Change patterns of precipitation anomalies and possible teleconnections with large-scale climate oscillations over the Yangtze River Delta, China
In view of the key factor in regional hydrological processes and water resource management, the temporal patterns of precipitation anomalies and oscillations were detected by the Quantile Perturbation Method (QPM) and the Singular Spectrum Analysis (SSA) Method, and the spatial patterns were identif...
Saved in:
Published in | Journal of water and climate change Vol. 13; no. 8; pp. 2972 - 2990 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
IWA Publishing
01.08.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2040-2244 2408-9354 |
DOI | 10.2166/wcc.2022.097 |
Cover
Abstract | In view of the key factor in regional hydrological processes and water resource management, the temporal patterns of precipitation anomalies and oscillations were detected by the Quantile Perturbation Method (QPM) and the Singular Spectrum Analysis (SSA) Method, and the spatial patterns were identified using the Principal Component Analysis (PCA) Method. In addition, the teleconnections and lagged influence with large-scale climate oscillations in the Yangtze River Delta (YRD) of China from 1957 to 2016 were also analyzed. Results showed that, temporally, the main oscillations of precipitation were all found to be 2, 7–11 and 3–4 years in the annual and seasonal scales. Precipitation quantiles are subject to strong temporal oscillations at (multi-)decadal time scales, with high and low anomalies at specific periods. Spatially, the whole region could be divided into two main sub-regions in annual and seasonal scales, respectively. Among the selected large-scale climate oscillations in this study, the Pacific Decadal Oscillation (PDO) has a stronger influence on precipitation in March, July and September, but significant correlations were detected in more than 18% of the total stations. These stations were mainly in the southeast regions. The North Pacific index (NP) controlled the precipitation in February (13.95% of the total stations) and October (37.21% of the total stations) in the north region. Generally, the indicators of the Southern Oscillation Index (SOI) and Oceanic Niño 4 SST Index (ONI) had the strongest influence in regional precipitation variations, but significant correlations were detected in more than 20% of the total stations in March, September, October and November. Also, large-scale climate oscillations have a delayed way on precipitation. Among the oscillations, the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) showed that significant cross-correlations on precipitation were 0 and 3–5 months, respectively. NP showed significant cross-correlations with precipitation in many stations when the lag time was 0–3 months. Generally, the PDO, SOI and ONI have a greater influence in the south region, mainly with the lag time of 0–3, 2–3 and 1–5 months, respectively. The results will provide a basis for taking relevant measures to deal with problems of meteorological disaster and water supplement under climate change. |
---|---|
AbstractList | In view of the key factor in regional hydrological processes and water resource management, the temporal patterns of precipitation anomalies and oscillations were detected by the Quantile Perturbation Method (QPM) and the Singular Spectrum Analysis (SSA) Method, and the spatial patterns were identified using the Principal Component Analysis (PCA) Method. In addition, the teleconnections and lagged influence with large-scale climate oscillations in the Yangtze River Delta (YRD) of China from 1957 to 2016 were also analyzed. Results showed that, temporally, the main oscillations of precipitation were all found to be 2, 7–11 and 3–4 years in the annual and seasonal scales. Precipitation quantiles are subject to strong temporal oscillations at (multi-)decadal time scales, with high and low anomalies at specific periods. Spatially, the whole region could be divided into two main sub-regions in annual and seasonal scales, respectively. Among the selected large-scale climate oscillations in this study, the Pacific Decadal Oscillation (PDO) has a stronger influence on precipitation in March, July and September, but significant correlations were detected in more than 18% of the total stations. These stations were mainly in the southeast regions. The North Pacific index (NP) controlled the precipitation in February (13.95% of the total stations) and October (37.21% of the total stations) in the north region. Generally, the indicators of the Southern Oscillation Index (SOI) and Oceanic Niño 4 SST Index (ONI) had the strongest influence in regional precipitation variations, but significant correlations were detected in more than 20% of the total stations in March, September, October and November. Also, large-scale climate oscillations have a delayed way on precipitation. Among the oscillations, the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) showed that significant cross-correlations on precipitation were 0 and 3–5 months, respectively. NP showed significant cross-correlations with precipitation in many stations when the lag time was 0–3 months. Generally, the PDO, SOI and ONI have a greater influence in the south region, mainly with the lag time of 0–3, 2–3 and 1–5 months, respectively. The results will provide a basis for taking relevant measures to deal with problems of meteorological disaster and water supplement under climate change. HIGHLIGHTS Two dominant geographic sub-regions of precipitation in annual and seasonal scales were detected in the Yangtze River Delta, China.; Precipitation had strong temporal oscillations at (multi-)decadal time scales.; Climate oscillations showed different correlations with precipitation in temporal and spatial scales.; In view of the key factor in regional hydrological processes and water resource management, the temporal patterns of precipitation anomalies and oscillations were detected by the Quantile Perturbation Method (QPM) and the Singular Spectrum Analysis (SSA) Method, and the spatial patterns were identified using the Principal Component Analysis (PCA) Method. In addition, the teleconnections and lagged influence with large-scale climate oscillations in the Yangtze River Delta (YRD) of China from 1957 to 2016 were also analyzed. Results showed that, temporally, the main oscillations of precipitation were all found to be 2, 7–11 and 3–4 years in the annual and seasonal scales. Precipitation quantiles are subject to strong temporal oscillations at (multi-)decadal time scales, with high and low anomalies at specific periods. Spatially, the whole region could be divided into two main sub-regions in annual and seasonal scales, respectively. Among the selected large-scale climate oscillations in this study, the Pacific Decadal Oscillation (PDO) has a stronger influence on precipitation in March, July and September, but significant correlations were detected in more than 18% of the total stations. These stations were mainly in the southeast regions. The North Pacific index (NP) controlled the precipitation in February (13.95% of the total stations) and October (37.21% of the total stations) in the north region. Generally, the indicators of the Southern Oscillation Index (SOI) and Oceanic Niño 4 SST Index (ONI) had the strongest influence in regional precipitation variations, but significant correlations were detected in more than 20% of the total stations in March, September, October and November. Also, large-scale climate oscillations have a delayed way on precipitation. Among the oscillations, the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) showed that significant cross-correlations on precipitation were 0 and 3–5 months, respectively. NP showed significant cross-correlations with precipitation in many stations when the lag time was 0–3 months. Generally, the PDO, SOI and ONI have a greater influence in the south region, mainly with the lag time of 0–3, 2–3 and 1–5 months, respectively. The results will provide a basis for taking relevant measures to deal with problems of meteorological disaster and water supplement under climate change. |
Author | Xu, Yu Gao, Chao Zhao, Yan Wu, Yanjuan |
Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0003-0014-2298 surname: Xu fullname: Xu, Yu – sequence: 2 givenname: Yan surname: Zhao fullname: Zhao, Yan – sequence: 3 givenname: Yanjuan surname: Wu fullname: Wu, Yanjuan – sequence: 4 givenname: Chao surname: Gao fullname: Gao, Chao |
BookMark | eNptkc9u1DAQxiPUSpS2Nx7AEtdmcRz_SY5ooVCpEhIqB07W7GSy65VrB9ulgrfgjetlywXhiz-NfjPzab5XzUmIgZrmdcdXotP67SPiSnAhVnw0L5ozIfnQjr2SJ1VzyVshpHzZXOa85_UpNfZ8OGt-r3cQtsQWKIVSyCzObEmEbnEFiouBQYj34B3lqia2xJzdxhMr5AljCIQHKrNHV3bMQ9pSmxEqgN7dQyEWMzrv4UjFH5RY2RH7VreWX8S-uEPlPfkCV2y9cwEumtMZfKbL5_-8-Xr94W79qb39_PFm_e62RTGa0ho9olYGOJLsjNQ40KCEFiOavmolzYgbzceBUA40dpMhVBtQYgA-mx768-bmOHeKsLdLqm7TTxvB2T-FmLYWUnHoyYJAxfUsDSgtJ94Nkgs9TwQcdGe6vs56c5y1pPj9gXKx-_iQQrVvhTFGSsH7oVLiSGGqV0w0W3w-ckngvO24PSRpa5L2kKStSdamq3-a_lr9L_4EI1KjeA |
CitedBy_id | crossref_primary_10_1016_j_atmosres_2023_106891 crossref_primary_10_1007_s40899_023_00880_9 crossref_primary_10_1007_s40899_023_00950_y crossref_primary_10_69821_JoSME_v1iI_1 crossref_primary_10_1016_j_envpol_2023_122725 crossref_primary_10_3390_rs16224137 crossref_primary_10_1016_j_jenvman_2025_124160 crossref_primary_10_1016_j_ejrh_2024_101990 |
Cites_doi | 10.1175/JCLI-D-12-00075.1 10.1007/s00704-016-1887-6 10.1016/j.gloplacha.2012.10.014 10.1007/s00704-016-1928-1 10.1029/95WR01950 10.1016/j.jhydrol.2009.03.029 10.1016/j.jhydrol.2016.01.013 10.1016/j.atmosres.2017.06.022 10.1016/j.atmosres.2012.10.010 10.1016/j.quaint.2005.05.010 10.5194/hess-19-2227-2015 10.1016/j.atmosres.2013.10.012 10.1016/j.quaint.2015.02.016 10.1016/j.atmosres.2019.104673 10.1029/2007WR006471 10.1016/j.jhydrol.2012.09.049 10.1016/j.atmosres.2016.01.008 10.3390/atmos11060671 10.1029/2008JD010072 10.1016/j.atmosres.2016.09.014 10.5194/hess-21-5415-2017 10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2 10.1016/j.atmosres.2021.105609 10.1175/1520-0442(1999)012<2894:MMOVOP>2.0.CO;2 10.1007/s10584-013-0837-x 10.1016/j.atmosres.2020.105138 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2 10.1007/BF02837460 10.1016/j.pce.2006.02.061 10.1016/j.jhydrol.2012.05.066 10.1002/joc.5132 10.1016/S0022-1694(00)00233-X 10.1016/j.nonrwa.2009.05.008 10.1002/hyp.1095 10.1016/j.jhydrol.2014.09.019 10.1080/02626667.2020.1802026 10.3390/w12102734 10.1007/s11269-017-1673-y 10.1016/j.earscirev.2016.10.014 10.1007/s00704-015-1493-z 10.1023/B:WARM.0000043140.61082.60 10.1007/s00382-017-3586-0 10.1029/2006GL027253 10.1016/j.gloplacha.2017.05.010 10.1016/j.atmosres.2021.105936 10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2 10.1002/hyp.1315 10.1016/j.atmosres.2015.01.022 |
ContentType | Journal Article |
Copyright | Copyright IWA Publishing Aug 2022 |
Copyright_xml | – notice: Copyright IWA Publishing Aug 2022 |
DBID | AAYXX CITATION 7QH 7TG 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H97 HCIFZ KL. L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.2166/wcc.2022.097 |
DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central ProQuest Natural Science Collection (Hollins) Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 2408-9354 |
EndPage | 2990 |
ExternalDocumentID | oai_doaj_org_article_a2c506f47a564d0184026fdea0a61713 10_2166_wcc_2022_097 |
GeographicLocations | Yangtze River Delta China Yangtze River |
GeographicLocations_xml | – name: Yangtze River – name: China – name: Yangtze River Delta |
GroupedDBID | 0R~ 4.4 7XC 8CJ 8FE 8FH AAFWJ AAJVE AAYXX ABFYC ABLGR AECGI AENEX AEUYN AFKRA AFPKN AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION D1J EBS GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ O9- OK1 P2P PATMY PCBAR PHGZM PHGZT PYCSY R0Z RHI 7QH 7TG 7UA AZQEC C1K DWQXO F1W GNUQQ H97 KL. L.G PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c297t-769c657a0ce41746c8e852629c73c8e5479cb6098ec48e91d7ec5ba528a0f73a3 |
IEDL.DBID | BENPR |
ISSN | 2040-2244 |
IngestDate | Wed Aug 27 01:31:48 EDT 2025 Mon Jun 30 08:13:12 EDT 2025 Tue Jul 01 02:52:03 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-769c657a0ce41746c8e852629c73c8e5479cb6098ec48e91d7ec5ba528a0f73a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0014-2298 |
OpenAccessLink | https://doaj.org/article/a2c506f47a564d0184026fdea0a61713 |
PQID | 2777442038 |
PQPubID | 2044528 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a2c506f47a564d0184026fdea0a61713 proquest_journals_2777442038 crossref_citationtrail_10_2166_wcc_2022_097 crossref_primary_10_2166_wcc_2022_097 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of water and climate change |
PublicationYear | 2022 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | key-10.2166/wcc.2022.097-33 key-10.2166/wcc.2022.097-32 (key-10.2166/wcc.2022.097-28) 2015; 26 key-10.2166/wcc.2022.097-35 key-10.2166/wcc.2022.097-34 key-10.2166/wcc.2022.097-37 key-10.2166/wcc.2022.097-36 key-10.2166/wcc.2022.097-39 key-10.2166/wcc.2022.097-38 key-10.2166/wcc.2022.097-31 key-10.2166/wcc.2022.097-30 key-10.2166/wcc.2022.097-44 key-10.2166/wcc.2022.097-43 key-10.2166/wcc.2022.097-46 key-10.2166/wcc.2022.097-45 key-10.2166/wcc.2022.097-48 key-10.2166/wcc.2022.097-47 key-10.2166/wcc.2022.097-49 key-10.2166/wcc.2022.097-40 key-10.2166/wcc.2022.097-42 key-10.2166/wcc.2022.097-41 key-10.2166/wcc.2022.097-11 key-10.2166/wcc.2022.097-55 key-10.2166/wcc.2022.097-10 key-10.2166/wcc.2022.097-54 key-10.2166/wcc.2022.097-13 key-10.2166/wcc.2022.097-12 key-10.2166/wcc.2022.097-56 key-10.2166/wcc.2022.097-9 key-10.2166/wcc.2022.097-14 key-10.2166/wcc.2022.097-17 key-10.2166/wcc.2022.097-51 key-10.2166/wcc.2022.097-50 key-10.2166/wcc.2022.097-53 (key-10.2166/wcc.2022.097-15) 2015; 3 (key-10.2166/wcc.2022.097-22) 2021; 13 key-10.2166/wcc.2022.097-6 key-10.2166/wcc.2022.097-19 key-10.2166/wcc.2022.097-5 key-10.2166/wcc.2022.097-18 key-10.2166/wcc.2022.097-8 key-10.2166/wcc.2022.097-7 key-10.2166/wcc.2022.097-2 key-10.2166/wcc.2022.097-1 key-10.2166/wcc.2022.097-3 key-10.2166/wcc.2022.097-21 key-10.2166/wcc.2022.097-24 key-10.2166/wcc.2022.097-23 key-10.2166/wcc.2022.097-26 key-10.2166/wcc.2022.097-25 key-10.2166/wcc.2022.097-27 Ye (key-10.2166/wcc.2022.097-52) 2013; 32 key-10.2166/wcc.2022.097-20 Fu (key-10.2166/wcc.2022.097-4) 2005; 50 Kendall (key-10.2166/wcc.2022.097-16) 1975 key-10.2166/wcc.2022.097-29 |
References_xml | – ident: key-10.2166/wcc.2022.097-18 doi: 10.1175/JCLI-D-12-00075.1 – ident: key-10.2166/wcc.2022.097-56 doi: 10.1007/s00704-016-1887-6 – ident: key-10.2166/wcc.2022.097-5 doi: 10.1016/j.gloplacha.2012.10.014 – ident: key-10.2166/wcc.2022.097-49 doi: 10.1007/s00704-016-1928-1 – ident: key-10.2166/wcc.2022.097-17 doi: 10.1029/95WR01950 – ident: key-10.2166/wcc.2022.097-11 doi: 10.1016/j.jhydrol.2009.03.029 – ident: key-10.2166/wcc.2022.097-38 doi: 10.1016/j.jhydrol.2016.01.013 – ident: key-10.2166/wcc.2022.097-42 doi: 10.1016/j.atmosres.2017.06.022 – ident: key-10.2166/wcc.2022.097-3 doi: 10.1016/j.atmosres.2012.10.010 – ident: key-10.2166/wcc.2022.097-13 – ident: key-10.2166/wcc.2022.097-14 doi: 10.1016/j.quaint.2005.05.010 – ident: key-10.2166/wcc.2022.097-25 doi: 10.5194/hess-19-2227-2015 – ident: key-10.2166/wcc.2022.097-30 doi: 10.1016/j.atmosres.2013.10.012 – ident: key-10.2166/wcc.2022.097-2 doi: 10.1016/j.quaint.2015.02.016 – volume: 26 start-page: 451 issue: 4 year: 2015 ident: key-10.2166/wcc.2022.097-28 article-title: Spatial and temporal patterns of precipitation variability over mainland China: II: recent trends publication-title: Advances in Water Science – ident: key-10.2166/wcc.2022.097-43 doi: 10.1016/j.atmosres.2019.104673 – ident: key-10.2166/wcc.2022.097-24 doi: 10.1029/2007WR006471 – ident: key-10.2166/wcc.2022.097-23 doi: 10.1016/j.jhydrol.2012.09.049 – ident: key-10.2166/wcc.2022.097-41 doi: 10.1016/j.atmosres.2016.01.008 – ident: key-10.2166/wcc.2022.097-27 – ident: key-10.2166/wcc.2022.097-29 doi: 10.3390/atmos11060671 – ident: key-10.2166/wcc.2022.097-19 doi: 10.1029/2008JD010072 – ident: key-10.2166/wcc.2022.097-51 doi: 10.1016/j.atmosres.2016.09.014 – ident: key-10.2166/wcc.2022.097-1 doi: 10.5194/hess-21-5415-2017 – ident: key-10.2166/wcc.2022.097-37 doi: 10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2 – ident: key-10.2166/wcc.2022.097-7 doi: 10.1016/j.atmosres.2021.105609 – volume-title: Rank Correlation Methods year: 1975 ident: key-10.2166/wcc.2022.097-16 – volume: 50 start-page: 2505 issue: 21 year: 2005 ident: key-10.2166/wcc.2022.097-4 article-title: Correlations between North Atlantic Oscillation Index in winter and eastern China Flood/Drought Index in summer in the last 530 years publication-title: Chinese Science Bulletin – volume: 3 start-page: 125 year: 2015 ident: key-10.2166/wcc.2022.097-15 article-title: Temporal variability of precipitation in the upper Tennessee Valley publication-title: Journal of Hydrology: Regional Studies – ident: key-10.2166/wcc.2022.097-31 doi: 10.1175/1520-0442(1999)012<2894:MMOVOP>2.0.CO;2 – ident: key-10.2166/wcc.2022.097-46 doi: 10.1007/s10584-013-0837-x – ident: key-10.2166/wcc.2022.097-44 doi: 10.1016/j.atmosres.2020.105138 – ident: key-10.2166/wcc.2022.097-39 doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2 – ident: key-10.2166/wcc.2022.097-6 doi: 10.1007/BF02837460 – ident: key-10.2166/wcc.2022.097-20 doi: 10.1016/j.pce.2006.02.061 – ident: key-10.2166/wcc.2022.097-21 doi: 10.1016/j.jhydrol.2012.05.066 – ident: key-10.2166/wcc.2022.097-26 doi: 10.1002/joc.5132 – ident: key-10.2166/wcc.2022.097-45 doi: 10.1016/S0022-1694(00)00233-X – ident: key-10.2166/wcc.2022.097-8 doi: 10.1016/j.nonrwa.2009.05.008 – ident: key-10.2166/wcc.2022.097-54 doi: 10.1002/hyp.1095 – ident: key-10.2166/wcc.2022.097-35 doi: 10.1016/j.jhydrol.2014.09.019 – ident: key-10.2166/wcc.2022.097-50 doi: 10.1080/02626667.2020.1802026 – ident: key-10.2166/wcc.2022.097-47 doi: 10.3390/w12102734 – volume: 32 start-page: 1824 issue: 10 year: 2013 ident: key-10.2166/wcc.2022.097-52 article-title: Relationship between precipitation in flood season and ENSO warm and cold events in the lower reaches of Jianghuai Basin: a case study in the Inner Lixiahe Region publication-title: Geographical Research – ident: key-10.2166/wcc.2022.097-36 doi: 10.1007/s11269-017-1673-y – ident: key-10.2166/wcc.2022.097-9 doi: 10.1016/j.earscirev.2016.10.014 – ident: key-10.2166/wcc.2022.097-10 doi: 10.1007/s00704-015-1493-z – ident: key-10.2166/wcc.2022.097-53 doi: 10.1023/B:WARM.0000043140.61082.60 – ident: key-10.2166/wcc.2022.097-33 doi: 10.1007/s00382-017-3586-0 – ident: key-10.2166/wcc.2022.097-34 doi: 10.1029/2006GL027253 – ident: key-10.2166/wcc.2022.097-12 doi: 10.1016/j.gloplacha.2017.05.010 – ident: key-10.2166/wcc.2022.097-55 doi: 10.1016/j.atmosres.2021.105936 – ident: key-10.2166/wcc.2022.097-40 doi: 10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2 – volume: 13 start-page: 1585 issue: 3 year: 2021 ident: key-10.2166/wcc.2022.097-22 article-title: Spatiotemporal pattern variations of daily precipitation concentration and their relationship with possible causes in the Yangtze River Delta, China publication-title: Journal of Water and Climate Change – ident: key-10.2166/wcc.2022.097-48 doi: 10.1002/hyp.1315 – ident: key-10.2166/wcc.2022.097-32 doi: 10.1016/j.atmosres.2015.01.022 |
SSID | ssj0000559308 |
Score | 2.2711759 |
Snippet | In view of the key factor in regional hydrological processes and water resource management, the temporal patterns of precipitation anomalies and oscillations... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2972 |
SubjectTerms | Agricultural production Annual precipitation Anomalies Arctic Oscillation Atmospheric forcing change modes china Climate change climate oscillations Correlation Cross correlation Deltas Drought El Nino Hydrologic cycle Hydrologic processes Hydrology Lag time Methods North Atlantic Oscillation Ocean-atmosphere system Oscillations Pacific Decadal Oscillation Perturbation method Perturbation methods Precipitation Precipitation anomalies Precipitation variations Principal components analysis Quantiles Regions Resource management Rivers Sea surface Southern Oscillation Southern Oscillation Index Spectrum analysis Teleconnections Time series Trends Water resources Water resources management Wind yangtze river delta |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9YwFA0yG3Uh46j46Sh3oSutk6Z5Ln0Ng6ALcWBchTRNUOj0K7Yi47_wH3tv2hk-EHHjrpTQhNyb-ygn5zD2RHXZBs5zpbTTFUZJV1lnsXGNbVYNUdYVuqb3H_TJqXx3ps52pL4IE7bQAy8bdxREVFxnaYLSsuPUkAiduxR4wORb9GoFd3ynmVpYvRVOUuToCDKHeUouqHdRa330IxJ5oRAvCtfTTj4qtP1_ROWSao732a21RoSXy9pus2tpOGA3d5gDD9j1Vbz8y8Ud9mu5IQBjococJthmGIm0Ylz5tyEM23Ost9OETx2MWzoHfYKZNHAI6FLuNkxA_2ShJ2h4NaHpEsT-Kxa0CYjwsl9Bc0CYT8CyET7jrPPPBB8J2gFvUj-H51D0uO-y0-O3n16fVKvSQhWFM3NltItamcBjktii6GiTVUILF02Dz0oaF1vNnU1R2uTqzqSo2qAE2jmbJjT32N6wHdJ9BtK6LDBu1BgIpOxaG-u2a5PDT9RNm9sNe3a53z6u20BqGL3HdoSs49E6nqzj0Tob9vRq9LjQb_xl3Csy3dUYIs0uL9CV_OpK_l-utGGHl4b360mevDBYIEvBG_vgf8zxkN2gNS8QwkO2N3_7nh5hWTO3j4sH_wYQP_O2 priority: 102 providerName: Directory of Open Access Journals |
Title | Change patterns of precipitation anomalies and possible teleconnections with large-scale climate oscillations over the Yangtze River Delta, China |
URI | https://www.proquest.com/docview/2777442038 https://doaj.org/article/a2c506f47a564d0184026fdea0a61713 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9YwFA26PagPolPx0znyoE9a16ZJmjyJ040hOGQ4mE8hSRMValvXiui_8B97b5rvcyD6FtrQlpzk5t7bk3MJeSzaqGxZxkJILQuwkrpQWkHg6l0UNUrWJbmmtyfy-Iy_ORfnOeE2ZVrl2iYmQ90OHnPk-6wBR4WzslYvxq8FVo3Cv6u5hMZVsg0mWME83z44PHl3usmylOAw10tZOqTOwX7FF_Y7q6Tc_-5RxJCx50nz6dK-lOT7_7LOacs5ukVuZl-RvlzAvU2uhH6H3LikILhDruUi5p9-3CG_lpMCdEySmf1Eh0hHFK8Ysw43tf3wBfzuMEGrpeOA66ELdMZaOEh4SWccJoq5WdohRbyYAMJAffcZHNtAUfiyy-Q5itxPCu4j_QBvnX8GeooUD_o6dLN9RlNd7rvk7Ojw_avjIldcKDzTzVw0UnspGlv6wCFUkV4FJZhk2jc1tAVvtHey1Cp4roKu2iZ44axggHdsalvfI1v90If7hHKlIwP7UYFB4Lx1yleudUHDI6raRbciT9fjbXweBqyK0RkISxAdA-gYRMcAOivyZNN7XGQ4_tHvAKHb9EHx7HRhuPho8lo0lnlRysgbKyRvS4xxmYxtsKUFf66qV2R3DbzJK3oyf-bfg__ffkiu49csJMFdsjVffAuPwHGZ3V6enXsp8P8NoTPuYQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXK9lA4ICggFgr4QE8Qmji2Yx8QorTVlrYrVLVSObmO40ClNAlNUFX-BX-E38hMPpZKCG69RbtWduMZj5-d5_cIeSmyXNkwzAMhtQygSupAaQULV5fmIkbJuk6u6WAuZ8f844k4WSK_xrMwSKsca2JXqLPK4R75BksAqHAWxupd_S1A1yh8uzpaaPRpseevLmHJ1rzd3YL4rjO2s330YRYMrgKBYzppg0RqJ0ViQ-c5wHHplFeCSaZdEsO14Il2qQy18o4rr6Ms8U6kVjB4pjyJbQz3vUWWOZ5onZDlze35p8PFrk4IAD3ubfCQqgfzI-_Z9iyScuPSoWgiY286jalr82BnF_DXbNBNcTv3yN0Bm9L3fTLdJ0u-XCV3rikWrpKVwTT969UD8rM_mUDrTqKzbGiV0xrFMupB95vasjoHnO8buMpoXeH4Kzxt0XsHCTbdmYqG4l4wLZCSHjSQMp664gyAtKcotFkMZD2KXFMKcJV-hl9tf3h6iJQSuuWL1r6mnQ_4Q3J8I7F4RCZlVfrHhHKlcwb1KoICxHmWKhelWeo13CKK0zydkldjfxs3dAO6cBQGlkEYHQPRMRgdA9GZkvVF67qX_fhHu00M3aINinV3H1QXX8ww9o1lToQy54kVkmchrqmZzDNvQwv4MYqnZG0MvBkqSGP-5PuT_3_9gqzMjg72zf7ufO8puY3_rCcorpFJe_HdPwPQ1KbPh0yl5PSmB8dvfj0pxg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELXKVuLjgKCAWCjgAz1B2MSxnfiAEGW7aimsqopK5ZQ6jg1IIQlNUFX-BX-HX8dM4iyVENx6i3at7G5mPPPsfX6PkKeicKkOQxcIqWQAVVIFqUph4WpyJ2KUrOvlmt4v5e4Rf3ssjtfIr_EsDNIqx5rYF-qiNrhHPmMJABXOwjidOU-LOJgvXjXfAnSQwn9aRzuNIUX27fkZLN_al3tziPUWY4udD292A-8wEBimki5IpDJSJDo0lgM0lya1qWCSKZPEcC14okwuQ5Vaw1OroiKxRuRaMPh9Lol1DPe9QtYT6Ip8Qta3d5YHh6sdnhDAejxY4iFtD3olH5j3LJJydmZQQJGxF73e1IWe2FsH_NUZ-na3uEVuepxKXw-JdZus2WqD3LigXrhBrnkD9c_nd8jP4ZQCbXq5zqqltaMNCmc0XgOc6qr-CpjftnBV0KbGuVha2qEPD5Jt-vMVLcV9YVoiPT1oIX0sNeUXANWWouhm6Yl7FHmnFKAr_Qif2v2w9BDpJXRuy04_p70n-F1ydCmxuEcmVV3Z-4TyVDkGtSuCYsR5kacmyovcKrhFFOcun5Jn4_POjH8M6MhRZrAkwuhkEJ0Mo5NBdKZkazW6GSRA_jFuG0O3GoPC3f0L9emnzNeBTDMjQul4ooXkRYjrayZdYXWoAUtG8ZRsjoHPfDVpsz-5_-D_bz8hV2FSZO_2lvsPyXX8YgNXcZNMutPv9hHgpy5_7BOVkpPLnhu_ARTFLfI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Change+patterns+of+precipitation+anomalies+and+possible+teleconnections+with+large-scale+climate+oscillations+over+the+Yangtze+River+Delta%2C+China&rft.jtitle=Journal+of+water+and+climate+change&rft.au=Xu%2C+Yu&rft.au=Zhao%2C+Yan&rft.au=Wu%2C+Yanjuan&rft.au=Gao%2C+Chao&rft.date=2022-08-01&rft.pub=IWA+Publishing&rft.issn=2040-2244&rft.eissn=2408-9354&rft.volume=13&rft.issue=8&rft.spage=2972&rft_id=info:doi/10.2166%2Fwcc.2022.097&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-2244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-2244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-2244&client=summon |