalytic activity of catalysts and degradation products, was systematically summarized and reviewed. Firstly, their effect on the formation and transformation of reactive species was discussed, then the effect on the stability of oxidants (H2O2 and persulfate) and catalysts was introduced. Furthermore, the effect on the catalytic activity of catalysts was analyzed. Finally, the effect on the degradation intermediate products of organic pollutants was summarized. This review will provide an insight into the underlying influence mechanism of inorganic anions on AOPs, which is conducive to comprehensively evaluate the effect of inorganic anions on the performance of AOPs. |
---|---|
AbstractList | [Display omitted]
•Effect of inorganic anions (IA) on the performance of AOPs was summarized.•Effect of IA on the formation and transformation of reactive species was discussed.•Effect of IA on the stability of oxidants (H2O2 and persulfate) was evaluated.•Effect of IA on the catalytic activity of catalysts was analyzed.•Inorganic anions have influence on comprehensive performance on AOPs.
Inorganic anions, such as chloridion, carbonate, phosphate, sulfate and nitrate are ubiquitous in water, they will react with hydroxyl radical and sulfate radical produced during advanced oxidation processes (AOPs), to form chlorine radical, carbonate radical nitrate radical, phosphate radical and sulfate radical, which have a significant influence on the transformation of organic pollutants. It is generally believed that the quenching effect of inorganic anions on reactive species produced in AOPs was the main reason to influence the performance of AOPs. While this reason cannot explain all the results. In addition, at present most of studies only focused on the effect of inorganic anions on the removal efficiency of targeted organic pollutant by AOPs. For better understanding the effect of inorganic anions on the performance of AOPs, it is crucial to comprehensively evaluate the effect of inorganic anions on AOPs. In this review paper, the effect of inorganic anions (such as chloridion, carbonate, phosphate, sulfate and nitrate) on the performance of AOPs, including the transformation of reactive species, stability of oxidants, catalytic activity of catalysts and degradation products, was systematically summarized and reviewed. Firstly, their effect on the formation and transformation of reactive species was discussed, then the effect on the stability of oxidants (H2O2 and persulfate) and catalysts was introduced. Furthermore, the effect on the catalytic activity of catalysts was analyzed. Finally, the effect on the degradation intermediate products of organic pollutants was summarized. This review will provide an insight into the underlying influence mechanism of inorganic anions on AOPs, which is conducive to comprehensively evaluate the effect of inorganic anions on the performance of AOPs. |
ArticleNumber | 128392 |
Author | Wang, Jianlong Wang, Shizong |
Author_xml | – sequence: 1 givenname: Jianlong surname: Wang fullname: Wang, Jianlong email: wangjl@tsinghua.edu.cn organization: Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China – sequence: 2 givenname: Shizong surname: Wang fullname: Wang, Shizong organization: Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China |
BookMark | eNp9kMtOAyEUhompiW31AdzxAlO5DMNMXJmmXpImbnRN6BmoNC00gI2-vYytGxfdwCHn_0443wSNfPAGoVtKZpTQ5m4zA7OZMcLKm7W8YxdoTFvJK84oG5Wat6Jqu1peoUlKG0JI09FujD4X1hrIOFjsfIhr7R3gcgSfcPA4fxi8N9GGuNMezBDT_WEoexy-XK9zSeJ9DGBSMgmXIO7NOupTp-T_hkLwWe-c1z6na3Rp9TaZm9M9Re-Pi7f5c7V8fXqZPywrYJ3MVStF3bAVlxZkDRQEga7mWkhaN_2qb2qruaiZsJJAI3pqQGvCJbGUdKK1hk-RPM6FGFKKxipw-fdnOWq3VZSowZ7aqGJPDfbU0V4h6T9yH91Ox--zzP2RMWWlgzNRJXBmcOVicaz64M7QP2b4i9Y |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_114750 crossref_primary_10_1080_09593330_2022_2148567 crossref_primary_10_1016_j_envpol_2023_123205 crossref_primary_10_1016_j_scitotenv_2024_175242 crossref_primary_10_1016_j_jece_2024_114754 crossref_primary_10_1007_s11270_024_07523_5 crossref_primary_10_1016_j_jclepro_2025_144762 crossref_primary_10_1016_j_apcatb_2024_124966 crossref_primary_10_1016_j_jhazmat_2023_131797 crossref_primary_10_1016_j_cej_2025_159438 crossref_primary_10_1021_acs_langmuir_3c00223 crossref_primary_10_1016_j_chemosphere_2021_131983 crossref_primary_10_1016_j_chemosphere_2022_134054 crossref_primary_10_1016_j_jelechem_2023_117954 crossref_primary_10_1016_j_jcis_2025_02_118 crossref_primary_10_1016_j_jwpe_2025_107139 crossref_primary_10_1016_j_optmat_2024_114918 crossref_primary_10_1016_j_cej_2023_142420 crossref_primary_10_1016_j_cej_2023_141574 crossref_primary_10_1021_acs_est_1c04530 crossref_primary_10_1016_j_jece_2024_114502 crossref_primary_10_1016_j_chemosphere_2024_142484 crossref_primary_10_1016_j_cej_2024_152510 crossref_primary_10_1016_j_jcis_2024_09_173 crossref_primary_10_1016_j_cej_2024_153604 crossref_primary_10_1039_D4EN00481G crossref_primary_10_1007_s10562_023_04517_6 crossref_primary_10_1016_j_watres_2023_120785 crossref_primary_10_3390_catal12101078 crossref_primary_10_1016_j_cej_2024_158281 crossref_primary_10_1016_j_scitotenv_2024_173042 crossref_primary_10_1016_j_psep_2023_09_020 crossref_primary_10_1016_j_cej_2024_159130 crossref_primary_10_1016_j_seppur_2023_125180 crossref_primary_10_1016_j_seppur_2023_125174 crossref_primary_10_1080_26395940_2024_2319250 crossref_primary_10_1016_j_cej_2025_159898 crossref_primary_10_1016_j_cej_2025_160883 crossref_primary_10_2174_0122133461335923240918061714 crossref_primary_10_1016_j_jcis_2021_11_015 crossref_primary_10_1016_j_apsusc_2023_158965 crossref_primary_10_1016_j_watres_2023_120555 crossref_primary_10_3390_molecules26195748 crossref_primary_10_1016_j_jenvman_2023_118492 crossref_primary_10_1021_acsanm_2c04724 crossref_primary_10_1016_j_cej_2021_133174 crossref_primary_10_1016_j_jiec_2025_01_011 crossref_primary_10_1002_aoc_7143 crossref_primary_10_1039_D4EW00549J crossref_primary_10_2139_ssrn_4008767 crossref_primary_10_1016_j_jcis_2023_07_067 crossref_primary_10_1038_s41467_025_56103_6 crossref_primary_10_1002_ange_202309472 crossref_primary_10_1016_j_jcis_2024_08_171 crossref_primary_10_1039_D2CE00372D crossref_primary_10_1016_j_cej_2025_160865 crossref_primary_10_1016_j_ces_2023_119463 crossref_primary_10_1016_j_jclepro_2023_138713 crossref_primary_10_1039_D4VA00103F crossref_primary_10_1016_j_colsurfa_2024_133905 crossref_primary_10_1016_j_jece_2024_112761 crossref_primary_10_1016_j_chemosphere_2021_130678 crossref_primary_10_1021_acs_est_3c10062 crossref_primary_10_1016_j_jwpe_2022_103397 crossref_primary_10_1016_j_radphyschem_2024_111815 crossref_primary_10_1016_j_cej_2025_159640 crossref_primary_10_1016_j_jwpe_2023_104343 crossref_primary_10_1016_j_algal_2025_103932 crossref_primary_10_1039_D1EW00659B crossref_primary_10_1016_j_apcatb_2023_123323 crossref_primary_10_1016_j_jece_2024_112792 crossref_primary_10_1016_j_watres_2023_120341 crossref_primary_10_1016_j_indcrop_2024_119094 crossref_primary_10_1016_j_jcis_2023_05_023 crossref_primary_10_1016_j_watres_2024_121519 crossref_primary_10_1016_j_jhazmat_2021_125724 crossref_primary_10_1016_j_jwpe_2023_104328 crossref_primary_10_3390_w15203679 crossref_primary_10_1016_j_jallcom_2021_161625 crossref_primary_10_1016_j_radphyschem_2021_109738 crossref_primary_10_3390_catal12121523 crossref_primary_10_1016_j_chemosphere_2023_138992 crossref_primary_10_1016_j_scitotenv_2021_148253 crossref_primary_10_1016_j_apsusc_2024_162224 crossref_primary_10_1016_j_jece_2024_112302 crossref_primary_10_1016_j_chemosphere_2024_143152 crossref_primary_10_3390_w15101849 crossref_primary_10_1039_D2EN00693F crossref_primary_10_1016_j_cej_2022_139812 crossref_primary_10_1016_j_jallcom_2024_176522 crossref_primary_10_1016_j_jhazmat_2022_128287 crossref_primary_10_1016_j_scitotenv_2023_164086 crossref_primary_10_1016_j_cej_2023_147051 crossref_primary_10_1016_j_cej_2023_146876 crossref_primary_10_1016_j_seppur_2021_119558 crossref_primary_10_1016_j_jwpe_2024_105526 crossref_primary_10_1016_j_scitotenv_2023_168833 crossref_primary_10_1016_j_wroa_2024_100293 crossref_primary_10_1007_s13738_024_03044_4 crossref_primary_10_1016_j_cej_2022_138054 crossref_primary_10_1016_j_ces_2025_121219 crossref_primary_10_1016_j_seppur_2024_127210 crossref_primary_10_1016_j_seppur_2024_127451 crossref_primary_10_3389_fenvs_2022_818142 crossref_primary_10_1016_j_chemosphere_2022_135307 crossref_primary_10_1016_j_jhazmat_2025_137810 crossref_primary_10_1016_j_watres_2023_119979 crossref_primary_10_1016_j_watres_2024_122188 crossref_primary_10_1016_j_cej_2025_161594 crossref_primary_10_1016_j_jclepro_2024_142458 crossref_primary_10_1016_j_jece_2024_113250 crossref_primary_10_1016_j_scitotenv_2022_154379 crossref_primary_10_1002_smsc_202400337 crossref_primary_10_1016_j_jwpe_2023_104388 crossref_primary_10_1016_j_apcatb_2023_122676 crossref_primary_10_1016_j_jcis_2024_12_065 crossref_primary_10_1016_j_isci_2022_104930 crossref_primary_10_3390_ijms26030953 crossref_primary_10_1007_s10853_024_09341_w crossref_primary_10_1016_j_jece_2023_110959 crossref_primary_10_1016_j_cej_2022_140148 crossref_primary_10_1016_j_cej_2025_161123 crossref_primary_10_1016_j_jallcom_2025_179675 crossref_primary_10_1016_j_apcatb_2025_125273 crossref_primary_10_1039_D4EN00026A crossref_primary_10_1016_j_jece_2024_113042 crossref_primary_10_1016_j_watres_2022_118347 crossref_primary_10_1016_j_jhazmat_2024_136465 crossref_primary_10_1021_acs_langmuir_3c02819 crossref_primary_10_3390_catal15010051 crossref_primary_10_1016_j_cej_2024_152580 crossref_primary_10_1016_j_cej_2024_152342 crossref_primary_10_1016_j_apcatb_2023_122886 crossref_primary_10_3390_catal13060922 crossref_primary_10_1016_j_chemosphere_2022_135525 crossref_primary_10_1016_j_jwpe_2024_105737 crossref_primary_10_1016_j_seppur_2023_125577 crossref_primary_10_1016_j_cej_2023_143580 crossref_primary_10_1016_j_jwpe_2022_102707 crossref_primary_10_1016_j_surfin_2024_105280 crossref_primary_10_2166_wst_2022_376 crossref_primary_10_1016_j_cej_2025_160484 crossref_primary_10_1016_j_jwpe_2023_104120 crossref_primary_10_1016_j_scitotenv_2024_173211 crossref_primary_10_1016_j_apcatb_2025_125281 crossref_primary_10_1016_j_watres_2024_123048 crossref_primary_10_1021_acs_inorgchem_4c02158 crossref_primary_10_1016_j_ijbiomac_2024_133385 crossref_primary_10_1016_j_jcis_2024_06_160 crossref_primary_10_1016_j_jhazmat_2025_137606 crossref_primary_10_1016_j_seppur_2024_127422 crossref_primary_10_1016_j_jece_2022_108320 crossref_primary_10_1016_j_apcatb_2021_121003 crossref_primary_10_1016_j_surfin_2024_105051 crossref_primary_10_1016_j_chemosphere_2024_141586 crossref_primary_10_1016_j_cej_2022_138097 crossref_primary_10_1016_j_seppur_2024_128741 crossref_primary_10_1016_j_ijbiomac_2024_137978 crossref_primary_10_1016_j_seppur_2022_122807 crossref_primary_10_1016_j_cej_2022_141027 crossref_primary_10_1016_j_chemosphere_2024_143517 crossref_primary_10_1007_s12613_024_2858_z crossref_primary_10_1021_acsomega_3c02977 crossref_primary_10_1016_j_seppur_2023_125359 crossref_primary_10_1016_j_cej_2024_149144 crossref_primary_10_1016_j_cej_2024_150148 crossref_primary_10_1039_D2EN00054G crossref_primary_10_1016_j_ijbiomac_2024_134453 crossref_primary_10_1016_j_jhazmat_2023_131926 crossref_primary_10_1016_j_jcis_2023_03_181 crossref_primary_10_1016_j_jclepro_2024_142645 crossref_primary_10_1016_j_jwpe_2024_105781 crossref_primary_10_1016_j_cej_2024_151204 crossref_primary_10_1016_j_molstruc_2023_135908 crossref_primary_10_1016_j_optmat_2023_114243 crossref_primary_10_1016_j_chemosphere_2024_143780 crossref_primary_10_1016_j_jclepro_2023_136912 crossref_primary_10_1016_j_jece_2022_108532 crossref_primary_10_1016_j_cej_2022_134511 crossref_primary_10_1016_j_cej_2022_135606 crossref_primary_10_1021_acs_est_3c00087 crossref_primary_10_1016_j_jece_2022_108537 crossref_primary_10_1016_j_jwpe_2024_106884 crossref_primary_10_1016_j_jclepro_2024_141548 crossref_primary_10_1021_acsestengg_4c00910 crossref_primary_10_1016_j_apcatb_2023_122852 crossref_primary_10_1016_j_apsusc_2024_162074 crossref_primary_10_1016_j_chemosphere_2023_137810 crossref_primary_10_1016_j_chemosphere_2022_137516 crossref_primary_10_1016_j_apcatb_2025_125247 crossref_primary_10_1016_j_trac_2023_117025 crossref_primary_10_1016_j_jes_2023_03_038 crossref_primary_10_1016_j_jclepro_2021_129806 crossref_primary_10_1016_j_scitotenv_2021_147853 crossref_primary_10_1016_j_cej_2022_139542 crossref_primary_10_1016_j_mssp_2024_108153 crossref_primary_10_1016_j_cej_2024_152081 crossref_primary_10_1016_j_jece_2023_110313 crossref_primary_10_1016_j_heliyon_2024_e30402 crossref_primary_10_1016_j_seppur_2024_129357 crossref_primary_10_1016_j_jece_2023_111637 crossref_primary_10_1016_j_cej_2022_140537 crossref_primary_10_1016_j_seppur_2024_128025 crossref_primary_10_31857_S0044453723120270 crossref_primary_10_1016_j_jece_2024_115042 crossref_primary_10_1016_j_jece_2025_115336 crossref_primary_10_1016_j_jhazmat_2023_130905 crossref_primary_10_1016_j_chemosphere_2023_138481 crossref_primary_10_1021_acs_est_2c00369 crossref_primary_10_1080_09593330_2023_2229943 crossref_primary_10_1016_j_jwpe_2024_106340 crossref_primary_10_1016_j_jece_2023_111413 crossref_primary_10_1039_D4RA04328F crossref_primary_10_1016_j_jhazmat_2024_136952 crossref_primary_10_1016_j_inoche_2024_112102 crossref_primary_10_1016_j_cej_2021_132868 crossref_primary_10_1016_j_seppur_2023_125965 crossref_primary_10_1016_j_jallcom_2025_178862 crossref_primary_10_1016_j_enmm_2023_100885 crossref_primary_10_1007_s11356_023_27778_5 crossref_primary_10_1016_j_envres_2024_118650 crossref_primary_10_1016_j_envres_2024_119983 crossref_primary_10_1016_j_envpol_2024_124037 crossref_primary_10_1016_j_seppur_2024_127160 crossref_primary_10_1016_j_seppur_2024_130322 crossref_primary_10_1016_j_seppur_2024_127157 crossref_primary_10_1016_j_flatc_2025_100838 crossref_primary_10_1016_j_chemosphere_2021_132133 crossref_primary_10_1016_j_psep_2024_06_003 crossref_primary_10_1016_j_nanoso_2024_101104 crossref_primary_10_1016_j_jece_2025_116202 crossref_primary_10_1016_j_cej_2024_148801 crossref_primary_10_3390_catal13050836 crossref_primary_10_1016_j_jcis_2022_08_121 crossref_primary_10_1016_j_scitotenv_2021_148739 crossref_primary_10_1016_j_envres_2022_112748 crossref_primary_10_1016_j_radphyschem_2025_112557 crossref_primary_10_1016_j_seppur_2023_124651 crossref_primary_10_1016_j_chemosphere_2021_132365 crossref_primary_10_1016_j_chemosphere_2023_138264 crossref_primary_10_1016_j_jallcom_2022_164644 crossref_primary_10_1016_j_jece_2025_115522 crossref_primary_10_1016_j_scitotenv_2022_155556 crossref_primary_10_1016_j_seppur_2021_119515 crossref_primary_10_3390_app142310904 crossref_primary_10_1016_j_cej_2022_139100 crossref_primary_10_1016_j_seppur_2024_127375 crossref_primary_10_1016_j_seppur_2024_127131 crossref_primary_10_1016_j_jece_2023_109766 crossref_primary_10_1016_j_cej_2024_157976 crossref_primary_10_1016_j_cej_2021_132438 crossref_primary_10_1016_j_seppur_2023_123336 crossref_primary_10_3390_w16233397 crossref_primary_10_1016_j_cej_2022_139591 crossref_primary_10_1016_j_cej_2022_138024 crossref_primary_10_1016_j_cej_2022_139597 crossref_primary_10_1016_j_seppur_2025_131910 crossref_primary_10_1016_j_seppur_2025_131911 crossref_primary_10_1016_j_jece_2023_111846 crossref_primary_10_1016_j_chemosphere_2021_131091 crossref_primary_10_1007_s40242_024_3237_z crossref_primary_10_1016_j_apcatb_2022_121520 crossref_primary_10_1016_j_watres_2023_119827 crossref_primary_10_1016_j_memsci_2022_120924 crossref_primary_10_1016_j_jclepro_2021_129625 crossref_primary_10_1016_j_cej_2024_150079 crossref_primary_10_1016_j_jssc_2023_124167 crossref_primary_10_1016_j_jece_2024_111901 crossref_primary_10_1021_acs_est_4c04733 crossref_primary_10_1016_j_cej_2024_154682 crossref_primary_10_1016_j_jece_2023_111821 crossref_primary_10_1016_j_seppur_2024_127352 crossref_primary_10_1016_j_chemosphere_2022_133785 crossref_primary_10_3390_app14083181 crossref_primary_10_1016_j_jhazmat_2024_135851 crossref_primary_10_1016_j_cej_2021_133789 crossref_primary_10_1016_j_seppur_2022_120800 crossref_primary_10_1016_j_chemosphere_2022_133780 crossref_primary_10_1016_j_cej_2023_144343 crossref_primary_10_1016_j_jhazmat_2022_128727 crossref_primary_10_1016_j_jclepro_2023_139221 crossref_primary_10_1016_j_chemosphere_2023_139153 crossref_primary_10_1016_j_cej_2023_146769 crossref_primary_10_1016_j_jwpe_2024_105272 crossref_primary_10_1016_j_jwpe_2025_107519 crossref_primary_10_1002_aic_17879 crossref_primary_10_1016_j_jhazmat_2024_136933 crossref_primary_10_1016_j_mtcomm_2024_110915 crossref_primary_10_1016_j_psep_2022_02_031 crossref_primary_10_1016_j_cej_2025_161020 crossref_primary_10_1016_j_heliyon_2023_e16450 crossref_primary_10_1016_j_seppur_2022_121474 crossref_primary_10_1002_ente_202401293 crossref_primary_10_1080_09593330_2024_2375007 crossref_primary_10_1016_j_seppur_2025_131564 crossref_primary_10_1007_s13201_023_01954_x crossref_primary_10_1038_s41598_023_38958_1 crossref_primary_10_1016_j_cej_2022_137765 crossref_primary_10_1016_j_jcis_2022_12_072 crossref_primary_10_1016_j_jhazmat_2023_132002 crossref_primary_10_1016_j_cej_2024_157136 crossref_primary_10_1016_j_seppur_2024_131279 crossref_primary_10_1016_j_eti_2022_102492 crossref_primary_10_1007_s11270_024_07652_x crossref_primary_10_1016_j_cej_2021_131927 crossref_primary_10_1039_D4RA08989H crossref_primary_10_1016_j_seppur_2024_129194 crossref_primary_10_5004_dwt_2023_29924 crossref_primary_10_1016_j_jece_2024_112843 crossref_primary_10_1016_j_cej_2024_156278 crossref_primary_10_1016_j_jcis_2025_01_156 crossref_primary_10_1016_j_jece_2024_112838 crossref_primary_10_1016_j_chemosphere_2023_138401 crossref_primary_10_1080_03067319_2024_2317424 crossref_primary_10_1016_j_watres_2023_120387 crossref_primary_10_1016_j_seppur_2024_126905 crossref_primary_10_1016_j_seppur_2023_124806 crossref_primary_10_1016_j_jwpe_2025_107561 crossref_primary_10_1016_j_jece_2024_114810 crossref_primary_10_1016_j_cej_2022_138639 crossref_primary_10_1073_pnas_2305255120 crossref_primary_10_1016_j_cej_2021_131960 crossref_primary_10_1016_j_cej_2021_131961 crossref_primary_10_1016_j_jhazmat_2021_126447 crossref_primary_10_1016_j_seppur_2022_122576 crossref_primary_10_1021_acs_iecr_2c02596 crossref_primary_10_3390_w16081183 crossref_primary_10_1016_j_chemosphere_2024_143071 crossref_primary_10_1016_j_cej_2023_142801 crossref_primary_10_1016_j_jece_2024_114804 crossref_primary_10_1016_j_mssp_2025_109379 crossref_primary_10_1016_j_cej_2025_159829 crossref_primary_10_1016_j_jhazmat_2024_133869 crossref_primary_10_1016_j_apsusc_2022_153244 crossref_primary_10_1016_j_envpol_2023_121586 crossref_primary_10_1021_acs_iecr_3c03629 crossref_primary_10_1007_s11356_022_21419_z crossref_primary_10_1016_j_cej_2022_139742 crossref_primary_10_1016_j_jece_2022_109087 crossref_primary_10_1016_j_ces_2023_119068 crossref_primary_10_1016_j_chemosphere_2021_130177 crossref_primary_10_1016_j_scitotenv_2024_171756 crossref_primary_10_1016_j_apcatb_2024_124762 crossref_primary_10_1021_acsanm_4c04600 crossref_primary_10_1016_j_jenvman_2024_122773 crossref_primary_10_1007_s12598_024_02737_2 crossref_primary_10_1016_j_cej_2021_130894 crossref_primary_10_1016_j_chemosphere_2024_143093 crossref_primary_10_3390_catal12101207 crossref_primary_10_1016_j_cej_2024_154052 crossref_primary_10_1016_j_jtice_2023_104891 crossref_primary_10_1016_j_jwpe_2023_104740 crossref_primary_10_1016_j_jenvman_2023_119089 crossref_primary_10_1016_j_molliq_2024_125230 crossref_primary_10_3390_ijerph19159733 crossref_primary_10_1016_j_scitotenv_2022_160246 crossref_primary_10_1016_j_seppur_2025_132607 crossref_primary_10_1016_j_jhazmat_2023_133303 crossref_primary_10_2139_ssrn_4191721 crossref_primary_10_1016_j_cej_2023_147472 crossref_primary_10_1016_j_jallcom_2024_177678 crossref_primary_10_1021_acsestengg_1c00131 crossref_primary_10_1007_s11664_024_11111_y crossref_primary_10_1016_j_seppur_2024_129382 crossref_primary_10_1007_s40789_023_00659_5 crossref_primary_10_1016_j_chemosphere_2023_140306 crossref_primary_10_1016_j_jhazmat_2023_131333 crossref_primary_10_1016_j_apcatb_2024_123693 crossref_primary_10_1002_cben_202300079 crossref_primary_10_1016_j_electacta_2025_145974 crossref_primary_10_1016_j_talo_2023_100229 crossref_primary_10_1016_j_jwpe_2025_107359 crossref_primary_10_1016_j_watres_2024_121106 crossref_primary_10_1016_j_envpol_2021_117728 crossref_primary_10_1016_j_jece_2023_111675 crossref_primary_10_1016_j_chemosphere_2022_133704 crossref_primary_10_1016_j_envpol_2023_122681 crossref_primary_10_1016_j_envpol_2023_121352 crossref_primary_10_1016_j_jhazmat_2025_137483 crossref_primary_10_1016_j_seppur_2025_131732 crossref_primary_10_1016_j_jcis_2021_10_150 crossref_primary_10_1016_j_jwpe_2023_104714 crossref_primary_10_1016_j_chemosphere_2021_130388 crossref_primary_10_1016_j_fuel_2024_134263 crossref_primary_10_31857_S0044453724020076 crossref_primary_10_1016_j_inoche_2023_110791 crossref_primary_10_1016_j_cej_2025_159797 crossref_primary_10_1134_S0036024424020043 crossref_primary_10_1016_j_chemosphere_2022_137445 crossref_primary_10_1016_j_cej_2021_131091 crossref_primary_10_1016_j_apcatb_2024_124849 crossref_primary_10_1002_smll_202205583 crossref_primary_10_1039_D4DT00758A crossref_primary_10_1016_j_seppur_2024_126649 crossref_primary_10_1016_j_biortech_2024_131103 crossref_primary_10_1016_j_seppur_2022_122964 crossref_primary_10_1021_acs_est_3c03628 crossref_primary_10_1016_j_envres_2023_116745 crossref_primary_10_1016_j_apcatb_2021_120407 crossref_primary_10_1016_j_apsusc_2023_158861 crossref_primary_10_1016_j_ces_2025_121178 crossref_primary_10_1016_j_emcon_2024_100371 crossref_primary_10_1016_j_apcatb_2022_122098 crossref_primary_10_1016_j_apcatb_2023_123240 crossref_primary_10_1016_j_jhazmat_2023_132538 crossref_primary_10_1021_acsami_3c17554 crossref_primary_10_1016_j_jhydrol_2024_131919 crossref_primary_10_1016_j_jece_2024_114659 crossref_primary_10_1016_j_cej_2022_135760 crossref_primary_10_1016_j_jwpe_2023_104650 crossref_primary_10_2139_ssrn_3976143 crossref_primary_10_1016_j_chemosphere_2023_137741 crossref_primary_10_1016_j_jpcs_2021_110316 crossref_primary_10_3390_molecules30010064 crossref_primary_10_1016_j_desal_2024_118252 crossref_primary_10_1016_j_jwpe_2025_107034 crossref_primary_10_1021_acsestengg_5c00021 crossref_primary_10_1016_j_cej_2021_134387 crossref_primary_10_1016_j_colsurfa_2025_136134 crossref_primary_10_1016_j_seppur_2024_127705 crossref_primary_10_1007_s11356_022_22275_7 crossref_primary_10_1016_j_apcatb_2023_123224 crossref_primary_10_1021_acsapm_3c00243 crossref_primary_10_1016_j_apsusc_2023_158836 crossref_primary_10_1016_j_jhazmat_2023_132719 crossref_primary_10_1016_j_seppur_2024_126849 crossref_primary_10_1016_j_envres_2024_119488 crossref_primary_10_1021_acs_est_4c09855 crossref_primary_10_1021_acs_analchem_3c03135 crossref_primary_10_1016_j_cej_2022_138814 crossref_primary_10_1016_j_cej_2022_134695 crossref_primary_10_1016_j_cej_2025_159513 crossref_primary_10_1016_j_seppur_2024_131197 crossref_primary_10_1039_D1EW00731A crossref_primary_10_1016_j_cej_2025_160741 crossref_primary_10_1016_j_cej_2024_152604 crossref_primary_10_1016_j_watres_2024_121842 crossref_primary_10_3390_catal13020327 crossref_primary_10_1016_j_jhazmat_2025_137984 crossref_primary_10_1016_j_chemosphere_2024_143250 crossref_primary_10_1016_j_jenvman_2024_121608 crossref_primary_10_1016_j_jhazmat_2023_132731 crossref_primary_10_1016_j_apcatb_2022_122051 crossref_primary_10_1016_j_jhazmat_2022_130016 crossref_primary_10_1016_j_seppur_2024_126832 crossref_primary_10_1016_j_seppur_2022_122514 crossref_primary_10_1016_j_mtphys_2021_100587 crossref_primary_10_1016_j_seppur_2021_120288 crossref_primary_10_1016_j_cej_2021_129837 crossref_primary_10_1016_j_jwpe_2022_103284 crossref_primary_10_1021_acsestwater_1c00167 crossref_primary_10_1007_s12598_024_03021_z crossref_primary_10_1016_j_cej_2023_143821 crossref_primary_10_1002_bio_4513 crossref_primary_10_1021_acs_iecr_4c00183 crossref_primary_10_1016_j_jenvman_2025_124197 crossref_primary_10_1016_j_cej_2025_160724 crossref_primary_10_2174_0122133372327833240924104209 crossref_primary_10_1016_j_cej_2023_148032 crossref_primary_10_1016_j_jcis_2025_02_213 crossref_primary_10_1016_j_jece_2025_116075 crossref_primary_10_1016_j_jece_2025_116073 crossref_primary_10_1002_ep_14190 crossref_primary_10_1016_j_jhazmat_2022_129483 crossref_primary_10_1016_j_optmat_2023_114757 crossref_primary_10_15251_DJNB_2024_191_309 crossref_primary_10_1016_j_envres_2022_114203 crossref_primary_10_1134_S0036024423120270 crossref_primary_10_1016_j_jece_2023_111035 crossref_primary_10_1016_j_seppur_2025_132542 crossref_primary_10_1007_s41101_021_00121_0 crossref_primary_10_1016_j_jece_2025_116080 crossref_primary_10_1016_j_seppur_2023_126196 crossref_primary_10_1016_j_cej_2025_160733 crossref_primary_10_1016_j_jwpe_2024_104979 crossref_primary_10_1016_j_jhazmat_2022_129013 crossref_primary_10_1016_j_jece_2022_108806 crossref_primary_10_1021_acsestwater_3c00266 crossref_primary_10_1016_j_chemosphere_2022_136143 crossref_primary_10_1016_j_chemosphere_2023_138860 crossref_primary_10_1016_j_jiec_2024_10_051 crossref_primary_10_1016_j_colsurfa_2023_131996 crossref_primary_10_1039_D3TA03247G crossref_primary_10_1039_D4NJ03683B crossref_primary_10_1016_j_seppur_2024_130509 crossref_primary_10_1039_D3EN00729D crossref_primary_10_1016_j_apcatb_2023_122786 crossref_primary_10_1016_j_cej_2024_153572 crossref_primary_10_1016_j_jece_2021_106332 crossref_primary_10_3390_w17050742 crossref_primary_10_1016_j_envres_2025_121002 crossref_primary_10_1016_j_jallcom_2023_171027 crossref_primary_10_1016_j_cej_2022_140499 crossref_primary_10_1016_j_chemosphere_2022_134339 crossref_primary_10_1016_j_chemosphere_2024_142747 crossref_primary_10_1016_j_seppur_2022_120945 crossref_primary_10_1016_j_catcom_2023_106729 crossref_primary_10_1021_acs_est_3c00182 crossref_primary_10_1016_j_cej_2023_144323 crossref_primary_10_1039_D1DT03716A crossref_primary_10_1016_j_chemosphere_2022_136521 crossref_primary_10_1016_j_catcom_2023_106730 crossref_primary_10_1016_j_cej_2024_152475 crossref_primary_10_1016_j_envres_2025_121013 crossref_primary_10_1016_j_seppur_2024_129980 crossref_primary_10_1007_s11356_021_14806_5 crossref_primary_10_1016_j_seppur_2023_124110 crossref_primary_10_1016_j_cej_2022_134824 crossref_primary_10_1016_j_colsurfa_2025_136516 crossref_primary_10_3390_w15081615 crossref_primary_10_1016_j_seppur_2024_129989 crossref_primary_10_1016_j_cej_2022_138194 crossref_primary_10_1021_acs_est_1c06205 crossref_primary_10_1016_j_cej_2023_145888 crossref_primary_10_1080_09593330_2022_2114857 crossref_primary_10_1021_acs_est_4c03206 crossref_primary_10_1039_D2EW00060A crossref_primary_10_1016_j_cej_2021_132372 crossref_primary_10_1016_j_jes_2022_06_031 crossref_primary_10_1016_j_seppur_2024_130961 crossref_primary_10_1016_j_cej_2025_161457 crossref_primary_10_1016_j_apcatb_2023_123616 crossref_primary_10_1016_j_scitotenv_2023_162151 crossref_primary_10_1038_s41545_025_00444_8 crossref_primary_10_1016_j_jhazmat_2023_132904 crossref_primary_10_1039_D1EN00976A crossref_primary_10_1016_j_apcatb_2022_122245 crossref_primary_10_3390_toxics11020088 crossref_primary_10_1007_s11144_024_02662_6 crossref_primary_10_3390_toxics12110773 crossref_primary_10_2166_wst_2023_059 crossref_primary_10_1016_j_cej_2024_151371 crossref_primary_10_1016_j_jssc_2024_125060 crossref_primary_10_1016_j_cej_2024_154631 crossref_primary_10_37819_bph_1_331 crossref_primary_10_1016_j_cej_2024_149052 crossref_primary_10_1016_j_jes_2022_10_026 crossref_primary_10_1021_acsami_4c14775 crossref_primary_10_1016_j_cej_2025_161468 crossref_primary_10_1016_j_chemosphere_2024_141207 crossref_primary_10_1016_j_chemosphere_2024_141449 crossref_primary_10_1016_j_seppur_2022_121805 crossref_primary_10_1016_j_colsurfa_2021_127152 crossref_primary_10_1016_j_jhazmat_2021_128065 crossref_primary_10_1016_j_seppur_2021_119473 crossref_primary_10_1016_j_cej_2023_144531 crossref_primary_10_3390_catal12070741 crossref_primary_10_1016_j_surfin_2024_105344 crossref_primary_10_1016_j_watres_2023_120887 crossref_primary_10_1016_j_chemosphere_2022_134135 crossref_primary_10_1016_j_seppur_2024_129710 crossref_primary_10_1007_s11356_022_24489_1 crossref_primary_10_1016_j_apcatb_2023_122748 crossref_primary_10_1016_j_cej_2022_141149 crossref_primary_10_1007_s11144_024_02780_1 crossref_primary_10_1016_j_cej_2022_135947 crossref_primary_10_1016_j_seppur_2023_124388 crossref_primary_10_1016_j_cej_2024_155958 crossref_primary_10_1016_j_seppur_2023_125239 crossref_primary_10_1016_j_jece_2024_114662 crossref_primary_10_1021_acsestwater_2c00448 crossref_primary_10_1016_j_radphyschem_2021_109458 crossref_primary_10_1016_j_scitotenv_2024_174485 crossref_primary_10_1016_j_cej_2021_131066 crossref_primary_10_1039_D2TA02188A crossref_primary_10_3389_fenvs_2022_992202 crossref_primary_10_1016_j_apcatb_2022_121364 crossref_primary_10_1016_j_apt_2022_103802 crossref_primary_10_1016_j_mineng_2024_108996 crossref_primary_10_1039_D4EW00167B crossref_primary_10_1016_j_jcat_2024_115544 crossref_primary_10_1016_j_seppur_2024_126432 crossref_primary_10_3390_molecules28062824 crossref_primary_10_1016_j_envres_2023_117845 crossref_primary_10_1002_wer_10898 crossref_primary_10_1016_j_cej_2023_145600 crossref_primary_10_1016_j_seppur_2024_130928 crossref_primary_10_1016_j_seppur_2021_119457 crossref_primary_10_1016_j_chemosphere_2023_137939 crossref_primary_10_1016_j_chemosphere_2021_130949 crossref_primary_10_1016_j_cej_2022_134873 crossref_primary_10_1016_j_catcom_2023_106702 crossref_primary_10_1016_j_seppur_2023_125015 crossref_primary_10_1016_j_watcyc_2024_10_002 crossref_primary_10_1016_j_seppur_2023_126105 crossref_primary_10_1016_j_colsurfa_2022_130646 crossref_primary_10_1016_j_seppur_2022_120764 crossref_primary_10_1016_j_chemosphere_2024_141255 crossref_primary_10_1016_j_jece_2024_113351 crossref_primary_10_1016_j_cej_2023_142325 crossref_primary_10_1016_j_watres_2022_118259 crossref_primary_10_1016_j_jclepro_2021_128921 crossref_primary_10_1016_j_scitotenv_2022_154275 crossref_primary_10_1016_j_arabjc_2023_105483 crossref_primary_10_1016_j_ceramint_2022_06_296 crossref_primary_10_1016_j_apcatb_2022_121342 crossref_primary_10_1021_acs_langmuir_4c00659 crossref_primary_10_1016_j_seppur_2024_126652 crossref_primary_10_1016_j_seppur_2024_126656 crossref_primary_10_1016_j_efmat_2023_09_001 crossref_primary_10_1016_j_seppur_2023_125269 crossref_primary_10_1016_j_apsusc_2023_157307 crossref_primary_10_1016_j_watres_2024_121259 crossref_primary_10_1016_j_seppur_2022_122047 crossref_primary_10_1016_j_watres_2024_122587 crossref_primary_10_1016_j_cej_2022_139660 crossref_primary_10_1016_j_seppur_2024_127056 crossref_primary_10_1016_j_seppur_2025_131847 crossref_primary_10_1039_D4RA04993D crossref_primary_10_1021_acsami_2c16144 crossref_primary_10_1039_D4EW00596A crossref_primary_10_1016_j_nanoen_2022_107583 crossref_primary_10_1007_s11356_022_18949_x crossref_primary_10_1016_j_jwpe_2024_105134 crossref_primary_10_1016_j_cej_2023_145377 crossref_primary_10_1016_j_molliq_2023_123505 crossref_primary_10_1007_s11356_025_35990_8 crossref_primary_10_1080_09593330_2021_1961873 crossref_primary_10_1016_j_chemosphere_2023_140203 crossref_primary_10_1016_j_seppur_2024_129472 crossref_primary_10_1016_j_jes_2023_11_029 crossref_primary_10_1016_j_jcis_2023_12_082 crossref_primary_10_1021_acsami_2c16396 crossref_primary_10_1080_09593330_2021_1954096 crossref_primary_10_1016_j_jcis_2022_01_006 crossref_primary_10_1016_j_jclepro_2024_142601 crossref_primary_10_1016_j_jclepro_2024_142843 crossref_primary_10_1016_j_scitotenv_2024_171422 crossref_primary_10_1016_j_jece_2023_110650 crossref_primary_10_1016_j_jwpe_2022_103401 crossref_primary_10_1021_acsestengg_4c00282 crossref_primary_10_1016_j_colsurfa_2024_134684 crossref_primary_10_1016_j_seppur_2024_128367 crossref_primary_10_1016_j_seppur_2024_127277 crossref_primary_10_1016_j_envres_2022_113964 crossref_primary_10_1007_s12613_024_2953_1 crossref_primary_10_1016_j_chemosphere_2023_138398 crossref_primary_10_1016_j_chemosphere_2023_139245 crossref_primary_10_1016_j_radphyschem_2022_110547 crossref_primary_10_1016_j_wri_2023_100208 crossref_primary_10_1016_j_apcatb_2022_121419 crossref_primary_10_1016_j_apcatb_2024_124293 crossref_primary_10_1016_j_seppur_2022_122052 crossref_primary_10_1016_j_cej_2022_137277 crossref_primary_10_1021_acsomega_1c01916 crossref_primary_10_1016_j_cej_2022_136187 crossref_primary_10_1007_s10967_024_09575_7 crossref_primary_10_1016_j_jwpe_2024_106201 crossref_primary_10_1021_acs_langmuir_4c04941 crossref_primary_10_1016_j_chemosphere_2022_134964 crossref_primary_10_1016_j_jhazmat_2024_135521 crossref_primary_10_1016_j_seppur_2024_129448 crossref_primary_10_1016_j_jece_2024_114038 crossref_primary_10_1016_j_molliq_2023_123716 crossref_primary_10_1080_09593330_2022_2048086 crossref_primary_10_1016_j_jwpe_2022_102970 crossref_primary_10_1039_D2NJ04406D crossref_primary_10_2139_ssrn_4123908 crossref_primary_10_1016_j_jece_2023_109646 crossref_primary_10_1021_acsestwater_2c00040 crossref_primary_10_1016_j_colsurfa_2024_133333 crossref_primary_10_1016_j_cej_2025_161159 crossref_primary_10_1016_j_chemosphere_2023_139027 crossref_primary_10_1016_j_apcatb_2024_124005 crossref_primary_10_1016_j_cej_2023_143161 crossref_primary_10_1016_j_chemosphere_2023_139025 crossref_primary_10_1016_j_watres_2022_118797 crossref_primary_10_1016_j_seppur_2021_119404 crossref_primary_10_1016_j_cherd_2024_09_030 crossref_primary_10_1016_j_jclepro_2023_140098 crossref_primary_10_1021_acsestengg_4c00096 crossref_primary_10_1016_j_jece_2021_106660 crossref_primary_10_1016_j_jhazmat_2023_133026 crossref_primary_10_1016_j_jece_2024_112083 crossref_primary_10_1016_j_cej_2023_145571 crossref_primary_10_1016_j_chemosphere_2023_138193 crossref_primary_10_1021_acs_est_1c07457 crossref_primary_10_1016_j_jwpe_2024_105382 crossref_primary_10_1016_j_jece_2024_114297 crossref_primary_10_1021_acs_inorgchem_4c00860 crossref_primary_10_1007_s42452_025_06479_3 crossref_primary_10_1080_09593330_2025_2450554 crossref_primary_10_3389_fchem_2024_1472284 crossref_primary_10_1016_j_jece_2023_110606 crossref_primary_10_1016_j_seppur_2024_129655 crossref_primary_10_1016_j_coelec_2023_101347 crossref_primary_10_1016_j_cej_2022_140475 crossref_primary_10_1002_anie_202309472 crossref_primary_10_1016_j_apsusc_2024_159635 crossref_primary_10_1016_j_scitotenv_2024_175833 crossref_primary_10_1021_acs_est_1c07469 crossref_primary_10_1038_s41545_024_00415_5 crossref_primary_10_1016_j_jece_2024_114286 crossref_primary_10_1016_j_jece_2025_115672 crossref_primary_10_1007_s11144_024_02786_9 crossref_primary_10_1021_acs_langmuir_4c02321 crossref_primary_10_1016_j_seppur_2022_122092 crossref_primary_10_1016_j_scitotenv_2023_162217 crossref_primary_10_1016_j_molliq_2021_115755 crossref_primary_10_1016_j_seppur_2023_123481 crossref_primary_10_1016_j_seppur_2024_126378 crossref_primary_10_1016_j_watres_2023_119925 crossref_primary_10_1002_adfm_202313631 crossref_primary_10_1016_j_seppur_2024_126379 crossref_primary_10_1016_j_jphotochem_2023_114840 crossref_primary_10_1016_j_watres_2023_119926 crossref_primary_10_1016_j_jclepro_2023_139334 crossref_primary_10_1016_j_cej_2024_148539 crossref_primary_10_1016_j_jhazmat_2021_127207 crossref_primary_10_1016_j_envpol_2022_120296 crossref_primary_10_1016_j_jece_2024_111885 crossref_primary_10_1016_j_watres_2021_117796 crossref_primary_10_1016_j_cej_2024_156163 crossref_primary_10_1016_j_jwpe_2022_103226 crossref_primary_10_1016_j_jwpe_2022_103468 crossref_primary_10_3390_w15030381 crossref_primary_10_1016_j_jece_2024_112727 crossref_primary_10_1016_j_apsusc_2024_160020 crossref_primary_10_1016_j_cej_2025_159712 crossref_primary_10_1016_j_jhazmat_2021_127440 crossref_primary_10_1007_s42250_024_01175_y crossref_primary_10_1016_j_jhazmat_2021_127674 crossref_primary_10_1016_j_chemosphere_2022_137170 crossref_primary_10_1021_acsestengg_3c00262 crossref_primary_10_1016_j_jenvman_2023_118076 crossref_primary_10_1016_j_scitotenv_2022_159172 crossref_primary_10_1016_j_jhazmat_2023_132133 crossref_primary_10_1016_j_watres_2024_121880 crossref_primary_10_1016_j_seppur_2024_130290 crossref_primary_10_1016_j_jenvman_2024_122645 crossref_primary_10_1016_j_jcis_2021_11_097 crossref_primary_10_1016_j_radphyschem_2022_110136 crossref_primary_10_1016_j_psep_2022_09_064 crossref_primary_10_1039_D4EN00842A crossref_primary_10_1016_j_seppur_2024_129061 crossref_primary_10_1016_j_cherd_2023_12_028 crossref_primary_10_1016_j_chemosphere_2021_131560 crossref_primary_10_1016_j_jpcs_2023_111445 crossref_primary_10_1016_j_watres_2024_122755 crossref_primary_10_1039_D4EN00407H crossref_primary_10_1016_j_jece_2023_110263 crossref_primary_10_1016_j_surfin_2024_104528 crossref_primary_10_1016_j_jclepro_2021_128202 crossref_primary_10_1016_j_envres_2024_118362 crossref_primary_10_1016_j_jwpe_2023_103702 crossref_primary_10_1007_s11356_024_32947_1 crossref_primary_10_1016_j_jwpe_2023_103704 crossref_primary_10_5004_dwt_2022_28508 crossref_primary_10_1016_j_chemosphere_2022_137394 crossref_primary_10_1016_j_seppur_2023_123844 crossref_primary_10_1007_s11144_021_02026_4 crossref_primary_10_1016_j_jece_2023_110477 crossref_primary_10_1039_D3EN00741C crossref_primary_10_1039_D4RA06537A crossref_primary_10_1016_j_seppur_2021_118709 crossref_primary_10_5004_dwt_2021_27896 crossref_primary_10_1016_j_radphyschem_2023_111373 crossref_primary_10_1016_j_jes_2024_04_043 crossref_primary_10_1016_j_jhazmat_2021_126786 crossref_primary_10_1016_j_watres_2024_122531 crossref_primary_10_1016_j_jhazmat_2021_126309 crossref_primary_10_1016_j_cej_2024_155025 crossref_primary_10_1039_D4EM00490F crossref_primary_10_1016_j_desal_2025_118527 crossref_primary_10_1016_j_inoche_2024_113118 crossref_primary_10_1016_j_seppur_2022_122265 crossref_primary_10_1016_j_cej_2024_149802 crossref_primary_10_1016_j_jece_2024_112954 crossref_primary_10_1016_j_cej_2024_155010 crossref_primary_10_1016_j_seppur_2024_129259 crossref_primary_10_1016_j_cej_2024_157439 crossref_primary_10_1007_s11144_023_02360_9 crossref_primary_10_1016_j_cej_2022_138557 crossref_primary_10_1016_j_chemosphere_2023_138115 crossref_primary_10_1016_j_jiec_2024_12_052 crossref_primary_10_1016_j_seppur_2022_122016 crossref_primary_10_1016_j_seppur_2023_125825 crossref_primary_10_1016_j_jenvman_2022_116895 crossref_primary_10_1016_j_jcis_2023_08_188 crossref_primary_10_1016_j_envres_2024_120407 crossref_primary_10_1016_j_jclepro_2021_129334 crossref_primary_10_1016_j_seppur_2024_131321 crossref_primary_10_1016_j_seppur_2023_124974 crossref_primary_10_1016_j_seppur_2023_125821 |
Cites_doi | 10.1021/ie9002848 10.1016/j.cej.2018.06.137 10.1039/C6EN00633G 10.1016/S0013-4686(00)00728-3 10.1007/s11356-017-0629-3 10.1021/acs.est.0c05974 10.1016/j.jcis.2012.06.072 10.1016/j.cej.2017.11.059 10.1021/j100711a007 10.1023/A:1005860312363 10.1016/j.cej.2012.07.127 10.1016/S0144-8617(99)00136-8 10.1016/0016-7037(93)90135-J 10.1021/acs.est.7b00507 10.1080/00958972.2018.1512708 10.1016/j.jece.2014.11.025 10.1021/es010130n 10.1039/JR9630002446 10.1021/j100495a019 10.1016/j.jhazmat.2020.124191 10.1021/j100857a021 10.1016/j.watres.2017.03.043 10.1016/j.jwpe.2015.11.011 10.1016/j.carbpol.2010.05.003 10.1016/j.jhazmat.2011.09.007 10.1016/j.jes.2017.01.013 10.1016/j.jcis.2003.12.031 10.1016/j.seppur.2019.02.042 10.1021/acs.accounts.7b00535 10.1021/es1013714 10.1016/j.biomaterials.2011.05.073 10.1021/es404118q 10.1016/j.jhazmat.2010.03.039 10.1289/ehp.8564209 10.1021/j100689a008 10.1016/j.scitotenv.2017.03.039 10.1007/BF01221974 10.1063/1.555808 10.1016/j.seppur.2015.04.031 10.1039/f19736901597 10.1007/s11356-019-06676-9 10.1016/j.jhazmat.2004.05.001 10.1080/10643389.2010.507698 10.1021/es060847g 10.1016/j.biortech.2019.03.113 10.1021/ic50200a026 10.1021/es0263792 10.1021/ja01062a009 10.1021/ja01544a009 10.1016/j.apsusc.2019.01.194 10.1016/j.jhazmat.2018.06.012 10.1016/S0010-938X(02)00032-X 10.1063/1.555805 10.1016/j.cej.2019.122041 10.1016/j.jhazmat.2018.06.062 10.1016/j.cej.2012.11.112 10.1021/acs.est.8b05002 10.1016/j.watres.2016.04.015 10.1016/j.watres.2017.06.081 10.1016/j.jenvman.2016.07.049 10.1016/j.ultsonch.2018.07.009 10.1021/j100127a016 10.1016/j.cej.2015.01.019 10.1016/j.chemosphere.2017.09.148 10.1016/0008-6223(94)90089-2 10.1016/j.watres.2013.01.022 10.3184/007967401103165253 10.1016/j.cej.2019.02.183 10.1016/j.chemosphere.2016.02.089 10.1021/acssuschemeng.7b03948 10.1016/j.chemosphere.2011.09.050 10.1016/j.watres.2010.04.011 10.1021/es300658u 10.1039/C6RA02077A 10.1016/j.cej.2019.01.057 10.1021/j100532a004 10.1016/j.watres.2015.08.051 10.2307/3573789 10.1021/ja0274756 10.1016/0016-7037(92)90051-J 10.1016/j.jhazmat.2019.120869 10.1016/j.scitotenv.2019.135249 10.1016/j.chemosphere.2017.10.126 10.1016/j.jcis.2006.12.061 10.1016/j.chemosphere.2017.09.109 10.1016/j.jhazmat.2018.01.006 10.1039/DT9880002015 10.1016/0167-8809(93)90104-W 10.1016/j.cej.2019.122361 10.1021/es1010225 10.1021/es051236b 10.1021/la015685a 10.1016/j.cej.2019.123933 10.1016/j.cej.2011.09.004 10.1248/cpb.c13-00422 10.1021/j100585a004 10.1016/j.jenvman.2014.07.032 10.1016/j.chemosphere.2014.09.046 10.1080/10643389.2013.829765 10.1016/j.jhazmat.2007.01.044 10.1021/acs.est.7b03570 10.1021/ja00486a025 10.1021/es4036094 10.1021/es301775k 10.1016/j.watres.2017.03.054 10.1016/j.jhazmat.2019.121669 10.1088/0963-0252/23/1/015019 10.1016/j.jclepro.2018.05.207 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2020.128392 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2020_128392 S1385894720345046 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-875462b37fc74c1c50c943a57146dbd64fa35425f70c65d1ecaa0370f10958fe3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 22:57:14 EDT 2025 Tue Jul 01 04:27:17 EDT 2025 Fri Feb 23 02:42:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Advanced oxidation processes Catalytic activity Degradation products Reactive species Inorganic anions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-875462b37fc74c1c50c943a57146dbd64fa35425f70c65d1ecaa0370f10958fe3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2020_128392 crossref_primary_10_1016_j_cej_2020_128392 elsevier_sciencedirect_doi_10_1016_j_cej_2020_128392 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Kilic, Abdelraheem, He, Kestioglu, Dionysiou (b0055) 2019; 367 Wang, Wang (b0170) 2020; 379 Neta, Huie, Ross (b0160) 1988; 17 Oturan, Aaron (b0025) 2014; 44 Wang, Xu, Wang (b0070) 2019; 375 Wu, Gu, Lu, Qiu, Sui, Zang, Miao, Xu (b0405) 2015; 147 Yao, Richardson (b0225) 2003; 125 Furman, Teel, Watts (b0250) 2010; 44 Wang, Wang (b0020) 2016; 182 Wang, Wang (b0015) 2018; 334 Iida, Amano, Machida, Imazeki (b0390) 2013; 61 Ma, Yang, Jiang, Xie, Li, Chen, Chen (b0155) 2018; 190 Wu, Li, Liu, Huang, Yang, Wang, Jin (b0365) 2019; 478 Öztürk, Bektaş (b0570) 2004; 112 Gamov, Zavalishin, Khokhlova, Gashnikova, Aleksandriiskii, Sharnin (b0345) 2018; 71 Feng, Wu, Li, Bai, Shih (b0280) 2018; 6 Mignardi, Corami, Ferrini (b0350) 2012; 86 Wang, Wang (b0050) 2018; 351 Abe, Iwasaki, Tokimoto, Kawasaki, Nakamura, Tanada (b0565) 2004; 275 Jiang, Lu, Ji, Kong (b0230) 2017; 116 Wang, Liu, Wang (b0085) 2020; 387 Anipsitakis, Dionysiou (b0005) 2003; 37 Barndõk, Hermosilla, Cortijo, Negro, Blanco (b0270) 2012; 15 Hirakawa, Nosaka (b0520) 2002; 18 Bruno, Stumm (b0290) 1992; 56 Liang, Zhang, Duan, Sun, Liu, Tade, Wang (b0460) 2017; 4 Zhang, Yan, Yu, Yan, Li (b0575) 2019; 284 Jayson, Parsons, Swallow (b0115) 1973; 69 Buxton, Greenstock, Helman, Ross (b0140) 1988; 17 Xu, Yuan, Guo, Xiao, Cao, Wang, Liu (b0530) 2013; 217 Yang, Lu, Jiang, Ma, Liu, Cao, Liu, Li, Pang, Kong (b0550) 2017; 118 Liu, Zhao, Wang (b0035) 2021; 404 Feng, Song, Lv, Liu (b0220) 2017; 189 Nagoya, Nakamichi, Kawase (b0360) 2019; 218 Criquet, Rodriguez, Allard, Wellauer, Salhi, Joll, von Gunten (b0165) 2015; 85 Rayaroth, Aravind, Aravindakumar (b0540) 2018; 48 Wang, Wu, Huang, Wang, Hu (b0110) 2016; 98 Dunphy Guzman, Finnegan, Banfield (b0295) 2006; 40 Fernandes, Makoś, Boczkaj (b0040) 2018; 195 Duan, Sun, Wang (b0560) 2018; 51 Wang, Wang (b0045) 2020; 126158 Lukes, Dolezalova, Sisrova, Clupek (b0445) 2014; 23 Du, Lv, Wu, Zhang, Zhou, Peng, Hu (b0555) 2017; 58 Li, Li, Chen, Zhang, Gong, Wang, Zhao, Mu (b0210) 2018; 192 Sun, Tomkinson, Ma, Liang (b0245) 2000; 42 Yang, Su, Luo, Spinney, Cai, Xiao, Wei (b0400) 2017; 590-591 Yuan, Ramjaun, Wang, Liu (b0525) 2011; 196 Appelo, Van Der Weiden, Tournassat, Charlet (b0275) 2002; 36 Orellana-García, Álvarez, López-Ramón, Rivera-Utrilla, Sánchez-Polo (b0260) 2015; 267 Siedlecka, Wieckowska, Stepnowski (b0065) 2007; 147 Kumar (b0095) 2011; 15 Lou, Wu, Guo, Chen, Wang, Xiao, Fang, Liu, Zhao, Lu (b0240) 2014; 117 Yuan, Ramjaun, Wang, Liu (b0135) 2012; 209 Sangseethong, Termvejsayanon, Sriroth (b0490) 2010; 82 Grebel, Pignatello, Mitch (b0125) 2010; 44 Li, Chen, Wang, Fu, Cui, Lu, Li, Liu, Li, Lau (b0505) 2019; 362 Løgager, Sehested (b0425) 1993; 97 Khoe, Robins (b0340) 1988 Neta, Huie (b0435) 1985; 64 Canonica, Kohn, Mac, Real, Wirz, von Gunten (b0200) 2005; 39 Maruthamuthu, Neta (b0320) 1978; 82 Maruthamuthu, Neta (b0325) 1977; 81 Bennedsen (b0330) 2014 Wu, Linden (b0535) 2010; 44 Khan, Khan, Islam, Gafur (b0500) 2010; 1 Wang, Xu (b0010) 2012; 42 Yang, Wang, Yang, Shan, Zhang, Shao, Niu (b0235) 2010; 179 Huie, Clifton, Neta (b0185) 1991; 38 Morimoto, Anraku, Hoshino, Yoneda, Sato (b0385) 2012; 384 Wang, Wang (b0080) 2020; 385 Chiba, Seo (b0495) 2002; 44 Rehman, Sayed, Khan, Shah, Khan, Dionysiou (b0410) 2018; 357 Mader (b0470) 1958; 80 Thomas, Volz-Thomas, Mihelcic, Smit, Kley (b0380) 1998; 29 Yang, Pignatello, Ma, Mitch (b0120) 2014; 48 Autin, Hart, Jarvis, Macadam, Parsons, Jefferson (b0300) 2013; 47 Tisa, Raman, Wan (b0030) 2014; 146 Mártire, Gonzalez (b0315) 2001; 26 Ji, Wang, Jiang, Lu, Ferronato, Chovelon (b0440) 2017; 123 Black, Hayon (b0310) 1970; 74 Chuang, Chen, Chinn, Mitch (b0175) 2017; 51 Singh, Dosani, Karakoti, Kumar, Seal, Self (b0370) 2011; 32 Dai, Zhang, Yan, Wu, Johnson, Sun, Wang, Zhang, Zhan (b0375) 2018; 52 Van Cappellen, Charlet, Stumm, Wersin (b0285) 1993; 57 Liang, Su (b0510) 2009; 48 Vinke, van der Eijk, Verbree, Voskamp, van Bekkum (b0480) 1994; 32 Held, Halko, Hurst (b0450) 1978; 100 Fang, Fu, Shang (b0105) 2014; 48 Gao, Zhou, Wang, Yuan, Chen, Han (b0545) 2020; 27 Cohen, Kirschenbaum, Zeigerson, Jaacobi, Fuchs, Ginzburg, Meyerstein (b0415) 1979; 18 Fang, Shang (b0145) 2012; 46 Liu, Zhang, Cheng, Tian, Zhang (b0485) 2011; 175 Ismail, Ferronato, Fine, Jaber, Chovelon (b0090) 2018; 25 Laith, Madjid (b0515) 2018; 201 Minakata, Kamath, Maetzold (b0100) 2017; 51 Zhou, Yan, Sleiman, Ferronato, Chovelon, Wang, Richard (b0150) 2019; 368 Chen, Hoffman (b0190) 1973; 56 Wang, Chen (b0205) 2020; 704 Kim, Kim, Mackeyev, Lee, Kim, Tachikawa, Hong, Lee, Kim, Wilson (b0455) 2012; 46 Ghanbari, Moradi, Gohari (b0395) 2016; 9 Sbardella, Gala, Comas, Layret, Gernjak (b0215) 2019; 380 Chen, Hoffman, Parsons (b0195) 1975; 79 Huang, Bianco, Brigante, Mailhot (b0075) 2018; 347 Erben-Russ, Michel, Bors, Saran (b0430) 1987; 26 Khorana, Hamill (b0130) 1971; 75 Hammes, Morrell (b0335) 1964; 86 Luo, Ji, Park, Hao, Li (b0180) 2016; 6 Elzinga, Sparks (b0355) 2007; 308 Qi, Liu, Ma, Lin, Li, Zhang (b0255) 2016; 151 Flood, Lewis, Richards (b0465) 1963; 0 Legrand, Abdelmoula, Géhin, Chaussé, Génin (b0265) 2001; 46 Huber, Hayon (b0305) 1968; 72 Charlet, Dise, Stumm (b0420) 1993; 47 Liu, Guo, Chen, Tan, Wang (b0060) 2020; 54 Ogata, Imai, Kawasaki (b0475) 2015; 3 Fang (10.1016/j.cej.2020.128392_b0145) 2012; 46 Minakata (10.1016/j.cej.2020.128392_b0100) 2017; 51 Yang (10.1016/j.cej.2020.128392_b0120) 2014; 48 Zhang (10.1016/j.cej.2020.128392_b0575) 2019; 284 Jayson (10.1016/j.cej.2020.128392_b0115) 1973; 69 Wang (10.1016/j.cej.2020.128392_b0050) 2018; 351 Canonica (10.1016/j.cej.2020.128392_b0200) 2005; 39 Liu (10.1016/j.cej.2020.128392_b0485) 2011; 175 Wang (10.1016/j.cej.2020.128392_b0170) 2020; 379 Charlet (10.1016/j.cej.2020.128392_b0420) 1993; 47 Yang (10.1016/j.cej.2020.128392_b0550) 2017; 118 Lou (10.1016/j.cej.2020.128392_b0240) 2014; 117 Cohen (10.1016/j.cej.2020.128392_b0415) 1979; 18 Legrand (10.1016/j.cej.2020.128392_b0265) 2001; 46 Laith (10.1016/j.cej.2020.128392_b0515) 2018; 201 Duan (10.1016/j.cej.2020.128392_b0560) 2018; 51 Orellana-García (10.1016/j.cej.2020.128392_b0260) 2015; 267 Wu (10.1016/j.cej.2020.128392_b0365) 2019; 478 Luo (10.1016/j.cej.2020.128392_b0180) 2016; 6 Wang (10.1016/j.cej.2020.128392_b0020) 2016; 182 Huie (10.1016/j.cej.2020.128392_b0185) 1991; 38 Kilic (10.1016/j.cej.2020.128392_b0055) 2019; 367 Wang (10.1016/j.cej.2020.128392_b0070) 2019; 375 Wang (10.1016/j.cej.2020.128392_b0010) 2012; 42 Zhou (10.1016/j.cej.2020.128392_b0150) 2019; 368 Neta (10.1016/j.cej.2020.128392_b0435) 1985; 64 Fernandes (10.1016/j.cej.2020.128392_b0040) 2018; 195 Elzinga (10.1016/j.cej.2020.128392_b0355) 2007; 308 Flood (10.1016/j.cej.2020.128392_b0465) 1963; 0 Bruno (10.1016/j.cej.2020.128392_b0290) 1992; 56 Siedlecka (10.1016/j.cej.2020.128392_b0065) 2007; 147 Morimoto (10.1016/j.cej.2020.128392_b0385) 2012; 384 Du (10.1016/j.cej.2020.128392_b0555) 2017; 58 Wang (10.1016/j.cej.2020.128392_b0045) 2020; 126158 Van Cappellen (10.1016/j.cej.2020.128392_b0285) 1993; 57 Wang (10.1016/j.cej.2020.128392_b0015) 2018; 334 Yao (10.1016/j.cej.2020.128392_b0225) 2003; 125 Ogata (10.1016/j.cej.2020.128392_b0475) 2015; 3 Criquet (10.1016/j.cej.2020.128392_b0165) 2015; 85 Maruthamuthu (10.1016/j.cej.2020.128392_b0325) 1977; 81 Li (10.1016/j.cej.2020.128392_b0210) 2018; 192 Tisa (10.1016/j.cej.2020.128392_b0030) 2014; 146 Chiba (10.1016/j.cej.2020.128392_b0495) 2002; 44 Rayaroth (10.1016/j.cej.2020.128392_b0540) 2018; 48 Ghanbari (10.1016/j.cej.2020.128392_b0395) 2016; 9 Liu (10.1016/j.cej.2020.128392_b0035) 2021; 404 Mader (10.1016/j.cej.2020.128392_b0470) 1958; 80 Fang (10.1016/j.cej.2020.128392_b0105) 2014; 48 Lukes (10.1016/j.cej.2020.128392_b0445) 2014; 23 Autin (10.1016/j.cej.2020.128392_b0300) 2013; 47 Khan (10.1016/j.cej.2020.128392_b0500) 2010; 1 Wang (10.1016/j.cej.2020.128392_b0110) 2016; 98 Held (10.1016/j.cej.2020.128392_b0450) 1978; 100 Sangseethong (10.1016/j.cej.2020.128392_b0490) 2010; 82 Maruthamuthu (10.1016/j.cej.2020.128392_b0320) 1978; 82 Iida (10.1016/j.cej.2020.128392_b0390) 2013; 61 Chuang (10.1016/j.cej.2020.128392_b0175) 2017; 51 Løgager (10.1016/j.cej.2020.128392_b0425) 1993; 97 Furman (10.1016/j.cej.2020.128392_b0250) 2010; 44 Chen (10.1016/j.cej.2020.128392_b0190) 1973; 56 Sbardella (10.1016/j.cej.2020.128392_b0215) 2019; 380 Black (10.1016/j.cej.2020.128392_b0310) 1970; 74 Mignardi (10.1016/j.cej.2020.128392_b0350) 2012; 86 Feng (10.1016/j.cej.2020.128392_b0280) 2018; 6 Mártire (10.1016/j.cej.2020.128392_b0315) 2001; 26 Buxton (10.1016/j.cej.2020.128392_b0140) 1988; 17 Yang (10.1016/j.cej.2020.128392_b0235) 2010; 179 Thomas (10.1016/j.cej.2020.128392_b0380) 1998; 29 Oturan (10.1016/j.cej.2020.128392_b0025) 2014; 44 Liu (10.1016/j.cej.2020.128392_b0060) 2020; 54 Wu (10.1016/j.cej.2020.128392_b0405) 2015; 147 Li (10.1016/j.cej.2020.128392_b0505) 2019; 362 Grebel (10.1016/j.cej.2020.128392_b0125) 2010; 44 Barndõk (10.1016/j.cej.2020.128392_b0270) 2012; 15 Anipsitakis (10.1016/j.cej.2020.128392_b0005) 2003; 37 Kumar (10.1016/j.cej.2020.128392_b0095) 2011; 15 Öztürk (10.1016/j.cej.2020.128392_b0570) 2004; 112 Jiang (10.1016/j.cej.2020.128392_b0230) 2017; 116 Rehman (10.1016/j.cej.2020.128392_b0410) 2018; 357 Yuan (10.1016/j.cej.2020.128392_b0525) 2011; 196 Dai (10.1016/j.cej.2020.128392_b0375) 2018; 52 Xu (10.1016/j.cej.2020.128392_b0530) 2013; 217 Wang (10.1016/j.cej.2020.128392_b0080) 2020; 385 Dunphy Guzman (10.1016/j.cej.2020.128392_b0295) 2006; 40 Neta (10.1016/j.cej.2020.128392_b0160) 1988; 17 Erben-Russ (10.1016/j.cej.2020.128392_b0430) 1987; 26 Hammes (10.1016/j.cej.2020.128392_b0335) 1964; 86 Khoe (10.1016/j.cej.2020.128392_b0340) 1988 Bennedsen (10.1016/j.cej.2020.128392_b0330) 2014 Huber (10.1016/j.cej.2020.128392_b0305) 1968; 72 Ma (10.1016/j.cej.2020.128392_b0155) 2018; 190 Feng (10.1016/j.cej.2020.128392_b0220) 2017; 189 Abe (10.1016/j.cej.2020.128392_b0565) 2004; 275 Singh (10.1016/j.cej.2020.128392_b0370) 2011; 32 Huang (10.1016/j.cej.2020.128392_b0075) 2018; 347 Chen (10.1016/j.cej.2020.128392_b0195) 1975; 79 Vinke (10.1016/j.cej.2020.128392_b0480) 1994; 32 Kim (10.1016/j.cej.2020.128392_b0455) 2012; 46 Appelo (10.1016/j.cej.2020.128392_b0275) 2002; 36 Wang (10.1016/j.cej.2020.128392_b0205) 2020; 704 Yang (10.1016/j.cej.2020.128392_b0400) 2017; 590-591 Ismail (10.1016/j.cej.2020.128392_b0090) 2018; 25 Liang (10.1016/j.cej.2020.128392_b0510) 2009; 48 Khorana (10.1016/j.cej.2020.128392_b0130) 1971; 75 Liang (10.1016/j.cej.2020.128392_b0460) 2017; 4 Gamov (10.1016/j.cej.2020.128392_b0345) 2018; 71 Yuan (10.1016/j.cej.2020.128392_b0135) 2012; 209 Sun (10.1016/j.cej.2020.128392_b0245) 2000; 42 Wu (10.1016/j.cej.2020.128392_b0535) 2010; 44 Gao (10.1016/j.cej.2020.128392_b0545) 2020; 27 Qi (10.1016/j.cej.2020.128392_b0255) 2016; 151 Hirakawa (10.1016/j.cej.2020.128392_b0520) 2002; 18 Wang (10.1016/j.cej.2020.128392_b0085) 2020; 387 Nagoya (10.1016/j.cej.2020.128392_b0360) 2019; 218 Ji (10.1016/j.cej.2020.128392_b0440) 2017; 123 |
References_xml | – volume: 44 start-page: 2379 year: 2002 end-page: 2391 ident: b0495 article-title: Effects of dichromate treatment on mechanical properties of passivated single crystal iron (100) and (110) surfaces publication-title: Corros. Sci. – volume: 51 start-page: 678 year: 2018 end-page: 687 ident: b0560 article-title: Metal-Free Carbocatalysis in Advanced Oxidation Reactions publication-title: Acc. Chem. Res. – volume: 51 start-page: 6918 year: 2017 end-page: 6926 ident: b0100 article-title: Mechanistic insight into the reactivity of chlorine-derived radicals in the aqueous-phase UV–chlorine advanced oxidation process: quantum mechanical calculations publication-title: Environ. Sci. Technol. – volume: 26 start-page: 289 year: 1987 end-page: 294 ident: b0430 article-title: Determination of sulfite radical (SO 3 ? ?) reaction rate constants by means of competition kinetics publication-title: Radiat Environ Biophys – volume: 56 start-page: 1139 year: 1992 end-page: 1147 ident: b0290 article-title: On the influence of carbonate in mineral dissolution: I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25° C publication-title: Geochim. Cosmochim. Acta – volume: 379 year: 2020 ident: b0170 article-title: Treatment of membrane filtration concentrate of coking wastewater using PMS/chloridion oxidation process publication-title: Chem. Eng. J. – volume: 23 year: 2014 ident: b0445 article-title: Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H publication-title: Plasma Sources Sci. Technol. – volume: 82 start-page: 446 year: 2010 end-page: 453 ident: b0490 article-title: Characterization of physicochemical properties of hypochlorite- and peroxide-oxidized cassava starches publication-title: Carbohydr. Polym. – volume: 72 start-page: 3820 year: 1968 end-page: 3827 ident: b0305 article-title: Flash photolysis in the vacuum ultraviolet region of the phosphate anions H publication-title: J. Phys. Chem. – volume: 347 start-page: 279 year: 2018 end-page: 287 ident: b0075 article-title: UVA-UVB activation of hydrogen peroxide and persulfate for advanced oxidation processes: Efficiency, mechanism and effect of various water constituents publication-title: J. Hazard. Mater. – volume: 42 start-page: 251 year: 2012 end-page: 325 ident: b0010 article-title: Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 367 start-page: 734 year: 2019 end-page: 742 ident: b0055 article-title: Photochemical treatment of tyrosol, a model phenolic compound present in olive mill wastewater, by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs) publication-title: J. Hazard. Mater. – volume: 44 start-page: 6822 year: 2010 end-page: 6828 ident: b0125 article-title: Effect of Halide Ions and Carbonates on Organic Contaminant Degradation by Hydroxyl Radical-Based Advanced Oxidation Processes in Saline Waters publication-title: Environ. Sci. Technol. – volume: 196 start-page: 173 year: 2011 end-page: 179 ident: b0525 article-title: Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds publication-title: J. Hazard. Mater. – volume: 44 start-page: 3585 year: 2010 end-page: 3594 ident: b0535 article-title: Phototransformation of selected organophosphorus pesticides: Roles of hydroxyl and carbonate radicals publication-title: Water Res. – volume: 61 start-page: 1173 year: 2013 end-page: 1177 ident: b0390 article-title: Effect of Surface Property of Activated Carbon on Adsorption of Nitrate Ion publication-title: Chem. Pharm. Bull. – volume: 209 start-page: 38 year: 2012 end-page: 45 ident: b0135 article-title: Concentration profiles of chlorine radicals and their significances in •OH-induced dye degradation: Kinetic modeling and reaction pathways publication-title: Chem. Eng. J. – volume: 384 start-page: 99 year: 2012 end-page: 104 ident: b0385 article-title: Surface complexation reactions of inorganic anions on hydrotalcite-like compounds publication-title: J. Colloid Interface Sci. – volume: 46 start-page: 9606 year: 2012 end-page: 9613 ident: b0455 article-title: Selective oxidative degradation of organic pollutants by singlet oxygen-mediated photosensitization: tin porphyrin versus C60 aminofullerene systems publication-title: Environ. Sci. Technol. – volume: 385 year: 2020 ident: b0080 article-title: Peroxymonosulfate activation by Co publication-title: Chem. Eng. J. – volume: 404 start-page: 124191 year: 2021 ident: b0035 article-title: Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects publication-title: J. Hazard. Mater. – volume: 29 start-page: 17 year: 1998 end-page: 43 ident: b0380 article-title: On the Exchange of NO publication-title: J. Atmos. Chem. – volume: 75 start-page: 3081 year: 1971 end-page: 3088 ident: b0130 article-title: Electronic processes in the pulse radiolysis of aqueous solutions of halide ions publication-title: J. Phys. Chem. – volume: 86 start-page: 354 year: 2012 end-page: 360 ident: b0350 article-title: Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn publication-title: Chemosphere – volume: 0 start-page: 2446 year: 1963 end-page: 2455 ident: b0465 article-title: 451. Peroxy-complexes of inorganic ions in hydrogen peroxide–water mixtures. Part II. Decomposition by chromate ions publication-title: J. Chem. Soc. – volume: 6 start-page: 33048 year: 2016 end-page: 33054 ident: b0180 article-title: PdCl publication-title: RSC Adv. – volume: 100 start-page: 5732 year: 1978 end-page: 5740 ident: b0450 article-title: Mechanisms of chlorine oxidation of hydrogen peroxide publication-title: J. Am. Chem. Soc. – volume: 351 start-page: 688 year: 2018 end-page: 696 ident: b0050 article-title: Radiation-induced degradation of sulfamethoxazole in the presence of various inorganic anions publication-title: Chem. Eng. J. – start-page: 2015 year: 1988 end-page: 2021 ident: b0340 article-title: The complexation of iron(III) with sulphate, phosphate, or arsenate ion in sodium nitrate medium at 25 publication-title: J. Chem. Soc., Dalton Trans – volume: 146 start-page: 260 year: 2014 end-page: 275 ident: b0030 article-title: Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: A review publication-title: J. Environ. Manage. – volume: 56 start-page: 40 year: 1973 ident: b0190 article-title: Rate Constants for the Reaction of the Carbonate Radical with Compounds of Biochemical Interest in Neutral Aqueous Solution publication-title: Radiat. Res. – volume: 387 year: 2020 ident: b0085 article-title: Nitrogen, sulfur and oxygen co-doped carbon-armored Co/Co publication-title: J. Hazard. Mater. – volume: 81 start-page: 1622 year: 1977 end-page: 1625 ident: b0325 article-title: Reactions of phosphate radicals with organic compounds publication-title: J. Phys. Chem. – volume: 48 start-page: 5558 year: 2009 end-page: 5562 ident: b0510 article-title: Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate publication-title: Ind. Eng. Chem. Res. – volume: 48 start-page: 1859 year: 2014 end-page: 1868 ident: b0105 article-title: The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System publication-title: Environ. Sci. Technol. – volume: 82 start-page: 710 year: 1978 end-page: 713 ident: b0320 article-title: Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds publication-title: J. Phys. Chem. – volume: 25 start-page: 2651 year: 2018 end-page: 2663 ident: b0090 article-title: Effect of water constituents on the degradation of sulfaclozine in the three systems: UV/TiO publication-title: Environ Sci Pollut Res – volume: 40 start-page: 7688 year: 2006 end-page: 7693 ident: b0295 article-title: Influence of Surface Potential on Aggregation and Transport of Titania Nanoparticles publication-title: Environ. Sci. Technol. – volume: 47 start-page: 2041 year: 2013 end-page: 2049 ident: b0300 article-title: The impact of background organic matter and alkalinity on the degradation of the pesticide metaldehyde by two advanced oxidation processes: UV/HO publication-title: Water Res. – volume: 48 start-page: 482 year: 2018 end-page: 491 ident: b0540 article-title: Effect of inorganic ions on the ultrasound initiated degradation and product formation of triphenylmethane dyes publication-title: Ultrason. Sonochem. – volume: 39 start-page: 9182 year: 2005 end-page: 9188 ident: b0200 article-title: Photosensitizer Method to Determine Rate Constants for the Reaction of Carbonate Radical with Organic Compounds publication-title: Environ. Sci. Technol. – volume: 54 start-page: 14085 year: 2020 end-page: 14095 ident: b0060 article-title: High-efficient generation of H publication-title: Environ. Sci. Technol. – volume: 590-591 start-page: 751 year: 2017 end-page: 760 ident: b0400 article-title: Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: An experimental and theoretical study publication-title: Sci. Total Environ. – volume: 1 start-page: 350 year: 2010 end-page: 357 ident: b0500 article-title: Mechanical, thermal and interfacial properties of jute fabric-reinforced polypropylene composites: effect of potassium dichromate publication-title: Mater. Sci. Appl. – volume: 80 start-page: 2634 year: 1958 end-page: 2639 ident: b0470 article-title: Kinetics of the Hydrogen Peroxide-Sulfite Reaction in Alkaline Solution publication-title: J. Am. Chem. Soc. – volume: 218 start-page: 120 year: 2019 end-page: 129 ident: b0360 article-title: Mechanisms of phosphate removal from aqueous solution by zero-valent iron: A novel kinetic model for electrostatic adsorption, surface complexation and precipitation of phosphate under oxic conditions publication-title: Sep. Purif. Technol. – volume: 116 start-page: 324 year: 2017 end-page: 331 ident: b0230 article-title: Bicarbonate-activated persulfate oxidation of acetaminophen publication-title: Water Res. – volume: 190 start-page: 296 year: 2018 end-page: 306 ident: b0155 article-title: Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water publication-title: Chemosphere – volume: 79 start-page: 1911 year: 1975 end-page: 1912 ident: b0195 article-title: Reactivity of the carbonate radical toward aromatic compounds in aqueous solution publication-title: J. Phys. Chem. – volume: 42 start-page: 111 year: 2000 end-page: 122 ident: b0245 article-title: Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments publication-title: Carbohydr. Polym. – volume: 3 start-page: 155 year: 2015 end-page: 161 ident: b0475 article-title: Adsorption of nitrate and nitrite ions onto carbonaceous material produced from soybean in a binary solution system publication-title: J. Environ. Chem. Eng. – volume: 112 start-page: 155 year: 2004 end-page: 162 ident: b0570 article-title: Nitrate removal from aqueous solution by adsorption onto various materials publication-title: J. Hazard. Mater. – volume: 17 start-page: 513 year: 1988 end-page: 886 ident: b0140 article-title: Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O − in Aqueous Solution publication-title: J. Phys. Chem. Ref. Data – volume: 47 start-page: 87 year: 1993 end-page: 102 ident: b0420 article-title: Sulfate adsorption on a variable charge soil and on reference minerals publication-title: Agric. Ecosyst. Environ. – volume: 362 start-page: 570 year: 2019 end-page: 575 ident: b0505 article-title: Insights on the pH-dependent roles of peroxymonosulfate and chlorine ions in phenol oxidative transformation publication-title: Chem. Eng. J. – volume: 704 start-page: 135249 year: 2020 ident: b0205 article-title: Catalytic ozonation for water and wastewater treatment: Recent advances and perspective publication-title: Sci. Total Environ. – volume: 74 start-page: 3199 year: 1970 end-page: 3203 ident: b0310 article-title: Pulse radiolysis of phosphate anions H publication-title: J. Phys. Chem. – volume: 15 start-page: 125 year: 2012 end-page: 132 ident: b0270 article-title: Assessing the effect of inorganic anions on TiO publication-title: J. Adv. Oxid. Technol. – volume: 357 start-page: 506 year: 2018 end-page: 514 ident: b0410 article-title: Oxidative removal of brilliant green by UV/S publication-title: J. Hazard. Mater. – volume: 217 start-page: 169 year: 2013 end-page: 173 ident: b0530 article-title: Sulfate radical-induced degradation of 2,4,6-trichlorophenol: A de novo formation of chlorinated compounds publication-title: Chem. Eng. J. – volume: 36 start-page: 3096 year: 2002 end-page: 3103 ident: b0275 article-title: Surface Complexation of Ferrous Iron and Carbonate on Ferrihydrite and the Mobilization of Arsenic publication-title: Environ. Sci. Technol. – volume: 44 start-page: 2577 year: 2014 end-page: 2641 ident: b0025 article-title: Advanced oxidation processes in water/wastewater treatment: principles and applications. a review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 18 start-page: 3247 year: 2002 end-page: 3254 ident: b0520 article-title: Properties of O 2•- and OH • Formed in TiO 2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H 2 O 2 and Some Ions publication-title: Langmuir – volume: 308 start-page: 53 year: 2007 end-page: 70 ident: b0355 article-title: Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation publication-title: J. Colloid Interface Sci. – volume: 147 start-page: 186 year: 2015 end-page: 193 ident: b0405 article-title: Strong enhancement of trichloroethylene degradation in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine publication-title: Sep. Purif. Technol. – volume: 38 start-page: 477 year: 1991 end-page: 481 ident: b0185 article-title: Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions publication-title: Radiat. Phys. Chem. – volume: 380 year: 2019 ident: b0215 article-title: The impact of wastewater matrix on the degradation of pharmaceutically active compounds by oxidation processes including ultraviolet radiation and sulfate radicals publication-title: J. Hazard. Mater. – volume: 58 start-page: 51 year: 2017 end-page: 63 ident: b0555 article-title: Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: A review publication-title: J. Environ. Sci. – volume: 182 start-page: 620 year: 2016 end-page: 640 ident: b0020 article-title: Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review publication-title: J. Environ. Manage. – volume: 192 start-page: 372 year: 2018 end-page: 378 ident: b0210 article-title: Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms publication-title: Chemosphere – volume: 179 start-page: 552 year: 2010 end-page: 558 ident: b0235 article-title: Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide publication-title: J. Hazard. Mater. – volume: 118 start-page: 196 year: 2017 end-page: 207 ident: b0550 article-title: Degradation of sulfamethoxazole by UV, UV/H publication-title: Water Res. – volume: 9 start-page: 22 year: 2016 end-page: 28 ident: b0395 article-title: Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals publication-title: J. Water Process Eng. – volume: 17 start-page: 1027 year: 1988 end-page: 1284 ident: b0160 article-title: Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution publication-title: J. Phys. Chem. Ref. Data – volume: 86 start-page: 1497 year: 1964 end-page: 1502 ident: b0335 article-title: A Study of Nickel(II) and Cobalt(II) Phosphate Complexes publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 315 year: 2017 end-page: 324 ident: b0460 article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate, Environ publication-title: Sci. Nano – volume: 6 start-page: 3624 year: 2018 end-page: 3631 ident: b0280 article-title: Activation of persulfates using siderite as a source of ferrous ions: sulfate radical production, stoichiometric efficiency, and implications publication-title: ACS Sustainable Chem. Eng. – volume: 26 start-page: 201 year: 2001 end-page: 218 ident: b0315 article-title: Aqueous phase kinetic studies involving intermediates of environmental interest: phosphate radicals and their reactions with substituted benzenes publication-title: Prog. React. Kinet. Mech. – volume: 46 start-page: 8976 year: 2012 end-page: 8983 ident: b0145 article-title: Bromate Formation from Bromide Oxidation by the UV/Persulfate Process publication-title: Environ. Sci. Technol. – volume: 98 start-page: 190 year: 2016 end-page: 198 ident: b0110 article-title: Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species publication-title: Water Res. – volume: 57 start-page: 3505 year: 1993 end-page: 3518 ident: b0285 article-title: A surface complexation model of the carbonate mineral-aqueous solution interface publication-title: Geochim. Cosmochim. Acta – volume: 147 start-page: 497 year: 2007 end-page: 502 ident: b0065 article-title: Influence of inorganic ions on MTBE degradation by Fenton's reagent publication-title: J. Hazard. Mater. – volume: 284 start-page: 65 year: 2019 end-page: 71 ident: b0575 article-title: Adsorption of phosphate from aqueous solution by vegetable biochar/layered double oxides: Fast removal and mechanistic studies publication-title: Bioresour. Technol. – volume: 27 start-page: 2044 year: 2020 end-page: 2053 ident: b0545 article-title: Effect of dissolved organic matters and inorganic ions on TiO publication-title: Environ Sci Pollut Res – volume: 125 start-page: 6211 year: 2003 end-page: 6221 ident: b0225 article-title: Bicarbonate surfoxidants: micellar oxidations of aryl sulfides with bicarbonate-activated hydrogen peroxide publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 675 year: 1994 end-page: 686 ident: b0480 article-title: Modification of the surfaces of a gasactivated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia publication-title: Carbon – volume: 44 start-page: 6423 year: 2010 end-page: 6428 ident: b0250 article-title: Mechanism of Base Activation of Persulfate publication-title: Environ. Sci. Technol. – start-page: 13 year: 2014 end-page: 74 ident: b0330 article-title: Chapter 2 - In situ Chemical Oxidation: The mechanisms and applications of chemical oxidants for remediation purposes publication-title: Chemistry of Advanced Environmental Purification Processes of Water – volume: 51 start-page: 13859 year: 2017 end-page: 13868 ident: b0175 article-title: Comparing the UV/Monochloramine and UV/Free Chlorine Advanced Oxidation Processes (AOPs) to the UV/Hydrogen Peroxide AOP Under Scenarios Relevant to Potable Reuse publication-title: Environ. Sci. Technol. – volume: 334 start-page: 1502 year: 2018 end-page: 1517 ident: b0015 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. – volume: 189 start-page: 643 year: 2017 end-page: 651 ident: b0220 article-title: Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices publication-title: Chemosphere – volume: 15 start-page: 96 year: 2011 end-page: 112 ident: b0095 article-title: Degradation and mineralization, of organic contaminants by Fenton and photo-Fenton processes: review of mechanisms and effects of organic and inorganic additives publication-title: Res. J. Chem. Environ. – volume: 52 start-page: 13430 year: 2018 end-page: 13437 ident: b0375 article-title: Phosphate-Functionalized CeO 2 Nanosheets for Efficient Catalytic Oxidation of Dichloromethane publication-title: Environ. Sci. Technol. – volume: 32 start-page: 6745 year: 2011 end-page: 6753 ident: b0370 article-title: A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties publication-title: Biomaterials – volume: 64 start-page: 209 year: 1985 end-page: 217 ident: b0435 article-title: Free-radical chemistry of sulfite. publication-title: Environ. Health Perspect. – volume: 151 start-page: 280 year: 2016 end-page: 288 ident: b0255 article-title: Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants publication-title: Chemosphere – volume: 368 start-page: 252 year: 2019 end-page: 260 ident: b0150 article-title: Sulfate radical induced degradation of β2-adrenoceptor agonists salbutamol and Terbutaline: Implication of halides, bicarbonate, and natural organic matter publication-title: Chem. Eng. J. – volume: 46 start-page: 1815 year: 2001 end-page: 1822 ident: b0265 article-title: Electrochemical formation of a new Fe(II)/Fe(III) hydroxy-carbonate green rust: characterisation and morphology publication-title: Electrochim. Acta – volume: 175 start-page: 24 year: 2011 end-page: 32 ident: b0485 article-title: Ultrasonic-assisted sodium hypochlorite oxidation of activated carbons for enhanced removal of Co(II) from aqueous solutions publication-title: Chem. Eng. J. – volume: 275 start-page: 35 year: 2004 end-page: 39 ident: b0565 article-title: Adsorption of fluoride ions onto carbonaceous materials publication-title: J. Colloid Interface Sci. – volume: 126158 year: 2020 ident: b0045 article-title: Reactive species in advanced oxidation processes: Formation, identification and reaction A publication-title: Chem. Eng. J. – volume: 267 start-page: 182 year: 2015 end-page: 190 ident: b0260 article-title: Effect of HO, SO4− and CO3−/HCO3 radicals on the photodegradation of the herbicide amitrole by UV radiation in aqueous solution publication-title: Chem. Eng. J. – volume: 71 start-page: 3304 year: 2018 end-page: 3314 ident: b0345 article-title: Complexation between nickel(II), cobalt(III) and hydrazones derived from pyridoxal 5′-phosphate and hydrazides of 2-,3-,4-pyridinecarboxylic acids in aqueous solution publication-title: J. Coord. Chem. – volume: 37 start-page: 4790 year: 2003 end-page: 4797 ident: b0005 article-title: Degradation of Organic Contaminants in Water with Sulfate Radicals Generated by the Conjunction of Peroxymonosulfate with Cobalt publication-title: Environ. Sci. Technol. – volume: 478 start-page: 539 year: 2019 end-page: 551 ident: b0365 article-title: The simultaneous adsorption of nitrate and phosphate by an organic-modified aluminum-manganese bimetal oxide: Adsorption properties and mechanisms publication-title: Appl. Surf. Sci. – volume: 18 start-page: 2763 year: 1979 end-page: 2766 ident: b0415 article-title: Complexation of a nickel(III) macrocyclic complex by sulfate ion. A pulse radiolytic study publication-title: Inorg. Chem. – volume: 123 start-page: 249 year: 2017 end-page: 257 ident: b0440 article-title: The role of nitrite in sulfate radical-based degradation of phenolic compounds: An unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation (ISCO) publication-title: Water Res. – volume: 69 start-page: 1597 year: 1973 ident: b0115 article-title: Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter publication-title: J. Chem. Soc., Faraday Trans. 1 – volume: 85 start-page: 476 year: 2015 end-page: 486 ident: b0165 article-title: Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts – Electrophilic aromatic substitution and oxidation publication-title: Water Res. – volume: 97 start-page: 6664 year: 1993 end-page: 6669 ident: b0425 article-title: Formation and decay of peroxynitrous acid: a pulse radiolysis study publication-title: J. Phys. Chem. – volume: 375 year: 2019 ident: b0070 article-title: Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole publication-title: Chem. Eng. J. – volume: 48 start-page: 2344 year: 2014 end-page: 2351 ident: b0120 article-title: Comparison of Halide Impacts on the Efficiency of Contaminant Degradation by Sulfate and Hydroxyl Radical-Based Advanced Oxidation Processes (AOPs) publication-title: Environ. Sci. Technol. – volume: 117 start-page: 582 year: 2014 end-page: 585 ident: b0240 article-title: Peroxymonosulfate activation by phosphate anion for organics degradation in water publication-title: Chemosphere – volume: 201 start-page: 503 year: 2018 end-page: 510 ident: b0515 article-title: Inuence of major anions on the 185 nm advanced oxidation process - Sulphate, bicarbonate, and chloride, Chemosphere: Environ publication-title: Toxicol. Risk Assess. – volume: 195 start-page: 374 year: 2018 end-page: 384 ident: b0040 article-title: Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions publication-title: J. Cleaner Prod. – volume: 48 start-page: 5558 issue: 11 year: 2009 ident: 10.1016/j.cej.2020.128392_b0510 article-title: Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9002848 – volume: 351 start-page: 688 year: 2018 ident: 10.1016/j.cej.2020.128392_b0050 article-title: Radiation-induced degradation of sulfamethoxazole in the presence of various inorganic anions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.06.137 – volume: 4 start-page: 315 year: 2017 ident: 10.1016/j.cej.2020.128392_b0460 article-title: An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate, Environ publication-title: Sci. Nano doi: 10.1039/C6EN00633G – volume: 46 start-page: 1815 year: 2001 ident: 10.1016/j.cej.2020.128392_b0265 article-title: Electrochemical formation of a new Fe(II)/Fe(III) hydroxy-carbonate green rust: characterisation and morphology publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(00)00728-3 – volume: 25 start-page: 2651 issue: 3 year: 2018 ident: 10.1016/j.cej.2020.128392_b0090 article-title: Effect of water constituents on the degradation of sulfaclozine in the three systems: UV/TiO2, UV/K2S2O8, and UV/TiO2/K2S2O8 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-017-0629-3 – volume: 54 start-page: 14085 year: 2020 ident: 10.1016/j.cej.2020.128392_b0060 article-title: High-efficient generation of H2O2 by aluminum-graphite composite through selective oxygen reduction for degradation of organic contaminants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c05974 – volume: 384 start-page: 99 issue: 1 year: 2012 ident: 10.1016/j.cej.2020.128392_b0385 article-title: Surface complexation reactions of inorganic anions on hydrotalcite-like compounds publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2012.06.072 – volume: 334 start-page: 1502 year: 2018 ident: 10.1016/j.cej.2020.128392_b0015 article-title: Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.11.059 – volume: 74 start-page: 3199 issue: 17 year: 1970 ident: 10.1016/j.cej.2020.128392_b0310 article-title: Pulse radiolysis of phosphate anions H2PO4-, HPO42-, PO43-, and P2O74- in aqueous solutions publication-title: J. Phys. Chem. doi: 10.1021/j100711a007 – volume: 29 start-page: 17 year: 1998 ident: 10.1016/j.cej.2020.128392_b0380 article-title: On the Exchange of NO3 Radicals with Aqueous Solutions: Solubility and Sticking Coefficient publication-title: J. Atmos. Chem. doi: 10.1023/A:1005860312363 – volume: 209 start-page: 38 year: 2012 ident: 10.1016/j.cej.2020.128392_b0135 article-title: Concentration profiles of chlorine radicals and their significances in •OH-induced dye degradation: Kinetic modeling and reaction pathways publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.07.127 – volume: 42 start-page: 111 issue: 2 year: 2000 ident: 10.1016/j.cej.2020.128392_b0245 article-title: Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments publication-title: Carbohydr. Polym. doi: 10.1016/S0144-8617(99)00136-8 – volume: 57 start-page: 3505 issue: 15 year: 1993 ident: 10.1016/j.cej.2020.128392_b0285 article-title: A surface complexation model of the carbonate mineral-aqueous solution interface publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(93)90135-J – volume: 51 start-page: 6918 year: 2017 ident: 10.1016/j.cej.2020.128392_b0100 article-title: Mechanistic insight into the reactivity of chlorine-derived radicals in the aqueous-phase UV–chlorine advanced oxidation process: quantum mechanical calculations publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00507 – volume: 71 start-page: 3304 issue: 20 year: 2018 ident: 10.1016/j.cej.2020.128392_b0345 article-title: Complexation between nickel(II), cobalt(III) and hydrazones derived from pyridoxal 5′-phosphate and hydrazides of 2-,3-,4-pyridinecarboxylic acids in aqueous solution publication-title: J. Coord. Chem. doi: 10.1080/00958972.2018.1512708 – volume: 3 start-page: 155 issue: 1 year: 2015 ident: 10.1016/j.cej.2020.128392_b0475 article-title: Adsorption of nitrate and nitrite ions onto carbonaceous material produced from soybean in a binary solution system publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2014.11.025 – volume: 36 start-page: 3096 issue: 14 year: 2002 ident: 10.1016/j.cej.2020.128392_b0275 article-title: Surface Complexation of Ferrous Iron and Carbonate on Ferrihydrite and the Mobilization of Arsenic publication-title: Environ. Sci. Technol. doi: 10.1021/es010130n – volume: 0 start-page: 2446 issue: 0 year: 1963 ident: 10.1016/j.cej.2020.128392_b0465 article-title: 451. Peroxy-complexes of inorganic ions in hydrogen peroxide–water mixtures. Part II. Decomposition by chromate ions publication-title: J. Chem. Soc. doi: 10.1039/JR9630002446 – volume: 82 start-page: 710 issue: 6 year: 1978 ident: 10.1016/j.cej.2020.128392_b0320 article-title: Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds publication-title: J. Phys. Chem. doi: 10.1021/j100495a019 – volume: 404 start-page: 124191 year: 2021 ident: 10.1016/j.cej.2020.128392_b0035 article-title: Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124191 – volume: 72 start-page: 3820 issue: 11 year: 1968 ident: 10.1016/j.cej.2020.128392_b0305 article-title: Flash photolysis in the vacuum ultraviolet region of the phosphate anions H2PO4-, HPO42-, and P2O74- in aqueous solutions publication-title: J. Phys. Chem. doi: 10.1021/j100857a021 – volume: 38 start-page: 477 year: 1991 ident: 10.1016/j.cej.2020.128392_b0185 article-title: Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions publication-title: Radiat. Phys. Chem. – volume: 116 start-page: 324 year: 2017 ident: 10.1016/j.cej.2020.128392_b0230 article-title: Bicarbonate-activated persulfate oxidation of acetaminophen publication-title: Water Res. doi: 10.1016/j.watres.2017.03.043 – volume: 9 start-page: 22 year: 2016 ident: 10.1016/j.cej.2020.128392_b0395 article-title: Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2015.11.011 – start-page: 13 year: 2014 ident: 10.1016/j.cej.2020.128392_b0330 article-title: Chapter 2 - In situ Chemical Oxidation: The mechanisms and applications of chemical oxidants for remediation purposes – volume: 82 start-page: 446 issue: 2 year: 2010 ident: 10.1016/j.cej.2020.128392_b0490 article-title: Characterization of physicochemical properties of hypochlorite- and peroxide-oxidized cassava starches publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2010.05.003 – volume: 196 start-page: 173 year: 2011 ident: 10.1016/j.cej.2020.128392_b0525 article-title: Effects of chloride ion on degradation of Acid Orange 7 by sulfate radical-based advanced oxidation process: Implications for formation of chlorinated aromatic compounds publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.09.007 – volume: 58 start-page: 51 year: 2017 ident: 10.1016/j.cej.2020.128392_b0555 article-title: Formation and control of disinfection byproducts and toxicity during reclaimed water chlorination: A review publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2017.01.013 – volume: 275 start-page: 35 issue: 1 year: 2004 ident: 10.1016/j.cej.2020.128392_b0565 article-title: Adsorption of fluoride ions onto carbonaceous materials publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2003.12.031 – volume: 201 start-page: 503 year: 2018 ident: 10.1016/j.cej.2020.128392_b0515 article-title: Inuence of major anions on the 185 nm advanced oxidation process - Sulphate, bicarbonate, and chloride, Chemosphere: Environ publication-title: Toxicol. Risk Assess. – volume: 218 start-page: 120 year: 2019 ident: 10.1016/j.cej.2020.128392_b0360 article-title: Mechanisms of phosphate removal from aqueous solution by zero-valent iron: A novel kinetic model for electrostatic adsorption, surface complexation and precipitation of phosphate under oxic conditions publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2019.02.042 – volume: 51 start-page: 678 issue: 3 year: 2018 ident: 10.1016/j.cej.2020.128392_b0560 article-title: Metal-Free Carbocatalysis in Advanced Oxidation Reactions publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00535 – volume: 44 start-page: 6423 issue: 16 year: 2010 ident: 10.1016/j.cej.2020.128392_b0250 article-title: Mechanism of Base Activation of Persulfate publication-title: Environ. Sci. Technol. doi: 10.1021/es1013714 – volume: 32 start-page: 6745 issue: 28 year: 2011 ident: 10.1016/j.cej.2020.128392_b0370 article-title: A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.05.073 – volume: 15 start-page: 96 year: 2011 ident: 10.1016/j.cej.2020.128392_b0095 article-title: Degradation and mineralization, of organic contaminants by Fenton and photo-Fenton processes: review of mechanisms and effects of organic and inorganic additives publication-title: Res. J. Chem. Environ. – volume: 48 start-page: 2344 issue: 4 year: 2014 ident: 10.1016/j.cej.2020.128392_b0120 article-title: Comparison of Halide Impacts on the Efficiency of Contaminant Degradation by Sulfate and Hydroxyl Radical-Based Advanced Oxidation Processes (AOPs) publication-title: Environ. Sci. Technol. doi: 10.1021/es404118q – volume: 179 start-page: 552 year: 2010 ident: 10.1016/j.cej.2020.128392_b0235 article-title: Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.03.039 – volume: 64 start-page: 209 year: 1985 ident: 10.1016/j.cej.2020.128392_b0435 article-title: Free-radical chemistry of sulfite. publication-title: Environ. Health Perspect. doi: 10.1289/ehp.8564209 – volume: 75 start-page: 3081 issue: 20 year: 1971 ident: 10.1016/j.cej.2020.128392_b0130 article-title: Electronic processes in the pulse radiolysis of aqueous solutions of halide ions publication-title: J. Phys. Chem. doi: 10.1021/j100689a008 – volume: 590-591 start-page: 751 year: 2017 ident: 10.1016/j.cej.2020.128392_b0400 article-title: Comparison of the reactivity of ibuprofen with sulfate and hydroxyl radicals: An experimental and theoretical study publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.039 – volume: 26 start-page: 289 issue: 4 year: 1987 ident: 10.1016/j.cej.2020.128392_b0430 article-title: Determination of sulfite radical (SO 3 ? ?) reaction rate constants by means of competition kinetics publication-title: Radiat Environ Biophys doi: 10.1007/BF01221974 – volume: 17 start-page: 1027 issue: 3 year: 1988 ident: 10.1016/j.cej.2020.128392_b0160 article-title: Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555808 – volume: 147 start-page: 186 year: 2015 ident: 10.1016/j.cej.2020.128392_b0405 article-title: Strong enhancement of trichloroethylene degradation in ferrous ion activated persulfate system by promoting ferric and ferrous ion cycles with hydroxylamine publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2015.04.031 – volume: 69 start-page: 1597 issue: 0 year: 1973 ident: 10.1016/j.cej.2020.128392_b0115 article-title: Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution. Their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter publication-title: J. Chem. Soc., Faraday Trans. 1 doi: 10.1039/f19736901597 – volume: 27 start-page: 2044 issue: 2 year: 2020 ident: 10.1016/j.cej.2020.128392_b0545 article-title: Effect of dissolved organic matters and inorganic ions on TiO2 photocatalysis of diclofenac: mechanistic study and degradation pathways publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-019-06676-9 – volume: 112 start-page: 155 issue: 1-2 year: 2004 ident: 10.1016/j.cej.2020.128392_b0570 article-title: Nitrate removal from aqueous solution by adsorption onto various materials publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2004.05.001 – volume: 42 start-page: 251 year: 2012 ident: 10.1016/j.cej.2020.128392_b0010 article-title: Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2010.507698 – volume: 40 start-page: 7688 issue: 24 year: 2006 ident: 10.1016/j.cej.2020.128392_b0295 article-title: Influence of Surface Potential on Aggregation and Transport of Titania Nanoparticles publication-title: Environ. Sci. Technol. doi: 10.1021/es060847g – volume: 284 start-page: 65 year: 2019 ident: 10.1016/j.cej.2020.128392_b0575 article-title: Adsorption of phosphate from aqueous solution by vegetable biochar/layered double oxides: Fast removal and mechanistic studies publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.03.113 – volume: 18 start-page: 2763 issue: 10 year: 1979 ident: 10.1016/j.cej.2020.128392_b0415 article-title: Complexation of a nickel(III) macrocyclic complex by sulfate ion. A pulse radiolytic study publication-title: Inorg. Chem. doi: 10.1021/ic50200a026 – volume: 37 start-page: 4790 issue: 20 year: 2003 ident: 10.1016/j.cej.2020.128392_b0005 article-title: Degradation of Organic Contaminants in Water with Sulfate Radicals Generated by the Conjunction of Peroxymonosulfate with Cobalt publication-title: Environ. Sci. Technol. doi: 10.1021/es0263792 – volume: 86 start-page: 1497 issue: 8 year: 1964 ident: 10.1016/j.cej.2020.128392_b0335 article-title: A Study of Nickel(II) and Cobalt(II) Phosphate Complexes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01062a009 – volume: 80 start-page: 2634 issue: 11 year: 1958 ident: 10.1016/j.cej.2020.128392_b0470 article-title: Kinetics of the Hydrogen Peroxide-Sulfite Reaction in Alkaline Solution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01544a009 – volume: 478 start-page: 539 year: 2019 ident: 10.1016/j.cej.2020.128392_b0365 article-title: The simultaneous adsorption of nitrate and phosphate by an organic-modified aluminum-manganese bimetal oxide: Adsorption properties and mechanisms publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.01.194 – volume: 357 start-page: 506 year: 2018 ident: 10.1016/j.cej.2020.128392_b0410 article-title: Oxidative removal of brilliant green by UV/S2O82-, UV/HSO5- and UV/H2O2 processes in aqueous media: A comparative study publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.06.012 – volume: 44 start-page: 2379 year: 2002 ident: 10.1016/j.cej.2020.128392_b0495 article-title: Effects of dichromate treatment on mechanical properties of passivated single crystal iron (100) and (110) surfaces publication-title: Corros. Sci. doi: 10.1016/S0010-938X(02)00032-X – volume: 17 start-page: 513 issue: 2 year: 1988 ident: 10.1016/j.cej.2020.128392_b0140 article-title: Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O − in Aqueous Solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555805 – volume: 375 year: 2019 ident: 10.1016/j.cej.2020.128392_b0070 article-title: Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122041 – volume: 367 start-page: 734 year: 2019 ident: 10.1016/j.cej.2020.128392_b0055 article-title: Photochemical treatment of tyrosol, a model phenolic compound present in olive mill wastewater, by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.06.062 – volume: 217 start-page: 169 year: 2013 ident: 10.1016/j.cej.2020.128392_b0530 article-title: Sulfate radical-induced degradation of 2,4,6-trichlorophenol: A de novo formation of chlorinated compounds publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.11.112 – volume: 52 start-page: 13430 issue: 22 year: 2018 ident: 10.1016/j.cej.2020.128392_b0375 article-title: Phosphate-Functionalized CeO 2 Nanosheets for Efficient Catalytic Oxidation of Dichloromethane publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05002 – volume: 98 start-page: 190 year: 2016 ident: 10.1016/j.cej.2020.128392_b0110 article-title: Synergistic effect between UV and chlorine (UV/chlorine) on the degradation of carbamazepine: Influence factors and radical species publication-title: Water Res. doi: 10.1016/j.watres.2016.04.015 – volume: 123 start-page: 249 year: 2017 ident: 10.1016/j.cej.2020.128392_b0440 article-title: The role of nitrite in sulfate radical-based degradation of phenolic compounds: An unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation (ISCO) publication-title: Water Res. doi: 10.1016/j.watres.2017.06.081 – volume: 182 start-page: 620 year: 2016 ident: 10.1016/j.cej.2020.128392_b0020 article-title: Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2016.07.049 – volume: 48 start-page: 482 year: 2018 ident: 10.1016/j.cej.2020.128392_b0540 article-title: Effect of inorganic ions on the ultrasound initiated degradation and product formation of triphenylmethane dyes publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2018.07.009 – volume: 97 start-page: 6664 year: 1993 ident: 10.1016/j.cej.2020.128392_b0425 article-title: Formation and decay of peroxynitrous acid: a pulse radiolysis study publication-title: J. Phys. Chem. doi: 10.1021/j100127a016 – volume: 267 start-page: 182 year: 2015 ident: 10.1016/j.cej.2020.128392_b0260 article-title: Effect of HO, SO4− and CO3−/HCO3 radicals on the photodegradation of the herbicide amitrole by UV radiation in aqueous solution publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.01.019 – volume: 190 start-page: 296 year: 2018 ident: 10.1016/j.cej.2020.128392_b0155 article-title: Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.09.148 – volume: 32 start-page: 675 issue: 4 year: 1994 ident: 10.1016/j.cej.2020.128392_b0480 article-title: Modification of the surfaces of a gasactivated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia publication-title: Carbon doi: 10.1016/0008-6223(94)90089-2 – volume: 47 start-page: 2041 year: 2013 ident: 10.1016/j.cej.2020.128392_b0300 article-title: The impact of background organic matter and alkalinity on the degradation of the pesticide metaldehyde by two advanced oxidation processes: UV/HO- and UV/TiO2 publication-title: Water Res. doi: 10.1016/j.watres.2013.01.022 – volume: 26 start-page: 201 year: 2001 ident: 10.1016/j.cej.2020.128392_b0315 article-title: Aqueous phase kinetic studies involving intermediates of environmental interest: phosphate radicals and their reactions with substituted benzenes publication-title: Prog. React. Kinet. Mech. doi: 10.3184/007967401103165253 – volume: 368 start-page: 252 year: 2019 ident: 10.1016/j.cej.2020.128392_b0150 article-title: Sulfate radical induced degradation of β2-adrenoceptor agonists salbutamol and Terbutaline: Implication of halides, bicarbonate, and natural organic matter publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.183 – volume: 151 start-page: 280 year: 2016 ident: 10.1016/j.cej.2020.128392_b0255 article-title: Activation of peroxymonosulfate by base: Implications for the degradation of organic pollutants publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.089 – volume: 6 start-page: 3624 year: 2018 ident: 10.1016/j.cej.2020.128392_b0280 article-title: Activation of persulfates using siderite as a source of ferrous ions: sulfate radical production, stoichiometric efficiency, and implications publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b03948 – volume: 86 start-page: 354 issue: 4 year: 2012 ident: 10.1016/j.cej.2020.128392_b0350 article-title: Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.09.050 – volume: 44 start-page: 3585 year: 2010 ident: 10.1016/j.cej.2020.128392_b0535 article-title: Phototransformation of selected organophosphorus pesticides: Roles of hydroxyl and carbonate radicals publication-title: Water Res. doi: 10.1016/j.watres.2010.04.011 – volume: 46 start-page: 8976 issue: 16 year: 2012 ident: 10.1016/j.cej.2020.128392_b0145 article-title: Bromate Formation from Bromide Oxidation by the UV/Persulfate Process publication-title: Environ. Sci. Technol. doi: 10.1021/es300658u – volume: 6 start-page: 33048 year: 2016 ident: 10.1016/j.cej.2020.128392_b0180 article-title: PdCl2 immobilized on metal–organic framework CuBTC with the aid of ionic liquids: enhanced catalytic performance in selective oxidation of cyclohexene publication-title: RSC Adv. doi: 10.1039/C6RA02077A – volume: 362 start-page: 570 year: 2019 ident: 10.1016/j.cej.2020.128392_b0505 article-title: Insights on the pH-dependent roles of peroxymonosulfate and chlorine ions in phenol oxidative transformation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.057 – volume: 81 start-page: 1622 issue: 17 year: 1977 ident: 10.1016/j.cej.2020.128392_b0325 article-title: Reactions of phosphate radicals with organic compounds publication-title: J. Phys. Chem. doi: 10.1021/j100532a004 – volume: 85 start-page: 476 year: 2015 ident: 10.1016/j.cej.2020.128392_b0165 article-title: Reaction of bromine and chlorine with phenolic compounds and natural organic matter extracts – Electrophilic aromatic substitution and oxidation publication-title: Water Res. doi: 10.1016/j.watres.2015.08.051 – volume: 56 start-page: 40 issue: 1 year: 1973 ident: 10.1016/j.cej.2020.128392_b0190 article-title: Rate Constants for the Reaction of the Carbonate Radical with Compounds of Biochemical Interest in Neutral Aqueous Solution publication-title: Radiat. Res. doi: 10.2307/3573789 – volume: 125 start-page: 6211 year: 2003 ident: 10.1016/j.cej.2020.128392_b0225 article-title: Bicarbonate surfoxidants: micellar oxidations of aryl sulfides with bicarbonate-activated hydrogen peroxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0274756 – volume: 56 start-page: 1139 year: 1992 ident: 10.1016/j.cej.2020.128392_b0290 article-title: On the influence of carbonate in mineral dissolution: I. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T = 25° C publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(92)90051-J – volume: 380 year: 2019 ident: 10.1016/j.cej.2020.128392_b0215 article-title: The impact of wastewater matrix on the degradation of pharmaceutically active compounds by oxidation processes including ultraviolet radiation and sulfate radicals publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.120869 – volume: 704 start-page: 135249 year: 2020 ident: 10.1016/j.cej.2020.128392_b0205 article-title: Catalytic ozonation for water and wastewater treatment: Recent advances and perspective publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135249 – volume: 192 start-page: 372 year: 2018 ident: 10.1016/j.cej.2020.128392_b0210 article-title: Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.10.126 – volume: 308 start-page: 53 year: 2007 ident: 10.1016/j.cej.2020.128392_b0355 article-title: Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.12.061 – volume: 189 start-page: 643 year: 2017 ident: 10.1016/j.cej.2020.128392_b0220 article-title: Degradation of ketoprofen by sulfate radical-based advanced oxidation processes: Kinetics, mechanisms, and effects of natural water matrices publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.09.109 – volume: 347 start-page: 279 year: 2018 ident: 10.1016/j.cej.2020.128392_b0075 article-title: UVA-UVB activation of hydrogen peroxide and persulfate for advanced oxidation processes: Efficiency, mechanism and effect of various water constituents publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.01.006 – start-page: 2015 year: 1988 ident: 10.1016/j.cej.2020.128392_b0340 article-title: The complexation of iron(III) with sulphate, phosphate, or arsenate ion in sodium nitrate medium at 25 oC publication-title: J. Chem. Soc., Dalton Trans doi: 10.1039/DT9880002015 – volume: 47 start-page: 87 issue: 2 year: 1993 ident: 10.1016/j.cej.2020.128392_b0420 article-title: Sulfate adsorption on a variable charge soil and on reference minerals publication-title: Agric. Ecosyst. Environ. doi: 10.1016/0167-8809(93)90104-W – volume: 379 year: 2020 ident: 10.1016/j.cej.2020.128392_b0170 article-title: Treatment of membrane filtration concentrate of coking wastewater using PMS/chloridion oxidation process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122361 – volume: 44 start-page: 6822 issue: 17 year: 2010 ident: 10.1016/j.cej.2020.128392_b0125 article-title: Effect of Halide Ions and Carbonates on Organic Contaminant Degradation by Hydroxyl Radical-Based Advanced Oxidation Processes in Saline Waters publication-title: Environ. Sci. Technol. doi: 10.1021/es1010225 – volume: 39 start-page: 9182 issue: 23 year: 2005 ident: 10.1016/j.cej.2020.128392_b0200 article-title: Photosensitizer Method to Determine Rate Constants for the Reaction of Carbonate Radical with Organic Compounds publication-title: Environ. Sci. Technol. doi: 10.1021/es051236b – volume: 15 start-page: 125 year: 2012 ident: 10.1016/j.cej.2020.128392_b0270 article-title: Assessing the effect of inorganic anions on TiO2-photocatalysis and ozone oxidation treatment efficiencies publication-title: J. Adv. Oxid. Technol. – volume: 18 start-page: 3247 issue: 8 year: 2002 ident: 10.1016/j.cej.2020.128392_b0520 article-title: Properties of O 2•- and OH • Formed in TiO 2 Aqueous Suspensions by Photocatalytic Reaction and the Influence of H 2 O 2 and Some Ions publication-title: Langmuir doi: 10.1021/la015685a – volume: 385 year: 2020 ident: 10.1016/j.cej.2020.128392_b0080 article-title: Peroxymonosulfate activation by Co9S8@ S and N co-doped biochar for sulfamethoxazole degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123933 – volume: 175 start-page: 24 year: 2011 ident: 10.1016/j.cej.2020.128392_b0485 article-title: Ultrasonic-assisted sodium hypochlorite oxidation of activated carbons for enhanced removal of Co(II) from aqueous solutions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.09.004 – volume: 61 start-page: 1173 issue: 11 year: 2013 ident: 10.1016/j.cej.2020.128392_b0390 article-title: Effect of Surface Property of Activated Carbon on Adsorption of Nitrate Ion publication-title: Chem. Pharm. Bull. doi: 10.1248/cpb.c13-00422 – volume: 79 start-page: 1911 issue: 18 year: 1975 ident: 10.1016/j.cej.2020.128392_b0195 article-title: Reactivity of the carbonate radical toward aromatic compounds in aqueous solution publication-title: J. Phys. Chem. doi: 10.1021/j100585a004 – volume: 146 start-page: 260 year: 2014 ident: 10.1016/j.cej.2020.128392_b0030 article-title: Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: A review publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2014.07.032 – volume: 117 start-page: 582 year: 2014 ident: 10.1016/j.cej.2020.128392_b0240 article-title: Peroxymonosulfate activation by phosphate anion for organics degradation in water publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.09.046 – volume: 44 start-page: 2577 year: 2014 ident: 10.1016/j.cej.2020.128392_b0025 article-title: Advanced oxidation processes in water/wastewater treatment: principles and applications. a review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2013.829765 – volume: 147 start-page: 497 year: 2007 ident: 10.1016/j.cej.2020.128392_b0065 article-title: Influence of inorganic ions on MTBE degradation by Fenton's reagent publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.01.044 – volume: 51 start-page: 13859 issue: 23 year: 2017 ident: 10.1016/j.cej.2020.128392_b0175 article-title: Comparing the UV/Monochloramine and UV/Free Chlorine Advanced Oxidation Processes (AOPs) to the UV/Hydrogen Peroxide AOP Under Scenarios Relevant to Potable Reuse publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b03570 – volume: 1 start-page: 350 year: 2010 ident: 10.1016/j.cej.2020.128392_b0500 article-title: Mechanical, thermal and interfacial properties of jute fabric-reinforced polypropylene composites: effect of potassium dichromate publication-title: Mater. Sci. Appl. – volume: 100 start-page: 5732 issue: 18 year: 1978 ident: 10.1016/j.cej.2020.128392_b0450 article-title: Mechanisms of chlorine oxidation of hydrogen peroxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00486a025 – volume: 48 start-page: 1859 issue: 3 year: 2014 ident: 10.1016/j.cej.2020.128392_b0105 article-title: The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System publication-title: Environ. Sci. Technol. doi: 10.1021/es4036094 – volume: 46 start-page: 9606 year: 2012 ident: 10.1016/j.cej.2020.128392_b0455 article-title: Selective oxidative degradation of organic pollutants by singlet oxygen-mediated photosensitization: tin porphyrin versus C60 aminofullerene systems publication-title: Environ. Sci. Technol. doi: 10.1021/es301775k – volume: 118 start-page: 196 year: 2017 ident: 10.1016/j.cej.2020.128392_b0550 article-title: Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate publication-title: Water Res. doi: 10.1016/j.watres.2017.03.054 – volume: 387 year: 2020 ident: 10.1016/j.cej.2020.128392_b0085 article-title: Nitrogen, sulfur and oxygen co-doped carbon-armored Co/Co9S8 rods (Co/Co9S8@N-S-O-C) as efficient activator of peroxymonosulfate for sulfamethoxazole degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121669 – volume: 23 year: 2014 ident: 10.1016/j.cej.2020.128392_b0445 article-title: Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/23/1/015019 – volume: 126158 year: 2020 ident: 10.1016/j.cej.2020.128392_b0045 article-title: Reactive species in advanced oxidation processes: Formation, identification and reaction A publication-title: Chem. Eng. J. – volume: 195 start-page: 374 year: 2018 ident: 10.1016/j.cej.2020.128392_b0040 article-title: Treatment of bitumen post oxidative effluents by sulfate radicals based advanced oxidation processes (S-AOPs) under alkaline pH conditions publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.05.207 |
SSID | ssj0006919 |
Score | 2.7277265 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Effect of inorganic anions (IA) on the performance of AOPs was summarized.•Effect of IA on the formation and transformation of reactive... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 128392 |
SubjectTerms | Advanced oxidation processes Catalytic activity Degradation products Inorganic anions Reactive species |
Title | Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants |
URI | https://dx.doi.org/10.1016/j.cej.2020.128392 |
Volume | 411 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN409aIH4zPWR7MHTybYBXbZcmwam2pjD2pjb2RZloTGANE28eRvdwYWWxP14AUCzACZHWZnmW9mCLlkrhZcBgzjg_jrRgkn9EMFh7xykI2pQjH302A843dzMW-RYZMLg7BKa_trm15Za3umZ6XZK7Os9-hiTCvkGEfkApZ5mMEOjwWdvv5YwzyCsGrugcQOUjeRzQrjpc0Cloge1lhAR-HnuWljvhntkV3rKNJB_S77pGXyA7KzUT7wkKzq0sO0SGmW1-2ZNIUNKBItcgquHS3XeQFI1kT8afGe1c2UaFlnCpg3CoQ0wdoR9grQNzdFQLuyoJkjMhvdPA3Hjm2j4GgvlEuwd4IHXuzLVEuuYWyYDrmvhAQjmcRJwFPlC_h0U8l0IBLXaKWYL1nqgvvVT41_TNp5kZsTQl0Zhy4MXyD8mCeyr2LlMhV4BsQfA3eHsEaAkbY1xrHVxUvUgMkWEcg8QplHtcw75OqLpawLbPxFzJtRib5pSQQTwO9sp_9jOyPbHiJYKnjjOWkvX1fmAlyQZdytdKxLtga3k_EU95OH58knVm7bsQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGOAAHxFOMZw5wQRrrI2nWAwcETBt7XNik3UqaptIm1E1sE3DhT_EHcdoUhgQckHap1NaOUsdy7PqLDXBq2ZJR7lk6P6h_3QhW9l1f4C1NHWSl0lRMu-PVe_Suz_oFeM_PwmhYpbH9mU1PrbV5UjHSrIwHg8q9rXNaPtV5RMowzDPIyqZ6fca4bXLZuMFFPnOc2m33ul42rQXK0vH5FG0Ao54TujyWnEqcryV96grG0XBEYeTRWLgM1TnmlvRYZCsphOVyK7bRJanGysVxl2CZornQbRMu3r5wJZ6fdhPRsyvr6eWp1BRUJtUQY1JHF3XQnsnPm-HcBlfbgHXjmZKr7OM3oaCSLVibq1e4DbOs1jEZxWSQZP2gJMELai4ZJQR9STL-OoigyXKIARm9DLLuTWScHU1QE4KEJNLFKswbpM8H1Qh6YVA6O9BbiHB3oZiMErUHxOahb6O-eMwNacSrIhS2JTxH4XqHyF0CKxdgIE1Rc91b4zHI0WvDAGUeaJkHmcxLcP7JMs4qevxFTPNVCb6pZYA7zu9s-_9jO4GVerfdClqNTvMAVh0Nn0mxlYdQnD7N1BH6P9PwONU3Ag-LVvAP-U4Uxw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+inorganic+anions+on+the+performance+of+advanced+oxidation+processes+for+degradation+of+organic+contaminants&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Wang%2C+Jianlong&rft.au=Wang%2C+Shizong&rft.date=2021-05-01&rft.issn=1385-8947&rft.volume=411&rft.spage=128392&rft_id=info:doi/10.1016%2Fj.cej.2020.128392&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2020_128392 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |