Unveiling the enhancement of sulfidation for Fe(IV) production in a sulfidated microscale zero-valent iron activated peroxydisulfate process
[Display omitted] •Sulfidation regulates the key reactions of Fe(IV) formation in S-mZVI/PDS system.•Heterogeneous process becomes an important stage for Fe(IV) production.•The enhancement of Fe(II) release and electron transfer promotes Fe(IV) formation.•Sulfur species take a vital role in Fe(II)/F...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 457; p. 141183 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1385-8947 1873-3212 |
DOI | 10.1016/j.cej.2022.141183 |
Cover
Loading…
Abstract | [Display omitted]
•Sulfidation regulates the key reactions of Fe(IV) formation in S-mZVI/PDS system.•Heterogeneous process becomes an important stage for Fe(IV) production.•The enhancement of Fe(II) release and electron transfer promotes Fe(IV) formation.•Sulfur species take a vital role in Fe(II)/Fe(III) cycle in S-mZVI/PDS system.
Ferryl ion species (Fe(IV)) is considered as an important reactive species in zero-valent iron activated peroxydisulfate (PDS) process that has great potential for decontamination due to its merits. Sulfidation is an effective chemical reaction process to improve the activity of microscale zero-valent iron (mZVI). In this subject, the effect of sulfidation on the production of Fe(IV), and the key reaction pathways of Fe(IV) generation in sulfidated mZVI (S-mZVI)/PDS system are still unclear. In this work, by using methyl phenol sulfoxide as a probe, we found that sulfidation could greatly change the pathway of Fe(IV) generation, in which the heterogeneous process was proposed to play an important role in activating PDS to produce Fe(IV). In comparison, the production of Fe(IV) in mZVI/PDS system was dependent on aqueous Fe(II) released from mZVI corrosion. Further analysis indicated that the improvement of Fe(IV) production caused by sulfidation could be ascribed to the acceleration of Fe(II) release as well as electron transfer. Sulfur species especially S(-II) could participate in the Fe(II)/Fe(III) cycle for Fe(II) regeneration, and underwent oxidation according to X-ray photoelectron spectroscopy analysis. In addition, we investigated the influence of key parameters (initial pH, PDS dosage, S-mZVI dosage) and coexisting anions (Cl−, SO42−, HCO3−) on Fe(IV) production in S-mZVI/PDS system. This study not only distinguishes the interface activation of PDS for Fe(IV) production from the homogeneous process, but also provides a new insight for the sulfidation to enhance the performance of iron-based materials on advanced oxidation processes. |
---|---|
AbstractList | [Display omitted]
•Sulfidation regulates the key reactions of Fe(IV) formation in S-mZVI/PDS system.•Heterogeneous process becomes an important stage for Fe(IV) production.•The enhancement of Fe(II) release and electron transfer promotes Fe(IV) formation.•Sulfur species take a vital role in Fe(II)/Fe(III) cycle in S-mZVI/PDS system.
Ferryl ion species (Fe(IV)) is considered as an important reactive species in zero-valent iron activated peroxydisulfate (PDS) process that has great potential for decontamination due to its merits. Sulfidation is an effective chemical reaction process to improve the activity of microscale zero-valent iron (mZVI). In this subject, the effect of sulfidation on the production of Fe(IV), and the key reaction pathways of Fe(IV) generation in sulfidated mZVI (S-mZVI)/PDS system are still unclear. In this work, by using methyl phenol sulfoxide as a probe, we found that sulfidation could greatly change the pathway of Fe(IV) generation, in which the heterogeneous process was proposed to play an important role in activating PDS to produce Fe(IV). In comparison, the production of Fe(IV) in mZVI/PDS system was dependent on aqueous Fe(II) released from mZVI corrosion. Further analysis indicated that the improvement of Fe(IV) production caused by sulfidation could be ascribed to the acceleration of Fe(II) release as well as electron transfer. Sulfur species especially S(-II) could participate in the Fe(II)/Fe(III) cycle for Fe(II) regeneration, and underwent oxidation according to X-ray photoelectron spectroscopy analysis. In addition, we investigated the influence of key parameters (initial pH, PDS dosage, S-mZVI dosage) and coexisting anions (Cl−, SO42−, HCO3−) on Fe(IV) production in S-mZVI/PDS system. This study not only distinguishes the interface activation of PDS for Fe(IV) production from the homogeneous process, but also provides a new insight for the sulfidation to enhance the performance of iron-based materials on advanced oxidation processes. |
ArticleNumber | 141183 |
Author | Xu, Chunhua Zhang, Yue Duan, Zhongkai Han, Haixiang |
Author_xml | – sequence: 1 givenname: Zhongkai surname: Duan fullname: Duan, Zhongkai organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China – sequence: 2 givenname: Yue surname: Zhang fullname: Zhang, Yue organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China – sequence: 3 givenname: Haixiang surname: Han fullname: Han, Haixiang organization: School of Materials Science and Engineering, Tongji University, Shanghai 201804, China – sequence: 4 givenname: Chunhua surname: Xu fullname: Xu, Chunhua email: xuchunhua@sdu.edu.cn organization: Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China |
BookMark | eNp9kEFPwyAYhomZidv0B3jjqIdWoF0p8WQWpyZLvDivhMFXR9PRBbrF-Rv80dLNePCwE18-3ucNPCM0cK0DhK4pSSmhxV2daqhTRhhLaU5pmZ2hIS15lmSMskGcs3KSlCLnF2gUQk0IKQQVQ_S9cDuwjXUfuFsBBrdSTsMaXIfbCodtU1mjOts6XLUez-Dm5f0Wb3xrtvqwtQ6rvxgYvLbat0GrBvAX-DbZxSl2WR-zKiK7Q2oTrz73xvZgXPSFGkK4ROeVagJc_Z5jtJg9vk2fk_nr08v0YZ5oJniXlASypSk0U3k-gUKJomQZANClKqCsKKWVIEAKxriYQJ4LXRheLkVmgBPCWTZG9NjbvzV4qOTG27Xye0mJ7HXKWkadstcpjzojw_8x2nYHM51XtjlJ3h9JiF_aWfAyaAvRsrEedCdNa0_QP3i_lJc |
CitedBy_id | crossref_primary_10_1016_j_jwpe_2024_106411 crossref_primary_10_1016_j_scitotenv_2024_173644 crossref_primary_10_1016_j_jece_2025_115686 crossref_primary_10_1016_j_cej_2023_143651 crossref_primary_10_1016_j_jenvman_2024_120268 crossref_primary_10_1016_j_jhazmat_2023_133296 crossref_primary_10_1016_j_ccr_2024_215840 crossref_primary_10_1016_j_scitotenv_2024_170818 crossref_primary_10_1016_j_seppur_2024_131134 crossref_primary_10_1016_j_envpol_2024_124924 crossref_primary_10_1016_j_chemosphere_2023_139418 crossref_primary_10_1016_j_seppur_2023_125243 crossref_primary_10_1016_j_cej_2025_161594 crossref_primary_10_1021_acs_est_4c14797 |
Cites_doi | 10.1016/j.chemosphere.2021.130760 10.1016/j.chemosphere.2021.131876 10.1021/acs.est.7b04177 10.1016/j.watres.2018.03.042 10.1016/j.cej.2021.129789 10.1021/acs.est.9b02170 10.1016/j.watres.2022.118402 10.1016/j.cej.2022.135277 10.1016/j.cej.2016.12.126 10.1021/acs.estlett.0c00025 10.1016/j.watres.2020.115504 10.1016/j.cej.2018.11.080 10.1021/acs.est.6b03997 10.1016/j.watres.2020.115862 10.1016/j.cej.2015.08.120 10.1016/j.chemosphere.2008.08.043 10.1021/acs.est.7b05847 10.1016/j.cej.2016.06.016 10.1016/j.apcatb.2022.121418 10.1016/j.chemosphere.2019.05.148 10.1016/j.cej.2018.01.033 10.1016/j.watres.2022.118930 10.1016/j.cej.2019.03.178 10.1002/ep.10609 10.1016/j.watres.2018.02.030 10.2138/am-2000-0416 10.1021/es0263792 10.1016/j.watres.2019.114866 10.1021/acs.est.7b02695 10.1021/acs.inorgchem.6b00966 10.1021/acs.est.7b06502 10.1016/j.watres.2013.06.023 10.1016/j.watres.2015.11.063 10.1016/S0891-5849(99)00049-0 10.1016/j.cej.2019.02.058 10.1016/j.watres.2021.117451 10.1039/C5RA16094D 10.1016/j.chemosphere.2020.129057 10.1021/acs.est.0c00218 10.1016/j.jclepro.2022.131276 10.1002/anie.200502686 10.1016/j.chemosphere.2021.130256 10.1002/kin.10076 10.1016/j.jhazmat.2022.128244 10.1016/j.watres.2018.06.002 10.1016/j.watres.2022.118887 10.1021/acs.est.1c04530 10.1021/ie400165a 10.1016/j.psep.2020.12.003 10.1021/ja0457112 10.1006/abbi.1995.0010 10.1021/acs.est.8b02266 10.1016/j.watres.2017.11.006 10.1002/(SICI)1097-4601(1998)30:3<215::AID-KIN7>3.0.CO;2-V 10.1016/j.seppur.2009.12.010 10.1021/am200016v |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2022.141183 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2022_141183 S1385894722066645 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-80e3bd6c2a445e6a96823eee1ba6e8f111f90e0622795e449c6d78b93de700723 |
IEDL.DBID | AIKHN |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 22:59:33 EDT 2025 Tue Jul 01 01:50:31 EDT 2025 Fri Feb 23 02:37:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Peroxydisulfate activation Sulfidation Fe(IV) production Heterogeneous process Sulfidated microscale zero-valent iron |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-80e3bd6c2a445e6a96823eee1ba6e8f111f90e0622795e449c6d78b93de700723 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2022_141183 crossref_citationtrail_10_1016_j_cej_2022_141183 elsevier_sciencedirect_doi_10_1016_j_cej_2022_141183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Qiu, Pang, Guo, Guan, Jiang (b0100) 2022; 56 He, Li, Xie, Yang, He, Xiong, Du, Liu, Jiang, Mu, Lai (b0085) 2022; 222 Anipsitakis, Dionysiou (b0175) 2003; 37 Yang, He, Xie, Li, Xiong, Zhang, Zhou, Jiang, Mu, Lai (b0220) 2022; 217 Martire, Caregnato, Furlong, Allegretti, Gonzalez (b0110) 2002; 34 Burkitt, Ying Tsang, Ching Tam, Bremner (b0185) 1995; 323 Zeng, Hu, Tan, He, He, Pan, Hou, Shu (b0060) 2017; 281 Guan, Ma, Ren, Liu, Xiao, Lin, Zhang (b0190) 2013; 47 Deng, Liu, Cagnetta, Huang, Yu (b0145) 2021; 423 Liang, Zhu, Hua, Duan, Yang, Wang, Wei, Liu, Feng (b0090) 2020; 54 Guo, Gao, Yang, Zheng, Du, Wen, Wang (b0275) 2021; 146 Li, Zhang, Liu, Pan, Zhang, Shi, Guan (b0135) 2018; 52 Jacobsen, Holcman, Sehested (b0280) 1998; 30 Dong, Li, Wang, Liu, Zhou, Xie, Guan (b0070) 2020; 7 Kim, Ahn, Kim, Shin, Hwang (b0210) 2018; 52 Li, Wan, Ma, Wang, Guan (b0285) 2015; 5 Ni, Yan, Sun, Chen, Peng, Wei, Wang, Mao, Dai, Wang (b0015) 2019; 232 Zhao, Ji, Kong, Lu, Zhou, Yin (b0050) 2016; 303 Zhang, Song, Xu, Hao, Shang, Wang, Tang, Sun (b0160) 2021; 281 Liang, Huang, Mohanty, Kurakalva (b0170) 2008; 73 Li, Zhao, Yan, Yan, Pan, Zhang, Lai (b0155) 2019; 376 Li, Yang, Wang, Yuan (b0055) 2017; 317 Xiong, Pei (b0025) 2021; 277 Dong, Hou, Qiao, Cheng, Zhang, Wang, Li, Wang, Ning, Zeng (b0150) 2019; 359 Bataineh, Pestovsky, Bakac (b0105) 2016; 55 Ali, Lei, Ajmal, Jerosha, Aregay, Shahib, Elkhlifi, Chen, Chen (b0195) 2020; 181 Karim, Jiao, Zhou, Nidheesh (b0040) 2021; 265 Shao, Xu, Wang, Huang, Zhang, Huang, Fan, Tratnyek (b0165) 2018; 135 Kim, Kim, Azad, Chang (b0230) 2011; 3 Pestovsky, Bakac (b0075) 2004; 126 Zhou, Wang, Zhu, Dionysiou, Zhao, Fang, Zhou (b0255) 2018; 142 Yu, Jin, Wang, Yu, Zhu, Chen, Zhong, Sun, Zhu (b0200) 2022; 428 Kim, Murugesan, Kim, Tratnyek, Chang (b0120) 2013; 52 Timmins, Liu, Bechara, Kotake, Swartz (b0180) 1999; 27 Wang, Jiang, Pang, Zhou, Guan, Gao, Li, Yang, Qiu, Jiang (b0095) 2018; 52 Li, Zhang, Sun, Liang, Pan, Zhang, Guan (b0130) 2017; 51 Wu, Chen, Han, Yue, Cao, Zhao, Qian (b0045) 2019; 53 Xiao, Xiao, Dong, Jin, Li, Li, Tian, Li, Chen, Xie (b0235) 2022; 346 Miklos, Remy, Jekel, Linden, Drewes, Hübner (b0005) 2018; 139 Xing, Shao, Yang, Zhou, Jing, Zhao (b0225) 2022; 222 Xu, Schoonen (b0245) 2000; 85 Zhao, Zhang, Quan, Chen (b0240) 2010; 71 Wei, Gao, Li, Deng, Zhou, Li (b0035) 2016; 285 Gong, Tang, Zhao (b0250) 2016; 89 Pestovsky, Stoian, Bominaar, Shan, Munck, Que, Bakac (b0080) 2005; 44 Oyekunle, Gendy, Ifthikar, Chen (b0020) 2022; 437 Wang, Qiu, Pang, Gao, Zhou, Cao, Jiang (b0065) 2020; 172 Han, Batchelor, Abdel-Wahab (b0260) 2013; 32 Huang, Xu, Shao, Wang, Zhang, Gao, Zhou, Tratnyek (b0115) 2018; 338 Han, Yan (b0140) 2016; 50 Jia, Zhang, Huang, Wang, Xu (b0205) 2019; 366 Yu, Mao, He, Zheng, Zhang, Su, Xi (b0265) 2022; 312 Fan, Lan, Tratnyek, Johnson, Filip, O’Carroll, Nunez Garcia, Agrawal (b0125) 2017; 51 Wu, Kong, Gao, Kong, Dai, Dan, Shang, Wang, Yin, Yue, Gao (b0270) 2022; 286 Moreno-Andrés, Farinango, Romero-Martínez, Acevedo-Merino, Nebot (b0010) 2019; 163 Li, Wang, Zheng (b0030) 2018; 129 Li, Dong, Li, Xiao, Xiao, Jin (b0215) 2021; 202 Dong (10.1016/j.cej.2022.141183_b0070) 2020; 7 Zeng (10.1016/j.cej.2022.141183_b0060) 2017; 281 Kim (10.1016/j.cej.2022.141183_b0210) 2018; 52 Yu (10.1016/j.cej.2022.141183_b0265) 2022; 312 Moreno-Andrés (10.1016/j.cej.2022.141183_b0010) 2019; 163 Shao (10.1016/j.cej.2022.141183_b0165) 2018; 135 Dong (10.1016/j.cej.2022.141183_b0150) 2019; 359 Li (10.1016/j.cej.2022.141183_b0155) 2019; 376 Kim (10.1016/j.cej.2022.141183_b0120) 2013; 52 Gong (10.1016/j.cej.2022.141183_b0250) 2016; 89 Deng (10.1016/j.cej.2022.141183_b0145) 2021; 423 Liang (10.1016/j.cej.2022.141183_b0170) 2008; 73 Yu (10.1016/j.cej.2022.141183_b0200) 2022; 428 Li (10.1016/j.cej.2022.141183_b0030) 2018; 129 Guan (10.1016/j.cej.2022.141183_b0190) 2013; 47 Ali (10.1016/j.cej.2022.141183_b0195) 2020; 181 Li (10.1016/j.cej.2022.141183_b0135) 2018; 52 Huang (10.1016/j.cej.2022.141183_b0115) 2018; 338 Li (10.1016/j.cej.2022.141183_b0285) 2015; 5 Han (10.1016/j.cej.2022.141183_b0260) 2013; 32 Liang (10.1016/j.cej.2022.141183_b0090) 2020; 54 He (10.1016/j.cej.2022.141183_b0085) 2022; 222 Oyekunle (10.1016/j.cej.2022.141183_b0020) 2022; 437 Zhao (10.1016/j.cej.2022.141183_b0240) 2010; 71 Wei (10.1016/j.cej.2022.141183_b0035) 2016; 285 Zhao (10.1016/j.cej.2022.141183_b0050) 2016; 303 Xing (10.1016/j.cej.2022.141183_b0225) 2022; 222 Xiao (10.1016/j.cej.2022.141183_b0235) 2022; 346 Wang (10.1016/j.cej.2022.141183_b0100) 2022; 56 Wu (10.1016/j.cej.2022.141183_b0045) 2019; 53 Pestovsky (10.1016/j.cej.2022.141183_b0080) 2005; 44 Martire (10.1016/j.cej.2022.141183_b0110) 2002; 34 Yang (10.1016/j.cej.2022.141183_b0220) 2022; 217 Li (10.1016/j.cej.2022.141183_b0055) 2017; 317 Karim (10.1016/j.cej.2022.141183_b0040) 2021; 265 Zhou (10.1016/j.cej.2022.141183_b0255) 2018; 142 Burkitt (10.1016/j.cej.2022.141183_b0185) 1995; 323 Xiong (10.1016/j.cej.2022.141183_b0025) 2021; 277 Li (10.1016/j.cej.2022.141183_b0215) 2021; 202 Miklos (10.1016/j.cej.2022.141183_b0005) 2018; 139 Li (10.1016/j.cej.2022.141183_b0130) 2017; 51 Anipsitakis (10.1016/j.cej.2022.141183_b0175) 2003; 37 Jia (10.1016/j.cej.2022.141183_b0205) 2019; 366 Wang (10.1016/j.cej.2022.141183_b0095) 2018; 52 Bataineh (10.1016/j.cej.2022.141183_b0105) 2016; 55 Pestovsky (10.1016/j.cej.2022.141183_b0075) 2004; 126 Wu (10.1016/j.cej.2022.141183_b0270) 2022; 286 Han (10.1016/j.cej.2022.141183_b0140) 2016; 50 Ni (10.1016/j.cej.2022.141183_b0015) 2019; 232 Zhang (10.1016/j.cej.2022.141183_b0160) 2021; 281 Guo (10.1016/j.cej.2022.141183_b0275) 2021; 146 Xu (10.1016/j.cej.2022.141183_b0245) 2000; 85 Wang (10.1016/j.cej.2022.141183_b0065) 2020; 172 Fan (10.1016/j.cej.2022.141183_b0125) 2017; 51 Kim (10.1016/j.cej.2022.141183_b0230) 2011; 3 Timmins (10.1016/j.cej.2022.141183_b0180) 1999; 27 Jacobsen (10.1016/j.cej.2022.141183_b0280) 1998; 30 |
References_xml | – volume: 303 start-page: 458 year: 2016 end-page: 466 ident: b0050 article-title: Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process publication-title: Chem. Eng. J. – volume: 51 start-page: 13070 year: 2017 end-page: 13085 ident: b0125 article-title: Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation publication-title: Environ. Sci. Technol. – volume: 338 start-page: 539 year: 2018 end-page: 547 ident: b0115 article-title: Sulfide-modified zerovalent iron for enhanced antimonite sequestration: characterization, performance, and reaction mechanisms publication-title: Chem. Eng. J. – volume: 146 start-page: 686 year: 2021 end-page: 693 ident: b0275 article-title: Degradation of pyrene in contaminated water and soil by Fe publication-title: Process. Saf. Environ. – volume: 52 start-page: 11276 year: 2018 end-page: 11284 ident: b0095 article-title: Is sulfate radical really generated from peroxydisulfate activated by Iron(II) for environmental decontamination? publication-title: Environ. Sci. Technol. – volume: 50 start-page: 12992 year: 2016 end-page: 13001 ident: b0140 article-title: Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment publication-title: Environ. Sci. Technol. – volume: 89 start-page: 309 year: 2016 end-page: 320 ident: b0250 article-title: Application of iron sulfide particles for groundwater and soil remediation: a review publication-title: Water Res. – volume: 3 start-page: 1457 year: 2011 end-page: 1462 ident: b0230 article-title: Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications publication-title: ACS Appl. Mater. – volume: 163 year: 2019 ident: b0010 article-title: Application of persulfate salts for enhancing UV disinfection in marine waters publication-title: Water Res. – volume: 55 start-page: 6719 year: 2016 end-page: 6724 ident: b0105 article-title: Electron transfer reactivity of the aqueous iron(IV)–oxo complex. Outer-sphere vs proton-coupled electron transfer publication-title: Inorg. Chem. – volume: 30 start-page: 215 year: 1998 end-page: 221 ident: b0280 article-title: Reactions of the ferryl ion with some compounds found in cloud water publication-title: Int. J. Chem. Kinet. – volume: 428 year: 2022 ident: b0200 article-title: Transformation of sulfamethoxazole by sulfidated nanoscale zerovalent iron activated persulfate: mechanism and risk assessment using environmental metabolomics publication-title: J. Hazard. Mater. – volume: 222 year: 2022 ident: b0225 article-title: Mechanistic insights into the efficient activation of peracetic acid by pyrite for the tetracycline abatement publication-title: Water Res. – volume: 232 start-page: 45 year: 2019 end-page: 53 ident: b0015 article-title: Persulfate and zero valent iron combined conditioning as a sustainable technique for enhancing dewaterability of aerobically digested sludge publication-title: Chemosphere – volume: 142 start-page: 208 year: 2018 end-page: 216 ident: b0255 article-title: New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation publication-title: Water Res. – volume: 56 start-page: 1492 year: 2022 end-page: 1509 ident: b0100 article-title: Aqueous iron(IV)–oxo complex: an emerging powerfulreactive oxidant formed by iron(II)-based advanced oxidation processes for oxidative water treatment publication-title: Environ. Sci. Technol. – volume: 286 year: 2022 ident: b0270 article-title: Removal of chloramphenicol by sulfide-modified nanoscale zero-valent iron activated persulfate: performance, salt resistance, and reaction mechanisms publication-title: Chemosphere – volume: 285 start-page: 660 year: 2016 end-page: 670 ident: b0035 article-title: Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water publication-title: Chem. Eng. J. – volume: 53 start-page: 9081 year: 2019 end-page: 9090 ident: b0045 article-title: Highly efficient utilization of nano-Fe(0) embedded in mesoporous carbon for activation of peroxydisulfate publication-title: Environ. Sci. Technol. – volume: 222 year: 2022 ident: b0085 article-title: Peracetic acid activation by mechanochemically sulfidated zero valent iron for micropollutants degradation: enhancement mechanism and strategy for extending applicability publication-title: Water Res. – volume: 277 year: 2021 ident: b0025 article-title: A review on efficient removal of phthalic acid esters via biochars and transition metals-activated persulfate systems publication-title: Chemosphere – volume: 5 start-page: 99935 year: 2015 end-page: 99943 ident: b0285 article-title: Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron publication-title: RSC Adv. – volume: 376 year: 2019 ident: b0155 article-title: Enhanced sulfamethoxazole degradation by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron (S-mFe publication-title: Chem. Eng. J. – volume: 54 start-page: 6406 year: 2020 end-page: 6414 ident: b0090 article-title: Fe publication-title: Environ. Sci. Technol. – volume: 44 start-page: 6871 year: 2005 end-page: 6874 ident: b0080 article-title: Aqueous Fe publication-title: Angew. Chem. Int. Ed. – volume: 27 start-page: 329 year: 1999 end-page: 333 ident: b0180 article-title: Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO· and SO publication-title: Free Radic. Biol. Med. – volume: 34 start-page: 488 year: 2002 end-page: 494 ident: b0110 article-title: Kinetic study of the reactions of oxoiron(IV) with aromatic substrates in aqueous solutions publication-title: Int. J. Chem. Kinet. – volume: 52 start-page: 3625 year: 2018 end-page: 3633 ident: b0210 article-title: Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI publication-title: Environ. Sci. Technol. – volume: 71 start-page: 302 year: 2010 end-page: 307 ident: b0240 article-title: Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature publication-title: Sep. Purif. Technol. – volume: 139 start-page: 118 year: 2018 end-page: 131 ident: b0005 article-title: Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review publication-title: Water Res. – volume: 312 year: 2022 ident: b0265 article-title: Efficient degradation of sulfamethazine in a silicified microscale zero-valent iron activated persulfate process publication-title: Appl. Catal. B – volume: 423 year: 2021 ident: b0145 article-title: Mechanochemically synthesized S-ZVI publication-title: Chem. Eng. J. – volume: 366 start-page: 200 year: 2019 end-page: 207 ident: b0205 article-title: Enhanced sequestration of Cr(VI) by copper doped sulfidated zerovalent iron (SZVI-Cu): characterization, performance, and mechanisms publication-title: Chem. Eng. J. – volume: 129 start-page: 83 year: 2018 end-page: 93 ident: b0030 article-title: Variations of moisture and organics in activated sludge during Fe publication-title: Water Res. – volume: 217 year: 2022 ident: b0220 article-title: Efficient activation of PAA by FeS for fast removal of pharmaceuticals: the dual role of sulfur species in regulating the reactive oxidized species publication-title: Water Res. – volume: 7 start-page: 219 year: 2020 end-page: 224 ident: b0070 article-title: Both Fe(IV) and radicals are active oxidants in the Fe(II)/peroxydisulfate process publication-title: Environ. Sci. Tech. Let. – volume: 126 start-page: 13757 year: 2004 end-page: 13764 ident: b0075 article-title: Reactivity of aqueous Fe(IV) in hydride and hydrogen atom transfer reactions publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 9343 year: 2013 end-page: 9350 ident: b0120 article-title: Remediation of trichloroethylene by FeS-coated iron nanoparticles in simulated and real groundwater: effects of water chemistry publication-title: Ind. Eng. Chem. Res. – volume: 317 start-page: 103 year: 2017 end-page: 111 ident: b0055 article-title: Enhanced oxidation of erythromycin by persulfate activated iron powder–H publication-title: Chem. Eng. J. – volume: 281 year: 2021 ident: b0160 article-title: Sulfidated zero valent iron as a persulfate activator for oxidizing organophosphorus pesticides (OPPs) in aqueous solution and aged contaminated soil columns publication-title: Chemosphere – volume: 51 start-page: 13533 year: 2017 end-page: 13544 ident: b0130 article-title: Advances in sulfidation of zerovalent iron for water decontamination publication-title: Environ. Sci. Technol. – volume: 359 start-page: 1046 year: 2019 end-page: 1055 ident: b0150 article-title: Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate publication-title: Chem. Eng. J. – volume: 73 start-page: 1540 year: 2008 end-page: 1543 ident: b0170 article-title: A rapid spectrophotometric determination of persulfate anion in ISCO publication-title: Chemosphere – volume: 346 year: 2022 ident: b0235 article-title: Degradation of sulfamethazine by amorphous zero-valent iron microspheres (A-mZVI) activated peroxydisulfate in groundwater publication-title: J. Clean. Prod. – volume: 85 start-page: 543 year: 2000 end-page: 556 ident: b0245 article-title: The absolute energy positions of conduction and valence bands of selected semiconducting minerals publication-title: Am. Mineral – volume: 172 year: 2020 ident: b0065 article-title: Relative contribution of ferryl ion species (Fe(IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes publication-title: Water Res. – volume: 265 year: 2021 ident: b0040 article-title: Iron-based persulfate activation process for environmental decontamination in water and soil publication-title: Chemosphere – volume: 32 start-page: 84 year: 2013 end-page: 93 ident: b0260 article-title: XPS analysis of sorption of selenium(IV) and selenium(VI) to mackinawite (FeS) publication-title: Environ. Prog. Sustain – volume: 437 year: 2022 ident: b0020 article-title: Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: a review publication-title: Chem. Eng. J. – volume: 52 start-page: 2988 year: 2018 end-page: 2997 ident: b0135 article-title: Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions publication-title: Environ. Sci. Technol. – volume: 135 start-page: 322 year: 2018 end-page: 330 ident: b0165 article-title: Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: mechanistic insights for enhanced chromate removal publication-title: Water Res. – volume: 202 year: 2021 ident: b0215 article-title: Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite publication-title: Water Res. – volume: 281 start-page: 520 year: 2017 end-page: 526 ident: b0060 article-title: Elimination of methyl mercaptan in ZVI-S publication-title: Catal. – volume: 47 start-page: 5431 year: 2013 end-page: 5438 ident: b0190 article-title: Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals publication-title: Water Res. – volume: 181 year: 2020 ident: b0195 article-title: Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: a new strategy to achieve maximum persulfate utilization efficiency publication-title: Water Res. – volume: 323 start-page: 63 year: 1995 end-page: 70 ident: b0185 article-title: Generation of 5,5-Dimethyl-1-pyrroline N-oxide Hydroxyl and scavenger radical adducts from Copper/H publication-title: Arch. Biochem. Biophys. – volume: 37 start-page: 4790 year: 2003 end-page: 4797 ident: b0175 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. – volume: 281 year: 2021 ident: 10.1016/j.cej.2022.141183_b0160 article-title: Sulfidated zero valent iron as a persulfate activator for oxidizing organophosphorus pesticides (OPPs) in aqueous solution and aged contaminated soil columns publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130760 – volume: 286 year: 2022 ident: 10.1016/j.cej.2022.141183_b0270 article-title: Removal of chloramphenicol by sulfide-modified nanoscale zero-valent iron activated persulfate: performance, salt resistance, and reaction mechanisms publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131876 – volume: 51 start-page: 13070 issue: 22 year: 2017 ident: 10.1016/j.cej.2022.141183_b0125 article-title: Sulfidation of iron-based materials: a review of processes and implications for water treatment and remediation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04177 – volume: 139 start-page: 118 year: 2018 ident: 10.1016/j.cej.2022.141183_b0005 article-title: Evaluation of advanced oxidation processes for water and wastewater treatment – a critical review publication-title: Water Res. doi: 10.1016/j.watres.2018.03.042 – volume: 423 year: 2021 ident: 10.1016/j.cej.2022.141183_b0145 article-title: Mechanochemically synthesized S-ZVIbm composites for the activation of persulfate in the pH-independent degradation of atrazine: effects of sulfur dose and ball-milling conditions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129789 – volume: 53 start-page: 9081 issue: 15 year: 2019 ident: 10.1016/j.cej.2022.141183_b0045 article-title: Highly efficient utilization of nano-Fe(0) embedded in mesoporous carbon for activation of peroxydisulfate publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b02170 – volume: 217 year: 2022 ident: 10.1016/j.cej.2022.141183_b0220 article-title: Efficient activation of PAA by FeS for fast removal of pharmaceuticals: the dual role of sulfur species in regulating the reactive oxidized species publication-title: Water Res. doi: 10.1016/j.watres.2022.118402 – volume: 437 year: 2022 ident: 10.1016/j.cej.2022.141183_b0020 article-title: Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135277 – volume: 317 start-page: 103 year: 2017 ident: 10.1016/j.cej.2022.141183_b0055 article-title: Enhanced oxidation of erythromycin by persulfate activated iron powder–H2O2 system: Role of the surface Fe species and synergistic effect of hydroxyl and sulfate radicals publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.12.126 – volume: 7 start-page: 219 issue: 3 year: 2020 ident: 10.1016/j.cej.2022.141183_b0070 article-title: Both Fe(IV) and radicals are active oxidants in the Fe(II)/peroxydisulfate process publication-title: Environ. Sci. Tech. Let. doi: 10.1021/acs.estlett.0c00025 – volume: 172 year: 2020 ident: 10.1016/j.cej.2022.141183_b0065 article-title: Relative contribution of ferryl ion species (Fe(IV)) and sulfate radical formed in nanoscale zero valent iron activated peroxydisulfate and peroxymonosulfate processes publication-title: Water Res. doi: 10.1016/j.watres.2020.115504 – volume: 359 start-page: 1046 year: 2019 ident: 10.1016/j.cej.2022.141183_b0150 article-title: Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.080 – volume: 50 start-page: 12992 issue: 23 year: 2016 ident: 10.1016/j.cej.2022.141183_b0140 article-title: Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: reactivity enhancement through sulfidation treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b03997 – volume: 181 year: 2020 ident: 10.1016/j.cej.2022.141183_b0195 article-title: Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: a new strategy to achieve maximum persulfate utilization efficiency publication-title: Water Res. doi: 10.1016/j.watres.2020.115862 – volume: 285 start-page: 660 year: 2016 ident: 10.1016/j.cej.2022.141183_b0035 article-title: Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.120 – volume: 73 start-page: 1540 issue: 9 year: 2008 ident: 10.1016/j.cej.2022.141183_b0170 article-title: A rapid spectrophotometric determination of persulfate anion in ISCO publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.08.043 – volume: 52 start-page: 3625 issue: 6 year: 2018 ident: 10.1016/j.cej.2022.141183_b0210 article-title: Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05847 – volume: 303 start-page: 458 year: 2016 ident: 10.1016/j.cej.2022.141183_b0050 article-title: Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.06.016 – volume: 312 year: 2022 ident: 10.1016/j.cej.2022.141183_b0265 article-title: Efficient degradation of sulfamethazine in a silicified microscale zero-valent iron activated persulfate process publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2022.121418 – volume: 232 start-page: 45 year: 2019 ident: 10.1016/j.cej.2022.141183_b0015 article-title: Persulfate and zero valent iron combined conditioning as a sustainable technique for enhancing dewaterability of aerobically digested sludge publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.148 – volume: 338 start-page: 539 year: 2018 ident: 10.1016/j.cej.2022.141183_b0115 article-title: Sulfide-modified zerovalent iron for enhanced antimonite sequestration: characterization, performance, and reaction mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.033 – volume: 222 year: 2022 ident: 10.1016/j.cej.2022.141183_b0225 article-title: Mechanistic insights into the efficient activation of peracetic acid by pyrite for the tetracycline abatement publication-title: Water Res. doi: 10.1016/j.watres.2022.118930 – volume: 281 start-page: 520 year: 2017 ident: 10.1016/j.cej.2022.141183_b0060 article-title: Elimination of methyl mercaptan in ZVI-S2O82− system activated with in-situ generated ferrous ions from zero valent iron publication-title: Catal. – volume: 376 year: 2019 ident: 10.1016/j.cej.2022.141183_b0155 article-title: Enhanced sulfamethoxazole degradation by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron (S-mFe0): performance, mechanisms, and the role of sulfur species publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.178 – volume: 32 start-page: 84 issue: 1 year: 2013 ident: 10.1016/j.cej.2022.141183_b0260 article-title: XPS analysis of sorption of selenium(IV) and selenium(VI) to mackinawite (FeS) publication-title: Environ. Prog. Sustain doi: 10.1002/ep.10609 – volume: 135 start-page: 322 year: 2018 ident: 10.1016/j.cej.2022.141183_b0165 article-title: Dynamic interactions between sulfidated zerovalent iron and dissolved oxygen: mechanistic insights for enhanced chromate removal publication-title: Water Res. doi: 10.1016/j.watres.2018.02.030 – volume: 85 start-page: 543 issue: 3–4 year: 2000 ident: 10.1016/j.cej.2022.141183_b0245 article-title: The absolute energy positions of conduction and valence bands of selected semiconducting minerals publication-title: Am. Mineral doi: 10.2138/am-2000-0416 – volume: 37 start-page: 4790 issue: 20 year: 2003 ident: 10.1016/j.cej.2022.141183_b0175 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. doi: 10.1021/es0263792 – volume: 163 year: 2019 ident: 10.1016/j.cej.2022.141183_b0010 article-title: Application of persulfate salts for enhancing UV disinfection in marine waters publication-title: Water Res. doi: 10.1016/j.watres.2019.114866 – volume: 51 start-page: 13533 issue: 23 year: 2017 ident: 10.1016/j.cej.2022.141183_b0130 article-title: Advances in sulfidation of zerovalent iron for water decontamination publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b02695 – volume: 55 start-page: 6719 issue: 13 year: 2016 ident: 10.1016/j.cej.2022.141183_b0105 article-title: Electron transfer reactivity of the aqueous iron(IV)–oxo complex. Outer-sphere vs proton-coupled electron transfer publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b00966 – volume: 52 start-page: 2988 issue: 5 year: 2018 ident: 10.1016/j.cej.2022.141183_b0135 article-title: Enhanced reactivity and electron selectivity of sulfidated zerovalent iron toward chromate under aerobic conditions publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b06502 – volume: 47 start-page: 5431 issue: 14 year: 2013 ident: 10.1016/j.cej.2022.141183_b0190 article-title: Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals publication-title: Water Res. doi: 10.1016/j.watres.2013.06.023 – volume: 89 start-page: 309 year: 2016 ident: 10.1016/j.cej.2022.141183_b0250 article-title: Application of iron sulfide particles for groundwater and soil remediation: a review publication-title: Water Res. doi: 10.1016/j.watres.2015.11.063 – volume: 27 start-page: 329 issue: 3–4 year: 1999 ident: 10.1016/j.cej.2022.141183_b0180 article-title: Trapping of free radicals with direct in vivo EPR detection: a comparison of 5,5-dimethyl-1-pyrroline-N-oxide and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide as spin traps for HO· and SO4· publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(99)00049-0 – volume: 366 start-page: 200 year: 2019 ident: 10.1016/j.cej.2022.141183_b0205 article-title: Enhanced sequestration of Cr(VI) by copper doped sulfidated zerovalent iron (SZVI-Cu): characterization, performance, and mechanisms publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.058 – volume: 202 year: 2021 ident: 10.1016/j.cej.2022.141183_b0215 article-title: Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite publication-title: Water Res. doi: 10.1016/j.watres.2021.117451 – volume: 5 start-page: 99935 issue: 121 year: 2015 ident: 10.1016/j.cej.2022.141183_b0285 article-title: Role of inorganic ions and dissolved natural organic matters on persulfate oxidation of acid orange 7 with zero-valent iron publication-title: RSC Adv. doi: 10.1039/C5RA16094D – volume: 265 year: 2021 ident: 10.1016/j.cej.2022.141183_b0040 article-title: Iron-based persulfate activation process for environmental decontamination in water and soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129057 – volume: 54 start-page: 6406 issue: 10 year: 2020 ident: 10.1016/j.cej.2022.141183_b0090 article-title: Fe2+/HClO reaction produces FeIVO2+: an enhanced advanced oxidation process publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c00218 – volume: 346 year: 2022 ident: 10.1016/j.cej.2022.141183_b0235 article-title: Degradation of sulfamethazine by amorphous zero-valent iron microspheres (A-mZVI) activated peroxydisulfate in groundwater publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131276 – volume: 44 start-page: 6871 issue: 42 year: 2005 ident: 10.1016/j.cej.2022.141183_b0080 article-title: Aqueous FeIV=O: spectroscopic identification and oxo-group exchange publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200502686 – volume: 277 year: 2021 ident: 10.1016/j.cej.2022.141183_b0025 article-title: A review on efficient removal of phthalic acid esters via biochars and transition metals-activated persulfate systems publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130256 – volume: 34 start-page: 488 issue: 8 year: 2002 ident: 10.1016/j.cej.2022.141183_b0110 article-title: Kinetic study of the reactions of oxoiron(IV) with aromatic substrates in aqueous solutions publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.10076 – volume: 428 year: 2022 ident: 10.1016/j.cej.2022.141183_b0200 article-title: Transformation of sulfamethoxazole by sulfidated nanoscale zerovalent iron activated persulfate: mechanism and risk assessment using environmental metabolomics publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.128244 – volume: 142 start-page: 208 year: 2018 ident: 10.1016/j.cej.2022.141183_b0255 article-title: New insight into the mechanism of peroxymonosulfate activation by sulfur-containing minerals: role of sulfur conversion in sulfate radical generation publication-title: Water Res. doi: 10.1016/j.watres.2018.06.002 – volume: 222 year: 2022 ident: 10.1016/j.cej.2022.141183_b0085 article-title: Peracetic acid activation by mechanochemically sulfidated zero valent iron for micropollutants degradation: enhancement mechanism and strategy for extending applicability publication-title: Water Res. doi: 10.1016/j.watres.2022.118887 – volume: 56 start-page: 1492 issue: 3 year: 2022 ident: 10.1016/j.cej.2022.141183_b0100 article-title: Aqueous iron(IV)–oxo complex: an emerging powerfulreactive oxidant formed by iron(II)-based advanced oxidation processes for oxidative water treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c04530 – volume: 52 start-page: 9343 issue: 27 year: 2013 ident: 10.1016/j.cej.2022.141183_b0120 article-title: Remediation of trichloroethylene by FeS-coated iron nanoparticles in simulated and real groundwater: effects of water chemistry publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie400165a – volume: 146 start-page: 686 year: 2021 ident: 10.1016/j.cej.2022.141183_b0275 article-title: Degradation of pyrene in contaminated water and soil by Fe2+-activated persulfate oxidation: performance, kinetics, and background electrolytes (Cl, HCO3 and humic acid) effects publication-title: Process. Saf. Environ. doi: 10.1016/j.psep.2020.12.003 – volume: 126 start-page: 13757 issue: 42 year: 2004 ident: 10.1016/j.cej.2022.141183_b0075 article-title: Reactivity of aqueous Fe(IV) in hydride and hydrogen atom transfer reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0457112 – volume: 323 start-page: 63 issue: 1 year: 1995 ident: 10.1016/j.cej.2022.141183_b0185 article-title: Generation of 5,5-Dimethyl-1-pyrroline N-oxide Hydroxyl and scavenger radical adducts from Copper/H2O2 mixtures: effects of metal ion chelation and the search for high-valent metal–oxygen intermediates publication-title: Arch. Biochem. Biophys. doi: 10.1006/abbi.1995.0010 – volume: 52 start-page: 11276 issue: 19 year: 2018 ident: 10.1016/j.cej.2022.141183_b0095 article-title: Is sulfate radical really generated from peroxydisulfate activated by Iron(II) for environmental decontamination? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02266 – volume: 129 start-page: 83 year: 2018 ident: 10.1016/j.cej.2022.141183_b0030 article-title: Variations of moisture and organics in activated sludge during Fe0/S2O82− conditioning–horizontal electro-dewatering process publication-title: Water Res. doi: 10.1016/j.watres.2017.11.006 – volume: 30 start-page: 215 issue: 3 year: 1998 ident: 10.1016/j.cej.2022.141183_b0280 article-title: Reactions of the ferryl ion with some compounds found in cloud water publication-title: Int. J. Chem. Kinet. doi: 10.1002/(SICI)1097-4601(1998)30:3<215::AID-KIN7>3.0.CO;2-V – volume: 71 start-page: 302 issue: 3 year: 2010 ident: 10.1016/j.cej.2022.141183_b0240 article-title: Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2009.12.010 – volume: 3 start-page: 1457 issue: 5 year: 2011 ident: 10.1016/j.cej.2022.141183_b0230 article-title: Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications publication-title: ACS Appl. Mater. doi: 10.1021/am200016v |
SSID | ssj0006919 |
Score | 2.4773924 |
Snippet | [Display omitted]
•Sulfidation regulates the key reactions of Fe(IV) formation in S-mZVI/PDS system.•Heterogeneous process becomes an important stage for... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 141183 |
SubjectTerms | Fe(IV) production Heterogeneous process Peroxydisulfate activation Sulfidated microscale zero-valent iron Sulfidation |
Title | Unveiling the enhancement of sulfidation for Fe(IV) production in a sulfidated microscale zero-valent iron activated peroxydisulfate process |
URI | https://dx.doi.org/10.1016/j.cej.2022.141183 |
Volume | 457 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTttAEB1BuMChoqUVKRTtoYeC5CZe766zR4QaBaJyAALcLK93LIzAiSAg4MAX8NGdie0IpNJDT5ZGM5a1bzUz6515A_DdO59JFzH1ZegD5a0OUmVdEKa6i6GTsXR8UPx9aAYjdXCuzxdgr-mF4bLK2vdXPn3mrWtJp17NzqQoOsch32lZJjvkHFzpRViSkTW6BUu7-8PB4dwhGzub78H6ARs0l5uzMq8ML-mUKCW5DMq1o7-Hp1chp78KH-pcUexWn_MRFrD8BCuvGATX4GVU3mPBLeWCMjmB5QWjyH_8xDgXt3dXeVENTRKUnIo-_tg_3RaTiuWVpUUp0rkaenHN9Xm3hBuKJ7wZB7QP-V3cCye4BeJ-psXk4g-PvmBDEohJ1W3wGUb9Xyd7g6AesBBk0sZTik4YOW8ymSql0aTW9GSESBilBns5ucHcdrFrmGVQo1I2Mz7uORt5jJlyPPoCrXJc4joIEujQhzpPHWFtei6KpXYoUzrueYW6Dd1mXZOsZh_nIRhXSVNmdpkQFAlDkVRQtGFnbjKpqDf-pawasJI3-yeh0PC-2df_M9uAZR47X1Vvb0JrenOH3yg5mbotWPz5HG7VW5Cfw6Oz4R-dw-ar |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsQwDI1YDsABsYqdHDgAUplpmqSTI0KMhvUCg7hVTeOKIuiMYEDAgS_go7G7sEjAgatlR1VeZDuN_czYhrMuETYg6kvfedIZ5cXSWM-PVRN8K0Jh6aJ4cqo7XXl4qS6H2F7dC0NllZXvL3164a0rSaPazUY_yxpnPr1pGSI7pBxcqmE2KlUQUl3fzutnnYc2xXQP0vZIvX7aLIq8ErjGO6IQ6DAw0w5-Dk5fAk57ik1WmSLfLT9mmg1BPsMmvvAHzrK3bv4IGTWUc8zjOORXhCH97-O9lN8_3KRZOTKJY2rK27B5cLHF-yXHK0mznMcfauD4LVXn3SNqwF_grufhKaS1qBOOUwPEY6FF1OJPzy4jQxTwftlrMMe67f3zvY5XjVfwEmHCAcYmCKzTiYilVKBjo1siAECEYg2tFJ1gaprQ1MQxqEBKk2gXtqwJHIREOB7Ms5G8l8MC4yhQvvNVGltEWrdsEAplQcR42XMS1CJr1vsaJRX3OI3AuInqIrPrCKGICIqohGKRbX-Y9Evijb-UZQ1W9O30RBgYfjdb-p_ZOhvrnJ8cR8cHp0fLbJwG0Jd13CtsZHD3AKuYpgzsWnEM3wFfyuXT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unveiling+the+enhancement+of+sulfidation+for+Fe%28IV%29+production+in+a+sulfidated+microscale+zero-valent+iron+activated+peroxydisulfate+process&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Duan%2C+Zhongkai&rft.au=Zhang%2C+Yue&rft.au=Han%2C+Haixiang&rft.au=Xu%2C+Chunhua&rft.date=2023-02-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=457&rft_id=info:doi/10.1016%2Fj.cej.2022.141183&rft.externalDocID=S1385894722066645 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |