Riesz transform on exterior Lipschitz domains and applications
Let L=−divA∇ be a uniformly elliptic operator on Rn, n≥2. Let Ω be an exterior Lipschitz domain, and let LD and LN be the operator L on Ω subject to the Dirichlet and Neumann boundary values, respectively. We establish the boundedness of the Riesz transforms ∇LD−1/2, ∇LN−1/2 in Lp spaces. As a bypro...
Saved in:
Published in | Advances in mathematics (New York. 1965) Vol. 453; p. 109852 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0001-8708 1090-2082 |
DOI | 10.1016/j.aim.2024.109852 |
Cover
Loading…
Abstract | Let L=−divA∇ be a uniformly elliptic operator on Rn, n≥2. Let Ω be an exterior Lipschitz domain, and let LD and LN be the operator L on Ω subject to the Dirichlet and Neumann boundary values, respectively. We establish the boundedness of the Riesz transforms ∇LD−1/2, ∇LN−1/2 in Lp spaces. As a byproduct, we show the reverse inequality ‖LD1/2f‖Lp(Ω)≤C‖∇f‖Lp(Ω) holds for any 1<p<∞. The proof can be generalized to show the boundedness of the Riesz transforms, for operators with VMO coefficients on exterior Lipschitz or C1 domains. The estimates can be also applied to the inhomogeneous Dirichlet and Neumann problems. These results are new even for the Dirichlet and Neumann of the Laplacian operator on the exterior Lipschitz and C1 domains. |
---|---|
AbstractList | Let L=−divA∇ be a uniformly elliptic operator on Rn, n≥2. Let Ω be an exterior Lipschitz domain, and let LD and LN be the operator L on Ω subject to the Dirichlet and Neumann boundary values, respectively. We establish the boundedness of the Riesz transforms ∇LD−1/2, ∇LN−1/2 in Lp spaces. As a byproduct, we show the reverse inequality ‖LD1/2f‖Lp(Ω)≤C‖∇f‖Lp(Ω) holds for any 1<p<∞. The proof can be generalized to show the boundedness of the Riesz transforms, for operators with VMO coefficients on exterior Lipschitz or C1 domains. The estimates can be also applied to the inhomogeneous Dirichlet and Neumann problems. These results are new even for the Dirichlet and Neumann of the Laplacian operator on the exterior Lipschitz and C1 domains. |
ArticleNumber | 109852 |
Author | Jiang, Renjin Lin, Fanghua |
Author_xml | – sequence: 1 givenname: Renjin surname: Jiang fullname: Jiang, Renjin email: rejiang@cnu.edu.cn organization: Academy for Multidisciplinary Studies, Capital Normal University, Beijing, 100048, China – sequence: 2 givenname: Fanghua surname: Lin fullname: Lin, Fanghua email: linf@cims.nyu.edu organization: Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA |
BookMark | eNp9kE1LAzEQhoNUsK3-AG_5A1sz2Y9kEQQpWoWCIHoOaZLFKd1kSYJof71b68lDTzPv4RnmfWZk4oN3hFwDWwCD5ma70NgvOOPVmFtZ8zMyHRdWcCb5hEwZY1BIweQFmaW0HWNbQTsld6_o0p7mqH3qQuxp8NR9ZRcxRLrGIZkPzHtqQ6_RJ6q9pXoYdmh0xuDTJTnv9C65q785J--PD2_Lp2L9snpe3q8Lw1uRC8nNpmFtLRkXwrKNZkYYzWsnbFXWwlW2rBrg0MEGhK5NA42FsqwdAEhp23JO4HjXxJBSdJ0aIvY6fitg6iBAbdUoQB0EqKOAkRH_GIP59-2xLe5OkrdH0o2VPtFFlQw6b5zF6ExWNuAJ-gdsvHbM |
CitedBy_id | crossref_primary_10_1017_fms_2025_19 |
Cites_doi | 10.1093/imrn/rnv338 10.1215/S0012-7094-06-13313-6 10.1007/BF02392268 10.1007/s00209-003-0639-3 10.1016/j.matpur.2019.02.009 10.1016/S0021-7824(97)89945-X 10.5186/aasfm.1978-79.0413 10.1512/iumj.2009.58.3514 10.1090/S0002-9947-99-02090-5 10.1006/jfan.1995.1067 10.1016/j.jfa.2019.108398 10.1002/cpa.10014 10.1007/BF02392130 10.1007/BF01171098 10.1016/j.matpur.2016.03.019 10.1007/PL00004487 10.1006/jfan.1998.3316 10.5802/aif.2094 10.1080/03605300600781626 10.1016/S0022-1236(02)00009-5 10.1016/j.aim.2012.01.004 10.1002/1522-2616(200103)223:1<77::AID-MANA77>3.0.CO;2-D 10.1016/S0022-1236(02)00074-5 10.1002/cpa.20037 10.1112/S0024611504014960 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G 10.1016/j.aim.2020.107464 10.1007/s00205-009-0228-7 10.1016/j.ansens.2004.10.003 10.1080/03605302.2000.10824220 10.1090/S0002-9947-04-03624-4 10.1007/BF02392869 10.1007/BF03041069 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Inc. |
Copyright_xml | – notice: 2024 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.aim.2024.109852 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1090-2082 |
ExternalDocumentID | 10_1016_j_aim_2024_109852 S0001870824003670 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABCQX ABEFU ABFNM ABJNI ABLJU ABMAC ABVKL ABXDB ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD ADVLN AEBSH AEKER AENEX AETEA AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 D0L DM4 EBS EFBJH EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HX~ HZ~ IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OHT OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K UPT WH7 XOL XPP ZCG ZKB ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION EFKBS |
ID | FETCH-LOGICAL-c297t-82cb609580277d0ba0c7ca25e7d4357e4d346121f1b17a5c616d1335e11188d93 |
IEDL.DBID | .~1 |
ISSN | 0001-8708 |
IngestDate | Tue Aug 05 12:00:38 EDT 2025 Thu Apr 24 23:11:06 EDT 2025 Sat Aug 10 15:31:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Dirichlet operators Riesz transform Exterior Lipschitz domain 35J05 42B37 35J25 Neumann operators Harmonic function |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-82cb609580277d0ba0c7ca25e7d4357e4d346121f1b17a5c616d1335e11188d93 |
ParticipantIDs | crossref_primary_10_1016_j_aim_2024_109852 crossref_citationtrail_10_1016_j_aim_2024_109852 elsevier_sciencedirect_doi_10_1016_j_aim_2024_109852 |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationTitle | Advances in mathematics (New York. 1965) |
PublicationYear | 2024 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Duong, Ouhabaz, Sikora (br0190) 2002; 196 Auscher, Coulhon (br0020) 2005; 4 Calderón, Zygmund (br0120) 1952; 88 Riesz (br0390) 1928; 27 Auscher, Tchamitchian (br0060) 2001; 320 Geng (br0220) 2012; 229 Caffarelli, Peral (br0110) 1998; 51 Shen (br0400) 2005; 55 Carron, Coulhon, Hassell (br0130) 2006; 133 Dong, Kim (br0180) 2010; 196 Fabes, Mendez, Mitrea (br0200) 1998; 159 Byun, Wang (br0090) 2004; 57 Jiang, Lin (br0310) 2020; 133 Killip, Visan, Zhang (br0340) 2016 Martio, Sarvas (br0370) 1979; 4 Zhang (br0440) 2003; 200 Krylov (br0350) 2007; 32 Lions, Magenes (br0360) 1968; vol. 18 Grigor'yan, Saloff-Coste (br0240) 2002; 55 Herron, Koskela (br0280) 1991; 57 Jiang, Yang (br0320) Bernicot, Coulhon, Frey (br0070) 2016; 106 Mendez, Mitrea (br0380) 2001; 223 Auscher, Tchamitchian (br0050) 1998; 249 Byun, Wang (br0100) 2005; 90 Sikora (br0410) 2004; 247 Auscher, Coulhon, Duong, Hofmann (br0030) 2004; 37 Coulhon, Duong (br0150) 1999; 351 Grisvard (br0250) 1985; vol. 24 Gyrya, Saloff-Coste (br0260) 2011; 336 Stein (br0420) 1970; vol. 30 Byun (br0080) 2005; 357 Di Fazio (br0170) 1996; 10 Grafakos (br0230) 2008; vol. 249 Amrouche, Girault, Giroire (br0010) 1997; 76 Jones (br0330) 1981; 147 Jerison, Kenig (br0290) 1995; 130 Jiang (br0300) 2021; 377 Auscher, Qafsaoui (br0040) 2002; 5 Gehring (br0210) 1973; 130 Coulhon, Jiang, Koskela, Sikora (br0160) 2020; 278 Hassell, Sikora (br0270) 2009; 58 Caffarelli, Kohn, Nirenberg (br0140) 1984; 53 Zanger (br0430) 2000; 25 Lions (10.1016/j.aim.2024.109852_br0360) 1968; vol. 18 Calderón (10.1016/j.aim.2024.109852_br0120) 1952; 88 Caffarelli (10.1016/j.aim.2024.109852_br0140) 1984; 53 Byun (10.1016/j.aim.2024.109852_br0090) 2004; 57 Grafakos (10.1016/j.aim.2024.109852_br0230) 2008; vol. 249 Riesz (10.1016/j.aim.2024.109852_br0390) 1928; 27 Duong (10.1016/j.aim.2024.109852_br0190) 2002; 196 Shen (10.1016/j.aim.2024.109852_br0400) 2005; 55 Auscher (10.1016/j.aim.2024.109852_br0060) 2001; 320 Byun (10.1016/j.aim.2024.109852_br0100) 2005; 90 Martio (10.1016/j.aim.2024.109852_br0370) 1979; 4 Carron (10.1016/j.aim.2024.109852_br0130) 2006; 133 Gehring (10.1016/j.aim.2024.109852_br0210) 1973; 130 Jiang (10.1016/j.aim.2024.109852_br0300) 2021; 377 Auscher (10.1016/j.aim.2024.109852_br0040) 2002; 5 Caffarelli (10.1016/j.aim.2024.109852_br0110) 1998; 51 Auscher (10.1016/j.aim.2024.109852_br0020) 2005; 4 Krylov (10.1016/j.aim.2024.109852_br0350) 2007; 32 Sikora (10.1016/j.aim.2024.109852_br0410) 2004; 247 Fabes (10.1016/j.aim.2024.109852_br0200) 1998; 159 Herron (10.1016/j.aim.2024.109852_br0280) 1991; 57 Zhang (10.1016/j.aim.2024.109852_br0440) 2003; 200 Mendez (10.1016/j.aim.2024.109852_br0380) 2001; 223 Hassell (10.1016/j.aim.2024.109852_br0270) 2009; 58 Auscher (10.1016/j.aim.2024.109852_br0050) 1998; 249 Grigor'yan (10.1016/j.aim.2024.109852_br0240) 2002; 55 Gyrya (10.1016/j.aim.2024.109852_br0260) 2011; 336 Di Fazio (10.1016/j.aim.2024.109852_br0170) 1996; 10 Byun (10.1016/j.aim.2024.109852_br0080) 2005; 357 Stein (10.1016/j.aim.2024.109852_br0420) 1970; vol. 30 Killip (10.1016/j.aim.2024.109852_br0340) 2016 Jerison (10.1016/j.aim.2024.109852_br0290) 1995; 130 Grisvard (10.1016/j.aim.2024.109852_br0250) 1985; vol. 24 Auscher (10.1016/j.aim.2024.109852_br0030) 2004; 37 Jones (10.1016/j.aim.2024.109852_br0330) 1981; 147 Zanger (10.1016/j.aim.2024.109852_br0430) 2000; 25 Coulhon (10.1016/j.aim.2024.109852_br0150) 1999; 351 Geng (10.1016/j.aim.2024.109852_br0220) 2012; 229 Amrouche (10.1016/j.aim.2024.109852_br0010) 1997; 76 Jiang (10.1016/j.aim.2024.109852_br0310) 2020; 133 Dong (10.1016/j.aim.2024.109852_br0180) 2010; 196 Bernicot (10.1016/j.aim.2024.109852_br0070) 2016; 106 Jiang (10.1016/j.aim.2024.109852_br0320) Coulhon (10.1016/j.aim.2024.109852_br0160) 2020; 278 |
References_xml | – volume: 130 start-page: 265 year: 1973 end-page: 277 ident: br0210 article-title: The publication-title: Acta Math. – volume: 88 start-page: 85 year: 1952 end-page: 139 ident: br0120 article-title: On the existence of certain singular integrals publication-title: Acta Math. – volume: 196 start-page: 25 year: 2010 end-page: 70 ident: br0180 article-title: Elliptic equations in divergence form with partially BMO coefficients publication-title: Arch. Ration. Mech. Anal. – volume: 320 start-page: 577 year: 2001 end-page: 623 ident: br0060 article-title: Square roots of elliptic second order divergence operators on strongly Lipschitz domains: publication-title: Math. Ann. – volume: 377 year: 2021 ident: br0300 article-title: Riesz transform via heat kernel and harmonic functions on non-compact manifolds publication-title: Adv. Math. – volume: 32 start-page: 453 year: 2007 end-page: 475 ident: br0350 article-title: Parabolic and elliptic equations with VMO coefficients publication-title: Commun. Partial Differ. Equ. – volume: 106 start-page: 995 year: 2016 end-page: 1037 ident: br0070 article-title: Gaussian heat kernel bounds through elliptic Moser iteration publication-title: J. Math. Pures Appl. (9) – volume: 25 start-page: 1771 year: 2000 end-page: 1808 ident: br0430 article-title: The inhomogeneous Neumann problem in Lipschitz domains publication-title: Commun. Partial Differ. Equ. – volume: 76 start-page: 55 year: 1997 end-page: 81 ident: br0010 article-title: Dirichlet and Neumann exterior problems for the publication-title: J. Math. Pures Appl. (9) – volume: 130 start-page: 161 year: 1995 end-page: 219 ident: br0290 article-title: The inhomogeneous Dirichlet problem in Lipschitz domains publication-title: J. Funct. Anal. – volume: 247 start-page: 643 year: 2004 end-page: 662 ident: br0410 article-title: Riesz transform, Gaussian bounds and the method of wave equation publication-title: Math. Z. – volume: 133 start-page: 39 year: 2020 end-page: 65 ident: br0310 article-title: Riesz transform under perturbations via heat kernel regularity publication-title: J. Math. Pures Appl. (9) – volume: 53 start-page: 259 year: 1984 end-page: 275 ident: br0140 article-title: First order interpolation inequalities with weights publication-title: Compos. Math. – volume: 58 start-page: 823 year: 2009 end-page: 852 ident: br0270 article-title: Riesz transforms in one dimension publication-title: Indiana Univ. Math. J. – volume: 278 year: 2020 ident: br0160 article-title: Gradient estimates for heat kernels and harmonic functions publication-title: J. Funct. Anal. – volume: 51 start-page: 1 year: 1998 end-page: 21 ident: br0110 article-title: On publication-title: Commun. Pure Appl. Math. – volume: 357 start-page: 1025 year: 2005 end-page: 1046 ident: br0080 article-title: Elliptic equations with BMO coefficients in Lipschitz domains publication-title: Trans. Am. Math. Soc. – volume: 336 year: 2011 ident: br0260 article-title: Neumann and Dirichlet heat kernels in inner uniform domains publication-title: Astérisque – volume: vol. 24 year: 1985 ident: br0250 article-title: Elliptic Problems in Nonsmooth Domains publication-title: Monographs and Studies in Mathematics – volume: 57 start-page: 1283 year: 2004 end-page: 1310 ident: br0090 article-title: Elliptic equations with BMO coefficients in Reifenberg domains publication-title: Commun. Pure Appl. Math. – volume: vol. 30 year: 1970 ident: br0420 article-title: Singular Integrals and Differentiability Properties of Functions publication-title: Princeton Mathematical Series – start-page: 5875 year: 2016 end-page: 5921 ident: br0340 article-title: Riesz transforms outside a convex obstacle publication-title: Int. Math. Res. Not. – ident: br0320 article-title: Some inequalities related to Riesz transform on exterior Lipschitz domains – volume: 147 start-page: 71 year: 1981 end-page: 88 ident: br0330 article-title: Quasiconformal mappings and extendability of functions in Sobolev spaces publication-title: Acta Math. – volume: 27 start-page: 218 year: 1928 end-page: 244 ident: br0390 article-title: Sur les fonctions conjuguées publication-title: Math. Z. – volume: 351 start-page: 1151 year: 1999 end-page: 1169 ident: br0150 article-title: Riesz transforms for publication-title: Trans. Am. Math. Soc. – volume: 4 start-page: 383 year: 1979 end-page: 401 ident: br0370 article-title: Injectivity theorems in plane and space publication-title: Ann. Acad. Sci. Fenn. Ser. A I Math. – volume: 55 start-page: 173 year: 2005 end-page: 197 ident: br0400 article-title: Bounds of Riesz transforms on publication-title: Ann. Inst. Fourier (Grenoble) – volume: 37 start-page: 911 year: 2004 end-page: 957 ident: br0030 article-title: Riesz transform on manifolds and heat kernel regularity publication-title: Ann. Sci. Éc. Norm. Supér. (4) – volume: 200 start-page: 160 year: 2003 end-page: 176 ident: br0440 article-title: The global behavior of heat kernels in exterior domains publication-title: J. Funct. Anal. – volume: vol. 249 year: 2008 ident: br0230 article-title: Classical Fourier Analysis publication-title: Grad. Texts in Math. – volume: 57 start-page: 172 year: 1991 end-page: 202 ident: br0280 article-title: Uniform, Sobolev extension and quasiconformal circle domains publication-title: J. Anal. Math. – volume: 133 start-page: 59 year: 2006 end-page: 93 ident: br0130 article-title: Riesz transform and publication-title: Duke Math. J. – volume: 10 start-page: 409 year: 1996 end-page: 420 ident: br0170 article-title: estimates for divergence form elliptic equations with discontinuous coefficients publication-title: Boll. Unione Mat. Ital. A (7) – volume: 196 start-page: 443 year: 2002 end-page: 485 ident: br0190 article-title: Plancherel-type estimates and sharp spectral multipliers publication-title: J. Funct. Anal. – volume: 55 start-page: 93 year: 2002 end-page: 133 ident: br0240 article-title: Dirichlet heat kernel in the exterior of a compact set publication-title: Commun. Pure Appl. Math. – volume: 5 start-page: 487 year: 2002 end-page: 509 ident: br0040 article-title: Observations on publication-title: Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) – volume: 90 start-page: 245 year: 2005 end-page: 272 ident: br0100 article-title: The conormal derivative problem for elliptic equations with BMO coefficients on Reifenberg flat domains publication-title: Proc. Lond. Math. Soc. (3) – volume: 229 start-page: 2427 year: 2012 end-page: 2448 ident: br0220 article-title: estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains publication-title: Adv. Math. – volume: 223 start-page: 77 year: 2001 end-page: 88 ident: br0380 article-title: Complex powers of the Neumann Laplacian in Lipschitz domains publication-title: Math. Nachr. – volume: 249 year: 1998 ident: br0050 article-title: Square root problem for divergence operators and related topics publication-title: Astérisque – volume: 159 start-page: 323 year: 1998 end-page: 368 ident: br0200 article-title: Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains publication-title: J. Funct. Anal. – volume: vol. 18 year: 1968 ident: br0360 article-title: Problèmes aux limites non homogènes et applications, vol. 2 publication-title: Travaux et Recherches Mathématiques – volume: 4 start-page: 531 year: 2005 end-page: 555 ident: br0020 article-title: Riesz transform on manifolds and Poincaré inequalities publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) – start-page: 5875 year: 2016 ident: 10.1016/j.aim.2024.109852_br0340 article-title: Riesz transforms outside a convex obstacle publication-title: Int. Math. Res. Not. doi: 10.1093/imrn/rnv338 – volume: 133 start-page: 59 year: 2006 ident: 10.1016/j.aim.2024.109852_br0130 article-title: Riesz transform and Lp-cohomology for manifolds with Euclidean ends publication-title: Duke Math. J. doi: 10.1215/S0012-7094-06-13313-6 – volume: 4 start-page: 531 year: 2005 ident: 10.1016/j.aim.2024.109852_br0020 article-title: Riesz transform on manifolds and Poincaré inequalities publication-title: Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) – volume: vol. 24 year: 1985 ident: 10.1016/j.aim.2024.109852_br0250 article-title: Elliptic Problems in Nonsmooth Domains – volume: 130 start-page: 265 year: 1973 ident: 10.1016/j.aim.2024.109852_br0210 article-title: The Lp-integrability of the partial derivatives of a quasiconformal mapping publication-title: Acta Math. doi: 10.1007/BF02392268 – volume: 247 start-page: 643 issue: 3 year: 2004 ident: 10.1016/j.aim.2024.109852_br0410 article-title: Riesz transform, Gaussian bounds and the method of wave equation publication-title: Math. Z. doi: 10.1007/s00209-003-0639-3 – volume: 133 start-page: 39 year: 2020 ident: 10.1016/j.aim.2024.109852_br0310 article-title: Riesz transform under perturbations via heat kernel regularity publication-title: J. Math. Pures Appl. (9) doi: 10.1016/j.matpur.2019.02.009 – volume: 76 start-page: 55 year: 1997 ident: 10.1016/j.aim.2024.109852_br0010 article-title: Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator: an approach in weighted Sobolev spaces publication-title: J. Math. Pures Appl. (9) doi: 10.1016/S0021-7824(97)89945-X – volume: 4 start-page: 383 year: 1979 ident: 10.1016/j.aim.2024.109852_br0370 article-title: Injectivity theorems in plane and space publication-title: Ann. Acad. Sci. Fenn. Ser. A I Math. doi: 10.5186/aasfm.1978-79.0413 – ident: 10.1016/j.aim.2024.109852_br0320 – volume: 58 start-page: 823 year: 2009 ident: 10.1016/j.aim.2024.109852_br0270 article-title: Riesz transforms in one dimension publication-title: Indiana Univ. Math. J. doi: 10.1512/iumj.2009.58.3514 – volume: 351 start-page: 1151 year: 1999 ident: 10.1016/j.aim.2024.109852_br0150 article-title: Riesz transforms for 1≤p≤2 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-99-02090-5 – volume: 130 start-page: 161 year: 1995 ident: 10.1016/j.aim.2024.109852_br0290 article-title: The inhomogeneous Dirichlet problem in Lipschitz domains publication-title: J. Funct. Anal. doi: 10.1006/jfan.1995.1067 – volume: 278 year: 2020 ident: 10.1016/j.aim.2024.109852_br0160 article-title: Gradient estimates for heat kernels and harmonic functions publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2019.108398 – volume: vol. 18 year: 1968 ident: 10.1016/j.aim.2024.109852_br0360 article-title: Problèmes aux limites non homogènes et applications, vol. 2 – volume: 5 start-page: 487 year: 2002 ident: 10.1016/j.aim.2024.109852_br0040 article-title: Observations on W1,p estimates for divergence elliptic equations with VMO coefficients publication-title: Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) – volume: vol. 249 year: 2008 ident: 10.1016/j.aim.2024.109852_br0230 article-title: Classical Fourier Analysis – volume: 55 start-page: 93 issue: 1 year: 2002 ident: 10.1016/j.aim.2024.109852_br0240 article-title: Dirichlet heat kernel in the exterior of a compact set publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.10014 – volume: 249 year: 1998 ident: 10.1016/j.aim.2024.109852_br0050 article-title: Square root problem for divergence operators and related topics publication-title: Astérisque – volume: 88 start-page: 85 year: 1952 ident: 10.1016/j.aim.2024.109852_br0120 article-title: On the existence of certain singular integrals publication-title: Acta Math. doi: 10.1007/BF02392130 – volume: 27 start-page: 218 year: 1928 ident: 10.1016/j.aim.2024.109852_br0390 article-title: Sur les fonctions conjuguées publication-title: Math. Z. doi: 10.1007/BF01171098 – volume: 106 start-page: 995 year: 2016 ident: 10.1016/j.aim.2024.109852_br0070 article-title: Gaussian heat kernel bounds through elliptic Moser iteration publication-title: J. Math. Pures Appl. (9) doi: 10.1016/j.matpur.2016.03.019 – volume: 320 start-page: 577 year: 2001 ident: 10.1016/j.aim.2024.109852_br0060 article-title: Square roots of elliptic second order divergence operators on strongly Lipschitz domains: Lp theory publication-title: Math. Ann. doi: 10.1007/PL00004487 – volume: 159 start-page: 323 year: 1998 ident: 10.1016/j.aim.2024.109852_br0200 article-title: Boundary layers on Sobolev-Besov spaces and Poisson's equation for the Laplacian in Lipschitz domains publication-title: J. Funct. Anal. doi: 10.1006/jfan.1998.3316 – volume: 55 start-page: 173 year: 2005 ident: 10.1016/j.aim.2024.109852_br0400 article-title: Bounds of Riesz transforms on Lp spaces for second order elliptic operators publication-title: Ann. Inst. Fourier (Grenoble) doi: 10.5802/aif.2094 – volume: 32 start-page: 453 year: 2007 ident: 10.1016/j.aim.2024.109852_br0350 article-title: Parabolic and elliptic equations with VMO coefficients publication-title: Commun. Partial Differ. Equ. doi: 10.1080/03605300600781626 – volume: 53 start-page: 259 year: 1984 ident: 10.1016/j.aim.2024.109852_br0140 article-title: First order interpolation inequalities with weights publication-title: Compos. Math. – volume: 196 start-page: 443 issue: 2 year: 2002 ident: 10.1016/j.aim.2024.109852_br0190 article-title: Plancherel-type estimates and sharp spectral multipliers publication-title: J. Funct. Anal. doi: 10.1016/S0022-1236(02)00009-5 – volume: 229 start-page: 2427 year: 2012 ident: 10.1016/j.aim.2024.109852_br0220 article-title: W1,p estimates for elliptic problems with Neumann boundary conditions in Lipschitz domains publication-title: Adv. Math. doi: 10.1016/j.aim.2012.01.004 – volume: 223 start-page: 77 year: 2001 ident: 10.1016/j.aim.2024.109852_br0380 article-title: Complex powers of the Neumann Laplacian in Lipschitz domains publication-title: Math. Nachr. doi: 10.1002/1522-2616(200103)223:1<77::AID-MANA77>3.0.CO;2-D – volume: 10 start-page: 409 year: 1996 ident: 10.1016/j.aim.2024.109852_br0170 article-title: Lp estimates for divergence form elliptic equations with discontinuous coefficients publication-title: Boll. Unione Mat. Ital. A (7) – volume: 200 start-page: 160 issue: 1 year: 2003 ident: 10.1016/j.aim.2024.109852_br0440 article-title: The global behavior of heat kernels in exterior domains publication-title: J. Funct. Anal. doi: 10.1016/S0022-1236(02)00074-5 – volume: 57 start-page: 1283 year: 2004 ident: 10.1016/j.aim.2024.109852_br0090 article-title: Elliptic equations with BMO coefficients in Reifenberg domains publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20037 – volume: 90 start-page: 245 issue: 1 year: 2005 ident: 10.1016/j.aim.2024.109852_br0100 article-title: The conormal derivative problem for elliptic equations with BMO coefficients on Reifenberg flat domains publication-title: Proc. Lond. Math. Soc. (3) doi: 10.1112/S0024611504014960 – volume: vol. 30 year: 1970 ident: 10.1016/j.aim.2024.109852_br0420 article-title: Singular Integrals and Differentiability Properties of Functions – volume: 51 start-page: 1 year: 1998 ident: 10.1016/j.aim.2024.109852_br0110 article-title: On W1,p estimates for elliptic equations in divergence form publication-title: Commun. Pure Appl. Math. doi: 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G – volume: 336 year: 2011 ident: 10.1016/j.aim.2024.109852_br0260 article-title: Neumann and Dirichlet heat kernels in inner uniform domains publication-title: Astérisque – volume: 377 year: 2021 ident: 10.1016/j.aim.2024.109852_br0300 article-title: Riesz transform via heat kernel and harmonic functions on non-compact manifolds publication-title: Adv. Math. doi: 10.1016/j.aim.2020.107464 – volume: 196 start-page: 25 year: 2010 ident: 10.1016/j.aim.2024.109852_br0180 article-title: Elliptic equations in divergence form with partially BMO coefficients publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-009-0228-7 – volume: 37 start-page: 911 year: 2004 ident: 10.1016/j.aim.2024.109852_br0030 article-title: Riesz transform on manifolds and heat kernel regularity publication-title: Ann. Sci. Éc. Norm. Supér. (4) doi: 10.1016/j.ansens.2004.10.003 – volume: 25 start-page: 1771 year: 2000 ident: 10.1016/j.aim.2024.109852_br0430 article-title: The inhomogeneous Neumann problem in Lipschitz domains publication-title: Commun. Partial Differ. Equ. doi: 10.1080/03605302.2000.10824220 – volume: 357 start-page: 1025 year: 2005 ident: 10.1016/j.aim.2024.109852_br0080 article-title: Elliptic equations with BMO coefficients in Lipschitz domains publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-04-03624-4 – volume: 147 start-page: 71 year: 1981 ident: 10.1016/j.aim.2024.109852_br0330 article-title: Quasiconformal mappings and extendability of functions in Sobolev spaces publication-title: Acta Math. doi: 10.1007/BF02392869 – volume: 57 start-page: 172 year: 1991 ident: 10.1016/j.aim.2024.109852_br0280 article-title: Uniform, Sobolev extension and quasiconformal circle domains publication-title: J. Anal. Math. doi: 10.1007/BF03041069 |
SSID | ssj0009419 |
Score | 2.4219115 |
Snippet | Let L=−divA∇ be a uniformly elliptic operator on Rn, n≥2. Let Ω be an exterior Lipschitz domain, and let LD and LN be the operator L on Ω subject to the... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109852 |
SubjectTerms | Dirichlet operators Exterior Lipschitz domain Harmonic function Neumann operators Riesz transform |
Title | Riesz transform on exterior Lipschitz domains and applications |
URI | https://dx.doi.org/10.1016/j.aim.2024.109852 |
Volume | 453 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14EmKTzSa7uQilWOqjPYiF3sK-AhFNShsvPfjb3cmjVlAPHhN2IHxZZuZjZr5B6FLKxOfE007i08QSFJ86UUCEIzQjRDHJ_FKnezwJR1N6PwtmLTRoZmGgrbL2_ZVPL711_aZXo9mbpynM-MJCORvCKIiqMODtlDLQz7_--GrziKhXp8CeA6ebymbZ4yVSGEYnFESVeEB-jk0b8Wa4h3brRBH3q2_ZRy2THaCd8VpldXmIbp4szV3hosk9cZ7h0tem-QI_pvMl1AhWWOdvlv4vscg03qxXH6Hp8PZ5MHLqfQiOIhErHE6UBH04DnVX7UrhKqYECQzTNulhhmqfgiBY4kmPiUCFXqgtBQ2M9Wec68g_Ru0sz8wJwqAHKjkXxguVhc9wFegostTQ1dxSGN5BboNErGqxcNhZ8Ro3XWEvsQUvBvDiCrwOulqbzCuljL8O0wbe-Nvvjq0n_93s9H9mZ2gbnqrWsHPULhbv5sLmEoXslpeli7b6dw-jySefKsWJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPagH8Yn1uQdPQmyy2c1uLoIUS9W2B2mht2VfhYgmpY2XHvzt7uZRK6gHr8kOhC_LzHzMzDcAXEk5DRkKtDcN8dQSlBB7MUHCE5oipKikYaHTPRhGvTF-nJBJA3TqWRjXVln5_tKnF966etKu0GzPksTN-LqFcjaEYSeqQi1v38AkpO5q33x89XnEOKhy4MBzx-vSZtHkJRI3jY6wU1ViBP0cnNYCTncX7FSZIrwrP2YPNEy6D7YHK5nVxQG4fbY8dwnzOvmEWQoLZ5tkc9hPZgtXJFhCnb1Z_r-AItVwvWB9CMbd-1Gn51ULETyFYpp7DCnpBOKYK7xqXwpfUSUQMVTbrIcarEPsFMGmgQyoICoKIm05KDHWoTGm4_AINNMsNccAOkFQyZgwQaQsfoYpouPYckNfM8thWAv4NRJcVWrhbmnFK6_bwl64BY878HgJXgtcr0xmpVTGX4dxDS__9r-5deW_m538z-wSbPZGgz7vPwyfTsGWe1P2iZ2BZj5_N-c2scjlRXFxPgFxCMcf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Riesz+transform+on+exterior+Lipschitz+domains+and+applications&rft.jtitle=Advances+in+mathematics+%28New+York.+1965%29&rft.au=Jiang%2C+Renjin&rft.au=Lin%2C+Fanghua&rft.date=2024-09-01&rft.issn=0001-8708&rft.volume=453&rft.spage=109852&rft_id=info:doi/10.1016%2Fj.aim.2024.109852&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aim_2024_109852 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8708&client=summon |