Unveiling the enhancement of sulfidation for Fe(IV) production in a sulfidated microscale zero-valent iron activated peroxydisulfate process

[Display omitted] •Sulfidation regulates the key reactions of Fe(IV) formation in S-mZVI/PDS system.•Heterogeneous process becomes an important stage for Fe(IV) production.•The enhancement of Fe(II) release and electron transfer promotes Fe(IV) formation.•Sulfur species take a vital role in Fe(II)/F...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 457; p. 141183
Main Authors Duan, Zhongkai, Zhang, Yue, Han, Haixiang, Xu, Chunhua
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2023
Subjects
Online AccessGet full text
ISSN1385-8947
1873-3212
DOI10.1016/j.cej.2022.141183

Cover

Loading…
Abstract [Display omitted] •Sulfidation regulates the key reactions of Fe(IV) formation in S-mZVI/PDS system.•Heterogeneous process becomes an important stage for Fe(IV) production.•The enhancement of Fe(II) release and electron transfer promotes Fe(IV) formation.•Sulfur species take a vital role in Fe(II)/Fe(III) cycle in S-mZVI/PDS system. Ferryl ion species (Fe(IV)) is considered as an important reactive species in zero-valent iron activated peroxydisulfate (PDS) process that has great potential for decontamination due to its merits. Sulfidation is an effective chemical reaction process to improve the activity of microscale zero-valent iron (mZVI). In this subject, the effect of sulfidation on the production of Fe(IV), and the key reaction pathways of Fe(IV) generation in sulfidated mZVI (S-mZVI)/PDS system are still unclear. In this work, by using methyl phenol sulfoxide as a probe, we found that sulfidation could greatly change the pathway of Fe(IV) generation, in which the heterogeneous process was proposed to play an important role in activating PDS to produce Fe(IV). In comparison, the production of Fe(IV) in mZVI/PDS system was dependent on aqueous Fe(II) released from mZVI corrosion. Further analysis indicated that the improvement of Fe(IV) production caused by sulfidation could be ascribed to the acceleration of Fe(II) release as well as electron transfer. Sulfur species especially S(-II) could participate in the Fe(II)/Fe(III) cycle for Fe(II) regeneration, and underwent oxidation according to X-ray photoelectron spectroscopy analysis. In addition, we investigated the influence of key parameters (initial pH, PDS dosage, S-mZVI dosage) and coexisting anions (Cl−, SO42−, HCO3−) on Fe(IV) production in S-mZVI/PDS system. This study not only distinguishes the interface activation of PDS for Fe(IV) production from the homogeneous process, but also provides a new insight for the sulfidation to enhance the performance of iron-based materials on advanced oxidation processes.
AbstractList [Display omitted] •Sulfidation regulates the key reactions of Fe(IV) formation in S-mZVI/PDS system.•Heterogeneous process becomes an important stage for Fe(IV) production.•The enhancement of Fe(II) release and electron transfer promotes Fe(IV) formation.•Sulfur species take a vital role in Fe(II)/Fe(III) cycle in S-mZVI/PDS system. Ferryl ion species (Fe(IV)) is considered as an important reactive species in zero-valent iron activated peroxydisulfate (PDS) process that has great potential for decontamination due to its merits. Sulfidation is an effective chemical reaction process to improve the activity of microscale zero-valent iron (mZVI). In this subject, the effect of sulfidation on the production of Fe(IV), and the key reaction pathways of Fe(IV) generation in sulfidated mZVI (S-mZVI)/PDS system are still unclear. In this work, by using methyl phenol sulfoxide as a probe, we found that sulfidation could greatly change the pathway of Fe(IV) generation, in which the heterogeneous process was proposed to play an important role in activating PDS to produce Fe(IV). In comparison, the production of Fe(IV) in mZVI/PDS system was dependent on aqueous Fe(II) released from mZVI corrosion. Further analysis indicated that the improvement of Fe(IV) production caused by sulfidation could be ascribed to the acceleration of Fe(II) release as well as electron transfer. Sulfur species especially S(-II) could participate in the Fe(II)/Fe(III) cycle for Fe(II) regeneration, and underwent oxidation according to X-ray photoelectron spectroscopy analysis. In addition, we investigated the influence of key parameters (initial pH, PDS dosage, S-mZVI dosage) and coexisting anions (Cl−, SO42−, HCO3−) on Fe(IV) production in S-mZVI/PDS system. This study not only distinguishes the interface activation of PDS for Fe(IV) production from the homogeneous process, but also provides a new insight for the sulfidation to enhance the performance of iron-based materials on advanced oxidation processes.
ArticleNumber 141183
Author Xu, Chunhua
Zhang, Yue
Duan, Zhongkai
Han, Haixiang
Author_xml – sequence: 1
  givenname: Zhongkai
  surname: Duan
  fullname: Duan, Zhongkai
  organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
– sequence: 2
  givenname: Yue
  surname: Zhang
  fullname: Zhang, Yue
  organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
– sequence: 3
  givenname: Haixiang
  surname: Han
  fullname: Han, Haixiang
  organization: School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
– sequence: 4
  givenname: Chunhua
  surname: Xu
  fullname: Xu, Chunhua
  email: xuchunhua@sdu.edu.cn
  organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
BookMark eNp9kEFPwyAYhomZidv0B3jjqIdWoF0p8WQWpyZLvDivhMFXR9PRBbrF-Rv80dLNePCwE18-3ucNPCM0cK0DhK4pSSmhxV2daqhTRhhLaU5pmZ2hIS15lmSMskGcs3KSlCLnF2gUQk0IKQQVQ_S9cDuwjXUfuFsBBrdSTsMaXIfbCodtU1mjOts6XLUez-Dm5f0Wb3xrtvqwtQ6rvxgYvLbat0GrBvAX-DbZxSl2WR-zKiK7Q2oTrz73xvZgXPSFGkK4ROeVagJc_Z5jtJg9vk2fk_nr08v0YZ5oJniXlASypSk0U3k-gUKJomQZANClKqCsKKWVIEAKxriYQJ4LXRheLkVmgBPCWTZG9NjbvzV4qOTG27Xye0mJ7HXKWkadstcpjzojw_8x2nYHM51XtjlJ3h9JiF_aWfAyaAvRsrEedCdNa0_QP3i_lJc
CitedBy_id crossref_primary_10_1016_j_jwpe_2024_106411
crossref_primary_10_1016_j_scitotenv_2024_173644
crossref_primary_10_1016_j_jece_2025_115686
crossref_primary_10_1016_j_cej_2023_143651
crossref_primary_10_1016_j_jenvman_2024_120268
crossref_primary_10_1016_j_jhazmat_2023_133296
crossref_primary_10_1016_j_ccr_2024_215840
crossref_primary_10_1016_j_scitotenv_2024_170818
crossref_primary_10_1016_j_seppur_2024_131134
crossref_primary_10_1016_j_envpol_2024_124924
crossref_primary_10_1016_j_chemosphere_2023_139418
crossref_primary_10_1016_j_seppur_2023_125243
crossref_primary_10_1016_j_cej_2025_161594
crossref_primary_10_1021_acs_est_4c14797
Cites_doi 10.1016/j.chemosphere.2021.130760
10.1016/j.chemosphere.2021.131876
10.1021/acs.est.7b04177
10.1016/j.watres.2018.03.042
10.1016/j.cej.2021.129789
10.1021/acs.est.9b02170
10.1016/j.watres.2022.118402
10.1016/j.cej.2022.135277
10.1016/j.cej.2016.12.126
10.1021/acs.estlett.0c00025
10.1016/j.watres.2020.115504
10.1016/j.cej.2018.11.080
10.1021/acs.est.6b03997
10.1016/j.watres.2020.115862
10.1016/j.cej.2015.08.120
10.1016/j.chemosphere.2008.08.043
10.1021/acs.est.7b05847
10.1016/j.cej.2016.06.016
10.1016/j.apcatb.2022.121418
10.1016/j.chemosphere.2019.05.148
10.1016/j.cej.2018.01.033
10.1016/j.watres.2022.118930
10.1016/j.cej.2019.03.178
10.1002/ep.10609
10.1016/j.watres.2018.02.030
10.2138/am-2000-0416
10.1021/es0263792
10.1016/j.watres.2019.114866
10.1021/acs.est.7b02695
10.1021/acs.inorgchem.6b00966
10.1021/acs.est.7b06502
10.1016/j.watres.2013.06.023
10.1016/j.watres.2015.11.063
10.1016/S0891-5849(99)00049-0
10.1016/j.cej.2019.02.058
10.1016/j.watres.2021.117451
10.1039/C5RA16094D
10.1016/j.chemosphere.2020.129057
10.1021/acs.est.0c00218
10.1016/j.jclepro.2022.131276
10.1002/anie.200502686
10.1016/j.chemosphere.2021.130256
10.1002/kin.10076
10.1016/j.jhazmat.2022.128244
10.1016/j.watres.2018.06.002
10.1016/j.watres.2022.118887
10.1021/acs.est.1c04530
10.1021/ie400165a
10.1016/j.psep.2020.12.003
10.1021/ja0457112
10.1006/abbi.1995.0010
10.1021/acs.est.8b02266
10.1016/j.watres.2017.11.006
10.1002/(SICI)1097-4601(1998)30:3<215::AID-KIN7>3.0.CO;2-V
10.1016/j.seppur.2009.12.010
10.1021/am200016v
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2022.141183
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2022_141183
S1385894722066645
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c297t-80e3bd6c2a445e6a96823eee1ba6e8f111f90e0622795e449c6d78b93de700723
IEDL.DBID AIKHN
ISSN 1385-8947
IngestDate Thu Apr 24 22:59:33 EDT 2025
Tue Jul 01 01:50:31 EDT 2025
Fri Feb 23 02:37:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Peroxydisulfate activation
Sulfidation
Fe(IV) production
Heterogeneous process
Sulfidated microscale zero-valent iron
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-80e3bd6c2a445e6a96823eee1ba6e8f111f90e0622795e449c6d78b93de700723
ParticipantIDs crossref_primary_10_1016_j_cej_2022_141183
crossref_citationtrail_10_1016_j_cej_2022_141183
elsevier_sciencedirect_doi_10_1016_j_cej_2022_141183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Qiu, Pang, Guo, Guan, Jiang (b0100) 2022; 56
He, Li, Xie, Yang, He, Xiong, Du, Liu, Jiang, Mu, Lai (b0085) 2022; 222
Anipsitakis, Dionysiou (b0175) 2003; 37
Yang, He, Xie, Li, Xiong, Zhang, Zhou, Jiang, Mu, Lai (b0220) 2022; 217
Martire, Caregnato, Furlong, Allegretti, Gonzalez (b0110) 2002; 34
Burkitt, Ying Tsang, Ching Tam, Bremner (b0185) 1995; 323
Zeng, Hu, Tan, He, He, Pan, Hou, Shu (b0060) 2017; 281
Guan, Ma, Ren, Liu, Xiao, Lin, Zhang (b0190) 2013; 47
Deng, Liu, Cagnetta, Huang, Yu (b0145) 2021; 423
Liang, Zhu, Hua, Duan, Yang, Wang, Wei, Liu, Feng (b0090) 2020; 54
Guo, Gao, Yang, Zheng, Du, Wen, Wang (b0275) 2021; 146
Li, Zhang, Liu, Pan, Zhang, Shi, Guan (b0135) 2018; 52
Jacobsen, Holcman, Sehested (b0280) 1998; 30
Dong, Li, Wang, Liu, Zhou, Xie, Guan (b0070) 2020; 7
Kim, Ahn, Kim, Shin, Hwang (b0210) 2018; 52
Li, Wan, Ma, Wang, Guan (b0285) 2015; 5
Ni, Yan, Sun, Chen, Peng, Wei, Wang, Mao, Dai, Wang (b0015) 2019; 232
Zhao, Ji, Kong, Lu, Zhou, Yin (b0050) 2016; 303
Zhang, Song, Xu, Hao, Shang, Wang, Tang, Sun (b0160) 2021; 281
Liang, Huang, Mohanty, Kurakalva (b0170) 2008; 73
Li, Zhao, Yan, Yan, Pan, Zhang, Lai (b0155) 2019; 376
Li, Yang, Wang, Yuan (b0055) 2017; 317
Xiong, Pei (b0025) 2021; 277
Dong, Hou, Qiao, Cheng, Zhang, Wang, Li, Wang, Ning, Zeng (b0150) 2019; 359
Bataineh, Pestovsky, Bakac (b0105) 2016; 55
Ali, Lei, Ajmal, Jerosha, Aregay, Shahib, Elkhlifi, Chen, Chen (b0195) 2020; 181
Karim, Jiao, Zhou, Nidheesh (b0040) 2021; 265
Shao, Xu, Wang, Huang, Zhang, Huang, Fan, Tratnyek (b0165) 2018; 135
Kim, Kim, Azad, Chang (b0230) 2011; 3
Pestovsky, Bakac (b0075) 2004; 126
Zhou, Wang, Zhu, Dionysiou, Zhao, Fang, Zhou (b0255) 2018; 142
Yu, Jin, Wang, Yu, Zhu, Chen, Zhong, Sun, Zhu (b0200) 2022; 428
Kim, Murugesan, Kim, Tratnyek, Chang (b0120) 2013; 52
Timmins, Liu, Bechara, Kotake, Swartz (b0180) 1999; 27
Wang, Jiang, Pang, Zhou, Guan, Gao, Li, Yang, Qiu, Jiang (b0095) 2018; 52
Li, Zhang, Sun, Liang, Pan, Zhang, Guan (b0130) 2017; 51
Wu, Chen, Han, Yue, Cao, Zhao, Qian (b0045) 2019; 53
Xiao, Xiao, Dong, Jin, Li, Li, Tian, Li, Chen, Xie (b0235) 2022; 346
Miklos, Remy, Jekel, Linden, Drewes, Hübner (b0005) 2018; 139
Xing, Shao, Yang, Zhou, Jing, Zhao (b0225) 2022; 222
Xu, Schoonen (b0245) 2000; 85
Zhao, Zhang, Quan, Chen (b0240) 2010; 71
Wei, Gao, Li, Deng, Zhou, Li (b0035) 2016; 285
Gong, Tang, Zhao (b0250) 2016; 89
Pestovsky, Stoian, Bominaar, Shan, Munck, Que, Bakac (b0080) 2005; 44
Oyekunle, Gendy, Ifthikar, Chen (b0020) 2022; 437
Wang, Qiu, Pang, Gao, Zhou, Cao, Jiang (b0065) 2020; 172
Han, Batchelor, Abdel-Wahab (b0260) 2013; 32
Huang, Xu, Shao, Wang, Zhang, Gao, Zhou, Tratnyek (b0115) 2018; 338
Han, Yan (b0140) 2016; 50
Jia, Zhang, Huang, Wang, Xu (b0205) 2019; 366
Yu, Mao, He, Zheng, Zhang, Su, Xi (b0265) 2022; 312
Fan, Lan, Tratnyek, Johnson, Filip, O’Carroll, Nunez Garcia, Agrawal (b0125) 2017; 51
Wu, Kong, Gao, Kong, Dai, Dan, Shang, Wang, Yin, Yue, Gao (b0270) 2022; 286
Moreno-Andrés, Farinango, Romero-Martínez, Acevedo-Merino, Nebot (b0010) 2019; 163
Li, Wang, Zheng (b0030) 2018; 129
Li, Dong, Li, Xiao, Xiao, Jin (b0215) 2021; 202
Dong (10.1016/j.cej.2022.141183_b0070) 2020; 7
Zeng (10.1016/j.cej.2022.141183_b0060) 2017; 281
Kim (10.1016/j.cej.2022.141183_b0210) 2018; 52
Yu (10.1016/j.cej.2022.141183_b0265) 2022; 312
Moreno-Andrés (10.1016/j.cej.2022.141183_b0010) 2019; 163
Shao (10.1016/j.cej.2022.141183_b0165) 2018; 135
Dong (10.1016/j.cej.2022.141183_b0150) 2019; 359
Li (10.1016/j.cej.2022.141183_b0155) 2019; 376
Kim (10.1016/j.cej.2022.141183_b0120) 2013; 52
Gong (10.1016/j.cej.2022.141183_b0250) 2016; 89
Deng (10.1016/j.cej.2022.141183_b0145) 2021; 423
Liang (10.1016/j.cej.2022.141183_b0170) 2008; 73
Yu (10.1016/j.cej.2022.141183_b0200) 2022; 428
Li (10.1016/j.cej.2022.141183_b0030) 2018; 129
Guan (10.1016/j.cej.2022.141183_b0190) 2013; 47
Ali (10.1016/j.cej.2022.141183_b0195) 2020; 181
Li (10.1016/j.cej.2022.141183_b0135) 2018; 52
Huang (10.1016/j.cej.2022.141183_b0115) 2018; 338
Li (10.1016/j.cej.2022.141183_b0285) 2015; 5
Han (10.1016/j.cej.2022.141183_b0260) 2013; 32
Liang (10.1016/j.cej.2022.141183_b0090) 2020; 54
He (10.1016/j.cej.2022.141183_b0085) 2022; 222
Oyekunle (10.1016/j.cej.2022.141183_b0020) 2022; 437
Zhao (10.1016/j.cej.2022.141183_b0240) 2010; 71
Wei (10.1016/j.cej.2022.141183_b0035) 2016; 285
Zhao (10.1016/j.cej.2022.141183_b0050) 2016; 303
Xing (10.1016/j.cej.2022.141183_b0225) 2022; 222
Xiao (10.1016/j.cej.2022.141183_b0235) 2022; 346
Wang (10.1016/j.cej.2022.141183_b0100) 2022; 56
Wu (10.1016/j.cej.2022.141183_b0045) 2019; 53
Pestovsky (10.1016/j.cej.2022.141183_b0080) 2005; 44
Martire (10.1016/j.cej.2022.141183_b0110) 2002; 34
Yang (10.1016/j.cej.2022.141183_b0220) 2022; 217
Li (10.1016/j.cej.2022.141183_b0055) 2017; 317
Karim (10.1016/j.cej.2022.141183_b0040) 2021; 265
Zhou (10.1016/j.cej.2022.141183_b0255) 2018; 142
Burkitt (10.1016/j.cej.2022.141183_b0185) 1995; 323
Xiong (10.1016/j.cej.2022.141183_b0025) 2021; 277
Li (10.1016/j.cej.2022.141183_b0215) 2021; 202
Miklos (10.1016/j.cej.2022.141183_b0005) 2018; 139
Li (10.1016/j.cej.2022.141183_b0130) 2017; 51
Anipsitakis (10.1016/j.cej.2022.141183_b0175) 2003; 37
Jia (10.1016/j.cej.2022.141183_b0205) 2019; 366
Wang (10.1016/j.cej.2022.141183_b0095) 2018; 52
Bataineh (10.1016/j.cej.2022.141183_b0105) 2016; 55
Pestovsky (10.1016/j.cej.2022.141183_b0075) 2004; 126
Wu (10.1016/j.cej.2022.141183_b0270) 2022; 286
Han (10.1016/j.cej.2022.141183_b0140) 2016; 50
Ni (10.1016/j.cej.2022.141183_b0015) 2019; 232
Zhang (10.1016/j.cej.2022.141183_b0160) 2021; 281
Guo (10.1016/j.cej.2022.141183_b0275) 2021; 146
Xu (10.1016/j.cej.2022.141183_b0245) 2000; 85
Wang (10.1016/j.cej.2022.141183_b0065) 2020; 172
Fan (10.1016/j.cej.2022.141183_b0125) 2017; 51
Kim (10.1016/j.cej.2022.141183_b0230) 2011; 3
Timmins (10.1016/j.cej.2022.141183_b0180) 1999; 27
Jacobsen (10.1016/j.cej.2022.141183_b0280) 1998; 30
References_xml – volume: 303
  start-page: 458
  year: 2016
  end-page: 466
  ident: b0050
  article-title: Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 13070
  year: 2017
  end-page: 13085
  ident: b0125
  article-title: Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation
  publication-title: Environ. Sci. Technol.
– volume: 338
  start-page: 539
  year: 2018
  end-page: 547
  ident: b0115
  article-title: Sulfide-modified zerovalent iron for enhanced antimonite sequestration: characterization, performance, and reaction mechanisms
  publication-title: Chem. Eng. J.
– volume: 146
  start-page: 686
  year: 2021
  end-page: 693
  ident: b0275
  article-title: Degradation of pyrene in contaminated water and soil by Fe
  publication-title: Process. Saf. Environ.
– volume: 52
  start-page: 11276
  year: 2018
  end-page: 11284
  ident: b0095
  article-title: Is sulfate radical really generated from peroxydisulfate activated by Iron(II) for environmental decontamination?
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 12992
  year: 2016
  end-page: 13001
  ident: b0140
  article-title: Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment
  publication-title: Environ. Sci. Technol.
– volume: 89
  start-page: 309
  year: 2016
  end-page: 320
  ident: b0250
  article-title: Application of iron sulfide particles for groundwater and soil remediation: a review
  publication-title: Water Res.
– volume: 3
  start-page: 1457
  year: 2011
  end-page: 1462
  ident: b0230
  article-title: Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications
  publication-title: ACS Appl. Mater.
– volume: 163
  year: 2019
  ident: b0010
  article-title: Application of persulfate salts for enhancing UV disinfection in marine waters
  publication-title: Water Res.
– volume: 55
  start-page: 6719
  year: 2016
  end-page: 6724
  ident: b0105
  article-title: Electron transfer reactivity of the aqueous iron(IV)–oxo complex. Outer-sphere vs proton-coupled electron transfer
  publication-title: Inorg. Chem.
– volume: 30
  start-page: 215
  year: 1998
  end-page: 221
  ident: b0280
  article-title: Reactions of the ferryl ion with some compounds found in cloud water
  publication-title: Int. J. Chem. Kinet.
– volume: 428
  year: 2022
  ident: b0200
  article-title: Transformation of sulfamethoxazole by sulfidated nanoscale zerovalent iron activated persulfate: mechanism and risk assessment using environmental metabolomics
  publication-title: J. Hazard. Mater.
– volume: 222
  year: 2022
  ident: b0225
  article-title: Mechanistic insights into the efficient activation of peracetic acid by pyrite for the tetracycline abatement
  publication-title: Water Res.
– volume: 232
  start-page: 45
  year: 2019
  end-page: 53
  ident: b0015
  article-title: Persulfate and zero valent iron combined conditioning as a sustainable technique for enhancing dewaterability of aerobically digested sludge
  publication-title: Chemosphere
– volume: 142
  start-page: 208
  year: 2018
  end-page: 216
  ident: b0255
  article-title: New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation
  publication-title: Water Res.
– volume: 56
  start-page: 1492
  year: 2022
  end-page: 1509
  ident: b0100
  article-title: Aqueous iron(IV)–oxo complex: an emerging powerfulreactive oxidant formed by iron(II)-based advanced oxidation processes for oxidative water treatment
  publication-title: Environ. Sci. Technol.
– volume: 286
  year: 2022
  ident: b0270
  article-title: Removal of chloramphenicol by sulfide-modified nanoscale zero-valent iron activated persulfate: performance, salt resistance, and reaction mechanisms
  publication-title: Chemosphere
– volume: 285
  start-page: 660
  year: 2016
  end-page: 670
  ident: b0035
  article-title: Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water
  publication-title: Chem. Eng. J.
– volume: 53
  start-page: 9081
  year: 2019
  end-page: 9090
  ident: b0045
  article-title: Highly efficient utilization of nano-Fe(0) embedded in mesoporous carbon for activation of peroxydisulfate
  publication-title: Environ. Sci. Technol.
– volume: 222
  year: 2022
  ident: b0085
  article-title: Peracetic acid activation by mechanochemically sulfidated zero valent iron for micropollutants degradation: enhancement mechanism and strategy for extending applicability
  publication-title: Water Res.
– volume: 277
  year: 2021
  ident: b0025
  article-title: A review on efficient removal of phthalic acid esters via biochars and transition metals-activated persulfate systems
  publication-title: Chemosphere
– volume: 5
  start-page: 99935
  year: 2015
  end-page: 99943
  ident: b0285
  article-title: Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron
  publication-title: RSC Adv.
– volume: 376
  year: 2019
  ident: b0155
  article-title: Enhanced sulfamethoxazole degradation by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron (S-mFe
  publication-title: Chem. Eng. J.
– volume: 54
  start-page: 6406
  year: 2020
  end-page: 6414
  ident: b0090
  article-title: Fe
  publication-title: Environ. Sci. Technol.
– volume: 44
  start-page: 6871
  year: 2005
  end-page: 6874
  ident: b0080
  article-title: Aqueous Fe
  publication-title: Angew. Chem. Int. Ed.
– volume: 27
  start-page: 329
  year: 1999
  end-page: 333
  ident: b0180
  article-title: Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO· and SO
  publication-title: Free Radic. Biol. Med.
– volume: 34
  start-page: 488
  year: 2002
  end-page: 494
  ident: b0110
  article-title: Kinetic study of the reactions of oxoiron(IV) with aromatic substrates in aqueous solutions
  publication-title: Int. J. Chem. Kinet.
– volume: 52
  start-page: 3625
  year: 2018
  end-page: 3633
  ident: b0210
  article-title: Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI
  publication-title: Environ. Sci. Technol.
– volume: 71
  start-page: 302
  year: 2010
  end-page: 307
  ident: b0240
  article-title: Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature
  publication-title: Sep. Purif. Technol.
– volume: 139
  start-page: 118
  year: 2018
  end-page: 131
  ident: b0005
  article-title: Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review
  publication-title: Water Res.
– volume: 312
  year: 2022
  ident: b0265
  article-title: Efficient degradation of sulfamethazine in a silicified microscale zero-valent iron activated persulfate process
  publication-title: Appl. Catal. B
– volume: 423
  year: 2021
  ident: b0145
  article-title: Mechanochemically synthesized S-ZVI
  publication-title: Chem. Eng. J.
– volume: 366
  start-page: 200
  year: 2019
  end-page: 207
  ident: b0205
  article-title: Enhanced sequestration of Cr(VI) by copper doped sulfidated zerovalent iron (SZVI-Cu): characterization, performance, and mechanisms
  publication-title: Chem. Eng. J.
– volume: 129
  start-page: 83
  year: 2018
  end-page: 93
  ident: b0030
  article-title: Variations of moisture and organics in activated sludge during Fe
  publication-title: Water Res.
– volume: 217
  year: 2022
  ident: b0220
  article-title: Efficient activation of PAA by FeS for fast removal of pharmaceuticals: the dual role of sulfur species in regulating the reactive oxidized species
  publication-title: Water Res.
– volume: 7
  start-page: 219
  year: 2020
  end-page: 224
  ident: b0070
  article-title: Both Fe(IV) and radicals are active oxidants in the Fe(II)/peroxydisulfate process
  publication-title: Environ. Sci. Tech. Let.
– volume: 126
  start-page: 13757
  year: 2004
  end-page: 13764
  ident: b0075
  article-title: Reactivity of aqueous Fe(IV) in hydride and hydrogen atom transfer reactions
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 9343
  year: 2013
  end-page: 9350
  ident: b0120
  article-title: Remediation of trichloroethylene by FeS-coated iron nanoparticles in simulated and real groundwater: effects of water chemistry
  publication-title: Ind. Eng. Chem. Res.
– volume: 317
  start-page: 103
  year: 2017
  end-page: 111
  ident: b0055
  article-title: Enhanced oxidation of erythromycin by persulfate activated iron powder–H
  publication-title: Chem. Eng. J.
– volume: 281
  year: 2021
  ident: b0160
  article-title: Sulfidated zero valent iron as a persulfate activator for oxidizing organophosphorus pesticides (OPPs) in aqueous solution and aged contaminated soil columns
  publication-title: Chemosphere
– volume: 51
  start-page: 13533
  year: 2017
  end-page: 13544
  ident: b0130
  article-title: Advances in sulfidation of zerovalent iron for water decontamination
  publication-title: Environ. Sci. Technol.
– volume: 359
  start-page: 1046
  year: 2019
  end-page: 1055
  ident: b0150
  article-title: Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate
  publication-title: Chem. Eng. J.
– volume: 73
  start-page: 1540
  year: 2008
  end-page: 1543
  ident: b0170
  article-title: A rapid spectrophotometric determination of persulfate anion in ISCO
  publication-title: Chemosphere
– volume: 346
  year: 2022
  ident: b0235
  article-title: Degradation of sulfamethazine by amorphous zero-valent iron microspheres (A-mZVI) activated peroxydisulfate in groundwater
  publication-title: J. Clean. Prod.
– volume: 85
  start-page: 543
  year: 2000
  end-page: 556
  ident: b0245
  article-title: The absolute energy positions of conduction and valence bands of selected semiconducting minerals
  publication-title: Am. Mineral
– volume: 172
  year: 2020
  ident: b0065
  article-title: Relative contribution of ferryl ion species (Fe(IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes
  publication-title: Water Res.
– volume: 265
  year: 2021
  ident: b0040
  article-title: Iron-based persulfate activation process for environmental decontamination in water and soil
  publication-title: Chemosphere
– volume: 32
  start-page: 84
  year: 2013
  end-page: 93
  ident: b0260
  article-title: XPS analysis of sorption of selenium(IV) and selenium(VI) to mackinawite (FeS)
  publication-title: Environ. Prog. Sustain
– volume: 437
  year: 2022
  ident: b0020
  article-title: Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: a review
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 2988
  year: 2018
  end-page: 2997
  ident: b0135
  article-title: Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions
  publication-title: Environ. Sci. Technol.
– volume: 135
  start-page: 322
  year: 2018
  end-page: 330
  ident: b0165
  article-title: Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: mechanistic insights for enhanced chromate removal
  publication-title: Water Res.
– volume: 202
  year: 2021
  ident: b0215
  article-title: Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite
  publication-title: Water Res.
– volume: 281
  start-page: 520
  year: 2017
  end-page: 526
  ident: b0060
  article-title: Elimination of methyl mercaptan in ZVI-S
  publication-title: Catal.
– volume: 47
  start-page: 5431
  year: 2013
  end-page: 5438
  ident: b0190
  article-title: Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals
  publication-title: Water Res.
– volume: 181
  year: 2020
  ident: b0195
  article-title: Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: a new strategy to achieve maximum persulfate utilization efficiency
  publication-title: Water Res.
– volume: 323
  start-page: 63
  year: 1995
  end-page: 70
  ident: b0185
  article-title: Generation of 5,5-Dimethyl-1-pyrroline N-oxide Hydroxyl and scavenger radical adducts from Copper/H
  publication-title: Arch. Biochem. Biophys.
– volume: 37
  start-page: 4790
  year: 2003
  end-page: 4797
  ident: b0175
  article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt
  publication-title: Environ. Sci. Technol.
– volume: 281
  year: 2021
  ident: 10.1016/j.cej.2022.141183_b0160
  article-title: Sulfidated zero valent iron as a persulfate activator for oxidizing organophosphorus pesticides (OPPs) in aqueous solution and aged contaminated soil columns
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130760
– volume: 286
  year: 2022
  ident: 10.1016/j.cej.2022.141183_b0270
  article-title: Removal of chloramphenicol by sulfide-modified nanoscale zero-valent iron activated persulfate: performance, salt resistance, and reaction mechanisms
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131876
– volume: 51
  start-page: 13070
  issue: 22
  year: 2017
  ident: 10.1016/j.cej.2022.141183_b0125
  article-title: Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04177
– volume: 139
  start-page: 118
  year: 2018
  ident: 10.1016/j.cej.2022.141183_b0005
  article-title: Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.03.042
– volume: 423
  year: 2021
  ident: 10.1016/j.cej.2022.141183_b0145
  article-title: Mechanochemically synthesized S-ZVIbm composites for the activation of persulfate in the pH-independent degradation of atrazine: effects of sulfur dose and ball-milling conditions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129789
– volume: 53
  start-page: 9081
  issue: 15
  year: 2019
  ident: 10.1016/j.cej.2022.141183_b0045
  article-title: Highly efficient utilization of nano-Fe(0) embedded in mesoporous carbon for activation of peroxydisulfate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b02170
– volume: 217
  year: 2022
  ident: 10.1016/j.cej.2022.141183_b0220
  article-title: Efficient activation of PAA by FeS for fast removal of pharmaceuticals: the dual role of sulfur species in regulating the reactive oxidized species
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118402
– volume: 437
  year: 2022
  ident: 10.1016/j.cej.2022.141183_b0020
  article-title: Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135277
– volume: 317
  start-page: 103
  year: 2017
  ident: 10.1016/j.cej.2022.141183_b0055
  article-title: Enhanced oxidation of erythromycin by persulfate activated iron powder–H2O2 system: Role of the surface Fe species and synergistic effect of hydroxyl and sulfate radicals
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.12.126
– volume: 7
  start-page: 219
  issue: 3
  year: 2020
  ident: 10.1016/j.cej.2022.141183_b0070
  article-title: Both Fe(IV) and radicals are active oxidants in the Fe(II)/peroxydisulfate process
  publication-title: Environ. Sci. Tech. Let.
  doi: 10.1021/acs.estlett.0c00025
– volume: 172
  year: 2020
  ident: 10.1016/j.cej.2022.141183_b0065
  article-title: Relative contribution of ferryl ion species (Fe(IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115504
– volume: 359
  start-page: 1046
  year: 2019
  ident: 10.1016/j.cej.2022.141183_b0150
  article-title: Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.080
– volume: 50
  start-page: 12992
  issue: 23
  year: 2016
  ident: 10.1016/j.cej.2022.141183_b0140
  article-title: Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b03997
– volume: 181
  year: 2020
  ident: 10.1016/j.cej.2022.141183_b0195
  article-title: Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: a new strategy to achieve maximum persulfate utilization efficiency
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115862
– volume: 285
  start-page: 660
  year: 2016
  ident: 10.1016/j.cej.2022.141183_b0035
  article-title: Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.08.120
– volume: 73
  start-page: 1540
  issue: 9
  year: 2008
  ident: 10.1016/j.cej.2022.141183_b0170
  article-title: A rapid spectrophotometric determination of persulfate anion in ISCO
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.08.043
– volume: 52
  start-page: 3625
  issue: 6
  year: 2018
  ident: 10.1016/j.cej.2022.141183_b0210
  article-title: Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05847
– volume: 303
  start-page: 458
  year: 2016
  ident: 10.1016/j.cej.2022.141183_b0050
  article-title: Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.06.016
– volume: 312
  year: 2022
  ident: 10.1016/j.cej.2022.141183_b0265
  article-title: Efficient degradation of sulfamethazine in a silicified microscale zero-valent iron activated persulfate process
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2022.121418
– volume: 232
  start-page: 45
  year: 2019
  ident: 10.1016/j.cej.2022.141183_b0015
  article-title: Persulfate and zero valent iron combined conditioning as a sustainable technique for enhancing dewaterability of aerobically digested sludge
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.05.148
– volume: 338
  start-page: 539
  year: 2018
  ident: 10.1016/j.cej.2022.141183_b0115
  article-title: Sulfide-modified zerovalent iron for enhanced antimonite sequestration: characterization, performance, and reaction mechanisms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.033
– volume: 222
  year: 2022
  ident: 10.1016/j.cej.2022.141183_b0225
  article-title: Mechanistic insights into the efficient activation of peracetic acid by pyrite for the tetracycline abatement
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118930
– volume: 281
  start-page: 520
  year: 2017
  ident: 10.1016/j.cej.2022.141183_b0060
  article-title: Elimination of methyl mercaptan in ZVI-S2O82− system activated with in-situ generated ferrous ions from zero valent iron
  publication-title: Catal.
– volume: 376
  year: 2019
  ident: 10.1016/j.cej.2022.141183_b0155
  article-title: Enhanced sulfamethoxazole degradation by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron (S-mFe0): performance, mechanisms, and the role of sulfur species
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.03.178
– volume: 32
  start-page: 84
  issue: 1
  year: 2013
  ident: 10.1016/j.cej.2022.141183_b0260
  article-title: XPS analysis of sorption of selenium(IV) and selenium(VI) to mackinawite (FeS)
  publication-title: Environ. Prog. Sustain
  doi: 10.1002/ep.10609
– volume: 135
  start-page: 322
  year: 2018
  ident: 10.1016/j.cej.2022.141183_b0165
  article-title: Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: mechanistic insights for enhanced chromate removal
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.02.030
– volume: 85
  start-page: 543
  issue: 3–4
  year: 2000
  ident: 10.1016/j.cej.2022.141183_b0245
  article-title: The absolute energy positions of conduction and valence bands of selected semiconducting minerals
  publication-title: Am. Mineral
  doi: 10.2138/am-2000-0416
– volume: 37
  start-page: 4790
  issue: 20
  year: 2003
  ident: 10.1016/j.cej.2022.141183_b0175
  article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0263792
– volume: 163
  year: 2019
  ident: 10.1016/j.cej.2022.141183_b0010
  article-title: Application of persulfate salts for enhancing UV disinfection in marine waters
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114866
– volume: 51
  start-page: 13533
  issue: 23
  year: 2017
  ident: 10.1016/j.cej.2022.141183_b0130
  article-title: Advances in sulfidation of zerovalent iron for water decontamination
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b02695
– volume: 55
  start-page: 6719
  issue: 13
  year: 2016
  ident: 10.1016/j.cej.2022.141183_b0105
  article-title: Electron transfer reactivity of the aqueous iron(IV)–oxo complex. Outer-sphere vs proton-coupled electron transfer
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b00966
– volume: 52
  start-page: 2988
  issue: 5
  year: 2018
  ident: 10.1016/j.cej.2022.141183_b0135
  article-title: Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b06502
– volume: 47
  start-page: 5431
  issue: 14
  year: 2013
  ident: 10.1016/j.cej.2022.141183_b0190
  article-title: Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.06.023
– volume: 89
  start-page: 309
  year: 2016
  ident: 10.1016/j.cej.2022.141183_b0250
  article-title: Application of iron sulfide particles for groundwater and soil remediation: a review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.11.063
– volume: 27
  start-page: 329
  issue: 3–4
  year: 1999
  ident: 10.1016/j.cej.2022.141183_b0180
  article-title: Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO· and SO4·
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(99)00049-0
– volume: 366
  start-page: 200
  year: 2019
  ident: 10.1016/j.cej.2022.141183_b0205
  article-title: Enhanced sequestration of Cr(VI) by copper doped sulfidated zerovalent iron (SZVI-Cu): characterization, performance, and mechanisms
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.058
– volume: 202
  year: 2021
  ident: 10.1016/j.cej.2022.141183_b0215
  article-title: Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117451
– volume: 5
  start-page: 99935
  issue: 121
  year: 2015
  ident: 10.1016/j.cej.2022.141183_b0285
  article-title: Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron
  publication-title: RSC Adv.
  doi: 10.1039/C5RA16094D
– volume: 265
  year: 2021
  ident: 10.1016/j.cej.2022.141183_b0040
  article-title: Iron-based persulfate activation process for environmental decontamination in water and soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.129057
– volume: 54
  start-page: 6406
  issue: 10
  year: 2020
  ident: 10.1016/j.cej.2022.141183_b0090
  article-title: Fe2+/HClO reaction produces FeIVO2+: an enhanced advanced oxidation process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c00218
– volume: 346
  year: 2022
  ident: 10.1016/j.cej.2022.141183_b0235
  article-title: Degradation of sulfamethazine by amorphous zero-valent iron microspheres (A-mZVI) activated peroxydisulfate in groundwater
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131276
– volume: 44
  start-page: 6871
  issue: 42
  year: 2005
  ident: 10.1016/j.cej.2022.141183_b0080
  article-title: Aqueous FeIV=O: spectroscopic identification and oxo-group exchange
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200502686
– volume: 277
  year: 2021
  ident: 10.1016/j.cej.2022.141183_b0025
  article-title: A review on efficient removal of phthalic acid esters via biochars and transition metals-activated persulfate systems
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130256
– volume: 34
  start-page: 488
  issue: 8
  year: 2002
  ident: 10.1016/j.cej.2022.141183_b0110
  article-title: Kinetic study of the reactions of oxoiron(IV) with aromatic substrates in aqueous solutions
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.10076
– volume: 428
  year: 2022
  ident: 10.1016/j.cej.2022.141183_b0200
  article-title: Transformation of sulfamethoxazole by sulfidated nanoscale zerovalent iron activated persulfate: mechanism and risk assessment using environmental metabolomics
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.128244
– volume: 142
  start-page: 208
  year: 2018
  ident: 10.1016/j.cej.2022.141183_b0255
  article-title: New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.06.002
– volume: 222
  year: 2022
  ident: 10.1016/j.cej.2022.141183_b0085
  article-title: Peracetic acid activation by mechanochemically sulfidated zero valent iron for micropollutants degradation: enhancement mechanism and strategy for extending applicability
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118887
– volume: 56
  start-page: 1492
  issue: 3
  year: 2022
  ident: 10.1016/j.cej.2022.141183_b0100
  article-title: Aqueous iron(IV)–oxo complex: an emerging powerfulreactive oxidant formed by iron(II)-based advanced oxidation processes for oxidative water treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c04530
– volume: 52
  start-page: 9343
  issue: 27
  year: 2013
  ident: 10.1016/j.cej.2022.141183_b0120
  article-title: Remediation of trichloroethylene by FeS-coated iron nanoparticles in simulated and real groundwater: effects of water chemistry
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie400165a
– volume: 146
  start-page: 686
  year: 2021
  ident: 10.1016/j.cej.2022.141183_b0275
  article-title: Degradation of pyrene in contaminated water and soil by Fe2+-activated persulfate oxidation: performance, kinetics, and background electrolytes (Cl, HCO3 and humic acid) effects
  publication-title: Process. Saf. Environ.
  doi: 10.1016/j.psep.2020.12.003
– volume: 126
  start-page: 13757
  issue: 42
  year: 2004
  ident: 10.1016/j.cej.2022.141183_b0075
  article-title: Reactivity of aqueous Fe(IV) in hydride and hydrogen atom transfer reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0457112
– volume: 323
  start-page: 63
  issue: 1
  year: 1995
  ident: 10.1016/j.cej.2022.141183_b0185
  article-title: Generation of 5,5-Dimethyl-1-pyrroline N-oxide Hydroxyl and scavenger radical adducts from Copper/H2O2 mixtures: effects of metal ion chelation and the search for high-valent metal–oxygen intermediates
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1006/abbi.1995.0010
– volume: 52
  start-page: 11276
  issue: 19
  year: 2018
  ident: 10.1016/j.cej.2022.141183_b0095
  article-title: Is sulfate radical really generated from peroxydisulfate activated by Iron(II) for environmental decontamination?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02266
– volume: 129
  start-page: 83
  year: 2018
  ident: 10.1016/j.cej.2022.141183_b0030
  article-title: Variations of moisture and organics in activated sludge during Fe0/S2O82− conditioning–horizontal electro-dewatering process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.11.006
– volume: 30
  start-page: 215
  issue: 3
  year: 1998
  ident: 10.1016/j.cej.2022.141183_b0280
  article-title: Reactions of the ferryl ion with some compounds found in cloud water
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/(SICI)1097-4601(1998)30:3<215::AID-KIN7>3.0.CO;2-V
– volume: 71
  start-page: 302
  issue: 3
  year: 2010
  ident: 10.1016/j.cej.2022.141183_b0240
  article-title: Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2009.12.010
– volume: 3
  start-page: 1457
  issue: 5
  year: 2011
  ident: 10.1016/j.cej.2022.141183_b0230
  article-title: Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications
  publication-title: ACS Appl. Mater.
  doi: 10.1021/am200016v
SSID ssj0006919
Score 2.4773924
Snippet [Display omitted] •Sulfidation regulates the key reactions of Fe(IV) formation in S-mZVI/PDS system.•Heterogeneous process becomes an important stage for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 141183
SubjectTerms Fe(IV) production
Heterogeneous process
Peroxydisulfate activation
Sulfidated microscale zero-valent iron
Sulfidation
Title Unveiling the enhancement of sulfidation for Fe(IV) production in a sulfidated microscale zero-valent iron activated peroxydisulfate process
URI https://dx.doi.org/10.1016/j.cej.2022.141183
Volume 457
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTttAEB1BuMChoqUVKRTtoYeC5CZe766zR4QaBaJyAALcLK93LIzAiSAg4MAX8NGdie0IpNJDT5ZGM5a1bzUz6515A_DdO59JFzH1ZegD5a0OUmVdEKa6i6GTsXR8UPx9aAYjdXCuzxdgr-mF4bLK2vdXPn3mrWtJp17NzqQoOsch32lZJjvkHFzpRViSkTW6BUu7-8PB4dwhGzub78H6ARs0l5uzMq8ML-mUKCW5DMq1o7-Hp1chp78KH-pcUexWn_MRFrD8BCuvGATX4GVU3mPBLeWCMjmB5QWjyH_8xDgXt3dXeVENTRKUnIo-_tg_3RaTiuWVpUUp0rkaenHN9Xm3hBuKJ7wZB7QP-V3cCye4BeJ-psXk4g-PvmBDEohJ1W3wGUb9Xyd7g6AesBBk0sZTik4YOW8ymSql0aTW9GSESBilBns5ucHcdrFrmGVQo1I2Mz7uORt5jJlyPPoCrXJc4joIEujQhzpPHWFtei6KpXYoUzrueYW6Dd1mXZOsZh_nIRhXSVNmdpkQFAlDkVRQtGFnbjKpqDf-pawasJI3-yeh0PC-2df_M9uAZR47X1Vvb0JrenOH3yg5mbotWPz5HG7VW5Cfw6Oz4R-dw-ar
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsQwDI1YDsABsYqdHDgAUplpmqSTI0KMhvUCg7hVTeOKIuiMYEDAgS_go7G7sEjAgatlR1VeZDuN_czYhrMuETYg6kvfedIZ5cXSWM-PVRN8K0Jh6aJ4cqo7XXl4qS6H2F7dC0NllZXvL3164a0rSaPazUY_yxpnPr1pGSI7pBxcqmE2KlUQUl3fzutnnYc2xXQP0vZIvX7aLIq8ErjGO6IQ6DAw0w5-Dk5fAk57ik1WmSLfLT9mmg1BPsMmvvAHzrK3bv4IGTWUc8zjOORXhCH97-O9lN8_3KRZOTKJY2rK27B5cLHF-yXHK0mznMcfauD4LVXn3SNqwF_grufhKaS1qBOOUwPEY6FF1OJPzy4jQxTwftlrMMe67f3zvY5XjVfwEmHCAcYmCKzTiYilVKBjo1siAECEYg2tFJ1gaprQ1MQxqEBKk2gXtqwJHIREOB7Ms5G8l8MC4yhQvvNVGltEWrdsEAplQcR42XMS1CJr1vsaJRX3OI3AuInqIrPrCKGICIqohGKRbX-Y9Evijb-UZQ1W9O30RBgYfjdb-p_ZOhvrnJ8cR8cHp0fLbJwG0Jd13CtsZHD3AKuYpgzsWnEM3wFfyuXT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+the+enhancement+of+sulfidation+for+Fe%28IV%29+production+in+a+sulfidated+microscale+zero-valent+iron+activated+peroxydisulfate+process&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Duan%2C+Zhongkai&rft.au=Zhang%2C+Yue&rft.au=Han%2C+Haixiang&rft.au=Xu%2C+Chunhua&rft.date=2023-02-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=457&rft_id=info:doi/10.1016%2Fj.cej.2022.141183&rft.externalDocID=S1385894722066645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon