Maximizing the lifetime in wireless sensor networks with multiple mobile sinks having nonzero travel times
It is a known phenomenon of the wireless sensor networks that the relay sensors, the sensors neighboring directly to the sinks, spend more energy than the rest of the sensors. This causes premature death of the relay sensors which isolates the sink(s) from the rest of the network. In order to preven...
Saved in:
Published in | Computers & industrial engineering Vol. 148; p. 106719 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-8352 1879-0550 |
DOI | 10.1016/j.cie.2020.106719 |
Cover
Loading…
Abstract | It is a known phenomenon of the wireless sensor networks that the relay sensors, the sensors neighboring directly to the sinks, spend more energy than the rest of the sensors. This causes premature death of the relay sensors which isolates the sink(s) from the rest of the network. In order to prevent isolation of the sinks due to premature death of the relay sensors, sink mobility is offered as a remedy and that has attracted the interest of many researchers. Mobility of the sinks has been the subject of numerous studies but most of them assume that the mobile sinks travel from one point to another in negligible amount of time. However, harsh and hostile environments in which wireless sensor networks are deployed force the mobility of the sinks to be limited in real applications. Velocity of the mobile sinks for the wireless sensor networks deployed in hostile environments is so slow and consequently considerable sink traveling times occur. In this study, a mathematical model is offered that takes the sink travel times into consideration and the importance of taking sink traveling times into account is illustrated especially for the slow sinks.
•We develop a mathematical model that takes nonzero sink travel times into account.•We develop extensive numerical examples to study with nonzero sink traveling times.•We illustrate that considering sink travel times is very important for slow sinks. |
---|---|
AbstractList | It is a known phenomenon of the wireless sensor networks that the relay sensors, the sensors neighboring directly to the sinks, spend more energy than the rest of the sensors. This causes premature death of the relay sensors which isolates the sink(s) from the rest of the network. In order to prevent isolation of the sinks due to premature death of the relay sensors, sink mobility is offered as a remedy and that has attracted the interest of many researchers. Mobility of the sinks has been the subject of numerous studies but most of them assume that the mobile sinks travel from one point to another in negligible amount of time. However, harsh and hostile environments in which wireless sensor networks are deployed force the mobility of the sinks to be limited in real applications. Velocity of the mobile sinks for the wireless sensor networks deployed in hostile environments is so slow and consequently considerable sink traveling times occur. In this study, a mathematical model is offered that takes the sink travel times into consideration and the importance of taking sink traveling times into account is illustrated especially for the slow sinks.
•We develop a mathematical model that takes nonzero sink travel times into account.•We develop extensive numerical examples to study with nonzero sink traveling times.•We illustrate that considering sink travel times is very important for slow sinks. |
ArticleNumber | 106719 |
Author | Keskin, Muhammed Emre Yiğit, Vecihi |
Author_xml | – sequence: 1 givenname: Muhammed Emre surname: Keskin fullname: Keskin, Muhammed Emre email: m.emre.keskin@gmail.com – sequence: 2 givenname: Vecihi surname: Yiğit fullname: Yiğit, Vecihi |
BookMark | eNp9kMtOwzAQRS1UJNrCB7DzD6SMnSZOxApVvKQiNrCOHHdCpyROZZsW-vU4KisWXY3mca7u3Akb2d4iY9cCZgJEfrOZGcKZBDn0uRLlGRuLQpUJZBmM2BjSHJIizeQFm3i_AYB5Voox27zob-roQPaDhzXylhoM1CEny_fksEXvuUfre8cthn3vPn1chDXvvtpA2xZ519cUiycbV2u9G6SiuwO6ngend9jyQdFfsvNGtx6v_uqUvT_cvy2ekuXr4_PibpkYWaqQFCI3BkojZY1aNSiKulTpCnSRSyWNij9kedHMIa2VjBcFFI2QpoEGYV5qmU6ZOuoa13vvsKkMBR2ot9ENtZWAaois2sQ5VkNk1TGySIp_5NZRp93PSeb2yGB8aUfoKh9PrMFVTM-EatXTCfoXbYmISg |
CitedBy_id | crossref_primary_10_1007_s12652_021_03616_9 crossref_primary_10_1007_s42044_024_00180_1 crossref_primary_10_1002_dac_5194 crossref_primary_10_1002_nem_2267 crossref_primary_10_1002_ett_4567 crossref_primary_10_1007_s11276_021_02845_2 |
Cites_doi | 10.1016/j.ejor.2016.12.006 10.1109/GLOCOM.2003.1258265 10.1093/comjnl/bxr048 10.1109/TMC.2010.76 10.1109/TNET.2009.2033472 10.1016/j.cor.2011.06.013 10.1109/TMC.2012.152 10.1016/j.cor.2011.09.002 10.1109/ISSPIT.2007.4458206 10.1016/j.pmcj.2006.11.001 10.1109/TPDS.2007.70770 10.1057/jors.2008.187 10.1007/s11276-007-0017-x 10.1109/GLOCOM.2010.5683095 10.1007/s11276-010-0313-8 10.1109/WCNC.2006.1683475 10.1016/j.adhoc.2010.01.005 10.1016/j.ejor.2010.05.020 10.1109/TWC.2008.060727 10.1109/SAHCN.2005.1557092 10.1016/j.adhoc.2019.102025 10.1109/TMC.2007.57 10.1016/j.comnet.2010.02.009 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cie.2020.106719 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-0550 |
ExternalDocumentID | 10_1016_j_cie_2020_106719 S0360835220304435 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-816cc09c22bea7fe18b973d0a86272c7352568f403b72ea7808f12cf0fe049a23 |
IEDL.DBID | .~1 |
ISSN | 0360-8352 |
IngestDate | Thu Apr 24 23:11:08 EDT 2025 Tue Jul 01 02:59:49 EDT 2025 Fri Feb 23 02:47:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wireless sensor networks Nonzero sink traveling time Mobile sinks Mixed-integer linear programming |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-816cc09c22bea7fe18b973d0a86272c7352568f403b72ea7808f12cf0fe049a23 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cie_2020_106719 crossref_primary_10_1016_j_cie_2020_106719 elsevier_sciencedirect_doi_10_1016_j_cie_2020_106719 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationTitle | Computers & industrial engineering |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | (pp. 264–269). Las Vegas, NV USA. Gatzianas, Georgiadis (b7) 2008; 7 Güney, Aras, Altınel, Ersoy (b11) 2012; 39 Vincze, Z., Fodor, K., Vida, R., & Vidács, A. (2006). Electrostatic modelling of multiple mobile sinks in wireless sensor networks. In Guimarães, Frigieri, Sakai (b9) 2020; 97 Papadimitriou, Georgiadis (b19) 2005 Basagni, Carosi, Melachrinoudis, Petrioli, Wang (b3) 2008; 14 Behdani, Yun, Smith, Xia (b5) 2012; 39 (pp. 386–395). Yun, Xia (b28) 2010; 9 (pp. 1–6). Queensland, Australia. Nesamony, S., Vairamuthu, M. K., Orlowska, M., & Sadiq, S. (2006). Alsalih, W., Akl, S., & Hassanein, H. (2007). Placement of multiple mobile base stations in wireless sensor networks. In Güney, Aras, Altınel, Ersoy (b10) 2010; 54 (pp. 377–381). San Francisco, USA. Keskin (b13) 2017; 260 Li, Mohapatra (b15) 2007; 3 Wu, Chen, Das (b27) 2008; 19 Gu, Y., Bozdag, D., Ekici, E., Ozguner, F., & Lee, C. G. (2005). Partitioning based mobile element scheduling in wireless sensor networks. In Wang, Basagni, Melachrinoudis, Petrioli (b26) 2005 Yun, Xia, Behdani, Smith (b29) 2013; 12 Luo, Hubaux (b17) 2010; 18 (pp. 229-233). Cairo, Egypt. Jun, L., & Hubaux, J. P. (2007). Joint mobility and routing for lifetime elongation in wireless sensor networks. In (pp. 1735-1746). Miami, FL USA. Türkoǧulları, Aras, Altı nel, Ersoy (b22) 2010; 207 Somasundara, Ramamoorthy, Srivastava (b21) 2007; 6 (pp. 30–37). Coimbra, Portugal. Gandham, S. R., Dawande, M., Prakash, R., & Venkatesan, S. (2003). Energy efficient schemes for wireless sensor networks with multiple mobile base stations. In Azad, A. P., & Chockalingam, A. (2006). Mobile base stations placement and energy aware routing in wireless sensor networks. In Türkoǧulları, Aras, Altınel (b23) 2009; 61 Keskin, Altınel, Aras, Ersoy (b14) 2011; 54 Liang, W., Luo, J., & Xu, X. (2010). Prolonging network lifetime via a controlled mobile sink in wireless sensor networks. In Basagni, Carosi, Petrioli, Phillips (b4) 2011; 17 Popa, Rostamizadeh, Karp, Papadimitriou, Stoica (b20) 2007 Türkoǧulları, Aras, Altınel, Ersoy (b24) 2010; 8 Türkoǧulları (10.1016/j.cie.2020.106719_b22) 2010; 207 Wu (10.1016/j.cie.2020.106719_b27) 2008; 19 Luo (10.1016/j.cie.2020.106719_b17) 2010; 18 10.1016/j.cie.2020.106719_b25 Guimarães (10.1016/j.cie.2020.106719_b9) 2020; 97 Türkoǧulları (10.1016/j.cie.2020.106719_b23) 2009; 61 10.1016/j.cie.2020.106719_b6 10.1016/j.cie.2020.106719_b8 Behdani (10.1016/j.cie.2020.106719_b5) 2012; 39 Somasundara (10.1016/j.cie.2020.106719_b21) 2007; 6 Yun (10.1016/j.cie.2020.106719_b29) 2013; 12 10.1016/j.cie.2020.106719_b1 10.1016/j.cie.2020.106719_b2 Basagni (10.1016/j.cie.2020.106719_b3) 2008; 14 Keskin (10.1016/j.cie.2020.106719_b13) 2017; 260 Popa (10.1016/j.cie.2020.106719_b20) 2007 10.1016/j.cie.2020.106719_b16 Wang (10.1016/j.cie.2020.106719_b26) 2005 10.1016/j.cie.2020.106719_b18 Türkoǧulları (10.1016/j.cie.2020.106719_b24) 2010; 8 Papadimitriou (10.1016/j.cie.2020.106719_b19) 2005 Güney (10.1016/j.cie.2020.106719_b11) 2012; 39 10.1016/j.cie.2020.106719_b12 Gatzianas (10.1016/j.cie.2020.106719_b7) 2008; 7 Yun (10.1016/j.cie.2020.106719_b28) 2010; 9 Li (10.1016/j.cie.2020.106719_b15) 2007; 3 Basagni (10.1016/j.cie.2020.106719_b4) 2011; 17 Güney (10.1016/j.cie.2020.106719_b10) 2010; 54 Keskin (10.1016/j.cie.2020.106719_b14) 2011; 54 |
References_xml | – volume: 260 start-page: 291 year: 2017 end-page: 304 ident: b13 article-title: A column generation heuristic for optimal wireless sensor network design with mobile sinks publication-title: European Journal of Operational Research – volume: 9 start-page: 1308 year: 2010 end-page: 1318 ident: b28 article-title: Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications publication-title: IEEE Trnsactions on Mobile Computing – reference: (pp. 30–37). Coimbra, Portugal. – reference: (pp. 1–6). – reference: (pp. 229-233). Cairo, Egypt. – volume: 19 start-page: 710 year: 2008 end-page: 720 ident: b27 article-title: Avoiding energy holes in wireless sensor networks with nonuniform node distribution publication-title: IEEE Transactions on Parallel Distributing – reference: (pp. 377–381). San Francisco, USA. – volume: 14 start-page: 831 year: 2008 end-page: 858 ident: b3 article-title: Controlled sink mobility for prolonging wireless sensor networks lifetime publication-title: Wireless Networks – volume: 18 start-page: 871 year: 2010 end-page: 884 ident: b17 article-title: Joint sink mobility and routing to maximize the lifetime of wireless sensor networks: the case of constrained mobility publication-title: IEEE ACM Transactions Network – start-page: 1 year: 2005 end-page: 5 ident: b19 article-title: Maximum lifetime routing to mobile sink in wireless sensor networks – volume: 6 start-page: 395 year: 2007 end-page: 410 ident: b21 article-title: Mobile element scheduling with dynamic deadlines publication-title: IEEE Transactions on Mobile Computing – volume: 97 year: 2020 ident: b9 article-title: Influence of node mobility, recharge, and path loss on the optimized lifetime of wireless rechargeable sensor networks publication-title: Ad Hoc Networks – volume: 61 start-page: 1000 year: 2009 end-page: 1012 ident: b23 article-title: Optimal placement scheduling and routing to maximize lifetime in sensor networks publication-title: Journal of Operational Research Society – reference: Gu, Y., Bozdag, D., Ekici, E., Ozguner, F., & Lee, C. G. (2005). Partitioning based mobile element scheduling in wireless sensor networks. In – reference: Liang, W., Luo, J., & Xu, X. (2010). Prolonging network lifetime via a controlled mobile sink in wireless sensor networks. In – reference: Alsalih, W., Akl, S., & Hassanein, H. (2007). Placement of multiple mobile base stations in wireless sensor networks. In – reference: (pp. 386–395). – reference: Vincze, Z., Fodor, K., Vida, R., & Vidács, A. (2006). Electrostatic modelling of multiple mobile sinks in wireless sensor networks. In – reference: Azad, A. P., & Chockalingam, A. (2006). Mobile base stations placement and energy aware routing in wireless sensor networks. In – start-page: 287a year: 2005 ident: b26 article-title: Exploiting sink mobility for maximizing sensor networks lifetime publication-title: 38th annual Hawaii international conference on system sciences – volume: 17 start-page: 759 year: 2011 end-page: 778 ident: b4 article-title: Coordinated and controlled mobility of multiple sinks for maximizing the lifetime of wireless sensor networks publication-title: Wireless Networks – volume: 12 start-page: 1920 year: 2013 end-page: 1930 ident: b29 article-title: Distributed algorithm for lifetime maximization in a delay-tolerant wireless sensor network with a mobile sink publication-title: IEEE Transactions on Mobile Computing – volume: 3 start-page: 233 year: 2007 end-page: 254 ident: b15 article-title: Analytical modeling and mitigation techniques for the energy hole problem in sensor networks publication-title: Pervasive Mobile Computing – reference: Gandham, S. R., Dawande, M., Prakash, R., & Venkatesan, S. (2003). Energy efficient schemes for wireless sensor networks with multiple mobile base stations. In – volume: 39 start-page: 1530 year: 2012 end-page: 1539 ident: b11 article-title: Efficient solution techniques for the integrated coverage, sink location and routing problem in wireless sensor networks publication-title: Comps and Operational Research – start-page: 170 year: 2007 end-page: 179 ident: b20 article-title: Balancing traffic load in wireless networks with curveball routing publication-title: International symposium on mobile ad hoc networking and computing – volume: 207 start-page: 1014 year: 2010 end-page: 1026 ident: b22 article-title: A column generation based heuristic for sensor placement, activity scheduling and data routing in wireless sensor networks publication-title: European Journal of Operational Research – volume: 54 start-page: 1987 year: 2011 end-page: 1999 ident: b14 article-title: Lifetime maximization in wireless sensor networks using a mobile sink with nonzero traveling time publication-title: Computer Journal – reference: (pp. 1735-1746). Miami, FL USA. – reference: Nesamony, S., Vairamuthu, M. K., Orlowska, M., & Sadiq, S. (2006). – volume: 39 start-page: 1054 year: 2012 end-page: 1061 ident: b5 article-title: Decomposition algorithms for maximizing the lifetime of wireless sensor networks with mobile sinks publication-title: Computing Operational Reseacrh – reference: (pp. 264–269). Las Vegas, NV USA. – volume: 8 start-page: 654 year: 2010 end-page: 667 ident: b24 article-title: An efficient heuristic for placement scheduling and routing in wireless sensor networks publication-title: Ad Hoc Networks – volume: 54 start-page: 1805 year: 2010 end-page: 1822 ident: b10 article-title: Efficient integer programming formulations for optimum sink location and routing in heterogeneous wireless sensor networks publication-title: Computer Networks – volume: 7 start-page: 984 year: 2008 end-page: 994 ident: b7 article-title: A distributed algorithm for maximum lifetime routing in sensor networks with mobile sink publication-title: IEEE Transactions on Wireless Communications – reference: Jun, L., & Hubaux, J. P. (2007). Joint mobility and routing for lifetime elongation in wireless sensor networks. In – reference: . Queensland, Australia. – ident: 10.1016/j.cie.2020.106719_b18 – volume: 260 start-page: 291 issue: 1 year: 2017 ident: 10.1016/j.cie.2020.106719_b13 article-title: A column generation heuristic for optimal wireless sensor network design with mobile sinks publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2016.12.006 – ident: 10.1016/j.cie.2020.106719_b6 doi: 10.1109/GLOCOM.2003.1258265 – volume: 54 start-page: 1987 issue: 12 year: 2011 ident: 10.1016/j.cie.2020.106719_b14 article-title: Lifetime maximization in wireless sensor networks using a mobile sink with nonzero traveling time publication-title: Computer Journal doi: 10.1093/comjnl/bxr048 – volume: 9 start-page: 1308 issue: 9 year: 2010 ident: 10.1016/j.cie.2020.106719_b28 article-title: Maximizing the lifetime of wireless sensor networks with mobile sink in delay-tolerant applications publication-title: IEEE Trnsactions on Mobile Computing doi: 10.1109/TMC.2010.76 – volume: 18 start-page: 871 issue: 3 year: 2010 ident: 10.1016/j.cie.2020.106719_b17 article-title: Joint sink mobility and routing to maximize the lifetime of wireless sensor networks: the case of constrained mobility publication-title: IEEE ACM Transactions Network doi: 10.1109/TNET.2009.2033472 – start-page: 287a year: 2005 ident: 10.1016/j.cie.2020.106719_b26 article-title: Exploiting sink mobility for maximizing sensor networks lifetime – volume: 39 start-page: 1054 issue: 5 year: 2012 ident: 10.1016/j.cie.2020.106719_b5 article-title: Decomposition algorithms for maximizing the lifetime of wireless sensor networks with mobile sinks publication-title: Computing Operational Reseacrh doi: 10.1016/j.cor.2011.06.013 – volume: 12 start-page: 1920 issue: 10 year: 2013 ident: 10.1016/j.cie.2020.106719_b29 article-title: Distributed algorithm for lifetime maximization in a delay-tolerant wireless sensor network with a mobile sink publication-title: IEEE Transactions on Mobile Computing doi: 10.1109/TMC.2012.152 – volume: 39 start-page: 1530 issue: 7 year: 2012 ident: 10.1016/j.cie.2020.106719_b11 article-title: Efficient solution techniques for the integrated coverage, sink location and routing problem in wireless sensor networks publication-title: Comps and Operational Research doi: 10.1016/j.cor.2011.09.002 – ident: 10.1016/j.cie.2020.106719_b1 doi: 10.1109/ISSPIT.2007.4458206 – volume: 3 start-page: 233 issue: 3 year: 2007 ident: 10.1016/j.cie.2020.106719_b15 article-title: Analytical modeling and mitigation techniques for the energy hole problem in sensor networks publication-title: Pervasive Mobile Computing doi: 10.1016/j.pmcj.2006.11.001 – volume: 19 start-page: 710 issue: 5 year: 2008 ident: 10.1016/j.cie.2020.106719_b27 article-title: Avoiding energy holes in wireless sensor networks with nonuniform node distribution publication-title: IEEE Transactions on Parallel Distributing doi: 10.1109/TPDS.2007.70770 – volume: 61 start-page: 1000 issue: 6 year: 2009 ident: 10.1016/j.cie.2020.106719_b23 article-title: Optimal placement scheduling and routing to maximize lifetime in sensor networks publication-title: Journal of Operational Research Society doi: 10.1057/jors.2008.187 – volume: 14 start-page: 831 issue: 6 year: 2008 ident: 10.1016/j.cie.2020.106719_b3 article-title: Controlled sink mobility for prolonging wireless sensor networks lifetime publication-title: Wireless Networks doi: 10.1007/s11276-007-0017-x – start-page: 1 year: 2005 ident: 10.1016/j.cie.2020.106719_b19 article-title: Maximum lifetime routing to mobile sink in wireless sensor networks – ident: 10.1016/j.cie.2020.106719_b16 doi: 10.1109/GLOCOM.2010.5683095 – volume: 17 start-page: 759 issue: 3 year: 2011 ident: 10.1016/j.cie.2020.106719_b4 article-title: Coordinated and controlled mobility of multiple sinks for maximizing the lifetime of wireless sensor networks publication-title: Wireless Networks doi: 10.1007/s11276-010-0313-8 – start-page: 170 year: 2007 ident: 10.1016/j.cie.2020.106719_b20 article-title: Balancing traffic load in wireless networks with curveball routing – ident: 10.1016/j.cie.2020.106719_b2 doi: 10.1109/WCNC.2006.1683475 – volume: 8 start-page: 654 issue: 6 year: 2010 ident: 10.1016/j.cie.2020.106719_b24 article-title: An efficient heuristic for placement scheduling and routing in wireless sensor networks publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2010.01.005 – volume: 207 start-page: 1014 issue: 2 year: 2010 ident: 10.1016/j.cie.2020.106719_b22 article-title: A column generation based heuristic for sensor placement, activity scheduling and data routing in wireless sensor networks publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2010.05.020 – ident: 10.1016/j.cie.2020.106719_b25 – volume: 7 start-page: 984 issue: 3 year: 2008 ident: 10.1016/j.cie.2020.106719_b7 article-title: A distributed algorithm for maximum lifetime routing in sensor networks with mobile sink publication-title: IEEE Transactions on Wireless Communications doi: 10.1109/TWC.2008.060727 – ident: 10.1016/j.cie.2020.106719_b8 doi: 10.1109/SAHCN.2005.1557092 – volume: 97 year: 2020 ident: 10.1016/j.cie.2020.106719_b9 article-title: Influence of node mobility, recharge, and path loss on the optimized lifetime of wireless rechargeable sensor networks publication-title: Ad Hoc Networks doi: 10.1016/j.adhoc.2019.102025 – volume: 6 start-page: 395 issue: 4 year: 2007 ident: 10.1016/j.cie.2020.106719_b21 article-title: Mobile element scheduling with dynamic deadlines publication-title: IEEE Transactions on Mobile Computing doi: 10.1109/TMC.2007.57 – volume: 54 start-page: 1805 issue: 11 year: 2010 ident: 10.1016/j.cie.2020.106719_b10 article-title: Efficient integer programming formulations for optimum sink location and routing in heterogeneous wireless sensor networks publication-title: Computer Networks doi: 10.1016/j.comnet.2010.02.009 – ident: 10.1016/j.cie.2020.106719_b12 |
SSID | ssj0004591 |
Score | 2.3463964 |
Snippet | It is a known phenomenon of the wireless sensor networks that the relay sensors, the sensors neighboring directly to the sinks, spend more energy than the rest... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106719 |
SubjectTerms | Mixed-integer linear programming Mobile sinks Nonzero sink traveling time Wireless sensor networks |
Title | Maximizing the lifetime in wireless sensor networks with multiple mobile sinks having nonzero travel times |
URI | https://dx.doi.org/10.1016/j.cie.2020.106719 |
Volume | 148 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4Aoj8oDE1Jo4rhxPFYVVQG1C1TqFsWuI6Vqk6oJEurAb-cuD1QkYGC0dXaii3MP3913hNxK5Xm-62jL9ySz-JxJSzLjWr7kLASHSNtFLcx44o2m_GnWmzXIoK6FwbTKSvaXMr2Q1tVMt-Jmdx3H3ReQvaX9gNE90PpYwc4FnvL7D2cHMbzsmgfEFlLXkc0ixwu2BReR4dgTCLbzk27a0TfDY3JYGYq0X77LCWmYpEWOKqORVr9k1iIHO4iCp2QxDt_jVbyFAQXTji7jyGD7eBonFFGJlyDYaAaua7qhSZkBnlG8i6V1ZiFdpQokBc0wskuxhh-2StJkazYpzbFZ0ZIWDenPyHT48DoYWVU7BUszKXLLdzytbakZUyYUkXF8JYU7t0NwagTTAoFRPT_itqsEAwrf9iOH6ciODLgRIXPPSRMeZy4IDdHxilww7uaSG1BxobJ7CqEAuWARl21i14wMdIU1ji0vlkGdVLaAeRMg74OS921y97VkXQJt_EXM668TfDstASiC35dd_m_ZFdnHUZnCd02a-ebN3IApkqtOcdY6ZK__-DyafAKj59w0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEJ4gHNSDD9SIzz14Mmko29J2j4RIijwuQsKtaZdtUgKFUEwMv94ZujWYqAePu53ZNtPtPDqz3wA8ichxPKshDc8R3LCnXBiCK8vwhM1DDIikuTsLMxg6_th-nTQnJWgXZ2GorFLr_lyn77S1nqlradZXSVJ_Q92b-w-U3UOrfwAVQqdqlqHS6vb84R5oeN44D-kNYiiSm7syL1wZo0ROY8clvJ2fzNOeyemcwYn2FVkrf5xzKKm0Cqfab2T6q8yqcLwHKngBs0H4kSySLQ4YendsnsSKOsizJGUETDxH3cYyjF6Xa5bmReAZo9-xrCguZItlhMqCZZTcZXSMH5dKl-lWrZdsQ_2K5mzXk_4Sxp2XUds3dEcFQ3Lhbgyv4UhpCsl5pEI3Vg0vEq41NUOMa1wuXcJGdbzYNq3I5UjhmV7c4DI2Y4WRRMitKyjj7dQ1sJBir9hC_24qbIVWLozMZkRogLbLY1vUwCwEGUgNN05dL-ZBUVc2w3kVkOyDXPY1eP5iWeVYG38R28XbCb5tmABtwe9sN_9je4RDfzToB_3usHcLR3Qlr-i7g_Jm_a7u0TPZRA96530CPALe5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximizing+the+lifetime+in+wireless+sensor+networks+with+multiple+mobile+sinks+having+nonzero+travel+times&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Keskin%2C+Muhammed+Emre&rft.au=Yi%C4%9Fit%2C+Vecihi&rft.date=2020-10-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=148&rft_id=info:doi/10.1016%2Fj.cie.2020.106719&rft.externalDocID=S0360835220304435 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |