Maximizing the lifetime in wireless sensor networks with multiple mobile sinks having nonzero travel times

It is a known phenomenon of the wireless sensor networks that the relay sensors, the sensors neighboring directly to the sinks, spend more energy than the rest of the sensors. This causes premature death of the relay sensors which isolates the sink(s) from the rest of the network. In order to preven...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 148; p. 106719
Main Authors Keskin, Muhammed Emre, Yiğit, Vecihi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2020
Subjects
Online AccessGet full text
ISSN0360-8352
1879-0550
DOI10.1016/j.cie.2020.106719

Cover

Loading…
Abstract It is a known phenomenon of the wireless sensor networks that the relay sensors, the sensors neighboring directly to the sinks, spend more energy than the rest of the sensors. This causes premature death of the relay sensors which isolates the sink(s) from the rest of the network. In order to prevent isolation of the sinks due to premature death of the relay sensors, sink mobility is offered as a remedy and that has attracted the interest of many researchers. Mobility of the sinks has been the subject of numerous studies but most of them assume that the mobile sinks travel from one point to another in negligible amount of time. However, harsh and hostile environments in which wireless sensor networks are deployed force the mobility of the sinks to be limited in real applications. Velocity of the mobile sinks for the wireless sensor networks deployed in hostile environments is so slow and consequently considerable sink traveling times occur. In this study, a mathematical model is offered that takes the sink travel times into consideration and the importance of taking sink traveling times into account is illustrated especially for the slow sinks. •We develop a mathematical model that takes nonzero sink travel times into account.•We develop extensive numerical examples to study with nonzero sink traveling times.•We illustrate that considering sink travel times is very important for slow sinks.
AbstractList It is a known phenomenon of the wireless sensor networks that the relay sensors, the sensors neighboring directly to the sinks, spend more energy than the rest of the sensors. This causes premature death of the relay sensors which isolates the sink(s) from the rest of the network. In order to prevent isolation of the sinks due to premature death of the relay sensors, sink mobility is offered as a remedy and that has attracted the interest of many researchers. Mobility of the sinks has been the subject of numerous studies but most of them assume that the mobile sinks travel from one point to another in negligible amount of time. However, harsh and hostile environments in which wireless sensor networks are deployed force the mobility of the sinks to be limited in real applications. Velocity of the mobile sinks for the wireless sensor networks deployed in hostile environments is so slow and consequently considerable sink traveling times occur. In this study, a mathematical model is offered that takes the sink travel times into consideration and the importance of taking sink traveling times into account is illustrated especially for the slow sinks. •We develop a mathematical model that takes nonzero sink travel times into account.•We develop extensive numerical examples to study with nonzero sink traveling times.•We illustrate that considering sink travel times is very important for slow sinks.
ArticleNumber 106719
Author Keskin, Muhammed Emre
Yiğit, Vecihi
Author_xml – sequence: 1
  givenname: Muhammed Emre
  surname: Keskin
  fullname: Keskin, Muhammed Emre
  email: m.emre.keskin@gmail.com
– sequence: 2
  givenname: Vecihi
  surname: Yiğit
  fullname: Yiğit, Vecihi
BookMark eNp9kMtOwzAQRS1UJNrCB7DzD6SMnSZOxApVvKQiNrCOHHdCpyROZZsW-vU4KisWXY3mca7u3Akb2d4iY9cCZgJEfrOZGcKZBDn0uRLlGRuLQpUJZBmM2BjSHJIizeQFm3i_AYB5Voox27zob-roQPaDhzXylhoM1CEny_fksEXvuUfre8cthn3vPn1chDXvvtpA2xZ519cUiycbV2u9G6SiuwO6ngend9jyQdFfsvNGtx6v_uqUvT_cvy2ekuXr4_PibpkYWaqQFCI3BkojZY1aNSiKulTpCnSRSyWNij9kedHMIa2VjBcFFI2QpoEGYV5qmU6ZOuoa13vvsKkMBR2ot9ENtZWAaois2sQ5VkNk1TGySIp_5NZRp93PSeb2yGB8aUfoKh9PrMFVTM-EatXTCfoXbYmISg
CitedBy_id crossref_primary_10_1007_s12652_021_03616_9
crossref_primary_10_1007_s42044_024_00180_1
crossref_primary_10_1002_dac_5194
crossref_primary_10_1002_nem_2267
crossref_primary_10_1002_ett_4567
crossref_primary_10_1007_s11276_021_02845_2
Cites_doi 10.1016/j.ejor.2016.12.006
10.1109/GLOCOM.2003.1258265
10.1093/comjnl/bxr048
10.1109/TMC.2010.76
10.1109/TNET.2009.2033472
10.1016/j.cor.2011.06.013
10.1109/TMC.2012.152
10.1016/j.cor.2011.09.002
10.1109/ISSPIT.2007.4458206
10.1016/j.pmcj.2006.11.001
10.1109/TPDS.2007.70770
10.1057/jors.2008.187
10.1007/s11276-007-0017-x
10.1109/GLOCOM.2010.5683095
10.1007/s11276-010-0313-8
10.1109/WCNC.2006.1683475
10.1016/j.adhoc.2010.01.005
10.1016/j.ejor.2010.05.020
10.1109/TWC.2008.060727
10.1109/SAHCN.2005.1557092
10.1016/j.adhoc.2019.102025
10.1109/TMC.2007.57
10.1016/j.comnet.2010.02.009
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2020.106719
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2020_106719
S0360835220304435
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-816cc09c22bea7fe18b973d0a86272c7352568f403b72ea7808f12cf0fe049a23
IEDL.DBID .~1
ISSN 0360-8352
IngestDate Thu Apr 24 23:11:08 EDT 2025
Tue Jul 01 02:59:49 EDT 2025
Fri Feb 23 02:47:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wireless sensor networks
Nonzero sink traveling time
Mobile sinks
Mixed-integer linear programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-816cc09c22bea7fe18b973d0a86272c7352568f403b72ea7808f12cf0fe049a23
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2020_106719
crossref_primary_10_1016_j_cie_2020_106719
elsevier_sciencedirect_doi_10_1016_j_cie_2020_106719
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (pp. 264–269). Las Vegas, NV USA.
Gatzianas, Georgiadis (b7) 2008; 7
Güney, Aras, Altınel, Ersoy (b11) 2012; 39
Vincze, Z., Fodor, K., Vida, R., & Vidács, A. (2006). Electrostatic modelling of multiple mobile sinks in wireless sensor networks. In
Guimarães, Frigieri, Sakai (b9) 2020; 97
Papadimitriou, Georgiadis (b19) 2005
Basagni, Carosi, Melachrinoudis, Petrioli, Wang (b3) 2008; 14
Behdani, Yun, Smith, Xia (b5) 2012; 39
(pp. 386–395).
Yun, Xia (b28) 2010; 9
(pp. 1–6).
Queensland, Australia.
Nesamony, S., Vairamuthu, M. K., Orlowska, M., & Sadiq, S. (2006).
Alsalih, W., Akl, S., & Hassanein, H. (2007). Placement of multiple mobile base stations in wireless sensor networks. In
Güney, Aras, Altınel, Ersoy (b10) 2010; 54
(pp. 377–381). San Francisco, USA.
Keskin (b13) 2017; 260
Li, Mohapatra (b15) 2007; 3
Wu, Chen, Das (b27) 2008; 19
Gu, Y., Bozdag, D., Ekici, E., Ozguner, F., & Lee, C. G. (2005). Partitioning based mobile element scheduling in wireless sensor networks. In
Wang, Basagni, Melachrinoudis, Petrioli (b26) 2005
Yun, Xia, Behdani, Smith (b29) 2013; 12
Luo, Hubaux (b17) 2010; 18
(pp. 229-233). Cairo, Egypt.
Jun, L., & Hubaux, J. P. (2007). Joint mobility and routing for lifetime elongation in wireless sensor networks. In
(pp. 1735-1746). Miami, FL USA.
Türkoǧulları, Aras, Altı nel, Ersoy (b22) 2010; 207
Somasundara, Ramamoorthy, Srivastava (b21) 2007; 6
(pp. 30–37). Coimbra, Portugal.
Gandham, S. R., Dawande, M., Prakash, R., & Venkatesan, S. (2003). Energy efficient schemes for wireless sensor networks with multiple mobile base stations. In
Azad, A. P., & Chockalingam, A. (2006). Mobile base stations placement and energy aware routing in wireless sensor networks. In
Türkoǧulları, Aras, Altınel (b23) 2009; 61
Keskin, Altınel, Aras, Ersoy (b14) 2011; 54
Liang, W., Luo, J., & Xu, X. (2010). Prolonging network lifetime via a controlled mobile sink in wireless sensor networks. In
Basagni, Carosi, Petrioli, Phillips (b4) 2011; 17
Popa, Rostamizadeh, Karp, Papadimitriou, Stoica (b20) 2007
Türkoǧulları, Aras, Altınel, Ersoy (b24) 2010; 8
Türkoǧulları (10.1016/j.cie.2020.106719_b22) 2010; 207
Wu (10.1016/j.cie.2020.106719_b27) 2008; 19
Luo (10.1016/j.cie.2020.106719_b17) 2010; 18
10.1016/j.cie.2020.106719_b25
Guimarães (10.1016/j.cie.2020.106719_b9) 2020; 97
Türkoǧulları (10.1016/j.cie.2020.106719_b23) 2009; 61
10.1016/j.cie.2020.106719_b6
10.1016/j.cie.2020.106719_b8
Behdani (10.1016/j.cie.2020.106719_b5) 2012; 39
Somasundara (10.1016/j.cie.2020.106719_b21) 2007; 6
Yun (10.1016/j.cie.2020.106719_b29) 2013; 12
10.1016/j.cie.2020.106719_b1
10.1016/j.cie.2020.106719_b2
Basagni (10.1016/j.cie.2020.106719_b3) 2008; 14
Keskin (10.1016/j.cie.2020.106719_b13) 2017; 260
Popa (10.1016/j.cie.2020.106719_b20) 2007
10.1016/j.cie.2020.106719_b16
Wang (10.1016/j.cie.2020.106719_b26) 2005
10.1016/j.cie.2020.106719_b18
Türkoǧulları (10.1016/j.cie.2020.106719_b24) 2010; 8
Papadimitriou (10.1016/j.cie.2020.106719_b19) 2005
Güney (10.1016/j.cie.2020.106719_b11) 2012; 39
10.1016/j.cie.2020.106719_b12
Gatzianas (10.1016/j.cie.2020.106719_b7) 2008; 7
Yun (10.1016/j.cie.2020.106719_b28) 2010; 9
Li (10.1016/j.cie.2020.106719_b15) 2007; 3
Basagni (10.1016/j.cie.2020.106719_b4) 2011; 17
Güney (10.1016/j.cie.2020.106719_b10) 2010; 54
Keskin (10.1016/j.cie.2020.106719_b14) 2011; 54
References_xml – volume: 260
  start-page: 291
  year: 2017
  end-page: 304
  ident: b13
  article-title: A column generation heuristic for optimal wireless sensor network design with mobile sinks
  publication-title: European Journal of Operational Research
– volume: 9
  start-page: 1308
  year: 2010
  end-page: 1318
  ident: b28
  article-title: Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications
  publication-title: IEEE Trnsactions on Mobile Computing
– reference: (pp. 30–37). Coimbra, Portugal.
– reference: (pp. 1–6).
– reference: (pp. 229-233). Cairo, Egypt.
– volume: 19
  start-page: 710
  year: 2008
  end-page: 720
  ident: b27
  article-title: Avoiding energy holes in wireless sensor networks with nonuniform node distribution
  publication-title: IEEE Transactions on Parallel Distributing
– reference: (pp. 377–381). San Francisco, USA.
– volume: 14
  start-page: 831
  year: 2008
  end-page: 858
  ident: b3
  article-title: Controlled sink mobility for prolonging wireless sensor networks lifetime
  publication-title: Wireless Networks
– volume: 18
  start-page: 871
  year: 2010
  end-page: 884
  ident: b17
  article-title: Joint sink mobility and routing to maximize the lifetime of wireless sensor networks: the case of constrained mobility
  publication-title: IEEE ACM Transactions Network
– start-page: 1
  year: 2005
  end-page: 5
  ident: b19
  article-title: Maximum lifetime routing to mobile sink in wireless sensor networks
– volume: 6
  start-page: 395
  year: 2007
  end-page: 410
  ident: b21
  article-title: Mobile element scheduling with dynamic deadlines
  publication-title: IEEE Transactions on Mobile Computing
– volume: 97
  year: 2020
  ident: b9
  article-title: Influence of node mobility, recharge, and path loss on the optimized lifetime of wireless rechargeable sensor networks
  publication-title: Ad Hoc Networks
– volume: 61
  start-page: 1000
  year: 2009
  end-page: 1012
  ident: b23
  article-title: Optimal placement scheduling and routing to maximize lifetime in sensor networks
  publication-title: Journal of Operational Research Society
– reference: Gu, Y., Bozdag, D., Ekici, E., Ozguner, F., & Lee, C. G. (2005). Partitioning based mobile element scheduling in wireless sensor networks. In
– reference: Liang, W., Luo, J., & Xu, X. (2010). Prolonging network lifetime via a controlled mobile sink in wireless sensor networks. In
– reference: Alsalih, W., Akl, S., & Hassanein, H. (2007). Placement of multiple mobile base stations in wireless sensor networks. In
– reference: (pp. 386–395).
– reference: Vincze, Z., Fodor, K., Vida, R., & Vidács, A. (2006). Electrostatic modelling of multiple mobile sinks in wireless sensor networks. In
– reference: Azad, A. P., & Chockalingam, A. (2006). Mobile base stations placement and energy aware routing in wireless sensor networks. In
– start-page: 287a
  year: 2005
  ident: b26
  article-title: Exploiting sink mobility for maximizing sensor networks lifetime
  publication-title: 38th annual Hawaii international conference on system sciences
– volume: 17
  start-page: 759
  year: 2011
  end-page: 778
  ident: b4
  article-title: Coordinated and controlled mobility of multiple sinks for maximizing the lifetime of wireless sensor networks
  publication-title: Wireless Networks
– volume: 12
  start-page: 1920
  year: 2013
  end-page: 1930
  ident: b29
  article-title: Distributed algorithm for lifetime maximization in a delay-tolerant wireless sensor network with a mobile sink
  publication-title: IEEE Transactions on Mobile Computing
– volume: 3
  start-page: 233
  year: 2007
  end-page: 254
  ident: b15
  article-title: Analytical modeling and mitigation techniques for the energy hole problem in sensor networks
  publication-title: Pervasive Mobile Computing
– reference: Gandham, S. R., Dawande, M., Prakash, R., & Venkatesan, S. (2003). Energy efficient schemes for wireless sensor networks with multiple mobile base stations. In
– volume: 39
  start-page: 1530
  year: 2012
  end-page: 1539
  ident: b11
  article-title: Efficient solution techniques for the integrated coverage, sink location and routing problem in wireless sensor networks
  publication-title: Comps and Operational Research
– start-page: 170
  year: 2007
  end-page: 179
  ident: b20
  article-title: Balancing traffic load in wireless networks with curveball routing
  publication-title: International symposium on mobile ad hoc networking and computing
– volume: 207
  start-page: 1014
  year: 2010
  end-page: 1026
  ident: b22
  article-title: A column generation based heuristic for sensor placement, activity scheduling and data routing in wireless sensor networks
  publication-title: European Journal of Operational Research
– volume: 54
  start-page: 1987
  year: 2011
  end-page: 1999
  ident: b14
  article-title: Lifetime maximization in wireless sensor networks using a mobile sink with nonzero traveling time
  publication-title: Computer Journal
– reference: (pp. 1735-1746). Miami, FL USA.
– reference: Nesamony, S., Vairamuthu, M. K., Orlowska, M., & Sadiq, S. (2006).
– volume: 39
  start-page: 1054
  year: 2012
  end-page: 1061
  ident: b5
  article-title: Decomposition algorithms for maximizing the lifetime of wireless sensor networks with mobile sinks
  publication-title: Computing Operational Reseacrh
– reference: (pp. 264–269). Las Vegas, NV USA.
– volume: 8
  start-page: 654
  year: 2010
  end-page: 667
  ident: b24
  article-title: An efficient heuristic for placement scheduling and routing in wireless sensor networks
  publication-title: Ad Hoc Networks
– volume: 54
  start-page: 1805
  year: 2010
  end-page: 1822
  ident: b10
  article-title: Efficient integer programming formulations for optimum sink location and routing in heterogeneous wireless sensor networks
  publication-title: Computer Networks
– volume: 7
  start-page: 984
  year: 2008
  end-page: 994
  ident: b7
  article-title: A distributed algorithm for maximum lifetime routing in sensor networks with mobile sink
  publication-title: IEEE Transactions on Wireless Communications
– reference: Jun, L., & Hubaux, J. P. (2007). Joint mobility and routing for lifetime elongation in wireless sensor networks. In
– reference: . Queensland, Australia.
– ident: 10.1016/j.cie.2020.106719_b18
– volume: 260
  start-page: 291
  issue: 1
  year: 2017
  ident: 10.1016/j.cie.2020.106719_b13
  article-title: A column generation heuristic for optimal wireless sensor network design with mobile sinks
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.12.006
– ident: 10.1016/j.cie.2020.106719_b6
  doi: 10.1109/GLOCOM.2003.1258265
– volume: 54
  start-page: 1987
  issue: 12
  year: 2011
  ident: 10.1016/j.cie.2020.106719_b14
  article-title: Lifetime maximization in wireless sensor networks using a mobile sink with nonzero traveling time
  publication-title: Computer Journal
  doi: 10.1093/comjnl/bxr048
– volume: 9
  start-page: 1308
  issue: 9
  year: 2010
  ident: 10.1016/j.cie.2020.106719_b28
  article-title: Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications
  publication-title: IEEE Trnsactions on Mobile Computing
  doi: 10.1109/TMC.2010.76
– volume: 18
  start-page: 871
  issue: 3
  year: 2010
  ident: 10.1016/j.cie.2020.106719_b17
  article-title: Joint sink mobility and routing to maximize the lifetime of wireless sensor networks: the case of constrained mobility
  publication-title: IEEE ACM Transactions Network
  doi: 10.1109/TNET.2009.2033472
– start-page: 287a
  year: 2005
  ident: 10.1016/j.cie.2020.106719_b26
  article-title: Exploiting sink mobility for maximizing sensor networks lifetime
– volume: 39
  start-page: 1054
  issue: 5
  year: 2012
  ident: 10.1016/j.cie.2020.106719_b5
  article-title: Decomposition algorithms for maximizing the lifetime of wireless sensor networks with mobile sinks
  publication-title: Computing Operational Reseacrh
  doi: 10.1016/j.cor.2011.06.013
– volume: 12
  start-page: 1920
  issue: 10
  year: 2013
  ident: 10.1016/j.cie.2020.106719_b29
  article-title: Distributed algorithm for lifetime maximization in a delay-tolerant wireless sensor network with a mobile sink
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2012.152
– volume: 39
  start-page: 1530
  issue: 7
  year: 2012
  ident: 10.1016/j.cie.2020.106719_b11
  article-title: Efficient solution techniques for the integrated coverage, sink location and routing problem in wireless sensor networks
  publication-title: Comps and Operational Research
  doi: 10.1016/j.cor.2011.09.002
– ident: 10.1016/j.cie.2020.106719_b1
  doi: 10.1109/ISSPIT.2007.4458206
– volume: 3
  start-page: 233
  issue: 3
  year: 2007
  ident: 10.1016/j.cie.2020.106719_b15
  article-title: Analytical modeling and mitigation techniques for the energy hole problem in sensor networks
  publication-title: Pervasive Mobile Computing
  doi: 10.1016/j.pmcj.2006.11.001
– volume: 19
  start-page: 710
  issue: 5
  year: 2008
  ident: 10.1016/j.cie.2020.106719_b27
  article-title: Avoiding energy holes in wireless sensor networks with nonuniform node distribution
  publication-title: IEEE Transactions on Parallel Distributing
  doi: 10.1109/TPDS.2007.70770
– volume: 61
  start-page: 1000
  issue: 6
  year: 2009
  ident: 10.1016/j.cie.2020.106719_b23
  article-title: Optimal placement scheduling and routing to maximize lifetime in sensor networks
  publication-title: Journal of Operational Research Society
  doi: 10.1057/jors.2008.187
– volume: 14
  start-page: 831
  issue: 6
  year: 2008
  ident: 10.1016/j.cie.2020.106719_b3
  article-title: Controlled sink mobility for prolonging wireless sensor networks lifetime
  publication-title: Wireless Networks
  doi: 10.1007/s11276-007-0017-x
– start-page: 1
  year: 2005
  ident: 10.1016/j.cie.2020.106719_b19
  article-title: Maximum lifetime routing to mobile sink in wireless sensor networks
– ident: 10.1016/j.cie.2020.106719_b16
  doi: 10.1109/GLOCOM.2010.5683095
– volume: 17
  start-page: 759
  issue: 3
  year: 2011
  ident: 10.1016/j.cie.2020.106719_b4
  article-title: Coordinated and controlled mobility of multiple sinks for maximizing the lifetime of wireless sensor networks
  publication-title: Wireless Networks
  doi: 10.1007/s11276-010-0313-8
– start-page: 170
  year: 2007
  ident: 10.1016/j.cie.2020.106719_b20
  article-title: Balancing traffic load in wireless networks with curveball routing
– ident: 10.1016/j.cie.2020.106719_b2
  doi: 10.1109/WCNC.2006.1683475
– volume: 8
  start-page: 654
  issue: 6
  year: 2010
  ident: 10.1016/j.cie.2020.106719_b24
  article-title: An efficient heuristic for placement scheduling and routing in wireless sensor networks
  publication-title: Ad Hoc Networks
  doi: 10.1016/j.adhoc.2010.01.005
– volume: 207
  start-page: 1014
  issue: 2
  year: 2010
  ident: 10.1016/j.cie.2020.106719_b22
  article-title: A column generation based heuristic for sensor placement, activity scheduling and data routing in wireless sensor networks
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2010.05.020
– ident: 10.1016/j.cie.2020.106719_b25
– volume: 7
  start-page: 984
  issue: 3
  year: 2008
  ident: 10.1016/j.cie.2020.106719_b7
  article-title: A distributed algorithm for maximum lifetime routing in sensor networks with mobile sink
  publication-title: IEEE Transactions on Wireless Communications
  doi: 10.1109/TWC.2008.060727
– ident: 10.1016/j.cie.2020.106719_b8
  doi: 10.1109/SAHCN.2005.1557092
– volume: 97
  year: 2020
  ident: 10.1016/j.cie.2020.106719_b9
  article-title: Influence of node mobility, recharge, and path loss on the optimized lifetime of wireless rechargeable sensor networks
  publication-title: Ad Hoc Networks
  doi: 10.1016/j.adhoc.2019.102025
– volume: 6
  start-page: 395
  issue: 4
  year: 2007
  ident: 10.1016/j.cie.2020.106719_b21
  article-title: Mobile element scheduling with dynamic deadlines
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2007.57
– volume: 54
  start-page: 1805
  issue: 11
  year: 2010
  ident: 10.1016/j.cie.2020.106719_b10
  article-title: Efficient integer programming formulations for optimum sink location and routing in heterogeneous wireless sensor networks
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2010.02.009
– ident: 10.1016/j.cie.2020.106719_b12
SSID ssj0004591
Score 2.3463964
Snippet It is a known phenomenon of the wireless sensor networks that the relay sensors, the sensors neighboring directly to the sinks, spend more energy than the rest...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106719
SubjectTerms Mixed-integer linear programming
Mobile sinks
Nonzero sink traveling time
Wireless sensor networks
Title Maximizing the lifetime in wireless sensor networks with multiple mobile sinks having nonzero travel times
URI https://dx.doi.org/10.1016/j.cie.2020.106719
Volume 148
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4Aoj8oDE1Jo4rhxPFYVVQG1C1TqFsWuI6Vqk6oJEurAb-cuD1QkYGC0dXaii3MP3913hNxK5Xm-62jL9ySz-JxJSzLjWr7kLASHSNtFLcx44o2m_GnWmzXIoK6FwbTKSvaXMr2Q1tVMt-Jmdx3H3ReQvaX9gNE90PpYwc4FnvL7D2cHMbzsmgfEFlLXkc0ixwu2BReR4dgTCLbzk27a0TfDY3JYGYq0X77LCWmYpEWOKqORVr9k1iIHO4iCp2QxDt_jVbyFAQXTji7jyGD7eBonFFGJlyDYaAaua7qhSZkBnlG8i6V1ZiFdpQokBc0wskuxhh-2StJkazYpzbFZ0ZIWDenPyHT48DoYWVU7BUszKXLLdzytbakZUyYUkXF8JYU7t0NwagTTAoFRPT_itqsEAwrf9iOH6ciODLgRIXPPSRMeZy4IDdHxilww7uaSG1BxobJ7CqEAuWARl21i14wMdIU1ji0vlkGdVLaAeRMg74OS921y97VkXQJt_EXM668TfDstASiC35dd_m_ZFdnHUZnCd02a-ebN3IApkqtOcdY6ZK__-DyafAKj59w0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSDD9SIzz14Mmko29J2j4RIijwuQsKtaZdtUgKFUEwMv94ZujWYqAePu53ZNtPtPDqz3wA8ichxPKshDc8R3LCnXBiCK8vwhM1DDIikuTsLMxg6_th-nTQnJWgXZ2GorFLr_lyn77S1nqlradZXSVJ_Q92b-w-U3UOrfwAVQqdqlqHS6vb84R5oeN44D-kNYiiSm7syL1wZo0ROY8clvJ2fzNOeyemcwYn2FVkrf5xzKKm0Cqfab2T6q8yqcLwHKngBs0H4kSySLQ4YendsnsSKOsizJGUETDxH3cYyjF6Xa5bmReAZo9-xrCguZItlhMqCZZTcZXSMH5dKl-lWrZdsQ_2K5mzXk_4Sxp2XUds3dEcFQ3Lhbgyv4UhpCsl5pEI3Vg0vEq41NUOMa1wuXcJGdbzYNq3I5UjhmV7c4DI2Y4WRRMitKyjj7dQ1sJBir9hC_24qbIVWLozMZkRogLbLY1vUwCwEGUgNN05dL-ZBUVc2w3kVkOyDXPY1eP5iWeVYG38R28XbCb5tmABtwe9sN_9je4RDfzToB_3usHcLR3Qlr-i7g_Jm_a7u0TPZRA96530CPALe5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximizing+the+lifetime+in+wireless+sensor+networks+with+multiple+mobile+sinks+having+nonzero+travel+times&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Keskin%2C+Muhammed+Emre&rft.au=Yi%C4%9Fit%2C+Vecihi&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=148&rft_id=info:doi/10.1016%2Fj.cie.2020.106719&rft.externalDocID=S0360835220304435
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon