A universal numerical evaluation strategy for photocatalysts based on the photoelectron transfer (PET) restriction effect: A review

[Display omitted] •Photocatalysis process is subject to the photoelectron transfer (PET) restriction effect.•The PET restriction effect can be quantitatively described by restriction factors (T) associated with PET possibility (P), resistance (Rct) and ability (A).•The proposed parameters can be app...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 463; p. 142421
Main Authors Sun, Haoran, Guo, Feng, Shi, Weilong, Wang, Lizhang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2023
Subjects
Online AccessGet full text
ISSN1385-8947
1873-3212
DOI10.1016/j.cej.2023.142421

Cover

Loading…
Abstract [Display omitted] •Photocatalysis process is subject to the photoelectron transfer (PET) restriction effect.•The PET restriction effect can be quantitatively described by restriction factors (T) associated with PET possibility (P), resistance (Rct) and ability (A).•The proposed parameters can be applied for evaluation and directional fabrication of photocatalysts.•Specific values of Rct should be more exhibited to quantitatively emphasize overall PET efficiency in future work. Photocatalysts play key roles in photocatalysis process to produce holes and electrons which are responsible for oxidation and reduction. Therefore, generation of the photo-induced carriers is the prerequisite step of photocatalysis, and the subsequent oxidation/reduction efficiency and degree would be determined by resistance and response potential, wholly being subject to the photoelectron transfer (PET) processes. However, a universal numerical evaluation standard on photocatalysts is lacking, resulting in inconvenient communication and performance prediction. Aiming to quantitative evaluate the photocatalysts’ properties, PET possibility (P), resistance (Rct) and ability (A) are defined and employed to describe the occurrence, kinetics and thermodynamics of photoreactions. Meanwhile, the quotient of Rct and product of P and A is defined as the PET restriction factor (T), directly illustrating the overall PET performances. Various typical photocatalytic systems are discussed to prove the scientific merits and versatility of the PET restriction effect. It is expected that the opinions in this review could provide a universal strategy and quantitative tool for evaluation and directional fabrication of photocatalysts.
AbstractList [Display omitted] •Photocatalysis process is subject to the photoelectron transfer (PET) restriction effect.•The PET restriction effect can be quantitatively described by restriction factors (T) associated with PET possibility (P), resistance (Rct) and ability (A).•The proposed parameters can be applied for evaluation and directional fabrication of photocatalysts.•Specific values of Rct should be more exhibited to quantitatively emphasize overall PET efficiency in future work. Photocatalysts play key roles in photocatalysis process to produce holes and electrons which are responsible for oxidation and reduction. Therefore, generation of the photo-induced carriers is the prerequisite step of photocatalysis, and the subsequent oxidation/reduction efficiency and degree would be determined by resistance and response potential, wholly being subject to the photoelectron transfer (PET) processes. However, a universal numerical evaluation standard on photocatalysts is lacking, resulting in inconvenient communication and performance prediction. Aiming to quantitative evaluate the photocatalysts’ properties, PET possibility (P), resistance (Rct) and ability (A) are defined and employed to describe the occurrence, kinetics and thermodynamics of photoreactions. Meanwhile, the quotient of Rct and product of P and A is defined as the PET restriction factor (T), directly illustrating the overall PET performances. Various typical photocatalytic systems are discussed to prove the scientific merits and versatility of the PET restriction effect. It is expected that the opinions in this review could provide a universal strategy and quantitative tool for evaluation and directional fabrication of photocatalysts.
ArticleNumber 142421
Author Sun, Haoran
Shi, Weilong
Guo, Feng
Wang, Lizhang
Author_xml – sequence: 1
  givenname: Haoran
  surname: Sun
  fullname: Sun, Haoran
  organization: Environmental Energy Engineering (E3) Workgroup, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
– sequence: 2
  givenname: Feng
  surname: Guo
  fullname: Guo, Feng
  organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
– sequence: 3
  givenname: Weilong
  orcidid: 0000-0002-4762-5599
  surname: Shi
  fullname: Shi, Weilong
  organization: School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
– sequence: 4
  givenname: Lizhang
  surname: Wang
  fullname: Wang, Lizhang
  email: wlzh0731@126.com
  organization: Environmental Energy Engineering (E3) Workgroup, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
BookMark eNp9kD1PwzAQhi1UJNrCD2DzCEOC7Xw4gamqyodUCYYyW45zpo7SpLLdos78cdyGiaHTne7ueXXvO0Gjru8AoVtKYkpo_tDECpqYEZbENGUpoxdoTAueRAmjbBT6pMiiokz5FZo41xBC8pKWY_Qzw7vO7ME62eJutwFrVOhgL9ud9KbvsPNWevg6YN1bvF33vlfSy_bgvMOVdFDjcOTXMOygBeXtcWJl5zRYfPexWN1jC0HHqJMiaB2OHvEsTPcGvq_RpZatg5u_OkWfz4vV_DVavr-8zWfLSLGS-6jIspxRGvxoxQjnackhh4qkFaikKnKa56SooCCc8qLOMql5pjOucqpqmYFMpogPusr2zlnQQhl_MhmeNa2gRByzFI0IWYpjlmLIMpD0H7m1ZiPt4SzzNDAQLAWbVjhloFNQGxvsi7o3Z-hfTWKQqg
CitedBy_id crossref_primary_10_1002_ece2_16
crossref_primary_10_1016_j_cjche_2023_10_006
crossref_primary_10_1002_smll_202309094
crossref_primary_10_1016_j_surfin_2023_103656
crossref_primary_10_1039_D3TA03446A
crossref_primary_10_1016_j_cej_2024_151363
Cites_doi 10.1002/anie.201916012
10.1016/j.apcatb.2016.03.058
10.1016/j.nanoen.2017.04.039
10.1039/D0QI00117A
10.1016/j.jclepro.2022.133420
10.1016/j.apsusc.2019.02.035
10.1016/j.apcatb.2019.118201
10.1016/j.carbon.2020.10.073
10.1002/smtd.202100887
10.1016/j.cej.2019.123020
10.1016/j.jechem.2020.08.024
10.1002/cssc.202001317
10.1016/j.apsusc.2014.12.154
10.1016/j.rser.2021.111980
10.1016/j.cej.2017.12.115
10.1039/C9TA11595A
10.1016/j.apcatb.2018.12.010
10.1016/j.jcis.2021.11.180
10.1016/j.scitotenv.2020.141036
10.1039/C3RA45474F
10.1016/j.trechm.2020.06.006
10.1021/acs.jpclett.2c02125
10.1016/j.chempr.2022.04.013
10.1142/S1793292018500169
10.1002/adma.201601694
10.1016/j.cej.2020.125397
10.1016/j.cej.2021.130507
10.1002/adma.202105482
10.1002/adma.201903545
10.1016/j.jallcom.2019.151670
10.1021/acs.est.2c03334
10.1016/j.apsusc.2022.154416
10.1016/j.cej.2021.128410
10.1021/acsami.9b15578
10.1016/j.cej.2017.08.114
10.1016/j.seppur.2022.122667
10.1016/j.jhazmat.2018.10.090
10.1002/smll.202103933
10.1016/j.apsusc.2021.151287
10.1016/j.jcis.2017.09.016
10.1016/j.jallcom.2021.160223
10.1039/C9EE00717B
10.1021/acsnano.7b06451
10.1021/acs.jpcc.6b00126
10.1002/adma.202001763
10.1016/j.seppur.2023.123398
10.1038/238037a0
10.1038/nmat4793
10.1021/acsomega.0c02477
10.1002/aenm.201700025
10.1016/j.nanoen.2021.106635
10.1021/jacs.7b00266
10.1016/j.cej.2019.123310
10.1021/acs.chemrev.6b00075
10.1016/j.apcatb.2019.118152
10.1016/j.apcatb.2022.121109
10.1002/adma.202107668
10.1016/j.apcatb.2020.118876
10.1016/j.cej.2020.126844
10.1016/S1872-2067(20)63634-8
10.1016/j.apsusc.2019.06.260
10.1016/j.apcatb.2017.08.004
10.1016/j.jallcom.2021.162209
10.1016/j.cej.2020.125922
10.1039/C7TA09350K
10.1039/D2CS90010F
10.1021/acsami.7b03523
10.1016/j.colsurfa.2022.128603
10.1016/j.chempr.2020.06.010
10.1016/j.cej.2021.128555
10.1016/j.seppur.2021.119287
10.1039/C7RA07163A
10.1039/C8TA08294D
10.1016/j.solidstatesciences.2019.05.012
10.1016/j.cis.2020.102275
10.1016/j.apcatb.2021.120521
10.1016/j.cej.2022.136209
10.1016/j.apcatb.2019.03.062
10.1016/j.apcatb.2018.11.011
10.1039/c3dt51492g
10.1039/D1EN00225B
10.1021/acs.chemrev.8b00408
10.1038/nmat2317
10.1002/anie.202000503
10.1016/j.apcata.2013.04.007
10.1016/j.joule.2021.12.011
10.1021/acscatal.9b03246
10.1016/j.apcatb.2016.05.046
10.1016/j.seppur.2022.121038
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2023.142421
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2023_142421
S138589472301152X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SSH
ZY4
ID FETCH-LOGICAL-c297t-8556211212fc2077497e6eb04bec3b8616608be807178d55af75f57c61cda5ea3
IEDL.DBID AIKHN
ISSN 1385-8947
IngestDate Thu Apr 24 23:11:03 EDT 2025
Tue Jul 01 01:50:41 EDT 2025
Fri Feb 23 02:35:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Directional fabrication
Numerical evaluation strategy
Photocatalyst
PET restriction effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-8556211212fc2077497e6eb04bec3b8616608be807178d55af75f57c61cda5ea3
ORCID 0000-0002-4762-5599
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2023_142421
crossref_primary_10_1016_j_cej_2023_142421
elsevier_sciencedirect_doi_10_1016_j_cej_2023_142421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (b0325) 2009; 8
Yang, Hao, Zhao, Hu, Min, Zhang, Bi, Yan, Hou (b0485) 2022; 641
Jiang, Sun, Chen, Cao, Zhao, Yang, Zeng, Huang (b0455) 2022; 571
Fu, Xu, Low, Jiang, Yu (b0320) 2019; 243
Xia, Cao, Zhu, Liu, Shi, Yu, Zhang (b0290) 2020; 59
Low, Yu, Jaroniec, Wageh, Al-Ghamdi (b0155) 2017; 29
Lu, Zhang, Jing, Zhang, Zhu, Zhang (b0010) 2022
El Agrebi, Traynor, Wilmart, Tosi, Leinartz, Danneels, de Graaf, Saegerman (b0030) 2020; 745
Mirzaei, Eddah, Roualdes, Ma, Chaker (b0310) 2021; 422
Trang, Phan, Nam, Thu (b0200) 2020; 12
Gao, Liu, Chi, Tian, Zhu, Guan, Song (b0470) 2022; 603
Zhang, Wang, Nong, Lin, Teng, Zhang, Zhao, Wu, He (b0305) 2015; 329
Zhang, Chen, Li, Xu, Li, He, Lu (b0335) 2020; 59
Pan, You, Xin, Li, Fu, Cui, Men, Cao, Yu, Goodenough (b0055) 2017; 139
Liu, Ai, Jiang (b0230) 2018; 6
Chang, Wang, Gong (b0245) 2016; 9
Liu, Zhang, Zhao, Wang (b0370) 2019; 251
Peng, Ye, Ding, Yi, Zhang, Wen (b0265) 2020; 260
Lin, Hisatomi, Chen, Takata, Domen (b0045) 2020; 2
Wang, Wang, Gao, Shen, Pu, Zhang, Lin, Wang (b0380) 2020; 270
Jia, Han, Luo, Wang, Lee, Liu (b0480) 2023; 306
Zhang, Zhang, Yu, Yu (b0140) 2022; 34
Cui, Briscoe, Wang, Tarakina, Dunn (b0080) 2017; 9
Li, Li (b0185) 2020; 284
Liu, Chang, Liu, Li, Zhang, An (b0195) 2021; 8
Sun, He, Wu, Zeng, Liu, Jiang (b0205) 2020; 397
Liu, Ma, Shao, Liu, Gao, Li, Fu, Fu, Ye, Zhao, Zhou (b0060) 2020; 261
Kokilavani, Syed, Raju, Al-Rashed, Elgorban, Thomas, Khan (b0375) 2021; 23
Li, Chen (b0020) 2019; 40
Sun, Guo, Pan, Huang, Wang, Shi (b0035) 2021; 406
Li, Yuan, Zhou, Tang, Deng, Huang, Xiong, Su, Zhao, Gong (b0095) 2022; 372
She, Wu, Xu, Zhong, Wang, Song, Nie, Liu, Yang, Rodrigues, Vajtai, Lou, Du, Li, Ajayan (b0355) 2017; 7
Wu, Dai, Ma, Zhang, Qiang, Xue (b0475) 2023; 312
Akrami, Murakami, Watanabe, Ishihara, Arita, Guo, Fuji, Edalati (b0465) 2022; 442
Wu, Yu, Zhang, Zhang, Zhu, Zhu (b0360) 2021; 411
Wang, Qu, Qu, Bai, Liu, Yang, Zhang, Jing, Fu (b0130) 2021; 33
Qi, Liu, Qiu (b0070) 2018; 39
Li, Gu, Gao, Liu, Zhao, Cao, Feng, Ren, Wei, Zhang (b0450) 2022; 609
Li, Wang, Wu, Zhou (b0235) 2022; 156
Fujishima, Honda (b0110) 1972; 238
Wang, Yang, Chen, Wang, Zhu (b0430) 2018; 220
Ding, Sun, Liu, Sun, Meng, Zheng (b0240) 2021; 276
Yang, Mei, Fan, Zhang, Zhu, Amal, Yin, Zeng (b0260) 2021; 5
Pan, Wu, Rhimi, Qin, Huang, Yuan, Wang (b0135) 2021; 57
Pan, Xu (b0460) 2013; 459
D. Mateo, J.L. Cerrillo, S. Durini, J. Gascon, Fundamentals and applications of photo-thermal catalysis, Chem. Soc. Rev. 51 (2022) 1547-1547.
Deng, Tang, Zeng, Wang, Zhou, Wang, Tang, Wang, Feng (b0410) 2018; 509
Lu, Yu, Dong, Song, Liu, Liu, Ma, Su, Yan, Huo (b0415) 2018; 337
Xue, Luan, Zhang, (David) Lou (b0005) 2022; 6
Wang, Tan, Ren, Xia, Liu (b0220) 2019; 492
Ong, Tan, Ng, Yong, Chai (b0015) 2016; 116
Zhang, Zhang, Wang, Yu (b0255) 2022; 13
Kuang, Zhang, Wang, Chen, Liu, Xie, Wang, Ji (b0490) 2019; 96
Bi, Su, Zhang, Chen, Darr, Weng, Wu (b0180) 2022; 306
Wadsworth, Hamid, Kosco, Gasparini, McCulloch (b0075) 2020; 32
Ahmed, Zhong, Wang, Wang, Yuan, Guo (b0090) 2022; 56
He, Cheng, Zhang, Douthwaite, Pattisson, Hao (b0190) 2019; 119
Liu, Kong, Yuan, Zhao, Zhu, Sun, Xie (b0330) 2018; 331
Patnaik, Sahoo, Parida (b0210) 2021; 172
Li, Wang, Zhang, Wang, Liu (b0175) 2019; 478
Yu, Huang, Wang, Yu (b0340) 2016; 120
Zhao, Dong, Wang, Chen, Huang, Diao, Li, Guo, Shen (b0440) 2019; 31
Liu, Sun, Ding, Gao, Ding (b0170) 2021; 877
Liao, Gong, Zhang, Gao, Yang, Fang (b0215) 2019; 12
Xu, Mo, Xie, Wang, Ding (b0065) 2020; 8
Ma, Jiang, Sun, Yang, Jiang, Liu, Xie, Xie, Han (b0285) 2020; 382
Wang, Wang, Cheng, Yu, Fan (b0405) 2021; 42
Zhang, Wageh, Al-Ghamdi, Yu (b0125) 2016; 192
Guo, Wang, Sun, Li, Shi (b0435) 2020; 7
Gong, Teng, Niu, Liu, Xu, Xu, Ji, Chen (b0445) 2021; 298
Shi, Li, Sun, Xu, Cai, Shi, Guo, Du (b0040) 2022; 292
Yang, Xu, Bai, Jin (b0425) 2019; 365
Jiang, Zhang, Zhang, Cheng, Wang (b0120) 2022; 43
Palanivel, Mani (b0400) 2020; 5
Tie, Sun, Jiang, Liu, Xia, Li, Chen, Yu, Dong, Sun, Sun (b0150) 2019; 807
Pang, Meng, Song, Zhou, Yang, Zhang, Izumi, Takei, Jewasuwan, Fukata, Ye (b0300) 2019; 244
Bie, Wang, Yu (b0275) 2022; 8
Zhang, Xu, Zeng, Li, Xu, Wang (b0395) 2013; 42
Pang, Su, Han (b0280) 2018; 13
Wang, Cheng, Zhang, Yu (b0270) 2021; 17
Sun, Ma, Chen, Sun, Cui, Lin (b0160) 2014; 4
Xu, Wang, Zhu, Ran, Li, Guo (b0345) 2017; 7
Hussain, Tocci, Woolcot, Torrelles, Pang, Humphrey, Yim, Grinter, Cabailh, Bikondoa, Lindsay, Zegenhagen, Michaelides, Thornton (b0115) 2017; 16
Qian, Zhang, Hou, Bu, Zhang, Lan, Li, Li, Ma, Song (b0085) 2022; 18
Chong, Quan, Zhang, Pan, Li, Hong, Zhi (b0315) 2021; 424
Chang, Hu, Qian, Shao, Ni, Kong, Dan, Luo, Jin, Xu (b0145) 2021; 410
Deng, Wang, Li, Jiang, Zhou, Wen, Yu, Che, Wang (b0420) 2022; 894
Zhang, Nie, Cheng, Feng, Zhang, Zheng, Wu, Hao, Ding (b0100) 2021; 90
Yang, Huang, Shi, Cao, Zhou, Chang, Meng, Liu, Jie, Ye (b0295) 2017; 36
Li, Wei, Xiu, Han (b0350) 2022; 446
Shi, Zhao, Waterhouse, Zhang, Zhang (b0225) 2019; 9
Huang, Wang, Yu, Zhang, Cao, Peng (b0165) 2020; 13
Feng, Ling, Nie, Han, Chen, Bian, Li, Wang (b0050) 2017; 11
Chen, Wang, Chen, Zhuang, Chen, Zhu, Yu (b0025) 2020; 402
Qiao, Zhang, Li, Hou, Zhang, Zhang, Li, Feng, Bu (b0365) 2018; 6
Pan, Yuan, Jiang, Wang, Yu, Zhang (b0385) 2020; 384
Xu, Zhang, Cheng, Fan, Yu (b0250) 2020; 6
Jia, Tahir, Pan, Huang, Zhang, Wang, Zou (b0390) 2016; 198
Wadsworth (10.1016/j.cej.2023.142421_b0075) 2020; 32
Pan (10.1016/j.cej.2023.142421_b0460) 2013; 459
Patnaik (10.1016/j.cej.2023.142421_b0210) 2021; 172
Chen (10.1016/j.cej.2023.142421_b0025) 2020; 402
Mirzaei (10.1016/j.cej.2023.142421_b0310) 2021; 422
Shi (10.1016/j.cej.2023.142421_b0225) 2019; 9
Xue (10.1016/j.cej.2023.142421_b0005) 2022; 6
Sun (10.1016/j.cej.2023.142421_b0160) 2014; 4
Zhang (10.1016/j.cej.2023.142421_b0335) 2020; 59
Wang (10.1016/j.cej.2023.142421_b0270) 2021; 17
Yu (10.1016/j.cej.2023.142421_b0340) 2016; 120
Li (10.1016/j.cej.2023.142421_b0175) 2019; 478
Xu (10.1016/j.cej.2023.142421_b0345) 2017; 7
Lu (10.1016/j.cej.2023.142421_b0010) 2022
Kuang (10.1016/j.cej.2023.142421_b0490) 2019; 96
Xia (10.1016/j.cej.2023.142421_b0290) 2020; 59
Fujishima (10.1016/j.cej.2023.142421_b0110) 1972; 238
Liu (10.1016/j.cej.2023.142421_b0195) 2021; 8
Guo (10.1016/j.cej.2023.142421_b0435) 2020; 7
Jiang (10.1016/j.cej.2023.142421_b0455) 2022; 571
Sun (10.1016/j.cej.2023.142421_b0035) 2021; 406
Yang (10.1016/j.cej.2023.142421_b0485) 2022; 641
Li (10.1016/j.cej.2023.142421_b0350) 2022; 446
Bie (10.1016/j.cej.2023.142421_b0275) 2022; 8
Lu (10.1016/j.cej.2023.142421_b0415) 2018; 337
Liao (10.1016/j.cej.2023.142421_b0215) 2019; 12
Yang (10.1016/j.cej.2023.142421_b0295) 2017; 36
Li (10.1016/j.cej.2023.142421_b0020) 2019; 40
Akrami (10.1016/j.cej.2023.142421_b0465) 2022; 442
Jia (10.1016/j.cej.2023.142421_b0480) 2023; 306
Jia (10.1016/j.cej.2023.142421_b0390) 2016; 198
Huang (10.1016/j.cej.2023.142421_b0165) 2020; 13
Gao (10.1016/j.cej.2023.142421_b0470) 2022; 603
Zhang (10.1016/j.cej.2023.142421_b0125) 2016; 192
Qiao (10.1016/j.cej.2023.142421_b0365) 2018; 6
Deng (10.1016/j.cej.2023.142421_b0410) 2018; 509
Wang (10.1016/j.cej.2023.142421_b0405) 2021; 42
Tie (10.1016/j.cej.2023.142421_b0150) 2019; 807
Pan (10.1016/j.cej.2023.142421_b0055) 2017; 139
Yang (10.1016/j.cej.2023.142421_b0260) 2021; 5
Ong (10.1016/j.cej.2023.142421_b0015) 2016; 116
Pan (10.1016/j.cej.2023.142421_b0135) 2021; 57
Bi (10.1016/j.cej.2023.142421_b0180) 2022; 306
Deng (10.1016/j.cej.2023.142421_b0420) 2022; 894
Pang (10.1016/j.cej.2023.142421_b0300) 2019; 244
He (10.1016/j.cej.2023.142421_b0190) 2019; 119
Liu (10.1016/j.cej.2023.142421_b0370) 2019; 251
Wang (10.1016/j.cej.2023.142421_b0220) 2019; 492
Ma (10.1016/j.cej.2023.142421_b0285) 2020; 382
Li (10.1016/j.cej.2023.142421_b0095) 2022; 372
Palanivel (10.1016/j.cej.2023.142421_b0400) 2020; 5
Zhang (10.1016/j.cej.2023.142421_b0100) 2021; 90
Peng (10.1016/j.cej.2023.142421_b0265) 2020; 260
She (10.1016/j.cej.2023.142421_b0355) 2017; 7
Shi (10.1016/j.cej.2023.142421_b0040) 2022; 292
Gong (10.1016/j.cej.2023.142421_b0445) 2021; 298
Li (10.1016/j.cej.2023.142421_b0450) 2022; 609
Wang (10.1016/j.cej.2023.142421_b0380) 2020; 270
Yang (10.1016/j.cej.2023.142421_b0425) 2019; 365
Qi (10.1016/j.cej.2023.142421_b0070) 2018; 39
Xu (10.1016/j.cej.2023.142421_b0065) 2020; 8
Trang (10.1016/j.cej.2023.142421_b0200) 2020; 12
Liu (10.1016/j.cej.2023.142421_b0060) 2020; 261
Wang (10.1016/j.cej.2023.142421_b0130) 2021; 33
Wu (10.1016/j.cej.2023.142421_b0360) 2021; 411
Xu (10.1016/j.cej.2023.142421_b0250) 2020; 6
Sun (10.1016/j.cej.2023.142421_b0205) 2020; 397
Zhang (10.1016/j.cej.2023.142421_b0305) 2015; 329
Liu (10.1016/j.cej.2023.142421_b0170) 2021; 877
Li (10.1016/j.cej.2023.142421_b0185) 2020; 284
Pan (10.1016/j.cej.2023.142421_b0385) 2020; 384
Zhang (10.1016/j.cej.2023.142421_b0395) 2013; 42
Chang (10.1016/j.cej.2023.142421_b0145) 2021; 410
10.1016/j.cej.2023.142421_b0105
Jiang (10.1016/j.cej.2023.142421_b0120) 2022; 43
Chang (10.1016/j.cej.2023.142421_b0245) 2016; 9
Wang (10.1016/j.cej.2023.142421_b0430) 2018; 220
Qian (10.1016/j.cej.2023.142421_b0085) 2022; 18
Pang (10.1016/j.cej.2023.142421_b0280) 2018; 13
Feng (10.1016/j.cej.2023.142421_b0050) 2017; 11
Cui (10.1016/j.cej.2023.142421_b0080) 2017; 9
Chong (10.1016/j.cej.2023.142421_b0315) 2021; 424
Liu (10.1016/j.cej.2023.142421_b0230) 2018; 6
Kokilavani (10.1016/j.cej.2023.142421_b0375) 2021; 23
Lin (10.1016/j.cej.2023.142421_b0045) 2020; 2
Wang (10.1016/j.cej.2023.142421_b0325) 2009; 8
Wu (10.1016/j.cej.2023.142421_b0475) 2023; 312
Hussain (10.1016/j.cej.2023.142421_b0115) 2017; 16
El Agrebi (10.1016/j.cej.2023.142421_b0030) 2020; 745
Zhang (10.1016/j.cej.2023.142421_b0255) 2022; 13
Ding (10.1016/j.cej.2023.142421_b0240) 2021; 276
Liu (10.1016/j.cej.2023.142421_b0330) 2018; 331
Ahmed (10.1016/j.cej.2023.142421_b0090) 2022; 56
Li (10.1016/j.cej.2023.142421_b0235) 2022; 156
Low (10.1016/j.cej.2023.142421_b0155) 2017; 29
Zhang (10.1016/j.cej.2023.142421_b0140) 2022; 34
Fu (10.1016/j.cej.2023.142421_b0320) 2019; 243
Zhao (10.1016/j.cej.2023.142421_b0440) 2019; 31
References_xml – volume: 156
  start-page: 111980
  year: 2022
  ident: b0235
  article-title: Recent progress in defective TiO
  publication-title: Renew. Sust. Energ. Rev.
– volume: 261
  year: 2020
  ident: b0060
  article-title: Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection
  publication-title: Appl. Catal. B-Environ.
– volume: 402
  year: 2020
  ident: b0025
  article-title: Recycling heavy metals from wastewater for photocatalytic CO
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 12411
  year: 2017
  end-page: 12418
  ident: b0050
  article-title: Self-Powered Electrostatic Filter with Enhanced Photocatalytic Degradation of Formaldehyde Based on Built-in Triboelectric Nanogenerators
  publication-title: ACS Nano
– volume: 410
  year: 2021
  ident: b0145
  article-title: Mg
  publication-title: Chem. Eng. J.
– volume: 57
  start-page: 1
  year: 2021
  end-page: 9
  ident: b0135
  article-title: Oxygen-doping of ZnIn
  publication-title: J. Energy Chem.
– year: 2022
  ident: b0010
  article-title: Electrospun Semiconductor-Based Nano-Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges
– volume: 31
  start-page: 1903545
  year: 2019
  ident: b0440
  article-title: Synergy of Dopants and Defects in Graphitic Carbon Nitride with Exceptionally Modulated Band Structures for Efficient Photocatalytic Oxygen Evolution
  publication-title: Adv. Mater.
– volume: 12
  start-page: 12195
  year: 2020
  end-page: 12206
  ident: b0200
  article-title: In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 2100887
  year: 2021
  ident: b0270
  article-title: In situ Irradiated XPS Investigation on S-Scheme TiO
  publication-title: Small
– volume: 492
  start-page: 690
  year: 2019
  end-page: 702
  ident: b0220
  article-title: Direct double Z-scheme O-g-C
  publication-title: Appl. Surf. Sci.
– volume: 32
  start-page: 2001763
  year: 2020
  ident: b0075
  article-title: The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications
  publication-title: Adv. Mater.
– volume: 509
  start-page: 219
  year: 2018
  end-page: 234
  ident: b0410
  article-title: Facile fabrication of mediator-free Z-scheme photocatalyst of phosphorous-doped ultrathin graphitic carbon nitride nanosheets and bismuth vanadate composites with enhanced tetracycline degradation under visible light
  publication-title: J. Colloid Interf. Sci.
– volume: 337
  start-page: 228
  year: 2018
  end-page: 241
  ident: b0415
  article-title: Facile microwave synthesis of a Z-scheme imprinted ZnFe
  publication-title: Chem. Eng. J.
– volume: 172
  start-page: 682
  year: 2021
  end-page: 711
  ident: b0210
  article-title: Recent advances in anion doped g-C
  publication-title: Carbon
– volume: 745
  year: 2020
  ident: b0030
  article-title: Pesticide and veterinary drug residues in Belgian beeswax: Occurrence, toxicity, and risk to honey bees
  publication-title: Sci. Total. Environ.
– volume: 251
  start-page: 220
  year: 2019
  end-page: 228
  ident: b0370
  article-title: Targeting inside charge carriers transfer of photocatalyst: Selective deposition of Ag
  publication-title: Appl. Catal. B-Environ.
– volume: 406
  year: 2021
  ident: b0035
  article-title: One-pot thermal polymerization route to prepare N-deficient modified g-C
  publication-title: Chem. Eng. J.
– volume: 306
  year: 2022
  ident: b0180
  article-title: Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation
  publication-title: Appl. Catal. B-Environ.
– volume: 9
  start-page: 2177
  year: 2016
  end-page: 2196
  ident: b0245
  article-title: CO
  publication-title: Environ. Sci.
– volume: 12
  start-page: 2080
  year: 2019
  end-page: 2147
  ident: b0215
  article-title: Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light
  publication-title: Energ Environ. Sci.
– volume: 6
  start-page: 1543
  year: 2020
  end-page: 1559
  ident: b0250
  article-title: S-Scheme Heterojunction Photocatalyst
  publication-title: Chem
– volume: 329
  start-page: 143
  year: 2015
  end-page: 149
  ident: b0305
  article-title: Enhanced visible-light photoactivity of g-C
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  ident: b0325
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat. Mater.
– volume: 478
  start-page: 1056
  year: 2019
  end-page: 1064
  ident: b0175
  article-title: Rational construction of a direct Z-scheme g-C
  publication-title: Appl. Surf. Sci.
– volume: 13
  start-page: 8462
  year: 2022
  end-page: 8469
  ident: b0255
  article-title: In Situ Irradiated X-ray Photoelectron Spectroscopy Investigation on Electron Transfer Mechanism in S-Scheme Photocatalyst
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 40896
  year: 2017
  end-page: 40904
  ident: b0345
  article-title: Probing the inhomogeneity and intermediates in the photosensitized degradation of rhodamine B by Ag
  publication-title: RSC Adv.
– volume: 609
  start-page: 341
  year: 2022
  end-page: 352
  ident: b0450
  article-title: N-doping TiO
  publication-title: J. Colloid Interf. Sci.
– volume: 5
  start-page: 19747
  year: 2020
  end-page: 19759
  ident: b0400
  article-title: Conversion of a Type-II to a Z-Scheme Heterojunction by Intercalation of a 0D Electron Mediator between the Integrative NiFe
  publication-title: ACS Omega
– volume: 39
  start-page: 867
  year: 2018
  end-page: 875
  ident: b0070
  article-title: Photocatalytic performance of TiO
  publication-title: J. Catal.
– volume: 5
  start-page: 2100887
  year: 2021
  ident: b0260
  article-title: ZnIn
  publication-title: Small Methods
– volume: 7
  start-page: 1700025
  year: 2017
  ident: b0355
  article-title: High Efficiency Photocatalytic Water Splitting Using 2D alpha-Fe
  publication-title: Adv. Energy Mater.
– volume: 442
  year: 2022
  ident: b0465
  article-title: Enhanced CO
  publication-title: Chem. Eng. J.
– volume: 42
  start-page: 13417
  year: 2013
  end-page: 13424
  ident: b0395
  article-title: Hierarchically grown CdS/alpha-Fe
  publication-title: Dalton T.
– volume: 192
  start-page: 101
  year: 2016
  end-page: 107
  ident: b0125
  article-title: New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS
  publication-title: Appl. Catal. B-Environ.
– volume: 298
  year: 2021
  ident: b0445
  article-title: Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO
  publication-title: Appl. Catal. B-Environ.
– volume: 260
  year: 2020
  ident: b0265
  article-title: Nanohybrid photocatalysts with ZnIn
  publication-title: Appl. Catal. B-Environ.
– volume: 894
  year: 2022
  ident: b0420
  article-title: Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C
  publication-title: J. Alloy. Compd.
– volume: 244
  start-page: 1013
  year: 2019
  end-page: 1020
  ident: b0300
  article-title: Probing the role of nickel dopant in aqueous colloidal ZnS nanocrystals for efficient solar-driven CO
  publication-title: Appl. Catal. B-Environ.
– reference: D. Mateo, J.L. Cerrillo, S. Durini, J. Gascon, Fundamentals and applications of photo-thermal catalysis, Chem. Soc. Rev. 51 (2022) 1547-1547.
– volume: 571
  year: 2022
  ident: b0455
  article-title: Fabrication of 0D/2D TiO
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 92
  year: 2022
  end-page: 133
  ident: b0005
  article-title: Single-atom catalysts for photocatalytic energy conversion
  publication-title: Joule
– volume: 312
  year: 2023
  ident: b0475
  article-title: Mechanistic study of B-TiO
  publication-title: Sep. Purif. Technol.
– volume: 59
  start-page: 5218
  year: 2020
  end-page: 5225
  ident: b0290
  article-title: Designing a 0D/2D S-Scheme Heterojunction over Polymeric Carbon Nitride for Visible-Light Photocatalytic Inactivation of Bacteria
  publication-title: Angew. Chem. Int. Edit.
– volume: 365
  start-page: 107
  year: 2019
  end-page: 117
  ident: b0425
  article-title: Enhanced visible-light activation of persulfate by Ti
  publication-title: J. Hazard. Mater.
– volume: 43
  start-page: 226
  year: 2022
  end-page: 233
  ident: b0120
  article-title: Effect of calcination temperatures on photocatalytic H
  publication-title: J. Catal.
– volume: 96
  year: 2019
  ident: b0490
  article-title: Synthesis of octahedral-like ZnO/ZnFe
  publication-title: Solid State Sci.
– volume: 33
  start-page: 2105482
  year: 2021
  ident: b0130
  article-title: Construction of Six-Oxygen-Coordinated Single Ni Sites on g-C
  publication-title: Adv. Mater.
– volume: 29
  start-page: 1601694
  year: 2017
  ident: b0155
  article-title: Heterojunction Photocatalysts
  publication-title: Adv. Mater.
– volume: 36
  start-page: 331
  year: 2017
  end-page: 340
  ident: b0295
  article-title: Efficient hydrogen evolution over Sb doped SnO
  publication-title: Nano Energy
– volume: 8
  start-page: 1567
  year: 2022
  end-page: 1574
  ident: b0275
  article-title: Challenges for photocatalytic overall water splitting
  publication-title: Chem
– volume: 119
  start-page: 4471
  year: 2019
  end-page: 4568
  ident: b0190
  article-title: Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources
  publication-title: Chem. Rev.
– volume: 56
  start-page: 15156
  year: 2022
  end-page: 15166
  ident: b0090
  article-title: Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS
  publication-title: Environ. Sci. Technol.
– volume: 8
  start-page: 2542
  year: 2021
  end-page: 2553
  ident: b0195
  article-title: Boosting the photocatalytic degradation of ethyl acetate by a Z-scheme Au-TiO
  publication-title: Environ. Sci-Nano
– volume: 8
  start-page: 4457
  year: 2020
  end-page: 4463
  ident: b0065
  article-title: The main factor to improve the performance of CoSe
  publication-title: J. Mater. Chem. A.
– volume: 424
  year: 2021
  ident: b0315
  article-title: Direct Z-scheme ZnIn
  publication-title: Chem. Eng. J.
– volume: 397
  year: 2020
  ident: b0205
  article-title: Magnetic photocatalyst CoFe
  publication-title: Chem. Eng. J.
– volume: 270
  year: 2020
  ident: b0380
  article-title: BiVO
  publication-title: Appl. Catal. B-Environ.
– volume: 42
  start-page: 56
  year: 2021
  end-page: 68
  ident: b0405
  article-title: Sulfur-doped g-C
  publication-title: Chinese J. Catal.
– volume: 459
  start-page: 34
  year: 2013
  end-page: 40
  ident: b0460
  article-title: Fast and spontaneous reduction of gold ions over oxygen-vacancy-rich TiO
  publication-title: Appl. Catal. A-Gen.
– volume: 372
  year: 2022
  ident: b0095
  article-title: Research progress of photocatalytic activated persulfate removal of environmental organic pollutants by metal and nonmetal based photocatalysts
  publication-title: J. Clean. Prod.
– volume: 6
  start-page: 22580
  year: 2018
  end-page: 22589
  ident: b0365
  article-title: In situ synthesis of n-n Bi
  publication-title: J. Mater. Chem. A.
– volume: 306
  year: 2023
  ident: b0480
  article-title: SrTiO
  publication-title: Sep. Purif. Technol.
– volume: 603
  year: 2022
  ident: b0470
  article-title: A mesoporous nanofibrous BiVO
  publication-title: Appl. Surf. Sci.
– volume: 9
  start-page: 24518
  year: 2017
  end-page: 24526
  ident: b0080
  article-title: Enhanced Photocatalytic Activity of Heterostructured Ferroelectric BaTiO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 422
  year: 2021
  ident: b0310
  article-title: Multiple-homojunction gradient nitrogen doped TiO
  publication-title: Chem. Eng. J.
– volume: 331
  start-page: 242
  year: 2018
  end-page: 254
  ident: b0330
  article-title: Xin, Enhanced photocatalytic activity over flower-like sphere Ag/Ag
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 461
  year: 2017
  end-page: 466
  ident: b0115
  article-title: Structure of a model TiO
  publication-title: Nat. Mater.
– volume: 13
  start-page: 5041
  year: 2020
  end-page: 5049
  ident: b0165
  article-title: Oxygen Doping in Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution
  publication-title: ChemSusChem
– volume: 23
  year: 2021
  ident: b0375
  article-title: Synthesis of novel heterostructured FeS
  publication-title: Surf. Interfaces
– volume: 2
  start-page: 813
  year: 2020
  end-page: 824
  ident: b0045
  article-title: Visible-Light-Driven Photocatalytic Water Splitting: Recent Progress and Challenges
  publication-title: Trends Chem.
– volume: 18
  start-page: 2103933
  year: 2022
  ident: b0085
  article-title: A Dual Photoelectrode Photoassisted Fe-Air Battery: The Photo-Electrocatalysis Mechanism Accounting for the Improved Oxygen Evolution Reaction and Oxygen Reduction Reaction of Air Electrodes
  publication-title: Small
– volume: 238
  start-page: 37
  year: 1972
  end-page: 38
  ident: b0110
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
– volume: 4
  start-page: 1120
  year: 2014
  end-page: 1127
  ident: b0160
  article-title: A nanocomposite of carbon quantum dots and TiO
  publication-title: RSC Adv.
– volume: 382
  year: 2020
  ident: b0285
  article-title: Z-scheme Bi
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 9739
  year: 2019
  end-page: 9750
  ident: b0225
  article-title: Defect Engineering in Photocatalytic Nitrogen Fixation
  publication-title: ACS Catal.
– volume: 139
  start-page: 4123
  year: 2017
  end-page: 4129
  ident: b0055
  article-title: Photocatalytic CO
  publication-title: J. Am. Chem. Soc.
– volume: 284
  year: 2020
  ident: b0185
  article-title: Recent advances in surface and interface design of photocatalysts for the degradation of volatile organic compounds
  publication-title: Adv. Colloid Interfac.
– volume: 384
  year: 2020
  ident: b0385
  article-title: Stable self-assembly AgI/UiO-66(NH
  publication-title: Chem. Eng. J.
– volume: 116
  start-page: 7159
  year: 2016
  end-page: 7329
  ident: b0015
  article-title: Graphitic Carbon Nitride (g-C
  publication-title: Chem. Rev.
– volume: 7
  start-page: 1770
  year: 2020
  end-page: 1779
  ident: b0435
  article-title: High-efficiency photocatalytic water splitting by a N-doped porous g-C
  publication-title: Inorg. Chem. Front.
– volume: 40
  start-page: 4
  year: 2019
  end-page: 22
  ident: b0020
  article-title: Recent advances in one-dimensional nanostructures for energy electrocatalysis, Chinese
  publication-title: J. Catal.
– volume: 292
  year: 2022
  ident: b0040
  article-title: Engineering ultrathin oxygen-doped g-C
  publication-title: Sep. Purif. Technol.
– volume: 807
  year: 2019
  ident: b0150
  article-title: Facile fabrication of N-doped ZnS nanomaterials for efficient photocatalytic performance of organic pollutant removal and H
  publication-title: J. Alloy. Compd.
– volume: 220
  start-page: 337
  year: 2018
  end-page: 347
  ident: b0430
  article-title: Photocatalytic activity enhancement of core-shell structure g-C
  publication-title: Appl. Catal. B-Environ.
– volume: 34
  start-page: 2107668
  year: 2022
  ident: b0140
  article-title: Emerging S-Scheme Photocatalyst
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1850016
  year: 2018
  ident: b0280
  article-title: An Anion-Exchange Strategy to Bi
  publication-title: Nano
– volume: 198
  start-page: 154
  year: 2016
  end-page: 161
  ident: b0390
  article-title: Direct Z-scheme composite of CdS and oxygen-defected CdWO
  publication-title: Appl. Catal. B-Environ.
– volume: 6
  start-page: 4102
  year: 2018
  end-page: 4110
  ident: b0230
  article-title: MXene-derived TiO
  publication-title: J. Mater. Chem. A.
– volume: 446
  year: 2022
  ident: b0350
  article-title: Direct Z-scheme charge transfer of Bi
  publication-title: Chem. Eng. J.
– volume: 877
  year: 2021
  ident: b0170
  article-title: Ti
  publication-title: J. Alloy. Compd.
– volume: 59
  start-page: 8255
  year: 2020
  end-page: 8261
  ident: b0335
  article-title: Construction of Hierarchical Hollow Co
  publication-title: Angew. Chem. Int. Edit.
– volume: 120
  start-page: 3722
  year: 2016
  end-page: 3730
  ident: b0340
  article-title: Enhanced Photoinduced-Stability and Photocatalytic Activity of CdS by Dual Amorphous Cocatalysts: Synergistic Effect of Ti(IV)-Hole Cocatalyst and Ni(II)-Electron Cocatalyst
  publication-title: J. Phys. Chem. C.
– volume: 641
  year: 2022
  ident: b0485
  article-title: An efficient construction method of S-scheme Ag
  publication-title: Colloid. Surface. A.
– volume: 90
  year: 2021
  ident: b0100
  article-title: Enhancing the macroscopic polarization of CdS for piezo-photocatalytic water splitting
  publication-title: Nano Energy
– volume: 276
  year: 2021
  ident: b0240
  article-title: Ultrasonically synthesized N-TiO
  publication-title: Sep. Purif. Technol.
– volume: 411
  year: 2021
  ident: b0360
  article-title: Construction of BiOCl/CuBi
  publication-title: Chem. Eng. J.
– volume: 243
  start-page: 556
  year: 2019
  end-page: 565
  ident: b0320
  article-title: Ultrathin 2D/2D WO
  publication-title: Appl. Catal. B-Environ.
– volume: 59
  start-page: 5218
  issue: 13
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0290
  article-title: Designing a 0D/2D S-Scheme Heterojunction over Polymeric Carbon Nitride for Visible-Light Photocatalytic Inactivation of Bacteria
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.201916012
– volume: 192
  start-page: 101
  year: 2016
  ident: 10.1016/j.cej.2023.142421_b0125
  article-title: New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.03.058
– volume: 36
  start-page: 331
  year: 2017
  ident: 10.1016/j.cej.2023.142421_b0295
  article-title: Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.04.039
– volume: 7
  start-page: 1770
  issue: 8
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0435
  article-title: High-efficiency photocatalytic water splitting by a N-doped porous g-C3N4 nanosheet polymer photocatalyst derived from urea and N, N-dimethylformamide
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D0QI00117A
– volume: 372
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0095
  article-title: Research progress of photocatalytic activated persulfate removal of environmental organic pollutants by metal and nonmetal based photocatalysts
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.133420
– volume: 478
  start-page: 1056
  year: 2019
  ident: 10.1016/j.cej.2023.142421_b0175
  article-title: Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.02.035
– volume: 261
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0060
  article-title: Defective engineering in graphitic carbon nitride nanosheet for efficient photocatalytic pathogenic bacteria disinfection
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.118201
– volume: 172
  start-page: 682
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0210
  article-title: Recent advances in anion doped g-C3N4 photocatalysts: A review
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.10.073
– volume: 5
  start-page: 2100887
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0260
  article-title: ZnIn2S4-Based Photocatalysts for Energy and Environmental Applications
  publication-title: Small Methods
  doi: 10.1002/smtd.202100887
– volume: 382
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0285
  article-title: Z-scheme Bi2O2.33/Bi2S3 heterojunction nanostructures for photocatalytic overall water splitting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123020
– volume: 57
  start-page: 1
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0135
  article-title: Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.08.024
– volume: 13
  start-page: 5041
  issue: 18
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0165
  article-title: Oxygen Doping in Graphitic Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202001317
– volume: 329
  start-page: 143
  year: 2015
  ident: 10.1016/j.cej.2023.142421_b0305
  article-title: Enhanced visible-light photoactivity of g-C3N4 via Zn2SnO4 modification
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.12.154
– volume: 156
  start-page: 111980
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0235
  article-title: Recent progress in defective TiO2 photocatalysts for energy and environmental applications
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2021.111980
– volume: 337
  start-page: 228
  year: 2018
  ident: 10.1016/j.cej.2023.142421_b0415
  article-title: Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.115
– volume: 8
  start-page: 4457
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0065
  article-title: The main factor to improve the performance of CoSe2 for photocatalytic CO2 reduction: element doping or phase transformation
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C9TA11595A
– volume: 244
  start-page: 1013
  year: 2019
  ident: 10.1016/j.cej.2023.142421_b0300
  article-title: Probing the role of nickel dopant in aqueous colloidal ZnS nanocrystals for efficient solar-driven CO2 reduction
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.12.010
– volume: 609
  start-page: 341
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0450
  article-title: N-doping TiO2 hollow microspheres with abundant oxygen vacancies for highly photocatalytic nitrogen fixation
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.11.180
– volume: 745
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0030
  article-title: Pesticide and veterinary drug residues in Belgian beeswax: Occurrence, toxicity, and risk to honey bees
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2020.141036
– volume: 4
  start-page: 1120
  year: 2014
  ident: 10.1016/j.cej.2023.142421_b0160
  article-title: A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: enhancing photoelectrochemical and photocatalytic properties
  publication-title: RSC Adv.
  doi: 10.1039/C3RA45474F
– volume: 2
  start-page: 813
  issue: 9
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0045
  article-title: Visible-Light-Driven Photocatalytic Water Splitting: Recent Progress and Challenges
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2020.06.006
– volume: 13
  start-page: 8462
  issue: 36
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0255
  article-title: In Situ Irradiated X-ray Photoelectron Spectroscopy Investigation on Electron Transfer Mechanism in S-Scheme Photocatalyst
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.2c02125
– volume: 8
  start-page: 1567
  issue: 6
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0275
  article-title: Challenges for photocatalytic overall water splitting
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.04.013
– volume: 13
  start-page: 1850016
  year: 2018
  ident: 10.1016/j.cej.2023.142421_b0280
  article-title: An Anion-Exchange Strategy to Bi2S3/Bi2O2(OH)(NO3) Heterojunction with Efficient Visible Light Photoreactivity
  publication-title: Nano
  doi: 10.1142/S1793292018500169
– volume: 29
  start-page: 1601694
  year: 2017
  ident: 10.1016/j.cej.2023.142421_b0155
  article-title: Heterojunction Photocatalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601694
– volume: 397
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0205
  article-title: Magnetic photocatalyst CoFe2O4-Ag2O with magnetic aggregation bed photocatalytic reactor for continuous photodegradation of methyl orange
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125397
– volume: 446
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0350
  article-title: Direct Z-scheme charge transfer of Bi2WO6/InVO4 interface for efficient photocatalytic CO2 reduction
  publication-title: Chem. Eng. J.
– volume: 422
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0310
  article-title: Multiple-homojunction gradient nitrogen doped TiO2 for photocatalytic degradation of sulfamethoxazole, degradation mechanism, and toxicity assessment
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130507
– volume: 33
  start-page: 2105482
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0130
  article-title: Construction of Six-Oxygen-Coordinated Single Ni Sites on g-C3N4 with Boron-Oxo Species for Photocatalytic Water-Activation-Induced CO2 Reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105482
– volume: 31
  start-page: 1903545
  year: 2019
  ident: 10.1016/j.cej.2023.142421_b0440
  article-title: Synergy of Dopants and Defects in Graphitic Carbon Nitride with Exceptionally Modulated Band Structures for Efficient Photocatalytic Oxygen Evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903545
– volume: 807
  year: 2019
  ident: 10.1016/j.cej.2023.142421_b0150
  article-title: Facile fabrication of N-doped ZnS nanomaterials for efficient photocatalytic performance of organic pollutant removal and H2 production
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2019.151670
– volume: 56
  start-page: 15156
  issue: 21
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0090
  article-title: Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS2@GO-Based Heterogeneous Photo-Fenton Process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c03334
– volume: 603
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0470
  article-title: A mesoporous nanofibrous BiVO4-Ni/AgVO3 Z-scheme heterojunction photocatalyst with enhanced photocatalytic reduction of Cr6+ and degradation of RhB under visible light
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.154416
– volume: 410
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0145
  article-title: Mg2TiO4 spinel modified by nitrogen doping as a Visible-Light-Active photocatalyst for antibacterial activity
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128410
– volume: 12
  start-page: 12195
  issue: 10
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0200
  article-title: In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H2 Evolution and RhB Degradation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b15578
– volume: 331
  start-page: 242
  year: 2018
  ident: 10.1016/j.cej.2023.142421_b0330
  article-title: Xin, Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.08.114
– volume: 306
  year: 2023
  ident: 10.1016/j.cej.2023.142421_b0480
  article-title: SrTiO3 nanosheets decorated with ZnFe2O4 nanoparticles as Z-scheme photocatalysts for highly efficient photocatalytic degradation and CO2 conversion
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.122667
– volume: 365
  start-page: 107
  year: 2019
  ident: 10.1016/j.cej.2023.142421_b0425
  article-title: Enhanced visible-light activation of persulfate by Ti3+ self-doped TiO2/graphene nanocomposite for the rapid and efficient degradation of micropollutants in water
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2018.10.090
– volume: 18
  start-page: 2103933
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0085
  article-title: A Dual Photoelectrode Photoassisted Fe-Air Battery: The Photo-Electrocatalysis Mechanism Accounting for the Improved Oxygen Evolution Reaction and Oxygen Reduction Reaction of Air Electrodes
  publication-title: Small
  doi: 10.1002/smll.202103933
– volume: 571
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0455
  article-title: Fabrication of 0D/2D TiO2 Nanodots/g-C3N4 S-scheme heterojunction photocatalyst for efficient photocatalytic overall water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2021.151287
– volume: 509
  start-page: 219
  year: 2018
  ident: 10.1016/j.cej.2023.142421_b0410
  article-title: Facile fabrication of mediator-free Z-scheme photocatalyst of phosphorous-doped ultrathin graphitic carbon nitride nanosheets and bismuth vanadate composites with enhanced tetracycline degradation under visible light
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2017.09.016
– volume: 877
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0170
  article-title: Ti3C2 MXene embellished g-C3N4 nanosheets for improving photocatalytic redox capacity
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2021.160223
– volume: 12
  start-page: 2080
  year: 2019
  ident: 10.1016/j.cej.2023.142421_b0215
  article-title: Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light
  publication-title: Energ Environ. Sci.
  doi: 10.1039/C9EE00717B
– volume: 11
  start-page: 12411
  issue: 12
  year: 2017
  ident: 10.1016/j.cej.2023.142421_b0050
  article-title: Self-Powered Electrostatic Filter with Enhanced Photocatalytic Degradation of Formaldehyde Based on Built-in Triboelectric Nanogenerators
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06451
– volume: 120
  start-page: 3722
  year: 2016
  ident: 10.1016/j.cej.2023.142421_b0340
  article-title: Enhanced Photoinduced-Stability and Photocatalytic Activity of CdS by Dual Amorphous Cocatalysts: Synergistic Effect of Ti(IV)-Hole Cocatalyst and Ni(II)-Electron Cocatalyst
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.6b00126
– volume: 32
  start-page: 2001763
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0075
  article-title: The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001763
– volume: 312
  year: 2023
  ident: 10.1016/j.cej.2023.142421_b0475
  article-title: Mechanistic study of B-TiO2/BiVO4 S-scheme heterojunction photocatalyst for tetracycline hydrochloride removal and H2 production
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2023.123398
– volume: 238
  start-page: 37
  issue: 5358
  year: 1972
  ident: 10.1016/j.cej.2023.142421_b0110
  article-title: Electrochemical photolysis of water at a semiconductor electrode
  publication-title: Nature
  doi: 10.1038/238037a0
– year: 2022
  ident: 10.1016/j.cej.2023.142421_b0010
– volume: 16
  start-page: 461
  year: 2017
  ident: 10.1016/j.cej.2023.142421_b0115
  article-title: Structure of a model TiO2 photocatalytic interface
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4793
– volume: 5
  start-page: 19747
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0400
  article-title: Conversion of a Type-II to a Z-Scheme Heterojunction by Intercalation of a 0D Electron Mediator between the Integrative NiFe2O4/g-C3N4 Composite Nanoparticles: Boosting the Radical Production for Photo-Fenton Degradation
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c02477
– volume: 7
  start-page: 1700025
  year: 2017
  ident: 10.1016/j.cej.2023.142421_b0355
  article-title: High Efficiency Photocatalytic Water Splitting Using 2D alpha-Fe2O3/g-C3N4 Z-Scheme Catalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700025
– volume: 90
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0100
  article-title: Enhancing the macroscopic polarization of CdS for piezo-photocatalytic water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106635
– volume: 139
  start-page: 4123
  issue: 11
  year: 2017
  ident: 10.1016/j.cej.2023.142421_b0055
  article-title: Photocatalytic CO2 Reduction by Carbon-Coated Indium-Oxide Nanobelts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00266
– volume: 23
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0375
  article-title: Synthesis of novel heterostructured FeS2/Ag2MoO4 nanocomposite: Characterization, efficient antibacterial and enhanced visible light driven photocatalytic activity
  publication-title: Surf. Interfaces
– volume: 384
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0385
  article-title: Stable self-assembly AgI/UiO-66(NH2) heterojunction as efficient visible-light responsive photocatalyst for tetracycline degradation and mechanism insight
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123310
– volume: 39
  start-page: 867
  issue: 4
  year: 2018
  ident: 10.1016/j.cej.2023.142421_b0070
  article-title: Photocatalytic performance of TiO2 nanocrystals with/without oxygen defects, Chinese
  publication-title: J. Catal.
– volume: 43
  start-page: 226
  issue: 2
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0120
  article-title: Effect of calcination temperatures on photocatalytic H2O2-production activity of ZnO nanorods, Chinese
  publication-title: J. Catal.
– volume: 116
  start-page: 7159
  year: 2016
  ident: 10.1016/j.cej.2023.142421_b0015
  article-title: Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00075
– volume: 260
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0265
  article-title: Nanohybrid photocatalysts with ZnIn2S4 nanosheets encapsulated UiO-66 octahedral nanoparticles for visible-light-driven hydrogen generation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.118152
– volume: 306
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0180
  article-title: Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2022.121109
– volume: 17
  start-page: 2100887
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0270
  article-title: In situ Irradiated XPS Investigation on S-Scheme TiO2@ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction
  publication-title: Small
– volume: 34
  start-page: 2107668
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0140
  article-title: Emerging S-Scheme Photocatalyst
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107668
– volume: 424
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0315
  article-title: Direct Z-scheme ZnIn2S4@MoO3 heterojunction for efficient photodegradation of tetracycline hydrochloride under visible light irradiation
  publication-title: Chem. Eng. J.
– volume: 270
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0380
  article-title: BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2020.118876
– volume: 406
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0035
  article-title: One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126844
– volume: 42
  start-page: 56
  issue: 1
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0405
  article-title: Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation
  publication-title: Chinese J. Catal.
  doi: 10.1016/S1872-2067(20)63634-8
– volume: 492
  start-page: 690
  year: 2019
  ident: 10.1016/j.cej.2023.142421_b0220
  article-title: Direct double Z-scheme O-g-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.06.260
– volume: 40
  start-page: 4
  issue: 1
  year: 2019
  ident: 10.1016/j.cej.2023.142421_b0020
  article-title: Recent advances in one-dimensional nanostructures for energy electrocatalysis, Chinese
  publication-title: J. Catal.
– volume: 220
  start-page: 337
  year: 2018
  ident: 10.1016/j.cej.2023.142421_b0430
  article-title: Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2017.08.004
– volume: 894
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0420
  article-title: Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C3N4/ZnIn2S4 S-scheme heterojunction under visible light irradiation
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2021.162209
– volume: 402
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0025
  article-title: Recycling heavy metals from wastewater for photocatalytic CO2 reduction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125922
– volume: 6
  start-page: 4102
  issue: 9
  year: 2018
  ident: 10.1016/j.cej.2023.142421_b0230
  article-title: MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA09350K
– ident: 10.1016/j.cej.2023.142421_b0105
  doi: 10.1039/D2CS90010F
– volume: 9
  start-page: 24518
  year: 2017
  ident: 10.1016/j.cej.2023.142421_b0080
  article-title: Enhanced Photocatalytic Activity of Heterostructured Ferroelectric BaTiO3/alpha-Fe2O3 and the Significance of Interface Morphology Control
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03523
– volume: 641
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0485
  article-title: An efficient construction method of S-scheme Ag2CrO4/ZnFe2O4 nanofibers heterojunction toward enhanced photocatalytic and antibacterial activity
  publication-title: Colloid. Surface. A.
  doi: 10.1016/j.colsurfa.2022.128603
– volume: 6
  start-page: 1543
  issue: 7
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0250
  article-title: S-Scheme Heterojunction Photocatalyst
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.06.010
– volume: 411
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0360
  article-title: Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128555
– volume: 276
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0240
  article-title: Ultrasonically synthesized N-TiO2/Ti3C2 composites: Enhancing sonophotocatalytic activity for pollutant degradation and nitrogen fixation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119287
– volume: 7
  start-page: 40896
  issue: 65
  year: 2017
  ident: 10.1016/j.cej.2023.142421_b0345
  article-title: Probing the inhomogeneity and intermediates in the photosensitized degradation of rhodamine B by Ag3PO4 nanoparticles from an ensemble to a single molecule approach
  publication-title: RSC Adv.
  doi: 10.1039/C7RA07163A
– volume: 6
  start-page: 22580
  year: 2018
  ident: 10.1016/j.cej.2023.142421_b0365
  article-title: In situ synthesis of n-n Bi2MoO6 & Bi2S3 heterojunctions for highly efficient photocatalytic removal of Cr(vi)
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C8TA08294D
– volume: 96
  year: 2019
  ident: 10.1016/j.cej.2023.142421_b0490
  article-title: Synthesis of octahedral-like ZnO/ZnFe2O4 heterojunction photocatalysts with superior photocatalytic activity
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2019.05.012
– volume: 284
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0185
  article-title: Recent advances in surface and interface design of photocatalysts for the degradation of volatile organic compounds
  publication-title: Adv. Colloid Interfac.
  doi: 10.1016/j.cis.2020.102275
– volume: 298
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0445
  article-title: Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2021.120521
– volume: 442
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0465
  article-title: Enhanced CO2 conversion on highly-strained and oxygen-deficient BiVO4 photocatalyst
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136209
– volume: 251
  start-page: 220
  year: 2019
  ident: 10.1016/j.cej.2023.142421_b0370
  article-title: Targeting inside charge carriers transfer of photocatalyst: Selective deposition of Ag2O on BiVO4 with enhanced UV-vis-NIR photocatalytic oxidation activity
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.03.062
– volume: 243
  start-page: 556
  year: 2019
  ident: 10.1016/j.cej.2023.142421_b0320
  article-title: Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2 production photocatalyst
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.11.011
– volume: 42
  start-page: 13417
  year: 2013
  ident: 10.1016/j.cej.2023.142421_b0395
  article-title: Hierarchically grown CdS/alpha-Fe2O3 heterojunction nanocomposites with enhanced visible-light-driven photocatalytic performance
  publication-title: Dalton T.
  doi: 10.1039/c3dt51492g
– volume: 8
  start-page: 2542
  issue: 9
  year: 2021
  ident: 10.1016/j.cej.2023.142421_b0195
  article-title: Boosting the photocatalytic degradation of ethyl acetate by a Z-scheme Au-TiO2@NH2-UiO-66 heterojunction with ultrafine Au as an electron mediator
  publication-title: Environ. Sci-Nano
  doi: 10.1039/D1EN00225B
– volume: 119
  start-page: 4471
  year: 2019
  ident: 10.1016/j.cej.2023.142421_b0190
  article-title: Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00408
– volume: 8
  start-page: 76
  year: 2009
  ident: 10.1016/j.cej.2023.142421_b0325
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 59
  start-page: 8255
  issue: 21
  year: 2020
  ident: 10.1016/j.cej.2023.142421_b0335
  article-title: Construction of Hierarchical Hollow Co9S8/ZnIn2S4 Tubular Heterostructures for Highly Efficient Solar Energy Conversion and Environmental Remediation
  publication-title: Angew. Chem. Int. Edit.
  doi: 10.1002/anie.202000503
– volume: 459
  start-page: 34
  year: 2013
  ident: 10.1016/j.cej.2023.142421_b0460
  article-title: Fast and spontaneous reduction of gold ions over oxygen-vacancy-rich TiO2: A novel strategy to design defect-based composite photocatalyst
  publication-title: Appl. Catal. A-Gen.
  doi: 10.1016/j.apcata.2013.04.007
– volume: 6
  start-page: 92
  issue: 1
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0005
  article-title: Single-atom catalysts for photocatalytic energy conversion
  publication-title: Joule
  doi: 10.1016/j.joule.2021.12.011
– volume: 9
  start-page: 9739
  issue: 11
  year: 2019
  ident: 10.1016/j.cej.2023.142421_b0225
  article-title: Defect Engineering in Photocatalytic Nitrogen Fixation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03246
– volume: 198
  start-page: 154
  year: 2016
  ident: 10.1016/j.cej.2023.142421_b0390
  article-title: Direct Z-scheme composite of CdS and oxygen-defected CdWO4: An efficient visible-light-driven photocatalyst for hydrogen evolution
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.05.046
– volume: 292
  year: 2022
  ident: 10.1016/j.cej.2023.142421_b0040
  article-title: Engineering ultrathin oxygen-doped g-C3N4 nanosheet for boosted photoredox catalytic activity based on a facile thermal gas-shocking exfoliation effect
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121038
– volume: 9
  start-page: 2177
  year: 2016
  ident: 10.1016/j.cej.2023.142421_b0245
  article-title: CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts, Energ
  publication-title: Environ. Sci.
SSID ssj0006919
Score 2.4330776
SecondaryResourceType review_article
Snippet [Display omitted] •Photocatalysis process is subject to the photoelectron transfer (PET) restriction effect.•The PET restriction effect can be quantitatively...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 142421
SubjectTerms Directional fabrication
Numerical evaluation strategy
PET restriction effect
Photocatalyst
Title A universal numerical evaluation strategy for photocatalysts based on the photoelectron transfer (PET) restriction effect: A review
URI https://dx.doi.org/10.1016/j.cej.2023.142421
Volume 463
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scCAeIrykgcGQEqbOLEds1WoqFCBEFDRLXIcR7RCbdWmAwsLfxw7TgpIwMAUJb6TIp919yX33R3AMaMy4GmcOJIJ4gRcCEckLHakr3QwEwpzagqFb25ptx9cD8igAhdlLYyhVRa-3_r03FsXT1rFbramw2HrwTM5LR4wbM4owYMq1LHPKalBvX3V694uHTLl-XwPI-8YhTK5mdO8pBo1zQjxpin5wt7P4elLyLlch7UCK6K2fZ0NqKjxJqx-6SC4Be9ttLDUCi04Xtj0ywv67OGN5rb97CvS6BRNnyfZJP9j8zrP5siEsARpIY0C7Vo5FQdlOaBVM3Ry13k8RWaCx2yY10AgSwE5R21k6162oX_ZebzoOsVcBUdizjInJBr0aJzl4VRiV-M_zhRVsRtoe_pxSD1K3TBWofnUCxNCRMpISpiknkwEUcLfgdp4Mla7gDR-chlOiccSGig35K4vYkO18XwVa2TVALfczkgWTcfN7IuXqGSXjSJtgchYILIWaMDZUmVqO278JRyUNoq-HZtIR4Tf1fb-p7YPK-bO8h0PoJbNFupQY5IsPoJq8807Kk6eufbun3ofBhbikg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gHtSD8RnxuQcPalLoYx9db4RgUIGYCAm3ZrvdRggpBMqBixf_uLvdVjBRD167M0mzM5n52vlmBoBrSgRicRhZgnJsIca5xSMaWsKTKplx6TKiG4U7XdLqo6cBHpRAo-iF0bTKPPabmJ5F6_xJLb_N2nQ4rL06uqbFEHW1j2J3sAE2Efao5vVV31c8D8Ky7R5a2tLiRWkzI3kJOarqBeJV3fDlOj8np7WE87AHdnOkCOvmZfZBSSYHYGdtfuAh-KjDhSFWKMFkYYovY7ia4A3nZvjsEipsCqdvk3SS_a9ZztM51AksgkpIYUBzVuzEgWkGZ-UM3rw0e7dQ7--YDbMOCGgIIPewDk3XyxHoPzR7jZaVb1WwhMtoavlYQR6Fshw3Fq6t0B-jksjQRsqaXugThxDbD6WvP_T8CGMeUxxjKogjIo4l945BOZkk8gRAhZ5s6sbYoRFB0vaZ7fFQE20cT4YKV1WAXVxnIPKR43rzxTgouGWjQFkg0BYIjAUq4O5LZWrmbfwljAobBd-cJlD54He10_-pXYGtVq_TDtqP3eczsK1PDPPxHJTT2UJeKHSShpeZ930C29Phug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+universal+numerical+evaluation+strategy+for+photocatalysts+based+on+the+photoelectron+transfer+%28PET%29+restriction+effect%3A+A+review&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Sun%2C+Haoran&rft.au=Guo%2C+Feng&rft.au=Shi%2C+Weilong&rft.au=Wang%2C+Lizhang&rft.date=2023-05-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=463&rft_id=info:doi/10.1016%2Fj.cej.2023.142421&rft.externalDocID=S138589472301152X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon