A universal numerical evaluation strategy for photocatalysts based on the photoelectron transfer (PET) restriction effect: A review
[Display omitted] •Photocatalysis process is subject to the photoelectron transfer (PET) restriction effect.•The PET restriction effect can be quantitatively described by restriction factors (T) associated with PET possibility (P), resistance (Rct) and ability (A).•The proposed parameters can be app...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 463; p. 142421 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1385-8947 1873-3212 |
DOI | 10.1016/j.cej.2023.142421 |
Cover
Loading…
Abstract | [Display omitted]
•Photocatalysis process is subject to the photoelectron transfer (PET) restriction effect.•The PET restriction effect can be quantitatively described by restriction factors (T) associated with PET possibility (P), resistance (Rct) and ability (A).•The proposed parameters can be applied for evaluation and directional fabrication of photocatalysts.•Specific values of Rct should be more exhibited to quantitatively emphasize overall PET efficiency in future work.
Photocatalysts play key roles in photocatalysis process to produce holes and electrons which are responsible for oxidation and reduction. Therefore, generation of the photo-induced carriers is the prerequisite step of photocatalysis, and the subsequent oxidation/reduction efficiency and degree would be determined by resistance and response potential, wholly being subject to the photoelectron transfer (PET) processes. However, a universal numerical evaluation standard on photocatalysts is lacking, resulting in inconvenient communication and performance prediction. Aiming to quantitative evaluate the photocatalysts’ properties, PET possibility (P), resistance (Rct) and ability (A) are defined and employed to describe the occurrence, kinetics and thermodynamics of photoreactions. Meanwhile, the quotient of Rct and product of P and A is defined as the PET restriction factor (T), directly illustrating the overall PET performances. Various typical photocatalytic systems are discussed to prove the scientific merits and versatility of the PET restriction effect. It is expected that the opinions in this review could provide a universal strategy and quantitative tool for evaluation and directional fabrication of photocatalysts. |
---|---|
AbstractList | [Display omitted]
•Photocatalysis process is subject to the photoelectron transfer (PET) restriction effect.•The PET restriction effect can be quantitatively described by restriction factors (T) associated with PET possibility (P), resistance (Rct) and ability (A).•The proposed parameters can be applied for evaluation and directional fabrication of photocatalysts.•Specific values of Rct should be more exhibited to quantitatively emphasize overall PET efficiency in future work.
Photocatalysts play key roles in photocatalysis process to produce holes and electrons which are responsible for oxidation and reduction. Therefore, generation of the photo-induced carriers is the prerequisite step of photocatalysis, and the subsequent oxidation/reduction efficiency and degree would be determined by resistance and response potential, wholly being subject to the photoelectron transfer (PET) processes. However, a universal numerical evaluation standard on photocatalysts is lacking, resulting in inconvenient communication and performance prediction. Aiming to quantitative evaluate the photocatalysts’ properties, PET possibility (P), resistance (Rct) and ability (A) are defined and employed to describe the occurrence, kinetics and thermodynamics of photoreactions. Meanwhile, the quotient of Rct and product of P and A is defined as the PET restriction factor (T), directly illustrating the overall PET performances. Various typical photocatalytic systems are discussed to prove the scientific merits and versatility of the PET restriction effect. It is expected that the opinions in this review could provide a universal strategy and quantitative tool for evaluation and directional fabrication of photocatalysts. |
ArticleNumber | 142421 |
Author | Sun, Haoran Shi, Weilong Guo, Feng Wang, Lizhang |
Author_xml | – sequence: 1 givenname: Haoran surname: Sun fullname: Sun, Haoran organization: Environmental Energy Engineering (E3) Workgroup, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China – sequence: 2 givenname: Feng surname: Guo fullname: Guo, Feng organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China – sequence: 3 givenname: Weilong orcidid: 0000-0002-4762-5599 surname: Shi fullname: Shi, Weilong organization: School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China – sequence: 4 givenname: Lizhang surname: Wang fullname: Wang, Lizhang email: wlzh0731@126.com organization: Environmental Energy Engineering (E3) Workgroup, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China |
BookMark | eNp9kD1PwzAQhi1UJNrCD2DzCEOC7Xw4gamqyodUCYYyW45zpo7SpLLdos78cdyGiaHTne7ueXXvO0Gjru8AoVtKYkpo_tDECpqYEZbENGUpoxdoTAueRAmjbBT6pMiiokz5FZo41xBC8pKWY_Qzw7vO7ME62eJutwFrVOhgL9ud9KbvsPNWevg6YN1bvF33vlfSy_bgvMOVdFDjcOTXMOygBeXtcWJl5zRYfPexWN1jC0HHqJMiaB2OHvEsTPcGvq_RpZatg5u_OkWfz4vV_DVavr-8zWfLSLGS-6jIspxRGvxoxQjnackhh4qkFaikKnKa56SooCCc8qLOMql5pjOucqpqmYFMpogPusr2zlnQQhl_MhmeNa2gRByzFI0IWYpjlmLIMpD0H7m1ZiPt4SzzNDAQLAWbVjhloFNQGxvsi7o3Z-hfTWKQqg |
CitedBy_id | crossref_primary_10_1002_ece2_16 crossref_primary_10_1016_j_cjche_2023_10_006 crossref_primary_10_1002_smll_202309094 crossref_primary_10_1016_j_surfin_2023_103656 crossref_primary_10_1039_D3TA03446A crossref_primary_10_1016_j_cej_2024_151363 |
Cites_doi | 10.1002/anie.201916012 10.1016/j.apcatb.2016.03.058 10.1016/j.nanoen.2017.04.039 10.1039/D0QI00117A 10.1016/j.jclepro.2022.133420 10.1016/j.apsusc.2019.02.035 10.1016/j.apcatb.2019.118201 10.1016/j.carbon.2020.10.073 10.1002/smtd.202100887 10.1016/j.cej.2019.123020 10.1016/j.jechem.2020.08.024 10.1002/cssc.202001317 10.1016/j.apsusc.2014.12.154 10.1016/j.rser.2021.111980 10.1016/j.cej.2017.12.115 10.1039/C9TA11595A 10.1016/j.apcatb.2018.12.010 10.1016/j.jcis.2021.11.180 10.1016/j.scitotenv.2020.141036 10.1039/C3RA45474F 10.1016/j.trechm.2020.06.006 10.1021/acs.jpclett.2c02125 10.1016/j.chempr.2022.04.013 10.1142/S1793292018500169 10.1002/adma.201601694 10.1016/j.cej.2020.125397 10.1016/j.cej.2021.130507 10.1002/adma.202105482 10.1002/adma.201903545 10.1016/j.jallcom.2019.151670 10.1021/acs.est.2c03334 10.1016/j.apsusc.2022.154416 10.1016/j.cej.2021.128410 10.1021/acsami.9b15578 10.1016/j.cej.2017.08.114 10.1016/j.seppur.2022.122667 10.1016/j.jhazmat.2018.10.090 10.1002/smll.202103933 10.1016/j.apsusc.2021.151287 10.1016/j.jcis.2017.09.016 10.1016/j.jallcom.2021.160223 10.1039/C9EE00717B 10.1021/acsnano.7b06451 10.1021/acs.jpcc.6b00126 10.1002/adma.202001763 10.1016/j.seppur.2023.123398 10.1038/238037a0 10.1038/nmat4793 10.1021/acsomega.0c02477 10.1002/aenm.201700025 10.1016/j.nanoen.2021.106635 10.1021/jacs.7b00266 10.1016/j.cej.2019.123310 10.1021/acs.chemrev.6b00075 10.1016/j.apcatb.2019.118152 10.1016/j.apcatb.2022.121109 10.1002/adma.202107668 10.1016/j.apcatb.2020.118876 10.1016/j.cej.2020.126844 10.1016/S1872-2067(20)63634-8 10.1016/j.apsusc.2019.06.260 10.1016/j.apcatb.2017.08.004 10.1016/j.jallcom.2021.162209 10.1016/j.cej.2020.125922 10.1039/C7TA09350K 10.1039/D2CS90010F 10.1021/acsami.7b03523 10.1016/j.colsurfa.2022.128603 10.1016/j.chempr.2020.06.010 10.1016/j.cej.2021.128555 10.1016/j.seppur.2021.119287 10.1039/C7RA07163A 10.1039/C8TA08294D 10.1016/j.solidstatesciences.2019.05.012 10.1016/j.cis.2020.102275 10.1016/j.apcatb.2021.120521 10.1016/j.cej.2022.136209 10.1016/j.apcatb.2019.03.062 10.1016/j.apcatb.2018.11.011 10.1039/c3dt51492g 10.1039/D1EN00225B 10.1021/acs.chemrev.8b00408 10.1038/nmat2317 10.1002/anie.202000503 10.1016/j.apcata.2013.04.007 10.1016/j.joule.2021.12.011 10.1021/acscatal.9b03246 10.1016/j.apcatb.2016.05.046 10.1016/j.seppur.2022.121038 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2023.142421 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2023_142421 S138589472301152X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SSH ZY4 |
ID | FETCH-LOGICAL-c297t-8556211212fc2077497e6eb04bec3b8616608be807178d55af75f57c61cda5ea3 |
IEDL.DBID | AIKHN |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 23:11:03 EDT 2025 Tue Jul 01 01:50:41 EDT 2025 Fri Feb 23 02:35:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Directional fabrication Numerical evaluation strategy Photocatalyst PET restriction effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-8556211212fc2077497e6eb04bec3b8616608be807178d55af75f57c61cda5ea3 |
ORCID | 0000-0002-4762-5599 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2023_142421 crossref_primary_10_1016_j_cej_2023_142421 elsevier_sciencedirect_doi_10_1016_j_cej_2023_142421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 2023-05-00 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (b0325) 2009; 8 Yang, Hao, Zhao, Hu, Min, Zhang, Bi, Yan, Hou (b0485) 2022; 641 Jiang, Sun, Chen, Cao, Zhao, Yang, Zeng, Huang (b0455) 2022; 571 Fu, Xu, Low, Jiang, Yu (b0320) 2019; 243 Xia, Cao, Zhu, Liu, Shi, Yu, Zhang (b0290) 2020; 59 Low, Yu, Jaroniec, Wageh, Al-Ghamdi (b0155) 2017; 29 Lu, Zhang, Jing, Zhang, Zhu, Zhang (b0010) 2022 El Agrebi, Traynor, Wilmart, Tosi, Leinartz, Danneels, de Graaf, Saegerman (b0030) 2020; 745 Mirzaei, Eddah, Roualdes, Ma, Chaker (b0310) 2021; 422 Trang, Phan, Nam, Thu (b0200) 2020; 12 Gao, Liu, Chi, Tian, Zhu, Guan, Song (b0470) 2022; 603 Zhang, Wang, Nong, Lin, Teng, Zhang, Zhao, Wu, He (b0305) 2015; 329 Zhang, Chen, Li, Xu, Li, He, Lu (b0335) 2020; 59 Pan, You, Xin, Li, Fu, Cui, Men, Cao, Yu, Goodenough (b0055) 2017; 139 Liu, Ai, Jiang (b0230) 2018; 6 Chang, Wang, Gong (b0245) 2016; 9 Liu, Zhang, Zhao, Wang (b0370) 2019; 251 Peng, Ye, Ding, Yi, Zhang, Wen (b0265) 2020; 260 Lin, Hisatomi, Chen, Takata, Domen (b0045) 2020; 2 Wang, Wang, Gao, Shen, Pu, Zhang, Lin, Wang (b0380) 2020; 270 Jia, Han, Luo, Wang, Lee, Liu (b0480) 2023; 306 Zhang, Zhang, Yu, Yu (b0140) 2022; 34 Cui, Briscoe, Wang, Tarakina, Dunn (b0080) 2017; 9 Li, Li (b0185) 2020; 284 Liu, Chang, Liu, Li, Zhang, An (b0195) 2021; 8 Sun, He, Wu, Zeng, Liu, Jiang (b0205) 2020; 397 Liu, Ma, Shao, Liu, Gao, Li, Fu, Fu, Ye, Zhao, Zhou (b0060) 2020; 261 Kokilavani, Syed, Raju, Al-Rashed, Elgorban, Thomas, Khan (b0375) 2021; 23 Li, Chen (b0020) 2019; 40 Sun, Guo, Pan, Huang, Wang, Shi (b0035) 2021; 406 Li, Yuan, Zhou, Tang, Deng, Huang, Xiong, Su, Zhao, Gong (b0095) 2022; 372 She, Wu, Xu, Zhong, Wang, Song, Nie, Liu, Yang, Rodrigues, Vajtai, Lou, Du, Li, Ajayan (b0355) 2017; 7 Wu, Dai, Ma, Zhang, Qiang, Xue (b0475) 2023; 312 Akrami, Murakami, Watanabe, Ishihara, Arita, Guo, Fuji, Edalati (b0465) 2022; 442 Wu, Yu, Zhang, Zhang, Zhu, Zhu (b0360) 2021; 411 Wang, Qu, Qu, Bai, Liu, Yang, Zhang, Jing, Fu (b0130) 2021; 33 Qi, Liu, Qiu (b0070) 2018; 39 Li, Gu, Gao, Liu, Zhao, Cao, Feng, Ren, Wei, Zhang (b0450) 2022; 609 Li, Wang, Wu, Zhou (b0235) 2022; 156 Fujishima, Honda (b0110) 1972; 238 Wang, Yang, Chen, Wang, Zhu (b0430) 2018; 220 Ding, Sun, Liu, Sun, Meng, Zheng (b0240) 2021; 276 Yang, Mei, Fan, Zhang, Zhu, Amal, Yin, Zeng (b0260) 2021; 5 Pan, Wu, Rhimi, Qin, Huang, Yuan, Wang (b0135) 2021; 57 Pan, Xu (b0460) 2013; 459 D. Mateo, J.L. Cerrillo, S. Durini, J. Gascon, Fundamentals and applications of photo-thermal catalysis, Chem. Soc. Rev. 51 (2022) 1547-1547. Deng, Tang, Zeng, Wang, Zhou, Wang, Tang, Wang, Feng (b0410) 2018; 509 Lu, Yu, Dong, Song, Liu, Liu, Ma, Su, Yan, Huo (b0415) 2018; 337 Xue, Luan, Zhang, (David) Lou (b0005) 2022; 6 Wang, Tan, Ren, Xia, Liu (b0220) 2019; 492 Ong, Tan, Ng, Yong, Chai (b0015) 2016; 116 Zhang, Zhang, Wang, Yu (b0255) 2022; 13 Kuang, Zhang, Wang, Chen, Liu, Xie, Wang, Ji (b0490) 2019; 96 Bi, Su, Zhang, Chen, Darr, Weng, Wu (b0180) 2022; 306 Wadsworth, Hamid, Kosco, Gasparini, McCulloch (b0075) 2020; 32 Ahmed, Zhong, Wang, Wang, Yuan, Guo (b0090) 2022; 56 He, Cheng, Zhang, Douthwaite, Pattisson, Hao (b0190) 2019; 119 Liu, Kong, Yuan, Zhao, Zhu, Sun, Xie (b0330) 2018; 331 Patnaik, Sahoo, Parida (b0210) 2021; 172 Li, Wang, Zhang, Wang, Liu (b0175) 2019; 478 Yu, Huang, Wang, Yu (b0340) 2016; 120 Zhao, Dong, Wang, Chen, Huang, Diao, Li, Guo, Shen (b0440) 2019; 31 Liu, Sun, Ding, Gao, Ding (b0170) 2021; 877 Liao, Gong, Zhang, Gao, Yang, Fang (b0215) 2019; 12 Xu, Mo, Xie, Wang, Ding (b0065) 2020; 8 Ma, Jiang, Sun, Yang, Jiang, Liu, Xie, Xie, Han (b0285) 2020; 382 Wang, Wang, Cheng, Yu, Fan (b0405) 2021; 42 Zhang, Wageh, Al-Ghamdi, Yu (b0125) 2016; 192 Guo, Wang, Sun, Li, Shi (b0435) 2020; 7 Gong, Teng, Niu, Liu, Xu, Xu, Ji, Chen (b0445) 2021; 298 Shi, Li, Sun, Xu, Cai, Shi, Guo, Du (b0040) 2022; 292 Yang, Xu, Bai, Jin (b0425) 2019; 365 Jiang, Zhang, Zhang, Cheng, Wang (b0120) 2022; 43 Palanivel, Mani (b0400) 2020; 5 Tie, Sun, Jiang, Liu, Xia, Li, Chen, Yu, Dong, Sun, Sun (b0150) 2019; 807 Pang, Meng, Song, Zhou, Yang, Zhang, Izumi, Takei, Jewasuwan, Fukata, Ye (b0300) 2019; 244 Bie, Wang, Yu (b0275) 2022; 8 Zhang, Xu, Zeng, Li, Xu, Wang (b0395) 2013; 42 Pang, Su, Han (b0280) 2018; 13 Wang, Cheng, Zhang, Yu (b0270) 2021; 17 Sun, Ma, Chen, Sun, Cui, Lin (b0160) 2014; 4 Xu, Wang, Zhu, Ran, Li, Guo (b0345) 2017; 7 Hussain, Tocci, Woolcot, Torrelles, Pang, Humphrey, Yim, Grinter, Cabailh, Bikondoa, Lindsay, Zegenhagen, Michaelides, Thornton (b0115) 2017; 16 Qian, Zhang, Hou, Bu, Zhang, Lan, Li, Li, Ma, Song (b0085) 2022; 18 Chong, Quan, Zhang, Pan, Li, Hong, Zhi (b0315) 2021; 424 Chang, Hu, Qian, Shao, Ni, Kong, Dan, Luo, Jin, Xu (b0145) 2021; 410 Deng, Wang, Li, Jiang, Zhou, Wen, Yu, Che, Wang (b0420) 2022; 894 Zhang, Nie, Cheng, Feng, Zhang, Zheng, Wu, Hao, Ding (b0100) 2021; 90 Yang, Huang, Shi, Cao, Zhou, Chang, Meng, Liu, Jie, Ye (b0295) 2017; 36 Li, Wei, Xiu, Han (b0350) 2022; 446 Shi, Zhao, Waterhouse, Zhang, Zhang (b0225) 2019; 9 Huang, Wang, Yu, Zhang, Cao, Peng (b0165) 2020; 13 Feng, Ling, Nie, Han, Chen, Bian, Li, Wang (b0050) 2017; 11 Chen, Wang, Chen, Zhuang, Chen, Zhu, Yu (b0025) 2020; 402 Qiao, Zhang, Li, Hou, Zhang, Zhang, Li, Feng, Bu (b0365) 2018; 6 Pan, Yuan, Jiang, Wang, Yu, Zhang (b0385) 2020; 384 Xu, Zhang, Cheng, Fan, Yu (b0250) 2020; 6 Jia, Tahir, Pan, Huang, Zhang, Wang, Zou (b0390) 2016; 198 Wadsworth (10.1016/j.cej.2023.142421_b0075) 2020; 32 Pan (10.1016/j.cej.2023.142421_b0460) 2013; 459 Patnaik (10.1016/j.cej.2023.142421_b0210) 2021; 172 Chen (10.1016/j.cej.2023.142421_b0025) 2020; 402 Mirzaei (10.1016/j.cej.2023.142421_b0310) 2021; 422 Shi (10.1016/j.cej.2023.142421_b0225) 2019; 9 Xue (10.1016/j.cej.2023.142421_b0005) 2022; 6 Sun (10.1016/j.cej.2023.142421_b0160) 2014; 4 Zhang (10.1016/j.cej.2023.142421_b0335) 2020; 59 Wang (10.1016/j.cej.2023.142421_b0270) 2021; 17 Yu (10.1016/j.cej.2023.142421_b0340) 2016; 120 Li (10.1016/j.cej.2023.142421_b0175) 2019; 478 Xu (10.1016/j.cej.2023.142421_b0345) 2017; 7 Lu (10.1016/j.cej.2023.142421_b0010) 2022 Kuang (10.1016/j.cej.2023.142421_b0490) 2019; 96 Xia (10.1016/j.cej.2023.142421_b0290) 2020; 59 Fujishima (10.1016/j.cej.2023.142421_b0110) 1972; 238 Liu (10.1016/j.cej.2023.142421_b0195) 2021; 8 Guo (10.1016/j.cej.2023.142421_b0435) 2020; 7 Jiang (10.1016/j.cej.2023.142421_b0455) 2022; 571 Sun (10.1016/j.cej.2023.142421_b0035) 2021; 406 Yang (10.1016/j.cej.2023.142421_b0485) 2022; 641 Li (10.1016/j.cej.2023.142421_b0350) 2022; 446 Bie (10.1016/j.cej.2023.142421_b0275) 2022; 8 Lu (10.1016/j.cej.2023.142421_b0415) 2018; 337 Liao (10.1016/j.cej.2023.142421_b0215) 2019; 12 Yang (10.1016/j.cej.2023.142421_b0295) 2017; 36 Li (10.1016/j.cej.2023.142421_b0020) 2019; 40 Akrami (10.1016/j.cej.2023.142421_b0465) 2022; 442 Jia (10.1016/j.cej.2023.142421_b0480) 2023; 306 Jia (10.1016/j.cej.2023.142421_b0390) 2016; 198 Huang (10.1016/j.cej.2023.142421_b0165) 2020; 13 Gao (10.1016/j.cej.2023.142421_b0470) 2022; 603 Zhang (10.1016/j.cej.2023.142421_b0125) 2016; 192 Qiao (10.1016/j.cej.2023.142421_b0365) 2018; 6 Deng (10.1016/j.cej.2023.142421_b0410) 2018; 509 Wang (10.1016/j.cej.2023.142421_b0405) 2021; 42 Tie (10.1016/j.cej.2023.142421_b0150) 2019; 807 Pan (10.1016/j.cej.2023.142421_b0055) 2017; 139 Yang (10.1016/j.cej.2023.142421_b0260) 2021; 5 Ong (10.1016/j.cej.2023.142421_b0015) 2016; 116 Pan (10.1016/j.cej.2023.142421_b0135) 2021; 57 Bi (10.1016/j.cej.2023.142421_b0180) 2022; 306 Deng (10.1016/j.cej.2023.142421_b0420) 2022; 894 Pang (10.1016/j.cej.2023.142421_b0300) 2019; 244 He (10.1016/j.cej.2023.142421_b0190) 2019; 119 Liu (10.1016/j.cej.2023.142421_b0370) 2019; 251 Wang (10.1016/j.cej.2023.142421_b0220) 2019; 492 Ma (10.1016/j.cej.2023.142421_b0285) 2020; 382 Li (10.1016/j.cej.2023.142421_b0095) 2022; 372 Palanivel (10.1016/j.cej.2023.142421_b0400) 2020; 5 Zhang (10.1016/j.cej.2023.142421_b0100) 2021; 90 Peng (10.1016/j.cej.2023.142421_b0265) 2020; 260 She (10.1016/j.cej.2023.142421_b0355) 2017; 7 Shi (10.1016/j.cej.2023.142421_b0040) 2022; 292 Gong (10.1016/j.cej.2023.142421_b0445) 2021; 298 Li (10.1016/j.cej.2023.142421_b0450) 2022; 609 Wang (10.1016/j.cej.2023.142421_b0380) 2020; 270 Yang (10.1016/j.cej.2023.142421_b0425) 2019; 365 Qi (10.1016/j.cej.2023.142421_b0070) 2018; 39 Xu (10.1016/j.cej.2023.142421_b0065) 2020; 8 Trang (10.1016/j.cej.2023.142421_b0200) 2020; 12 Liu (10.1016/j.cej.2023.142421_b0060) 2020; 261 Wang (10.1016/j.cej.2023.142421_b0130) 2021; 33 Wu (10.1016/j.cej.2023.142421_b0360) 2021; 411 Xu (10.1016/j.cej.2023.142421_b0250) 2020; 6 Sun (10.1016/j.cej.2023.142421_b0205) 2020; 397 Zhang (10.1016/j.cej.2023.142421_b0305) 2015; 329 Liu (10.1016/j.cej.2023.142421_b0170) 2021; 877 Li (10.1016/j.cej.2023.142421_b0185) 2020; 284 Pan (10.1016/j.cej.2023.142421_b0385) 2020; 384 Zhang (10.1016/j.cej.2023.142421_b0395) 2013; 42 Chang (10.1016/j.cej.2023.142421_b0145) 2021; 410 10.1016/j.cej.2023.142421_b0105 Jiang (10.1016/j.cej.2023.142421_b0120) 2022; 43 Chang (10.1016/j.cej.2023.142421_b0245) 2016; 9 Wang (10.1016/j.cej.2023.142421_b0430) 2018; 220 Qian (10.1016/j.cej.2023.142421_b0085) 2022; 18 Pang (10.1016/j.cej.2023.142421_b0280) 2018; 13 Feng (10.1016/j.cej.2023.142421_b0050) 2017; 11 Cui (10.1016/j.cej.2023.142421_b0080) 2017; 9 Chong (10.1016/j.cej.2023.142421_b0315) 2021; 424 Liu (10.1016/j.cej.2023.142421_b0230) 2018; 6 Kokilavani (10.1016/j.cej.2023.142421_b0375) 2021; 23 Lin (10.1016/j.cej.2023.142421_b0045) 2020; 2 Wang (10.1016/j.cej.2023.142421_b0325) 2009; 8 Wu (10.1016/j.cej.2023.142421_b0475) 2023; 312 Hussain (10.1016/j.cej.2023.142421_b0115) 2017; 16 El Agrebi (10.1016/j.cej.2023.142421_b0030) 2020; 745 Zhang (10.1016/j.cej.2023.142421_b0255) 2022; 13 Ding (10.1016/j.cej.2023.142421_b0240) 2021; 276 Liu (10.1016/j.cej.2023.142421_b0330) 2018; 331 Ahmed (10.1016/j.cej.2023.142421_b0090) 2022; 56 Li (10.1016/j.cej.2023.142421_b0235) 2022; 156 Low (10.1016/j.cej.2023.142421_b0155) 2017; 29 Zhang (10.1016/j.cej.2023.142421_b0140) 2022; 34 Fu (10.1016/j.cej.2023.142421_b0320) 2019; 243 Zhao (10.1016/j.cej.2023.142421_b0440) 2019; 31 |
References_xml | – volume: 156 start-page: 111980 year: 2022 ident: b0235 article-title: Recent progress in defective TiO publication-title: Renew. Sust. Energ. Rev. – volume: 261 year: 2020 ident: b0060 article-title: Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection publication-title: Appl. Catal. B-Environ. – volume: 402 year: 2020 ident: b0025 article-title: Recycling heavy metals from wastewater for photocatalytic CO publication-title: Chem. Eng. J. – volume: 11 start-page: 12411 year: 2017 end-page: 12418 ident: b0050 article-title: Self-Powered Electrostatic Filter with Enhanced Photocatalytic Degradation of Formaldehyde Based on Built-in Triboelectric Nanogenerators publication-title: ACS Nano – volume: 410 year: 2021 ident: b0145 article-title: Mg publication-title: Chem. Eng. J. – volume: 57 start-page: 1 year: 2021 end-page: 9 ident: b0135 article-title: Oxygen-doping of ZnIn publication-title: J. Energy Chem. – year: 2022 ident: b0010 article-title: Electrospun Semiconductor-Based Nano-Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges – volume: 31 start-page: 1903545 year: 2019 ident: b0440 article-title: Synergy of Dopants and Defects in Graphitic Carbon Nitride with Exceptionally Modulated Band Structures for Efficient Photocatalytic Oxygen Evolution publication-title: Adv. Mater. – volume: 12 start-page: 12195 year: 2020 end-page: 12206 ident: b0200 article-title: In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 2100887 year: 2021 ident: b0270 article-title: In situ Irradiated XPS Investigation on S-Scheme TiO publication-title: Small – volume: 492 start-page: 690 year: 2019 end-page: 702 ident: b0220 article-title: Direct double Z-scheme O-g-C publication-title: Appl. Surf. Sci. – volume: 32 start-page: 2001763 year: 2020 ident: b0075 article-title: The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications publication-title: Adv. Mater. – volume: 509 start-page: 219 year: 2018 end-page: 234 ident: b0410 article-title: Facile fabrication of mediator-free Z-scheme photocatalyst of phosphorous-doped ultrathin graphitic carbon nitride nanosheets and bismuth vanadate composites with enhanced tetracycline degradation under visible light publication-title: J. Colloid Interf. Sci. – volume: 337 start-page: 228 year: 2018 end-page: 241 ident: b0415 article-title: Facile microwave synthesis of a Z-scheme imprinted ZnFe publication-title: Chem. Eng. J. – volume: 172 start-page: 682 year: 2021 end-page: 711 ident: b0210 article-title: Recent advances in anion doped g-C publication-title: Carbon – volume: 745 year: 2020 ident: b0030 article-title: Pesticide and veterinary drug residues in Belgian beeswax: Occurrence, toxicity, and risk to honey bees publication-title: Sci. Total. Environ. – volume: 251 start-page: 220 year: 2019 end-page: 228 ident: b0370 article-title: Targeting inside charge carriers transfer of photocatalyst: Selective deposition of Ag publication-title: Appl. Catal. B-Environ. – volume: 406 year: 2021 ident: b0035 article-title: One-pot thermal polymerization route to prepare N-deficient modified g-C publication-title: Chem. Eng. J. – volume: 306 year: 2022 ident: b0180 article-title: Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation publication-title: Appl. Catal. B-Environ. – volume: 9 start-page: 2177 year: 2016 end-page: 2196 ident: b0245 article-title: CO publication-title: Environ. Sci. – volume: 12 start-page: 2080 year: 2019 end-page: 2147 ident: b0215 article-title: Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light publication-title: Energ Environ. Sci. – volume: 6 start-page: 1543 year: 2020 end-page: 1559 ident: b0250 article-title: S-Scheme Heterojunction Photocatalyst publication-title: Chem – volume: 329 start-page: 143 year: 2015 end-page: 149 ident: b0305 article-title: Enhanced visible-light photoactivity of g-C publication-title: Appl. Surf. Sci. – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: b0325 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. – volume: 478 start-page: 1056 year: 2019 end-page: 1064 ident: b0175 article-title: Rational construction of a direct Z-scheme g-C publication-title: Appl. Surf. Sci. – volume: 13 start-page: 8462 year: 2022 end-page: 8469 ident: b0255 article-title: In Situ Irradiated X-ray Photoelectron Spectroscopy Investigation on Electron Transfer Mechanism in S-Scheme Photocatalyst publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 40896 year: 2017 end-page: 40904 ident: b0345 article-title: Probing the inhomogeneity and intermediates in the photosensitized degradation of rhodamine B by Ag publication-title: RSC Adv. – volume: 609 start-page: 341 year: 2022 end-page: 352 ident: b0450 article-title: N-doping TiO publication-title: J. Colloid Interf. Sci. – volume: 5 start-page: 19747 year: 2020 end-page: 19759 ident: b0400 article-title: Conversion of a Type-II to a Z-Scheme Heterojunction by Intercalation of a 0D Electron Mediator between the Integrative NiFe publication-title: ACS Omega – volume: 39 start-page: 867 year: 2018 end-page: 875 ident: b0070 article-title: Photocatalytic performance of TiO publication-title: J. Catal. – volume: 5 start-page: 2100887 year: 2021 ident: b0260 article-title: ZnIn publication-title: Small Methods – volume: 7 start-page: 1700025 year: 2017 ident: b0355 article-title: High Efficiency Photocatalytic Water Splitting Using 2D alpha-Fe publication-title: Adv. Energy Mater. – volume: 442 year: 2022 ident: b0465 article-title: Enhanced CO publication-title: Chem. Eng. J. – volume: 42 start-page: 13417 year: 2013 end-page: 13424 ident: b0395 article-title: Hierarchically grown CdS/alpha-Fe publication-title: Dalton T. – volume: 192 start-page: 101 year: 2016 end-page: 107 ident: b0125 article-title: New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS publication-title: Appl. Catal. B-Environ. – volume: 298 year: 2021 ident: b0445 article-title: Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO publication-title: Appl. Catal. B-Environ. – volume: 260 year: 2020 ident: b0265 article-title: Nanohybrid photocatalysts with ZnIn publication-title: Appl. Catal. B-Environ. – volume: 894 year: 2022 ident: b0420 article-title: Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C publication-title: J. Alloy. Compd. – volume: 244 start-page: 1013 year: 2019 end-page: 1020 ident: b0300 article-title: Probing the role of nickel dopant in aqueous colloidal ZnS nanocrystals for efficient solar-driven CO publication-title: Appl. Catal. B-Environ. – reference: D. Mateo, J.L. Cerrillo, S. Durini, J. Gascon, Fundamentals and applications of photo-thermal catalysis, Chem. Soc. Rev. 51 (2022) 1547-1547. – volume: 571 year: 2022 ident: b0455 article-title: Fabrication of 0D/2D TiO publication-title: Appl. Surf. Sci. – volume: 6 start-page: 92 year: 2022 end-page: 133 ident: b0005 article-title: Single-atom catalysts for photocatalytic energy conversion publication-title: Joule – volume: 312 year: 2023 ident: b0475 article-title: Mechanistic study of B-TiO publication-title: Sep. Purif. Technol. – volume: 59 start-page: 5218 year: 2020 end-page: 5225 ident: b0290 article-title: Designing a 0D/2D S-Scheme Heterojunction over Polymeric Carbon Nitride for Visible-Light Photocatalytic Inactivation of Bacteria publication-title: Angew. Chem. Int. Edit. – volume: 365 start-page: 107 year: 2019 end-page: 117 ident: b0425 article-title: Enhanced visible-light activation of persulfate by Ti publication-title: J. Hazard. Mater. – volume: 43 start-page: 226 year: 2022 end-page: 233 ident: b0120 article-title: Effect of calcination temperatures on photocatalytic H publication-title: J. Catal. – volume: 96 year: 2019 ident: b0490 article-title: Synthesis of octahedral-like ZnO/ZnFe publication-title: Solid State Sci. – volume: 33 start-page: 2105482 year: 2021 ident: b0130 article-title: Construction of Six-Oxygen-Coordinated Single Ni Sites on g-C publication-title: Adv. Mater. – volume: 29 start-page: 1601694 year: 2017 ident: b0155 article-title: Heterojunction Photocatalysts publication-title: Adv. Mater. – volume: 36 start-page: 331 year: 2017 end-page: 340 ident: b0295 article-title: Efficient hydrogen evolution over Sb doped SnO publication-title: Nano Energy – volume: 8 start-page: 1567 year: 2022 end-page: 1574 ident: b0275 article-title: Challenges for photocatalytic overall water splitting publication-title: Chem – volume: 119 start-page: 4471 year: 2019 end-page: 4568 ident: b0190 article-title: Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources publication-title: Chem. Rev. – volume: 56 start-page: 15156 year: 2022 end-page: 15166 ident: b0090 article-title: Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS publication-title: Environ. Sci. Technol. – volume: 8 start-page: 2542 year: 2021 end-page: 2553 ident: b0195 article-title: Boosting the photocatalytic degradation of ethyl acetate by a Z-scheme Au-TiO publication-title: Environ. Sci-Nano – volume: 8 start-page: 4457 year: 2020 end-page: 4463 ident: b0065 article-title: The main factor to improve the performance of CoSe publication-title: J. Mater. Chem. A. – volume: 424 year: 2021 ident: b0315 article-title: Direct Z-scheme ZnIn publication-title: Chem. Eng. J. – volume: 397 year: 2020 ident: b0205 article-title: Magnetic photocatalyst CoFe publication-title: Chem. Eng. J. – volume: 270 year: 2020 ident: b0380 article-title: BiVO publication-title: Appl. Catal. B-Environ. – volume: 42 start-page: 56 year: 2021 end-page: 68 ident: b0405 article-title: Sulfur-doped g-C publication-title: Chinese J. Catal. – volume: 459 start-page: 34 year: 2013 end-page: 40 ident: b0460 article-title: Fast and spontaneous reduction of gold ions over oxygen-vacancy-rich TiO publication-title: Appl. Catal. A-Gen. – volume: 372 year: 2022 ident: b0095 article-title: Research progress of photocatalytic activated persulfate removal of environmental organic pollutants by metal and nonmetal based photocatalysts publication-title: J. Clean. Prod. – volume: 6 start-page: 22580 year: 2018 end-page: 22589 ident: b0365 article-title: In situ synthesis of n-n Bi publication-title: J. Mater. Chem. A. – volume: 306 year: 2023 ident: b0480 article-title: SrTiO publication-title: Sep. Purif. Technol. – volume: 603 year: 2022 ident: b0470 article-title: A mesoporous nanofibrous BiVO publication-title: Appl. Surf. Sci. – volume: 9 start-page: 24518 year: 2017 end-page: 24526 ident: b0080 article-title: Enhanced Photocatalytic Activity of Heterostructured Ferroelectric BaTiO publication-title: ACS Appl. Mater. Interfaces – volume: 422 year: 2021 ident: b0310 article-title: Multiple-homojunction gradient nitrogen doped TiO publication-title: Chem. Eng. J. – volume: 331 start-page: 242 year: 2018 end-page: 254 ident: b0330 article-title: Xin, Enhanced photocatalytic activity over flower-like sphere Ag/Ag publication-title: Chem. Eng. J. – volume: 16 start-page: 461 year: 2017 end-page: 466 ident: b0115 article-title: Structure of a model TiO publication-title: Nat. Mater. – volume: 13 start-page: 5041 year: 2020 end-page: 5049 ident: b0165 article-title: Oxygen Doping in Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution publication-title: ChemSusChem – volume: 23 year: 2021 ident: b0375 article-title: Synthesis of novel heterostructured FeS publication-title: Surf. Interfaces – volume: 2 start-page: 813 year: 2020 end-page: 824 ident: b0045 article-title: Visible-Light-Driven Photocatalytic Water Splitting: Recent Progress and Challenges publication-title: Trends Chem. – volume: 18 start-page: 2103933 year: 2022 ident: b0085 article-title: A Dual Photoelectrode Photoassisted Fe-Air Battery: The Photo-Electrocatalysis Mechanism Accounting for the Improved Oxygen Evolution Reaction and Oxygen Reduction Reaction of Air Electrodes publication-title: Small – volume: 238 start-page: 37 year: 1972 end-page: 38 ident: b0110 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature – volume: 4 start-page: 1120 year: 2014 end-page: 1127 ident: b0160 article-title: A nanocomposite of carbon quantum dots and TiO publication-title: RSC Adv. – volume: 382 year: 2020 ident: b0285 article-title: Z-scheme Bi publication-title: Chem. Eng. J. – volume: 9 start-page: 9739 year: 2019 end-page: 9750 ident: b0225 article-title: Defect Engineering in Photocatalytic Nitrogen Fixation publication-title: ACS Catal. – volume: 139 start-page: 4123 year: 2017 end-page: 4129 ident: b0055 article-title: Photocatalytic CO publication-title: J. Am. Chem. Soc. – volume: 284 year: 2020 ident: b0185 article-title: Recent advances in surface and interface design of photocatalysts for the degradation of volatile organic compounds publication-title: Adv. Colloid Interfac. – volume: 384 year: 2020 ident: b0385 article-title: Stable self-assembly AgI/UiO-66(NH publication-title: Chem. Eng. J. – volume: 116 start-page: 7159 year: 2016 end-page: 7329 ident: b0015 article-title: Graphitic Carbon Nitride (g-C publication-title: Chem. Rev. – volume: 7 start-page: 1770 year: 2020 end-page: 1779 ident: b0435 article-title: High-efficiency photocatalytic water splitting by a N-doped porous g-C publication-title: Inorg. Chem. Front. – volume: 40 start-page: 4 year: 2019 end-page: 22 ident: b0020 article-title: Recent advances in one-dimensional nanostructures for energy electrocatalysis, Chinese publication-title: J. Catal. – volume: 292 year: 2022 ident: b0040 article-title: Engineering ultrathin oxygen-doped g-C publication-title: Sep. Purif. Technol. – volume: 807 year: 2019 ident: b0150 article-title: Facile fabrication of N-doped ZnS nanomaterials for efficient photocatalytic performance of organic pollutant removal and H publication-title: J. Alloy. Compd. – volume: 220 start-page: 337 year: 2018 end-page: 347 ident: b0430 article-title: Photocatalytic activity enhancement of core-shell structure g-C publication-title: Appl. Catal. B-Environ. – volume: 34 start-page: 2107668 year: 2022 ident: b0140 article-title: Emerging S-Scheme Photocatalyst publication-title: Adv. Mater. – volume: 13 start-page: 1850016 year: 2018 ident: b0280 article-title: An Anion-Exchange Strategy to Bi publication-title: Nano – volume: 198 start-page: 154 year: 2016 end-page: 161 ident: b0390 article-title: Direct Z-scheme composite of CdS and oxygen-defected CdWO publication-title: Appl. Catal. B-Environ. – volume: 6 start-page: 4102 year: 2018 end-page: 4110 ident: b0230 article-title: MXene-derived TiO publication-title: J. Mater. Chem. A. – volume: 446 year: 2022 ident: b0350 article-title: Direct Z-scheme charge transfer of Bi publication-title: Chem. Eng. J. – volume: 877 year: 2021 ident: b0170 article-title: Ti publication-title: J. Alloy. Compd. – volume: 59 start-page: 8255 year: 2020 end-page: 8261 ident: b0335 article-title: Construction of Hierarchical Hollow Co publication-title: Angew. Chem. Int. Edit. – volume: 120 start-page: 3722 year: 2016 end-page: 3730 ident: b0340 article-title: Enhanced Photoinduced-Stability and Photocatalytic Activity of CdS by Dual Amorphous Cocatalysts: Synergistic Effect of Ti(IV)-Hole Cocatalyst and Ni(II)-Electron Cocatalyst publication-title: J. Phys. Chem. C. – volume: 641 year: 2022 ident: b0485 article-title: An efficient construction method of S-scheme Ag publication-title: Colloid. Surface. A. – volume: 90 year: 2021 ident: b0100 article-title: Enhancing the macroscopic polarization of CdS for piezo-photocatalytic water splitting publication-title: Nano Energy – volume: 276 year: 2021 ident: b0240 article-title: Ultrasonically synthesized N-TiO publication-title: Sep. Purif. Technol. – volume: 411 year: 2021 ident: b0360 article-title: Construction of BiOCl/CuBi publication-title: Chem. Eng. J. – volume: 243 start-page: 556 year: 2019 end-page: 565 ident: b0320 article-title: Ultrathin 2D/2D WO publication-title: Appl. Catal. B-Environ. – volume: 59 start-page: 5218 issue: 13 year: 2020 ident: 10.1016/j.cej.2023.142421_b0290 article-title: Designing a 0D/2D S-Scheme Heterojunction over Polymeric Carbon Nitride for Visible-Light Photocatalytic Inactivation of Bacteria publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201916012 – volume: 192 start-page: 101 year: 2016 ident: 10.1016/j.cej.2023.142421_b0125 article-title: New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.03.058 – volume: 36 start-page: 331 year: 2017 ident: 10.1016/j.cej.2023.142421_b0295 article-title: Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.04.039 – volume: 7 start-page: 1770 issue: 8 year: 2020 ident: 10.1016/j.cej.2023.142421_b0435 article-title: High-efficiency photocatalytic water splitting by a N-doped porous g-C3N4 nanosheet polymer photocatalyst derived from urea and N, N-dimethylformamide publication-title: Inorg. Chem. Front. doi: 10.1039/D0QI00117A – volume: 372 year: 2022 ident: 10.1016/j.cej.2023.142421_b0095 article-title: Research progress of photocatalytic activated persulfate removal of environmental organic pollutants by metal and nonmetal based photocatalysts publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.133420 – volume: 478 start-page: 1056 year: 2019 ident: 10.1016/j.cej.2023.142421_b0175 article-title: Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.02.035 – volume: 261 year: 2020 ident: 10.1016/j.cej.2023.142421_b0060 article-title: Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.118201 – volume: 172 start-page: 682 year: 2021 ident: 10.1016/j.cej.2023.142421_b0210 article-title: Recent advances in anion doped g-C3N4 photocatalysts: A review publication-title: Carbon doi: 10.1016/j.carbon.2020.10.073 – volume: 5 start-page: 2100887 year: 2021 ident: 10.1016/j.cej.2023.142421_b0260 article-title: ZnIn2S4-Based Photocatalysts for Energy and Environmental Applications publication-title: Small Methods doi: 10.1002/smtd.202100887 – volume: 382 year: 2020 ident: 10.1016/j.cej.2023.142421_b0285 article-title: Z-scheme Bi2O2.33/Bi2S3 heterojunction nanostructures for photocatalytic overall water splitting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123020 – volume: 57 start-page: 1 year: 2021 ident: 10.1016/j.cej.2023.142421_b0135 article-title: Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.08.024 – volume: 13 start-page: 5041 issue: 18 year: 2020 ident: 10.1016/j.cej.2023.142421_b0165 article-title: Oxygen Doping in Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution publication-title: ChemSusChem doi: 10.1002/cssc.202001317 – volume: 329 start-page: 143 year: 2015 ident: 10.1016/j.cej.2023.142421_b0305 article-title: Enhanced visible-light photoactivity of g-C3N4 via Zn2SnO4 modification publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.12.154 – volume: 156 start-page: 111980 year: 2022 ident: 10.1016/j.cej.2023.142421_b0235 article-title: Recent progress in defective TiO2 photocatalysts for energy and environmental applications publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2021.111980 – volume: 337 start-page: 228 year: 2018 ident: 10.1016/j.cej.2023.142421_b0415 article-title: Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.115 – volume: 8 start-page: 4457 year: 2020 ident: 10.1016/j.cej.2023.142421_b0065 article-title: The main factor to improve the performance of CoSe2 for photocatalytic CO2 reduction: element doping or phase transformation publication-title: J. Mater. Chem. A. doi: 10.1039/C9TA11595A – volume: 244 start-page: 1013 year: 2019 ident: 10.1016/j.cej.2023.142421_b0300 article-title: Probing the role of nickel dopant in aqueous colloidal ZnS nanocrystals for efficient solar-driven CO2 reduction publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.12.010 – volume: 609 start-page: 341 year: 2022 ident: 10.1016/j.cej.2023.142421_b0450 article-title: N-doping TiO2 hollow microspheres with abundant oxygen vacancies for highly photocatalytic nitrogen fixation publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.11.180 – volume: 745 year: 2020 ident: 10.1016/j.cej.2023.142421_b0030 article-title: Pesticide and veterinary drug residues in Belgian beeswax: Occurrence, toxicity, and risk to honey bees publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2020.141036 – volume: 4 start-page: 1120 year: 2014 ident: 10.1016/j.cej.2023.142421_b0160 article-title: A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: enhancing photoelectrochemical and photocatalytic properties publication-title: RSC Adv. doi: 10.1039/C3RA45474F – volume: 2 start-page: 813 issue: 9 year: 2020 ident: 10.1016/j.cej.2023.142421_b0045 article-title: Visible-Light-Driven Photocatalytic Water Splitting: Recent Progress and Challenges publication-title: Trends Chem. doi: 10.1016/j.trechm.2020.06.006 – volume: 13 start-page: 8462 issue: 36 year: 2022 ident: 10.1016/j.cej.2023.142421_b0255 article-title: In Situ Irradiated X-ray Photoelectron Spectroscopy Investigation on Electron Transfer Mechanism in S-Scheme Photocatalyst publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c02125 – volume: 8 start-page: 1567 issue: 6 year: 2022 ident: 10.1016/j.cej.2023.142421_b0275 article-title: Challenges for photocatalytic overall water splitting publication-title: Chem doi: 10.1016/j.chempr.2022.04.013 – volume: 13 start-page: 1850016 year: 2018 ident: 10.1016/j.cej.2023.142421_b0280 article-title: An Anion-Exchange Strategy to Bi2S3/Bi2O2(OH)(NO3) Heterojunction with Efficient Visible Light Photoreactivity publication-title: Nano doi: 10.1142/S1793292018500169 – volume: 29 start-page: 1601694 year: 2017 ident: 10.1016/j.cej.2023.142421_b0155 article-title: Heterojunction Photocatalysts publication-title: Adv. Mater. doi: 10.1002/adma.201601694 – volume: 397 year: 2020 ident: 10.1016/j.cej.2023.142421_b0205 article-title: Magnetic photocatalyst CoFe2O4-Ag2O with magnetic aggregation bed photocatalytic reactor for continuous photodegradation of methyl orange publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125397 – volume: 446 year: 2022 ident: 10.1016/j.cej.2023.142421_b0350 article-title: Direct Z-scheme charge transfer of Bi2WO6/InVO4 interface for efficient photocatalytic CO2 reduction publication-title: Chem. Eng. J. – volume: 422 year: 2021 ident: 10.1016/j.cej.2023.142421_b0310 article-title: Multiple-homojunction gradient nitrogen doped TiO2 for photocatalytic degradation of sulfamethoxazole, degradation mechanism, and toxicity assessment publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130507 – volume: 33 start-page: 2105482 year: 2021 ident: 10.1016/j.cej.2023.142421_b0130 article-title: Construction of Six-Oxygen-Coordinated Single Ni Sites on g-C3N4 with Boron-Oxo Species for Photocatalytic Water-Activation-Induced CO2 Reduction publication-title: Adv. Mater. doi: 10.1002/adma.202105482 – volume: 31 start-page: 1903545 year: 2019 ident: 10.1016/j.cej.2023.142421_b0440 article-title: Synergy of Dopants and Defects in Graphitic Carbon Nitride with Exceptionally Modulated Band Structures for Efficient Photocatalytic Oxygen Evolution publication-title: Adv. Mater. doi: 10.1002/adma.201903545 – volume: 807 year: 2019 ident: 10.1016/j.cej.2023.142421_b0150 article-title: Facile fabrication of N-doped ZnS nanomaterials for efficient photocatalytic performance of organic pollutant removal and H2 production publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2019.151670 – volume: 56 start-page: 15156 issue: 21 year: 2022 ident: 10.1016/j.cej.2023.142421_b0090 article-title: Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS2@GO-Based Heterogeneous Photo-Fenton Process publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c03334 – volume: 603 year: 2022 ident: 10.1016/j.cej.2023.142421_b0470 article-title: A mesoporous nanofibrous BiVO4-Ni/AgVO3 Z-scheme heterojunction photocatalyst with enhanced photocatalytic reduction of Cr6+ and degradation of RhB under visible light publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.154416 – volume: 410 year: 2021 ident: 10.1016/j.cej.2023.142421_b0145 article-title: Mg2TiO4 spinel modified by nitrogen doping as a Visible-Light-Active photocatalyst for antibacterial activity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128410 – volume: 12 start-page: 12195 issue: 10 year: 2020 ident: 10.1016/j.cej.2023.142421_b0200 article-title: In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H2 Evolution and RhB Degradation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b15578 – volume: 331 start-page: 242 year: 2018 ident: 10.1016/j.cej.2023.142421_b0330 article-title: Xin, Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.08.114 – volume: 306 year: 2023 ident: 10.1016/j.cej.2023.142421_b0480 article-title: SrTiO3 nanosheets decorated with ZnFe2O4 nanoparticles as Z-scheme photocatalysts for highly efficient photocatalytic degradation and CO2 conversion publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.122667 – volume: 365 start-page: 107 year: 2019 ident: 10.1016/j.cej.2023.142421_b0425 article-title: Enhanced visible-light activation of persulfate by Ti3+ self-doped TiO2/graphene nanocomposite for the rapid and efficient degradation of micropollutants in water publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.10.090 – volume: 18 start-page: 2103933 year: 2022 ident: 10.1016/j.cej.2023.142421_b0085 article-title: A Dual Photoelectrode Photoassisted Fe-Air Battery: The Photo-Electrocatalysis Mechanism Accounting for the Improved Oxygen Evolution Reaction and Oxygen Reduction Reaction of Air Electrodes publication-title: Small doi: 10.1002/smll.202103933 – volume: 571 year: 2022 ident: 10.1016/j.cej.2023.142421_b0455 article-title: Fabrication of 0D/2D TiO2 Nanodots/g-C3N4 S-scheme heterojunction photocatalyst for efficient photocatalytic overall water splitting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.151287 – volume: 509 start-page: 219 year: 2018 ident: 10.1016/j.cej.2023.142421_b0410 article-title: Facile fabrication of mediator-free Z-scheme photocatalyst of phosphorous-doped ultrathin graphitic carbon nitride nanosheets and bismuth vanadate composites with enhanced tetracycline degradation under visible light publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2017.09.016 – volume: 877 year: 2021 ident: 10.1016/j.cej.2023.142421_b0170 article-title: Ti3C2 MXene embellished g-C3N4 nanosheets for improving photocatalytic redox capacity publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.160223 – volume: 12 start-page: 2080 year: 2019 ident: 10.1016/j.cej.2023.142421_b0215 article-title: Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light publication-title: Energ Environ. Sci. doi: 10.1039/C9EE00717B – volume: 11 start-page: 12411 issue: 12 year: 2017 ident: 10.1016/j.cej.2023.142421_b0050 article-title: Self-Powered Electrostatic Filter with Enhanced Photocatalytic Degradation of Formaldehyde Based on Built-in Triboelectric Nanogenerators publication-title: ACS Nano doi: 10.1021/acsnano.7b06451 – volume: 120 start-page: 3722 year: 2016 ident: 10.1016/j.cej.2023.142421_b0340 article-title: Enhanced Photoinduced-Stability and Photocatalytic Activity of CdS by Dual Amorphous Cocatalysts: Synergistic Effect of Ti(IV)-Hole Cocatalyst and Ni(II)-Electron Cocatalyst publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.6b00126 – volume: 32 start-page: 2001763 year: 2020 ident: 10.1016/j.cej.2023.142421_b0075 article-title: The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications publication-title: Adv. Mater. doi: 10.1002/adma.202001763 – volume: 312 year: 2023 ident: 10.1016/j.cej.2023.142421_b0475 article-title: Mechanistic study of B-TiO2/BiVO4 S-scheme heterojunction photocatalyst for tetracycline hydrochloride removal and H2 production publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2023.123398 – volume: 238 start-page: 37 issue: 5358 year: 1972 ident: 10.1016/j.cej.2023.142421_b0110 article-title: Electrochemical photolysis of water at a semiconductor electrode publication-title: Nature doi: 10.1038/238037a0 – year: 2022 ident: 10.1016/j.cej.2023.142421_b0010 – volume: 16 start-page: 461 year: 2017 ident: 10.1016/j.cej.2023.142421_b0115 article-title: Structure of a model TiO2 photocatalytic interface publication-title: Nat. Mater. doi: 10.1038/nmat4793 – volume: 5 start-page: 19747 year: 2020 ident: 10.1016/j.cej.2023.142421_b0400 article-title: Conversion of a Type-II to a Z-Scheme Heterojunction by Intercalation of a 0D Electron Mediator between the Integrative NiFe2O4/g-C3N4 Composite Nanoparticles: Boosting the Radical Production for Photo-Fenton Degradation publication-title: ACS Omega doi: 10.1021/acsomega.0c02477 – volume: 7 start-page: 1700025 year: 2017 ident: 10.1016/j.cej.2023.142421_b0355 article-title: High Efficiency Photocatalytic Water Splitting Using 2D alpha-Fe2O3/g-C3N4 Z-Scheme Catalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700025 – volume: 90 year: 2021 ident: 10.1016/j.cej.2023.142421_b0100 article-title: Enhancing the macroscopic polarization of CdS for piezo-photocatalytic water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106635 – volume: 139 start-page: 4123 issue: 11 year: 2017 ident: 10.1016/j.cej.2023.142421_b0055 article-title: Photocatalytic CO2 Reduction by Carbon-Coated Indium-Oxide Nanobelts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00266 – volume: 23 year: 2021 ident: 10.1016/j.cej.2023.142421_b0375 article-title: Synthesis of novel heterostructured FeS2/Ag2MoO4 nanocomposite: Characterization, efficient antibacterial and enhanced visible light driven photocatalytic activity publication-title: Surf. Interfaces – volume: 384 year: 2020 ident: 10.1016/j.cej.2023.142421_b0385 article-title: Stable self-assembly AgI/UiO-66(NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123310 – volume: 39 start-page: 867 issue: 4 year: 2018 ident: 10.1016/j.cej.2023.142421_b0070 article-title: Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects, Chinese publication-title: J. Catal. – volume: 43 start-page: 226 issue: 2 year: 2022 ident: 10.1016/j.cej.2023.142421_b0120 article-title: Effect of calcination temperatures on photocatalytic H2O2-production activity of ZnO nanorods, Chinese publication-title: J. Catal. – volume: 116 start-page: 7159 year: 2016 ident: 10.1016/j.cej.2023.142421_b0015 article-title: Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00075 – volume: 260 year: 2020 ident: 10.1016/j.cej.2023.142421_b0265 article-title: Nanohybrid photocatalysts with ZnIn2S4 nanosheets encapsulated UiO-66 octahedral nanoparticles for visible-light-driven hydrogen generation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.118152 – volume: 306 year: 2022 ident: 10.1016/j.cej.2023.142421_b0180 article-title: Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2022.121109 – volume: 17 start-page: 2100887 year: 2021 ident: 10.1016/j.cej.2023.142421_b0270 article-title: In situ Irradiated XPS Investigation on S-Scheme TiO2@ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction publication-title: Small – volume: 34 start-page: 2107668 year: 2022 ident: 10.1016/j.cej.2023.142421_b0140 article-title: Emerging S-Scheme Photocatalyst publication-title: Adv. Mater. doi: 10.1002/adma.202107668 – volume: 424 year: 2021 ident: 10.1016/j.cej.2023.142421_b0315 article-title: Direct Z-scheme ZnIn2S4@MoO3 heterojunction for efficient photodegradation of tetracycline hydrochloride under visible light irradiation publication-title: Chem. Eng. J. – volume: 270 year: 2020 ident: 10.1016/j.cej.2023.142421_b0380 article-title: BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2020.118876 – volume: 406 year: 2021 ident: 10.1016/j.cej.2023.142421_b0035 article-title: One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126844 – volume: 42 start-page: 56 issue: 1 year: 2021 ident: 10.1016/j.cej.2023.142421_b0405 article-title: Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation publication-title: Chinese J. Catal. doi: 10.1016/S1872-2067(20)63634-8 – volume: 492 start-page: 690 year: 2019 ident: 10.1016/j.cej.2023.142421_b0220 article-title: Direct double Z-scheme O-g-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.06.260 – volume: 40 start-page: 4 issue: 1 year: 2019 ident: 10.1016/j.cej.2023.142421_b0020 article-title: Recent advances in one-dimensional nanostructures for energy electrocatalysis, Chinese publication-title: J. Catal. – volume: 220 start-page: 337 year: 2018 ident: 10.1016/j.cej.2023.142421_b0430 article-title: Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.08.004 – volume: 894 year: 2022 ident: 10.1016/j.cej.2023.142421_b0420 article-title: Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C3N4/ZnIn2S4 S-scheme heterojunction under visible light irradiation publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2021.162209 – volume: 402 year: 2020 ident: 10.1016/j.cej.2023.142421_b0025 article-title: Recycling heavy metals from wastewater for photocatalytic CO2 reduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125922 – volume: 6 start-page: 4102 issue: 9 year: 2018 ident: 10.1016/j.cej.2023.142421_b0230 article-title: MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA09350K – ident: 10.1016/j.cej.2023.142421_b0105 doi: 10.1039/D2CS90010F – volume: 9 start-page: 24518 year: 2017 ident: 10.1016/j.cej.2023.142421_b0080 article-title: Enhanced Photocatalytic Activity of Heterostructured Ferroelectric BaTiO3/alpha-Fe2O3 and the Significance of Interface Morphology Control publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03523 – volume: 641 year: 2022 ident: 10.1016/j.cej.2023.142421_b0485 article-title: An efficient construction method of S-scheme Ag2CrO4/ZnFe2O4 nanofibers heterojunction toward enhanced photocatalytic and antibacterial activity publication-title: Colloid. Surface. A. doi: 10.1016/j.colsurfa.2022.128603 – volume: 6 start-page: 1543 issue: 7 year: 2020 ident: 10.1016/j.cej.2023.142421_b0250 article-title: S-Scheme Heterojunction Photocatalyst publication-title: Chem doi: 10.1016/j.chempr.2020.06.010 – volume: 411 year: 2021 ident: 10.1016/j.cej.2023.142421_b0360 article-title: Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128555 – volume: 276 year: 2021 ident: 10.1016/j.cej.2023.142421_b0240 article-title: Ultrasonically synthesized N-TiO2/Ti3C2 composites: Enhancing sonophotocatalytic activity for pollutant degradation and nitrogen fixation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119287 – volume: 7 start-page: 40896 issue: 65 year: 2017 ident: 10.1016/j.cej.2023.142421_b0345 article-title: Probing the inhomogeneity and intermediates in the photosensitized degradation of rhodamine B by Ag3PO4 nanoparticles from an ensemble to a single molecule approach publication-title: RSC Adv. doi: 10.1039/C7RA07163A – volume: 6 start-page: 22580 year: 2018 ident: 10.1016/j.cej.2023.142421_b0365 article-title: In situ synthesis of n-n Bi2MoO6 & Bi2S3 heterojunctions for highly efficient photocatalytic removal of Cr(vi) publication-title: J. Mater. Chem. A. doi: 10.1039/C8TA08294D – volume: 96 year: 2019 ident: 10.1016/j.cej.2023.142421_b0490 article-title: Synthesis of octahedral-like ZnO/ZnFe2O4 heterojunction photocatalysts with superior photocatalytic activity publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2019.05.012 – volume: 284 year: 2020 ident: 10.1016/j.cej.2023.142421_b0185 article-title: Recent advances in surface and interface design of photocatalysts for the degradation of volatile organic compounds publication-title: Adv. Colloid Interfac. doi: 10.1016/j.cis.2020.102275 – volume: 298 year: 2021 ident: 10.1016/j.cej.2023.142421_b0445 article-title: Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2021.120521 – volume: 442 year: 2022 ident: 10.1016/j.cej.2023.142421_b0465 article-title: Enhanced CO2 conversion on highly-strained and oxygen-deficient BiVO4 photocatalyst publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136209 – volume: 251 start-page: 220 year: 2019 ident: 10.1016/j.cej.2023.142421_b0370 article-title: Targeting inside charge carriers transfer of photocatalyst: Selective deposition of Ag2O on BiVO4 with enhanced UV-vis-NIR photocatalytic oxidation activity publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.03.062 – volume: 243 start-page: 556 year: 2019 ident: 10.1016/j.cej.2023.142421_b0320 article-title: Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2 production photocatalyst publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.11.011 – volume: 42 start-page: 13417 year: 2013 ident: 10.1016/j.cej.2023.142421_b0395 article-title: Hierarchically grown CdS/alpha-Fe2O3 heterojunction nanocomposites with enhanced visible-light-driven photocatalytic performance publication-title: Dalton T. doi: 10.1039/c3dt51492g – volume: 8 start-page: 2542 issue: 9 year: 2021 ident: 10.1016/j.cej.2023.142421_b0195 article-title: Boosting the photocatalytic degradation of ethyl acetate by a Z-scheme Au-TiO2@NH2-UiO-66 heterojunction with ultrafine Au as an electron mediator publication-title: Environ. Sci-Nano doi: 10.1039/D1EN00225B – volume: 119 start-page: 4471 year: 2019 ident: 10.1016/j.cej.2023.142421_b0190 article-title: Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00408 – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.cej.2023.142421_b0325 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 59 start-page: 8255 issue: 21 year: 2020 ident: 10.1016/j.cej.2023.142421_b0335 article-title: Construction of Hierarchical Hollow Co9S8/ZnIn2S4 Tubular Heterostructures for Highly Efficient Solar Energy Conversion and Environmental Remediation publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.202000503 – volume: 459 start-page: 34 year: 2013 ident: 10.1016/j.cej.2023.142421_b0460 article-title: Fast and spontaneous reduction of gold ions over oxygen-vacancy-rich TiO2: A novel strategy to design defect-based composite photocatalyst publication-title: Appl. Catal. A-Gen. doi: 10.1016/j.apcata.2013.04.007 – volume: 6 start-page: 92 issue: 1 year: 2022 ident: 10.1016/j.cej.2023.142421_b0005 article-title: Single-atom catalysts for photocatalytic energy conversion publication-title: Joule doi: 10.1016/j.joule.2021.12.011 – volume: 9 start-page: 9739 issue: 11 year: 2019 ident: 10.1016/j.cej.2023.142421_b0225 article-title: Defect Engineering in Photocatalytic Nitrogen Fixation publication-title: ACS Catal. doi: 10.1021/acscatal.9b03246 – volume: 198 start-page: 154 year: 2016 ident: 10.1016/j.cej.2023.142421_b0390 article-title: Direct Z-scheme composite of CdS and oxygen-defected CdWO4: An efficient visible-light-driven photocatalyst for hydrogen evolution publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.05.046 – volume: 292 year: 2022 ident: 10.1016/j.cej.2023.142421_b0040 article-title: Engineering ultrathin oxygen-doped g-C3N4 nanosheet for boosted photoredox catalytic activity based on a facile thermal gas-shocking exfoliation effect publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121038 – volume: 9 start-page: 2177 year: 2016 ident: 10.1016/j.cej.2023.142421_b0245 article-title: CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts, Energ publication-title: Environ. Sci. |
SSID | ssj0006919 |
Score | 2.4330776 |
SecondaryResourceType | review_article |
Snippet | [Display omitted]
•Photocatalysis process is subject to the photoelectron transfer (PET) restriction effect.•The PET restriction effect can be quantitatively... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 142421 |
SubjectTerms | Directional fabrication Numerical evaluation strategy PET restriction effect Photocatalyst |
Title | A universal numerical evaluation strategy for photocatalysts based on the photoelectron transfer (PET) restriction effect: A review |
URI | https://dx.doi.org/10.1016/j.cej.2023.142421 |
Volume | 463 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIrykgcGQEqbOLEds1WoqFCBEFDRLXIcR7RCbdWmAwsLfxw7TgpIwMAUJb6TIp919yX33R3AMaMy4GmcOJIJ4gRcCEckLHakr3QwEwpzagqFb25ptx9cD8igAhdlLYyhVRa-3_r03FsXT1rFbramw2HrwTM5LR4wbM4owYMq1LHPKalBvX3V694uHTLl-XwPI-8YhTK5mdO8pBo1zQjxpin5wt7P4elLyLlch7UCK6K2fZ0NqKjxJqx-6SC4Be9ttLDUCi04Xtj0ywv67OGN5rb97CvS6BRNnyfZJP9j8zrP5siEsARpIY0C7Vo5FQdlOaBVM3Ry13k8RWaCx2yY10AgSwE5R21k6162oX_ZebzoOsVcBUdizjInJBr0aJzl4VRiV-M_zhRVsRtoe_pxSD1K3TBWofnUCxNCRMpISpiknkwEUcLfgdp4Mla7gDR-chlOiccSGig35K4vYkO18XwVa2TVALfczkgWTcfN7IuXqGSXjSJtgchYILIWaMDZUmVqO278JRyUNoq-HZtIR4Tf1fb-p7YPK-bO8h0PoJbNFupQY5IsPoJq8807Kk6eufbun3ofBhbikg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQcPalLoYx9db4RgUIGYCAm3ZrvdRggpBMqBixf_uLvdVjBRD167M0mzM5n52vlmBoBrSgRicRhZgnJsIca5xSMaWsKTKplx6TKiG4U7XdLqo6cBHpRAo-iF0bTKPPabmJ5F6_xJLb_N2nQ4rL06uqbFEHW1j2J3sAE2Efao5vVV31c8D8Ky7R5a2tLiRWkzI3kJOarqBeJV3fDlOj8np7WE87AHdnOkCOvmZfZBSSYHYGdtfuAh-KjDhSFWKMFkYYovY7ia4A3nZvjsEipsCqdvk3SS_a9ZztM51AksgkpIYUBzVuzEgWkGZ-UM3rw0e7dQ7--YDbMOCGgIIPewDk3XyxHoPzR7jZaVb1WwhMtoavlYQR6Fshw3Fq6t0B-jksjQRsqaXugThxDbD6WvP_T8CGMeUxxjKogjIo4l945BOZkk8gRAhZ5s6sbYoRFB0vaZ7fFQE20cT4YKV1WAXVxnIPKR43rzxTgouGWjQFkg0BYIjAUq4O5LZWrmbfwljAobBd-cJlD54He10_-pXYGtVq_TDtqP3eczsK1PDPPxHJTT2UJeKHSShpeZ930C29Phug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+numerical+evaluation+strategy+for+photocatalysts+based+on+the+photoelectron+transfer+%28PET%29+restriction+effect%3A+A+review&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Sun%2C+Haoran&rft.au=Guo%2C+Feng&rft.au=Shi%2C+Weilong&rft.au=Wang%2C+Lizhang&rft.date=2023-05-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=463&rft_id=info:doi/10.1016%2Fj.cej.2023.142421&rft.externalDocID=S138589472301152X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |