Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review

•PCM-cooled and PCM-heated BTMS are reviewed.•Phase change fluid (PCF), flexible phase change material (FPCM) and Hybrid cooling are analyzed.•The flammability of organic PCM needs to be solved for BTMS.•The stability of inorganic PCM needs to be solved for BTMS.•Various issues and challenges of BTM...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 430; p. 132741
Main Authors Luo, Jie, Zou, Deqiu, Wang, Yinshuang, Wang, Shuo, Huang, Li
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •PCM-cooled and PCM-heated BTMS are reviewed.•Phase change fluid (PCF), flexible phase change material (FPCM) and Hybrid cooling are analyzed.•The flammability of organic PCM needs to be solved for BTMS.•The stability of inorganic PCM needs to be solved for BTMS.•Various issues and challenges of BTMS based on PCM are identified. It is known that the performance of a power battery is greatly affected by temperature. The battery pack needs an efficient thermal management system to make the power battery work in a reasonable temperature range. Battery thermal management system (BTMs) based on phase change materials (PCM), as a passive thermal management method, has the advantages of low operating cost and good temperature uniformity. This paper mainly introduces the BTMs based on PCM, including the cooling and heating system based on PCM. For the cooling system of PCM, the performance of composite phase change materials (CPCM) and its heat transfer enhancement, phase change fluid (PCF), flexible phase change materials (FPCM), and hybrid cooling systems are analyzed. For the PCM heating system, the PCM latent heat for preheating of the power battery in a cold environment has also been discussed. Finally, this paper concluded that the next research directions should focus on the improvement of thermal conductivity of PCM, flame retardancy of organic PCM, thermal stability of inorganic PCM, PCF and FPCM, and PCM-based coupled battery thermal management.
AbstractList •PCM-cooled and PCM-heated BTMS are reviewed.•Phase change fluid (PCF), flexible phase change material (FPCM) and Hybrid cooling are analyzed.•The flammability of organic PCM needs to be solved for BTMS.•The stability of inorganic PCM needs to be solved for BTMS.•Various issues and challenges of BTMS based on PCM are identified. It is known that the performance of a power battery is greatly affected by temperature. The battery pack needs an efficient thermal management system to make the power battery work in a reasonable temperature range. Battery thermal management system (BTMs) based on phase change materials (PCM), as a passive thermal management method, has the advantages of low operating cost and good temperature uniformity. This paper mainly introduces the BTMs based on PCM, including the cooling and heating system based on PCM. For the cooling system of PCM, the performance of composite phase change materials (CPCM) and its heat transfer enhancement, phase change fluid (PCF), flexible phase change materials (FPCM), and hybrid cooling systems are analyzed. For the PCM heating system, the PCM latent heat for preheating of the power battery in a cold environment has also been discussed. Finally, this paper concluded that the next research directions should focus on the improvement of thermal conductivity of PCM, flame retardancy of organic PCM, thermal stability of inorganic PCM, PCF and FPCM, and PCM-based coupled battery thermal management.
ArticleNumber 132741
Author Wang, Shuo
Zou, Deqiu
Luo, Jie
Huang, Li
Wang, Yinshuang
Author_xml – sequence: 1
  givenname: Jie
  surname: Luo
  fullname: Luo, Jie
  organization: Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, Zhejiang, China
– sequence: 2
  givenname: Deqiu
  surname: Zou
  fullname: Zou, Deqiu
  email: zoudeqiu@nbu.edu.cn
  organization: Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, Zhejiang, China
– sequence: 3
  givenname: Yinshuang
  surname: Wang
  fullname: Wang, Yinshuang
  organization: Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, Zhejiang, China
– sequence: 4
  givenname: Shuo
  surname: Wang
  fullname: Wang, Shuo
  organization: Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, Zhejiang, China
– sequence: 5
  givenname: Li
  surname: Huang
  fullname: Huang, Li
  organization: Faculty of Architecture, Civil and Environmental Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
BookMark eNp9kDtvwjAUha2KSgXaH9DNIwxJ_ciznQD1JYHagc6W49wQR8RBtkXFv68RnTp0ume435HON0EjMxhA6J6SmBKaPXSxgi5mhNGYcpYn9AqNaZHziDPKRiHzIo2KMslv0MS5jhCSlbQco2YpvQd7wr4F28s97qWRO-jBeOxOzkPv8Gy53bg5rqSDGg8GH9qQsGql2UH4D7gO4OxztZk_4gVWQ3-w0IJx-gjYwlHD9y26buTewd3vnaKvl-ft6i1af7y-rxbrSLEy91GeAC0q2aRQszTJiyatmCqLuuJhVFNBVrCEZaxieZ0lTQJpVmZcctIUNeGMcD5F-aVX2cE5C41Q2kuvB-Ot1HtBiTjrEp0IusRZl7joCiT9Qx6s7qU9_cs8XRgIk8JMK5zSYBTU2oLyoh70P_QPmFOD7w
CitedBy_id crossref_primary_10_1021_acs_chemrev_2c00572
crossref_primary_10_1016_j_applthermaleng_2022_118510
crossref_primary_10_1016_j_applthermaleng_2022_119840
crossref_primary_10_1002_smtd_202300139
crossref_primary_10_1016_j_est_2024_111228
crossref_primary_10_1080_1536383X_2024_2392033
crossref_primary_10_1016_j_ijft_2023_100365
crossref_primary_10_1016_j_ijft_2023_100368
crossref_primary_10_1016_j_coco_2023_101614
crossref_primary_10_1016_j_est_2024_111227
crossref_primary_10_3390_fire6050175
crossref_primary_10_1021_acsapm_3c00372
crossref_primary_10_1016_j_tsep_2023_102120
crossref_primary_10_1016_j_csite_2024_104837
crossref_primary_10_1016_j_est_2023_107921
crossref_primary_10_1002_cplu_202400542
crossref_primary_10_1016_j_rser_2023_114052
crossref_primary_10_1016_j_cej_2023_144720
crossref_primary_10_1016_j_ijft_2023_100370
crossref_primary_10_1016_j_est_2022_104384
crossref_primary_10_1016_j_applthermaleng_2024_123777
crossref_primary_10_1016_j_cjche_2024_08_008
crossref_primary_10_1016_j_egyr_2023_07_041
crossref_primary_10_21597_jist_1190593
crossref_primary_10_1002_er_8272
crossref_primary_10_1016_j_applthermaleng_2024_123897
crossref_primary_10_1002_er_8273
crossref_primary_10_3390_en17133106
crossref_primary_10_3390_en17020543
crossref_primary_10_1016_j_tsep_2024_102758
crossref_primary_10_1016_j_est_2022_105202
crossref_primary_10_1016_j_est_2023_108918
crossref_primary_10_1016_j_polymer_2024_127632
crossref_primary_10_1016_j_jclepro_2021_130014
crossref_primary_10_1016_j_ensm_2023_102814
crossref_primary_10_1016_j_est_2024_113421
crossref_primary_10_1002_smtd_202201515
crossref_primary_10_1016_j_cej_2022_135648
crossref_primary_10_1016_j_jpowsour_2022_231606
crossref_primary_10_1016_j_est_2022_106538
crossref_primary_10_1016_j_est_2022_105214
crossref_primary_10_1016_j_est_2022_105335
crossref_primary_10_1016_j_cej_2023_142401
crossref_primary_10_1088_1402_4896_ad0000
crossref_primary_10_1021_acs_energyfuels_1c04444
crossref_primary_10_1021_acs_energyfuels_4c02062
crossref_primary_10_1016_j_enganabound_2023_02_008
crossref_primary_10_1016_j_applthermaleng_2024_123798
crossref_primary_10_1016_j_energy_2025_135343
crossref_primary_10_1016_j_csite_2024_103996
crossref_primary_10_1016_j_est_2023_106911
crossref_primary_10_1016_j_icheatmasstransfer_2022_106377
crossref_primary_10_1016_j_est_2022_105785
crossref_primary_10_1016_j_compositesa_2022_107139
crossref_primary_10_1016_j_cej_2024_150653
crossref_primary_10_1016_j_cej_2023_142514
crossref_primary_10_1080_01457632_2024_2437892
crossref_primary_10_1016_j_est_2024_110696
crossref_primary_10_1016_j_est_2024_113844
crossref_primary_10_1016_j_est_2024_111661
crossref_primary_10_12677_mos_2024_136588
crossref_primary_10_1016_j_compscitech_2022_109756
crossref_primary_10_1016_j_cej_2024_148577
crossref_primary_10_1016_j_est_2022_105549
crossref_primary_10_1061_JLEED9_EYENG_4740
crossref_primary_10_1016_j_compositesa_2022_107006
crossref_primary_10_1016_j_est_2023_110046
crossref_primary_10_3390_w14193148
crossref_primary_10_1016_j_cej_2022_137733
crossref_primary_10_1016_j_apenergy_2023_122352
crossref_primary_10_1016_j_est_2024_113731
crossref_primary_10_1016_j_jpowsour_2022_231610
crossref_primary_10_1002_est2_70076
crossref_primary_10_1088_2053_1591_ad1949
crossref_primary_10_3390_wevj15100464
crossref_primary_10_1016_j_est_2023_106933
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124712
crossref_primary_10_3390_batteries9030153
crossref_primary_10_1063_5_0223188
crossref_primary_10_1016_j_est_2023_106819
crossref_primary_10_1016_j_est_2024_111567
crossref_primary_10_1016_j_est_2024_113741
crossref_primary_10_1016_j_applthermaleng_2024_124330
crossref_primary_10_1515_ntrev_2023_0180
crossref_primary_10_1021_acsomega_1c06502
crossref_primary_10_1002_ente_202101135
crossref_primary_10_1016_j_est_2022_105524
crossref_primary_10_1016_j_ijheatmasstransfer_2023_123989
crossref_primary_10_1016_j_applthermaleng_2024_123118
crossref_primary_10_1016_j_est_2024_112306
crossref_primary_10_1016_j_est_2023_109081
crossref_primary_10_1016_j_apenergy_2022_119917
crossref_primary_10_1016_j_applthermaleng_2024_123475
crossref_primary_10_1016_j_compscitech_2023_109945
crossref_primary_10_1016_j_solener_2024_112800
crossref_primary_10_1016_j_est_2023_110180
crossref_primary_10_1016_j_cej_2023_146087
crossref_primary_10_3390_batteries10030083
crossref_primary_10_1063_5_0145904
crossref_primary_10_2298_TSCI240706226G
crossref_primary_10_1016_j_est_2024_113927
crossref_primary_10_1016_j_est_2025_115397
crossref_primary_10_1016_j_est_2025_115399
crossref_primary_10_1016_j_est_2024_112952
crossref_primary_10_1016_j_tsep_2022_101282
crossref_primary_10_1016_j_est_2023_110259
crossref_primary_10_1021_acsapm_4c00977
crossref_primary_10_1016_j_asej_2024_102908
crossref_primary_10_1016_j_compositesb_2025_112376
crossref_primary_10_1016_j_est_2023_110372
crossref_primary_10_1002_ente_202200873
crossref_primary_10_1016_j_cej_2025_161599
crossref_primary_10_1016_j_enconman_2022_115383
crossref_primary_10_1039_D2TC04381E
crossref_primary_10_1016_j_apenergy_2021_118433
crossref_primary_10_1016_j_ifacol_2024_11_175
crossref_primary_10_1016_j_apenergy_2024_123180
crossref_primary_10_1016_j_applthermaleng_2023_122104
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125354
crossref_primary_10_1007_s11431_024_2770_1
crossref_primary_10_1016_j_renene_2023_119922
crossref_primary_10_1016_j_solmat_2023_112594
crossref_primary_10_1016_j_applthermaleng_2025_126143
crossref_primary_10_1002_app_55956
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123734
crossref_primary_10_1016_j_est_2022_104873
crossref_primary_10_1016_j_enbuild_2023_112928
crossref_primary_10_1016_j_est_2025_116265
crossref_primary_10_1016_j_applthermaleng_2024_124813
crossref_primary_10_1016_j_est_2024_112978
crossref_primary_10_1016_j_energy_2024_131404
crossref_primary_10_1016_j_est_2024_112737
crossref_primary_10_1016_j_est_2024_112852
crossref_primary_10_1016_j_icheatmasstransfer_2024_107608
crossref_primary_10_1021_acsaem_3c01819
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126730
crossref_primary_10_1016_j_est_2023_110273
crossref_primary_10_3390_coatings14030257
crossref_primary_10_1002_ente_202300382
crossref_primary_10_1016_j_icheatmasstransfer_2024_107735
crossref_primary_10_3390_en16031059
crossref_primary_10_1016_j_applthermaleng_2024_122988
crossref_primary_10_1016_j_est_2025_116279
crossref_primary_10_1149_1945_7111_ac9ee4
crossref_primary_10_1016_j_est_2024_111412
crossref_primary_10_1016_j_est_2024_114920
crossref_primary_10_1016_j_est_2023_107096
crossref_primary_10_1016_j_solmat_2023_112336
crossref_primary_10_1016_j_apenergy_2025_125766
crossref_primary_10_1016_j_tsep_2022_101244
crossref_primary_10_1016_j_jobe_2022_105763
crossref_primary_10_1016_j_enbuild_2022_112451
crossref_primary_10_1002_admi_202202100
crossref_primary_10_1002_ente_202301247
crossref_primary_10_1016_j_mtsust_2023_100443
crossref_primary_10_1016_j_enconman_2024_119149
crossref_primary_10_1016_j_aej_2024_11_038
crossref_primary_10_1002_asia_202300391
crossref_primary_10_1016_j_applthermaleng_2024_122659
crossref_primary_10_1002_smll_202407626
crossref_primary_10_1016_j_cej_2025_161559
crossref_primary_10_1016_j_est_2023_108131
crossref_primary_10_1016_j_est_2023_107167
crossref_primary_10_1016_j_csite_2023_103388
crossref_primary_10_1016_j_est_2022_104857
crossref_primary_10_1002_ente_202401930
crossref_primary_10_1016_j_csite_2024_104752
crossref_primary_10_1016_j_etran_2024_100381
crossref_primary_10_1155_2023_9077046
crossref_primary_10_1108_HFF_12_2023_0732
crossref_primary_10_1016_j_energy_2024_130642
crossref_primary_10_3390_en17040939
crossref_primary_10_1007_s11630_024_1922_3
crossref_primary_10_1016_j_icheatmasstransfer_2024_107756
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126246
crossref_primary_10_1016_j_est_2024_112922
crossref_primary_10_1088_1755_1315_1161_1_012014
crossref_primary_10_1007_s10973_024_13172_x
crossref_primary_10_1016_j_ensm_2023_103144
crossref_primary_10_1080_10407782_2023_2179559
crossref_primary_10_1007_s10973_023_12256_4
crossref_primary_10_1016_j_mtcomm_2024_108420
crossref_primary_10_3390_su15075868
crossref_primary_10_1016_j_icheatmasstransfer_2024_107401
crossref_primary_10_1016_j_est_2024_115072
crossref_primary_10_26599_NRE_2023_9120103
crossref_primary_10_1016_j_apenergy_2022_119509
crossref_primary_10_1016_j_est_2025_115490
crossref_primary_10_3390_en17184575
crossref_primary_10_1016_j_cej_2023_142336
crossref_primary_10_1016_j_est_2023_110234
crossref_primary_10_1016_j_cej_2024_150110
crossref_primary_10_1016_j_est_2023_108280
crossref_primary_10_1115_1_4056823
crossref_primary_10_1016_j_cej_2021_134231
crossref_primary_10_1016_j_applthermaleng_2024_122794
crossref_primary_10_1016_j_est_2023_108395
crossref_primary_10_1016_j_est_2023_109124
crossref_primary_10_1007_s11431_024_2683_2
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126778
crossref_primary_10_1016_j_etran_2024_100364
crossref_primary_10_1007_s10965_023_03553_5
crossref_primary_10_1016_j_enss_2022_07_004
crossref_primary_10_1080_15435075_2023_2253886
crossref_primary_10_1016_j_isci_2022_103744
crossref_primary_10_1016_j_tsep_2023_101862
crossref_primary_10_3390_ma18010213
crossref_primary_10_1016_j_est_2023_110340
crossref_primary_10_1016_j_est_2023_108389
crossref_primary_10_1016_j_jclepro_2022_133572
crossref_primary_10_3390_en17040912
crossref_primary_10_1016_j_applthermaleng_2023_120187
crossref_primary_10_1038_s44359_024_00020_2
crossref_primary_10_3390_app13158848
crossref_primary_10_1002_pc_27864
crossref_primary_10_1016_j_est_2022_103998
crossref_primary_10_29130_dubited_1379834
crossref_primary_10_1016_j_compchemeng_2022_107929
crossref_primary_10_1016_j_prime_2024_100526
crossref_primary_10_1016_j_applthermaleng_2022_119283
crossref_primary_10_1021_acssuschemeng_2c06598
crossref_primary_10_3390_designs6060117
crossref_primary_10_3390_ma17030633
crossref_primary_10_1016_j_solmat_2023_112406
crossref_primary_10_1016_j_solmat_2022_112124
crossref_primary_10_1016_j_est_2023_107001
crossref_primary_10_1016_j_ensm_2024_103602
crossref_primary_10_1021_acsaem_4c00081
crossref_primary_10_1080_09506608_2022_2053774
crossref_primary_10_1016_j_csite_2024_104145
crossref_primary_10_1016_j_csite_2024_104267
crossref_primary_10_1016_j_est_2024_110705
crossref_primary_10_1016_j_est_2024_110700
crossref_primary_10_1080_10407782_2024_2363506
crossref_primary_10_1016_j_cjsc_2022_100006
crossref_primary_10_1007_s10973_023_12341_8
crossref_primary_10_3390_ma16175979
crossref_primary_10_1016_j_tsep_2022_101547
crossref_primary_10_1016_j_est_2023_108205
crossref_primary_10_1063_5_0221003
crossref_primary_10_1007_s10973_024_13762_9
crossref_primary_10_1016_j_applthermaleng_2022_119026
crossref_primary_10_1016_j_applthermaleng_2023_121745
crossref_primary_10_1002_adfm_202213846
crossref_primary_10_1016_j_nxsust_2025_100114
crossref_primary_10_1016_j_solmat_2023_112628
crossref_primary_10_3390_batteries9060287
crossref_primary_10_1016_j_rser_2023_113978
crossref_primary_10_1016_j_est_2025_115579
crossref_primary_10_1080_10407790_2023_2219833
crossref_primary_10_1016_j_ensm_2022_01_017
crossref_primary_10_1016_j_applthermaleng_2023_120530
crossref_primary_10_1016_j_energy_2024_132685
crossref_primary_10_1021_acsaem_2c02080
crossref_primary_10_1002_smll_202312134
crossref_primary_10_1016_j_enganabound_2022_05_006
crossref_primary_10_1016_j_est_2025_115584
crossref_primary_10_1016_j_est_2024_111814
crossref_primary_10_1016_j_applthermaleng_2022_119491
crossref_primary_10_1016_j_est_2024_110725
crossref_primary_10_3390_en15041421
crossref_primary_10_1016_j_applthermaleng_2022_119495
crossref_primary_10_1016_j_apenergy_2025_125802
crossref_primary_10_1109_TTE_2024_3409164
crossref_primary_10_1007_s11431_023_2539_x
crossref_primary_10_3934_energy_2025006
crossref_primary_10_1016_j_applthermaleng_2024_125091
crossref_primary_10_1016_j_rser_2023_113711
crossref_primary_10_1016_j_enconman_2023_116676
crossref_primary_10_1080_01457632_2025_2459983
crossref_primary_10_1007_s42405_023_00596_2
crossref_primary_10_1016_j_est_2025_115756
crossref_primary_10_1016_j_enganabound_2022_04_024
crossref_primary_10_1016_j_compfluid_2024_106176
crossref_primary_10_1016_j_polymer_2024_127250
crossref_primary_10_1016_j_ijheatfluidflow_2024_109299
crossref_primary_10_1016_j_est_2023_108775
crossref_primary_10_1016_j_est_2024_113160
crossref_primary_10_1016_j_ceramint_2023_02_208
crossref_primary_10_1016_j_icheatmasstransfer_2024_107473
crossref_primary_10_1016_j_apenergy_2022_120564
crossref_primary_10_1016_j_est_2025_115644
crossref_primary_10_1016_j_rser_2025_115466
crossref_primary_10_1016_j_compositesa_2024_108331
crossref_primary_10_1016_j_est_2025_115404
crossref_primary_10_1016_j_jpowsour_2022_232145
crossref_primary_10_1016_j_est_2024_114268
crossref_primary_10_1080_01457632_2024_2325275
crossref_primary_10_1016_j_est_2023_109852
crossref_primary_10_3390_molecules29153572
crossref_primary_10_1016_j_csite_2024_104347
crossref_primary_10_3390_designs8060113
crossref_primary_10_1016_j_compscitech_2023_110256
crossref_primary_10_1016_j_icheatmasstransfer_2024_107249
crossref_primary_10_1016_j_ijheatmasstransfer_2023_125005
crossref_primary_10_1016_j_cej_2023_145329
crossref_primary_10_1016_j_enconman_2022_116015
crossref_primary_10_1016_j_jpowsour_2024_235495
crossref_primary_10_1080_10407782_2024_2344068
crossref_primary_10_1016_j_renene_2024_121273
crossref_primary_10_1016_j_apenergy_2024_123899
crossref_primary_10_1016_j_est_2024_114395
crossref_primary_10_1115_1_4063848
crossref_primary_10_1016_j_egyr_2023_04_359
crossref_primary_10_3390_en16135040
crossref_primary_10_7836_kses_2023_43_2_055
crossref_primary_10_1016_j_apenergy_2022_120109
crossref_primary_10_18186_thermal_1334238
crossref_primary_10_1007_s00158_024_03932_6
crossref_primary_10_1016_j_polymer_2024_127148
crossref_primary_10_1002_apj_3061
crossref_primary_10_1016_j_renene_2022_09_026
crossref_primary_10_1016_j_est_2025_115666
crossref_primary_10_1016_j_psep_2024_02_077
crossref_primary_10_1016_j_est_2023_108661
crossref_primary_10_1016_j_ecmx_2024_100862
crossref_primary_10_3390_en16052187
crossref_primary_10_1061_JLEED9_EYENG_5237
crossref_primary_10_1016_j_aej_2023_05_001
crossref_primary_10_1080_15325008_2023_2249882
crossref_primary_10_1007_s11630_024_2020_2
crossref_primary_10_1016_j_energy_2023_127798
crossref_primary_10_1016_j_ijthermalsci_2023_108200
crossref_primary_10_1016_j_est_2023_108615
crossref_primary_10_1016_j_rineng_2023_101424
crossref_primary_10_1016_j_applthermaleng_2023_120963
crossref_primary_10_1021_acsaem_2c03671
crossref_primary_10_1016_j_est_2022_106163
crossref_primary_10_1016_j_rser_2023_113921
crossref_primary_10_1615_AnnualRevHeatTransfer_2023048695
crossref_primary_10_3389_fenrg_2024_1329392
crossref_primary_10_1016_j_est_2025_115604
crossref_primary_10_1016_j_renene_2024_120529
crossref_primary_10_1007_s12274_023_6179_8
crossref_primary_10_1016_j_compscitech_2025_111080
crossref_primary_10_1016_j_est_2024_114581
crossref_primary_10_1016_j_ijthermalsci_2023_108332
crossref_primary_10_1016_j_device_2023_100121
crossref_primary_10_1002_adfm_202314021
crossref_primary_10_1016_j_est_2022_106017
crossref_primary_10_12688_openreseurope_17021_1
crossref_primary_10_1016_j_rser_2024_115277
crossref_primary_10_20517_energymater_2024_112
crossref_primary_10_1016_j_icheatmasstransfer_2023_106912
crossref_primary_10_1016_j_coco_2023_101793
crossref_primary_10_1016_j_est_2022_106496
crossref_primary_10_1016_j_procir_2024_03_032
crossref_primary_10_1016_j_est_2025_115977
crossref_primary_10_1016_j_cej_2022_137423
crossref_primary_10_1016_j_applthermaleng_2024_125226
crossref_primary_10_1016_j_est_2024_112051
crossref_primary_10_1021_acsami_3c17269
crossref_primary_10_1016_j_est_2023_108515
crossref_primary_10_1016_j_seta_2024_103980
crossref_primary_10_1016_j_est_2023_108748
crossref_primary_10_1016_j_rser_2024_115021
crossref_primary_10_1016_j_est_2022_105052
crossref_primary_10_1016_j_ijbiomac_2024_138162
crossref_primary_10_1016_j_icheatmasstransfer_2024_108271
crossref_primary_10_1016_j_est_2024_114369
crossref_primary_10_1016_j_energy_2022_126416
crossref_primary_10_1016_j_applthermaleng_2024_125216
crossref_primary_10_1002_cey2_665
crossref_primary_10_1016_j_est_2023_108987
crossref_primary_10_1016_j_est_2023_106688
crossref_primary_10_1016_j_renene_2022_08_026
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124748
crossref_primary_10_1615_HeatTransRes_2024055041
crossref_primary_10_1080_10407782_2024_2305670
crossref_primary_10_1016_j_applthermaleng_2025_125647
crossref_primary_10_1016_j_jclepro_2023_138797
crossref_primary_10_1039_D4SE00871E
crossref_primary_10_1016_j_desal_2024_117685
crossref_primary_10_1016_j_renene_2023_02_083
crossref_primary_10_1016_j_est_2022_106005
crossref_primary_10_1016_j_energy_2025_134623
crossref_primary_10_3390_wevj15010013
crossref_primary_10_1016_j_cej_2024_157322
crossref_primary_10_1016_j_cej_2024_157564
crossref_primary_10_1016_j_applthermaleng_2022_119352
crossref_primary_10_1016_j_applthermaleng_2024_123057
crossref_primary_10_1016_j_est_2024_114661
crossref_primary_10_1002_est2_522
crossref_primary_10_1002_est2_647
crossref_primary_10_1080_01430750_2024_2393728
crossref_primary_10_1016_j_applthermaleng_2024_123052
crossref_primary_10_1007_s10973_023_12426_4
crossref_primary_10_1016_j_applthermaleng_2023_119984
crossref_primary_10_1016_j_est_2023_109929
crossref_primary_10_1016_j_est_2022_106331
crossref_primary_10_1016_j_jpowsour_2025_236345
crossref_primary_10_1021_acsaem_2c03383
crossref_primary_10_1016_j_jmrt_2023_01_026
crossref_primary_10_1016_j_applthermaleng_2023_121949
crossref_primary_10_3390_wevj14010015
crossref_primary_10_1016_j_est_2024_112375
crossref_primary_10_1016_j_applthermaleng_2024_125265
crossref_primary_10_1016_j_cej_2024_157313
crossref_primary_10_1016_j_renene_2025_122716
crossref_primary_10_1016_j_cma_2023_116228
crossref_primary_10_1007_s11665_024_10184_4
crossref_primary_10_1016_j_est_2023_107858
crossref_primary_10_1016_j_mtsust_2024_101026
crossref_primary_10_1016_j_est_2022_105254
crossref_primary_10_1016_j_est_2022_106465
crossref_primary_10_1016_j_est_2022_104166
crossref_primary_10_1016_j_est_2022_106222
crossref_primary_10_1016_j_icheatmasstransfer_2023_106708
crossref_primary_10_1016_j_jobe_2025_112106
crossref_primary_10_1016_j_est_2024_113479
crossref_primary_10_1061__ASCE_EY_1943_7897_0000845
crossref_primary_10_1016_j_renene_2022_06_117
crossref_primary_10_1016_j_scib_2022_09_014
crossref_primary_10_1016_j_est_2024_113350
crossref_primary_10_1016_j_est_2024_113351
crossref_primary_10_1108_HFF_08_2023_0482
crossref_primary_10_1016_j_est_2023_107851
crossref_primary_10_1002_ente_202401362
crossref_primary_10_1002_ppsc_202400031
crossref_primary_10_1016_j_est_2023_108701
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124669
crossref_primary_10_1007_s12613_023_2794_3
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125814
Cites_doi 10.1016/j.ijheatmasstransfer.2020.120827
10.1016/j.apenergy.2014.01.075
10.1016/j.est.2020.101816
10.1016/j.jpowsour.2019.227673
10.1016/j.applthermaleng.2021.117002
10.1016/j.electacta.2013.08.074
10.1016/j.expthermflusci.2016.11.017
10.1016/j.enconman.2020.113145
10.1080/15567036.2011.576411
10.1016/j.applthermaleng.2017.03.107
10.1016/j.ijthermalsci.2021.106968
10.1016/j.applthermaleng.2020.115795
10.1016/j.est.2020.101755
10.1016/j.enconman.2016.05.065
10.1016/j.tsep.2019.03.003
10.1016/j.applthermaleng.2021.116888
10.1016/j.enconman.2019.05.084
10.1016/j.ijheatmasstransfer.2017.12.024
10.1016/j.enconman.2020.112680
10.1016/j.renene.2017.07.004
10.1016/j.apenergy.2019.114120
10.1007/s00231-018-02555-0
10.1016/j.ensm.2020.10.014
10.1016/j.est.2020.101860
10.1016/j.icheatmasstransfer.2020.104612
10.1016/j.compositesa.2021.106420
10.1007/s11630-017-0955-2
10.1016/j.est.2021.102602
10.1039/D0TA05904H
10.1016/j.egyr.2019.09.060
10.1002/ente.201600083
10.1016/j.solmat.2019.02.021
10.1016/j.applthermaleng.2021.116767
10.1016/j.electacta.2019.135551
10.1039/D0TA05247G
10.1002/er.6491
10.1016/j.applthermaleng.2019.114571
10.1115/1.4046983
10.1016/j.jpowsour.2020.227820
10.1016/j.applthermaleng.2019.114345
10.1002/adma.201905099
10.1016/j.enconman.2018.12.064
10.1021/acsaem.0c03116
10.1016/j.energy.2013.10.088
10.1016/j.ijheatmasstransfer.2020.119820
10.1002/er.4067
10.1016/j.ijheatmasstransfer.2018.07.120
10.1016/j.energy.2018.10.137
10.1016/j.ijheatmasstransfer.2014.01.059
10.1016/j.applthermaleng.2021.116649
10.1016/j.renene.2019.07.112
10.1016/j.ijheatmasstransfer.2018.12.157
10.1016/j.applthermaleng.2013.04.064
10.1016/j.compscitech.2019.107714
10.1016/j.enconman.2018.06.029
10.1016/j.jpowsour.2021.229727
10.1016/j.jpowsour.2017.12.071
10.1016/j.energy.2017.12.098
10.1016/j.jpowsour.2020.229116
10.1016/j.ijheatmasstransfer.2013.12.076
10.1016/j.ijthermalsci.2019.03.026
10.1016/j.jpowsour.2020.228545
10.1016/j.jpowsour.2017.06.031
10.1016/j.csite.2021.100920
10.1016/j.jpowsour.2015.05.095
10.1016/j.apenergy.2019.01.159
10.1016/j.ijheatmasstransfer.2017.09.092
10.1016/j.enconman.2013.05.003
10.1016/j.enconman.2019.112280
10.1002/er.4307
10.1016/j.energy.2020.119496
10.1002/er.6165
10.1016/j.applthermaleng.2020.116415
10.1016/j.enconman.2016.12.009
10.1016/j.enconman.2013.01.025
10.1016/j.applthermaleng.2020.116028
10.1155/2019/3725364
10.1016/j.applthermaleng.2020.116151
10.1016/j.apenergy.2020.115808
10.1016/j.enconman.2017.11.046
10.1016/j.jpowsour.2020.228398
10.1016/j.jclepro.2015.11.011
10.1016/j.electacta.2017.10.051
10.1016/j.apenergy.2017.01.012
10.1016/j.applthermaleng.2019.114759
10.1016/j.est.2020.101235
10.1002/er.6241
10.1155/2020/8167386
10.1016/j.apenergy.2015.03.080
10.1016/j.applthermaleng.2020.116380
10.1016/j.rser.2011.07.096
10.1016/j.ijheatmasstransfer.2017.10.130
10.1016/j.jclepro.2021.127517
10.1016/j.applthermaleng.2018.06.048
10.1016/j.applthermaleng.2021.116665
10.1016/j.enconman.2018.11.064
10.1016/j.energy.2018.12.218
10.3390/en12101937
10.1016/j.scs.2019.101786
10.1016/j.ijheatmasstransfer.2021.121318
10.1016/j.est.2021.102279
10.1016/j.applthermaleng.2019.04.093
10.1016/j.jpowsour.2020.228820
10.1016/j.egyr.2018.04.001
10.1016/j.matdes.2019.108219
10.1016/j.colsurfa.2009.12.036
10.1016/j.jpowsour.2021.229624
10.1016/j.energy.2017.09.083
10.3390/ma13214763
10.1016/j.applthermaleng.2019.114102
10.1016/j.enconman.2016.09.081
10.1016/j.applthermaleng.2019.114792
10.1016/j.energy.2016.07.119
10.1016/j.enconman.2012.08.014
10.1016/j.enconman.2017.07.019
10.1016/j.enconman.2018.12.051
10.1016/j.egyr.2019.06.016
10.1016/j.energy.2019.116565
10.1016/j.enbuild.2021.110750
10.1016/j.energy.2019.116840
10.1016/j.applthermaleng.2018.11.100
10.1016/j.ijheatmasstransfer.2021.121199
10.1016/j.enconman.2017.02.022
10.1016/j.est.2021.102448
10.1016/j.energy.2020.118215
10.1016/j.ijthermalsci.2017.09.019
10.1016/j.enconman.2018.11.033
10.1016/j.apenergy.2018.06.143
10.1016/S0378-7753(02)00200-8
10.1002/er.4081
10.1016/j.solmat.2017.07.019
10.1007/s12221-019-1067-2
10.1016/j.apenergy.2018.11.071
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2021.132741
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2021_132741
S1385894721043199
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c297t-74e18baf5ed25478f5b2c98db3132fbe6824262b27d64f4e56963a30f8d032033
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 04:27:52 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Fri Feb 23 02:42:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Phase change material (PCM)
Heat transfer enhancement
Battery thermal management system (BTMs)
Organic PCMs
Flexible phase change material (FPCM)
Inorganic PCMs
Phase change fluid (PCF)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-74e18baf5ed25478f5b2c98db3132fbe6824262b27d64f4e56963a30f8d032033
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2021_132741
crossref_primary_10_1016_j_cej_2021_132741
elsevier_sciencedirect_doi_10_1016_j_cej_2021_132741
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References F. He, X. Li, Experimental investigation of thermal management system for lithium ion batteries module with coupling effect by heat sheets and phase change materials, (2018) 1–10. https://doi.org/10.1002/er.4081.
Zhao, Wu, Rao (b0175) 2020; 115
Qi, Shao, Wu, Yang, Wang (b0390) 2019; 181
Z. Ling, X. Wen, Z. Zhang, X. Fang, T. Xu, Warming-Up Effects of Phase Change Materials on Lithium-Ion Batteries Operated at Low Temperatures, 510640 (2016) 1–7. https://doi.org/10.1002/ente.201600083.
Shojaeefard, Molaeimanesh, Ranjbaran (b0260) 2019; 55
Zhang, Liang, Wu, Ling, Ma (b0615) 2021; 174
Liu, Huang, Cao, Jiang, Hu, Chen (b0250) 2020; 13
Huang, Li, Zhang, Wang, Deng, Wang, Chen (b0450) 2021; 4
Javani, Dincer, Naterer, Yilbas (b0160) 2014; 72
Zhao, Lv, Rao (b0170) 2017; 82
Heyhat, Mousavi, Siavashi (b0235) 2020; 28
Rao, Wang (b0015) 2011; 15
Y. Huo, Y. Guo, Z. Rao, Investigation on the thermal performance of phase change material / porous medium ‐ based battery thermal management in pore scale, (2018) 1–12. https://doi.org/10.1002/er.4307.
Wang, Niu, Yan, Gao, Duan (b0090) 2021; 235
Wu, Yang, Zhang, Ke, Wang, Situ, Li, Zhang (b0225) 2016; 113
Gou, Liu, Luo (b0595) 2019; 161
Wu, Liu, Cheng, Liu (b0105) 2013; 69
Zhang, Kong, Li, Li (b0345) 2014; 64
Li, Cheng, Xie, Liu, Zhang (b0400) 2017; 149
Sasmito, Shamim, Mujumdar (b0645) 2013; 58
Zhang, Qiu, Yin, Wang (b0600) 2020; 165
Huang, Li, Hong, Wu, Yu (b0210) 2020; 6
Situ, Zhang, Li, Yang, Wei, Rao, Wang, Wang, Wu (b0220) 2017; 141
He, Yang, Zhang (b0290) 2019; 148
Mehrabi-kermani, Houshfar, Ashjaee (b0465) 2019; 141
Tan, Zhang, Sun, Shen, Qu, Zheng (b0035) 2013; 111
Verma, Shashidhara, Rakshit (b0070) 2019; 11
Luo, Song, Ling, Zhang, Fang (b0670) 2021; 20
Morimoto, Togashi, Kumano, Hong (b0300) 2016; 122
Rehman, Muhammad, Saieed, Pao, Ali (b0215) 2018; 127
Agresti, Fedele, Rossi, Cabaleiro, Bobbo, Ischia, Barison (b0315) 2019; 194
Qiu, Li (b0360) 2020; 52
Chen, Hou, Song, Wang, Wu, Zhang (b0585) 2021; 188
Pan, Lai (b0230) 2017; 114
Lin, Zhang, Ji, Liu, Wu, Yang, Lu, Zheng (b0455) 2021; 311
Ling, Wang, Fang, Gao, Zhang (b0475) 2015; 148
Kong, Peng, Ping, Du, Chen, Wen (b0500) 2020; 204
Jiang, Liao, Jiaqiang, Zhang, Chen, Leng (b0005) 2020; 32
Y. Wang, Y. Yu, Z. Jing, C. Wang, G. Zhou, International Journal of Heat and Mass Transfer Thermal performance of lithium-ion batteries applying forced air cooling with an improved aluminium foam heat sink design, 167 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120827.
Xu, Liu, Ouyang, Cui, Hong, Meng, Qin, Liu, Tang, Chen (b0405) 2020; 334
Ling, Lin, Zhang, Fang (b0660) 2020; 259
Malik, Dincer, Rosen, Fowler (b0185) 2017; 257
Ji, Wang, Wang, Pan, Wang, Qi, Zhang (b0140) 2019; 157
Ping, Zhang, Kong, Du (b0545) 2021; 36
Tian, Liu, Zhang, Liu (b0685) 2021; 13
Huang, Cheng, Zhao (b0410) 2019; 182
Xiao, Zhang, Li, Yang (b0275) 2020; 8
Lee, Bae, Jang (b0050) 2015; 293
Yang, Zhou, Liu, Xu, Chen (b0530) 2021; 188
Kou, Sun, Luo, Zhou, Huang, Wu, Shi (b0395) 2021; 34
Song, Zhang, Yang (b0505) 2019; 133
Ling, Wen, Zhang, Fang, Gao (b0680) 2018; 144
Li, Xiao, Wang, Lian, Li, Wang (b0365) 2020; 180
Cao, Ling, Fang, Zhang (b0560) 2020; 450
Cao, Luo, Fang, Ling, Zhang (b0555) 2020; 191
An, Chen, Zhao, Gao (b0535) 2019; 163
Safdari, Ahmadi, Sadeghzadeh (b0490) 2020; 193
Yuan, Xu, Tong, Ding (b0675) 2021; 45
Li, Mei, Liu, Wang, Xu, Sun (b0305) 2010; 356
Languri, Rokni, Alvarado, Takabi, Kong (b0335) 2018; 118
Pakrouh, Hosseini, Bahrampoury, Ranjbar, Borhani (b0375) 2021; 40
Ling, Luo, Song, Zhang, Zhang, Fang (b0665) 2021; 219
Ghadbeigi, Day, Lundgren, Sparks (b0650) 2018; 4
Ling, Chen, Fang, Zhang, Xu, Gao, Wang (b0100) 2014; 121
Zhang, Chen, Gao, Xu, Xia, Li (b0270) 2019; 12
Ling, Li, Cai, Lin, Fang, Zhang (b0130) 2021; 193
Lei, Shi, Chen (b0605) 2020; 168
Zou, Ma, Liu, Zheng, Hu (b0190) 2018; 120
Galazutdinova, Ushak, Farid, Al-Hallaj, Grágeda (b0125) 2021; 491
Azizi, Sadrameli (b0295) 2016; 128
Huang, Deng, Li, Zhang, Xu (b0445) 2020; 32
Wu, Liu, Liu, Rao, Deng, Wang, Qi, Wang (b0425) 2020; 221
Luo, Guo, Li, Tao, Lei, Liu, Kang, Zheng, Liu (b0280) 2020; 145
Li, Zhang (b0525) 2020; 156
Farag, Sweity, Fleckenstein, Habibi (b0045) 2017; 360
Wu, Li, Tong, Chao, Zhai, Xu, Yan, Wu, Xu, Bao, Deng, Wang (b0430) 2019; 31
Moussa, Idi, Karkri, Tankari (b0080) 2021; 169
Xie, Tang, Shi, Xing, Wu, Hu, Wen (b0460) 2017; 154
Ling, Liu, Wang, Lin, Fang, Zhang (b0120) 2017; 172
Wu, Wang, Wu, Chen, Hong, Lai (b0010) 2019; 182
Lyu, Siddique, Majid, Biglarbegian, Gadsden, Mahmud (b0155) 2019; 5
Cao, He, Feng, Lin, Ling, Zhang, Fang (b0355) 2020; 279
Li, Wang, Cheng, Chen, Zhao (b0415) 2020; 210
Li, Zhong, Luo, Wang, Yuan, Zhang, Yang, Yang (b0635) 2019; 2019
Zhang, Niu, Wu (b0320) 2019; 238
Wu, Wu, Wang (b0420) 2019; 236
Wu, Yang, Zhang, Chen, Wang (b0610) 2017; 138
Li, Huang, Deng, Zhang, Zhong, He (b0245) 2020; 451
Shin, Ahn, Kim (b0630) 2016
Behi, Karimi, Gandoman, Akbarzadeh, Khaleghi, Kalogiannis, Hosen, Jaguemont, Van Mierlo, Berecibar (b0580) 2021; 25
F. Kolodziejczyk, B. Mortazavi, T. Rabczuk, X. Zhuang, International Journal of Heat and Mass Transfer Machine learning assisted multiscale modeling of composite phase change materials for Li-ion batteries ’ thermal management, 172 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121199.
Liu, Rao (b0240) 2020; 32
Yu, Youn, Song (b0380) 2019; 20
Liu, Huang, Cao, Jiang, Yan, Hu (b0540) 2021; 185
Xiao, Bai, Xie, Yang, Yang, Qi, Wang (b0085) 2021; 146
Jouhara, Khordehgah, Serey, Almahmoud, Lester, Machen, Wrobel (b0025) 2019; 170
Tang, Guo, Li, Wei, Pan, Wang (b0065) 2021; 494
Y. Shi, M. Hu, Y. Xing, Y. Li, Materials & Design Temperature-dependent thermal and mechanical properties of fl exible functional PDMS / paraf fi n composites, 185 (2020). https://doi.org/10.1016/j.matdes.2019.108219.
Ling, Cao, Zhang, Zhang, Fang, Gao (b0565) 2018; 228
Zhang, Cui, Dou, Wang, Goula (b0330) 2018; 171
Zhou, Dai, Liu, Fu, Du (b0575) 2020; 473
Wu, Li, Wu, Xu, Hu, Chao, Yan, Wang (b0435) 2020; 8
Chen, Zhang (b0325) 2017; 190
Hekmat, Molaeimanesh (b0515) 2020; 166
Bernardi, Pawlikowski, Newman (b0095) 1984; 84–2
A.A. Pesaran, Battery thermal models for hybrid vehicle simulations, 110 (2002) 377–382.
Zhang, Liang, Yin, Ling (b0510) 2021; 184
Wang, Cao, Ling, Zhang, Fang (b0350) 2020; 207
Yang, Chen, Yang, Du (b0470) 2021; 165
Ren (b0590) 2019; 180
Cao, Feng, Fang, Ling, Zhang (b0370) 2021; 191
Rao, Wang, Wu, Lin, Li (b0055) 2013; 65
Hong, Zhang, Chen, Wang (b0145) 2018; 116
Zou, Liu, He, Zhu, Bao, Guo, Hu, Wang (b0195) 2019; 180
Zhuang, Liu, Su, Chen (b0020) 2021; 189
Hussain, Abidi, Tso, Chan, Luo, Chao (b0285) 2018; 124
Huang, Li, Zhang, Deng, Wang (b0440) 2021; 183
Molaeimanesh, Mirfallah Nasiry, Dahmardeh (b0520) 2020; 181
Ianniciello, Biwolé, Achard (b0075) 2018; 378
Qin, Liao, Zhang, Liu, Sun, Wang (b0495) 2019; 195
Huo, Rao (b0655) 2017; 133
Song, Shen, Wang, Wang, Xu (b0310) 2014; 73
P. Taylor, Z.H. Rao, S.F. Wang, Y.L. Zhang, Energy Sources , Part A : Recovery , Utilization , and Environmental Effects Thermal Management with Phase Change Material for a Power Battery under Cold Temperatures Thermal Management with Phase Change Material for a Power Battery under Cold Temperature, (n.d.) 37–41. https://doi.org/10.1080/15567036.2011.576411.
Bai, Chen, Song, Yu, Li, Feng, Ding (b0340) 2019; 167
Huang, Li, Zhang, Zhang, He, Li (b0570) 2018; 141
Cao, Huang, Liu (b0200) 2020; 2020
Huat, Ye, Tay (b0040) 2016; 113
Zhang, Ling, Zhuang, Liang (b0255) 2021; 45
Jiang, Huang, Liu, Cao (b0480) 2017; 120
X. Du, Z. Qian, Z. Chen, Z. Rao, Experimental investigation on mini ‐ channel cooling – based thermal management for Li ‐ ion battery module under different cooling schemes, (2018) 1–8. https://doi.org/10.1002/er.4067.
Zhang, Li, Zhang, Wu, Rao, Guo, Zhou (b0115) 2020; 480
Lv, Liu, Zhang, Yang (b0485) 2020; 468
Y. Wang, Z. Wang, H. Min, H. Li, Q. Li, Performance investigation of a passive battery thermal management system applied with phase change material, 35 (2021).
Patel, Rathod (b0060) 2020; 480
A.N. Zhoujian, J.I.A. Li, D. Yong, D. Chao, L.I. Xuejiao, A Review on Lithium-ion Power Battery Thermal Management Technologies and Thermal Safety, 26 (2017). https://doi.org/10.1007/s11630-017-0955-2.
Chen, Garg, Gao, Wei (b0550) 2021; 45
Mat, Al-Abidi, Sopian, Sulaiman, Mohammad (b0265) 2013; 74
Rehman (10.1016/j.cej.2021.132741_b0215) 2018; 127
10.1016/j.cej.2021.132741_b0180
Bai (10.1016/j.cej.2021.132741_b0340) 2019; 167
Chen (10.1016/j.cej.2021.132741_b0585) 2021; 188
Ling (10.1016/j.cej.2021.132741_b0100) 2014; 121
Wu (10.1016/j.cej.2021.132741_b0225) 2016; 113
Zhang (10.1016/j.cej.2021.132741_b0320) 2019; 238
Zhang (10.1016/j.cej.2021.132741_b0600) 2020; 165
Moussa (10.1016/j.cej.2021.132741_b0080) 2021; 169
10.1016/j.cej.2021.132741_b0625
Li (10.1016/j.cej.2021.132741_b0415) 2020; 210
Ren (10.1016/j.cej.2021.132741_b0590) 2019; 180
Lee (10.1016/j.cej.2021.132741_b0050) 2015; 293
10.1016/j.cej.2021.132741_b0620
Agresti (10.1016/j.cej.2021.132741_b0315) 2019; 194
Wu (10.1016/j.cej.2021.132741_b0420) 2019; 236
Li (10.1016/j.cej.2021.132741_b0635) 2019; 2019
An (10.1016/j.cej.2021.132741_b0535) 2019; 163
Luo (10.1016/j.cej.2021.132741_b0280) 2020; 145
Sasmito (10.1016/j.cej.2021.132741_b0645) 2013; 58
Jiang (10.1016/j.cej.2021.132741_b0005) 2020; 32
10.1016/j.cej.2021.132741_b0110
Lyu (10.1016/j.cej.2021.132741_b0155) 2019; 5
Wu (10.1016/j.cej.2021.132741_b0610) 2017; 138
Shin (10.1016/j.cej.2021.132741_b0630) 2016
Bernardi (10.1016/j.cej.2021.132741_b0095) 1984; 84–2
Cao (10.1016/j.cej.2021.132741_b0560) 2020; 450
Rao (10.1016/j.cej.2021.132741_b0015) 2011; 15
Li (10.1016/j.cej.2021.132741_b0400) 2017; 149
Wu (10.1016/j.cej.2021.132741_b0425) 2020; 221
Qiu (10.1016/j.cej.2021.132741_b0360) 2020; 52
Li (10.1016/j.cej.2021.132741_b0365) 2020; 180
Mat (10.1016/j.cej.2021.132741_b0265) 2013; 74
10.1016/j.cej.2021.132741_b0205
Zhang (10.1016/j.cej.2021.132741_b0255) 2021; 45
Tian (10.1016/j.cej.2021.132741_b0685) 2021; 13
Safdari (10.1016/j.cej.2021.132741_b0490) 2020; 193
10.1016/j.cej.2021.132741_b0165
Huang (10.1016/j.cej.2021.132741_b0410) 2019; 182
Wang (10.1016/j.cej.2021.132741_b0090) 2021; 235
Zhang (10.1016/j.cej.2021.132741_b0615) 2021; 174
Song (10.1016/j.cej.2021.132741_b0505) 2019; 133
Ling (10.1016/j.cej.2021.132741_b0680) 2018; 144
Zhao (10.1016/j.cej.2021.132741_b0170) 2017; 82
Farag (10.1016/j.cej.2021.132741_b0045) 2017; 360
Liu (10.1016/j.cej.2021.132741_b0250) 2020; 13
Huang (10.1016/j.cej.2021.132741_b0445) 2020; 32
Lei (10.1016/j.cej.2021.132741_b0605) 2020; 168
Li (10.1016/j.cej.2021.132741_b0305) 2010; 356
Kou (10.1016/j.cej.2021.132741_b0395) 2021; 34
Ji (10.1016/j.cej.2021.132741_b0140) 2019; 157
Languri (10.1016/j.cej.2021.132741_b0335) 2018; 118
Zou (10.1016/j.cej.2021.132741_b0190) 2018; 120
Jiang (10.1016/j.cej.2021.132741_b0480) 2017; 120
Yang (10.1016/j.cej.2021.132741_b0470) 2021; 165
Qi (10.1016/j.cej.2021.132741_b0390) 2019; 181
Qin (10.1016/j.cej.2021.132741_b0495) 2019; 195
Xu (10.1016/j.cej.2021.132741_b0405) 2020; 334
Kong (10.1016/j.cej.2021.132741_b0500) 2020; 204
Molaeimanesh (10.1016/j.cej.2021.132741_b0520) 2020; 181
Mehrabi-kermani (10.1016/j.cej.2021.132741_b0465) 2019; 141
Situ (10.1016/j.cej.2021.132741_b0220) 2017; 141
Azizi (10.1016/j.cej.2021.132741_b0295) 2016; 128
Ling (10.1016/j.cej.2021.132741_b0130) 2021; 193
Hussain (10.1016/j.cej.2021.132741_b0285) 2018; 124
Rao (10.1016/j.cej.2021.132741_b0055) 2013; 65
Cao (10.1016/j.cej.2021.132741_b0200) 2020; 2020
Wu (10.1016/j.cej.2021.132741_b0435) 2020; 8
Zhuang (10.1016/j.cej.2021.132741_b0020) 2021; 189
Liu (10.1016/j.cej.2021.132741_b0240) 2020; 32
Heyhat (10.1016/j.cej.2021.132741_b0235) 2020; 28
Galazutdinova (10.1016/j.cej.2021.132741_b0125) 2021; 491
Huo (10.1016/j.cej.2021.132741_b0655) 2017; 133
Yu (10.1016/j.cej.2021.132741_b0380) 2019; 20
Ling (10.1016/j.cej.2021.132741_b0665) 2021; 219
Cao (10.1016/j.cej.2021.132741_b0355) 2020; 279
Xie (10.1016/j.cej.2021.132741_b0460) 2017; 154
Luo (10.1016/j.cej.2021.132741_b0670) 2021; 20
Li (10.1016/j.cej.2021.132741_b0525) 2020; 156
Morimoto (10.1016/j.cej.2021.132741_b0300) 2016; 122
10.1016/j.cej.2021.132741_b0385
Huang (10.1016/j.cej.2021.132741_b0570) 2018; 141
Lv (10.1016/j.cej.2021.132741_b0485) 2020; 468
Zhang (10.1016/j.cej.2021.132741_b0510) 2021; 184
Cao (10.1016/j.cej.2021.132741_b0555) 2020; 191
Cao (10.1016/j.cej.2021.132741_b0370) 2021; 191
Yuan (10.1016/j.cej.2021.132741_b0675) 2021; 45
Wang (10.1016/j.cej.2021.132741_b0350) 2020; 207
Wu (10.1016/j.cej.2021.132741_b0430) 2019; 31
10.1016/j.cej.2021.132741_b0030
Chen (10.1016/j.cej.2021.132741_b0550) 2021; 45
10.1016/j.cej.2021.132741_b0150
Gou (10.1016/j.cej.2021.132741_b0595) 2019; 161
Zhang (10.1016/j.cej.2021.132741_b0270) 2019; 12
Lin (10.1016/j.cej.2021.132741_b0455) 2021; 311
Shojaeefard (10.1016/j.cej.2021.132741_b0260) 2019; 55
Javani (10.1016/j.cej.2021.132741_b0160) 2014; 72
Huang (10.1016/j.cej.2021.132741_b0450) 2021; 4
Xiao (10.1016/j.cej.2021.132741_b0085) 2021; 146
Huang (10.1016/j.cej.2021.132741_b0210) 2020; 6
Huat (10.1016/j.cej.2021.132741_b0040) 2016; 113
Xiao (10.1016/j.cej.2021.132741_b0275) 2020; 8
He (10.1016/j.cej.2021.132741_b0290) 2019; 148
Liu (10.1016/j.cej.2021.132741_b0540) 2021; 185
Wu (10.1016/j.cej.2021.132741_b0105) 2013; 69
Hekmat (10.1016/j.cej.2021.132741_b0515) 2020; 166
Song (10.1016/j.cej.2021.132741_b0310) 2014; 73
Chen (10.1016/j.cej.2021.132741_b0325) 2017; 190
Zhang (10.1016/j.cej.2021.132741_b0330) 2018; 171
Jouhara (10.1016/j.cej.2021.132741_b0025) 2019; 170
Hong (10.1016/j.cej.2021.132741_b0145) 2018; 116
Zhang (10.1016/j.cej.2021.132741_b0345) 2014; 64
Huang (10.1016/j.cej.2021.132741_b0440) 2021; 183
Ling (10.1016/j.cej.2021.132741_b0565) 2018; 228
Yang (10.1016/j.cej.2021.132741_b0530) 2021; 188
Zhao (10.1016/j.cej.2021.132741_b0175) 2020; 115
Behi (10.1016/j.cej.2021.132741_b0580) 2021; 25
Tang (10.1016/j.cej.2021.132741_b0065) 2021; 494
10.1016/j.cej.2021.132741_b0640
Malik (10.1016/j.cej.2021.132741_b0185) 2017; 257
Li (10.1016/j.cej.2021.132741_b0245) 2020; 451
Ling (10.1016/j.cej.2021.132741_b0120) 2017; 172
Zou (10.1016/j.cej.2021.132741_b0195) 2019; 180
Tan (10.1016/j.cej.2021.132741_b0035) 2013; 111
Pakrouh (10.1016/j.cej.2021.132741_b0375) 2021; 40
Ianniciello (10.1016/j.cej.2021.132741_b0075) 2018; 378
Ping (10.1016/j.cej.2021.132741_b0545) 2021; 36
Wu (10.1016/j.cej.2021.132741_b0010) 2019; 182
Zhang (10.1016/j.cej.2021.132741_b0115) 2020; 480
Verma (10.1016/j.cej.2021.132741_b0070) 2019; 11
Pan (10.1016/j.cej.2021.132741_b0230) 2017; 114
Ling (10.1016/j.cej.2021.132741_b0475) 2015; 148
Zhou (10.1016/j.cej.2021.132741_b0575) 2020; 473
Patel (10.1016/j.cej.2021.132741_b0060) 2020; 480
Ling (10.1016/j.cej.2021.132741_b0660) 2020; 259
10.1016/j.cej.2021.132741_b0135
Ghadbeigi (10.1016/j.cej.2021.132741_b0650) 2018; 4
References_xml – volume: 20
  start-page: 545
  year: 2019
  end-page: 554
  ident: b0380
  article-title: Encapsulated Phase Change Material Embedded by Graphene Powders for Smart and Flexible Thermal Response
  publication-title: Fibers Polym.
– volume: 69
  start-page: 174
  year: 2013
  end-page: 180
  ident: b0105
  article-title: Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment
  publication-title: ENERGY Convers. Manag.
– volume: 181
  start-page: 107714
  year: 2019
  ident: b0390
  article-title: Flexible phase change composite materials with simultaneous light energy storage and light-actuated shape memory capability
  publication-title: Compos. Sci. Technol.
– volume: 65
  start-page: 92
  year: 2013
  end-page: 97
  ident: b0055
  article-title: Experimental investigation on thermal management of electric vehicle battery with heat pipe
  publication-title: Energy Convers. Manag.
– volume: 120
  start-page: 33
  year: 2018
  end-page: 41
  ident: b0190
  article-title: Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery
  publication-title: Int. J. Heat Mass Transf.
– volume: 228
  start-page: 777
  year: 2018
  end-page: 788
  ident: b0565
  article-title: Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology
  publication-title: Appl. Energy.
– volume: 118
  start-page: 872
  year: 2018
  end-page: 878
  ident: b0335
  article-title: International Journal of Heat and Mass Transfer Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils : A numerical and analytical study
  publication-title: Int. J. Heat Mass Transf.
– volume: 11
  start-page: 74
  year: 2019
  end-page: 83
  ident: b0070
  article-title: A comparative study on battery thermal management using phase change material (PCM)
  publication-title: Therm. Sci. Eng. Prog.
– volume: 133
  start-page: 827
  year: 2019
  end-page: 841
  ident: b0505
  article-title: International Journal of Heat and Mass Transfer Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module
  publication-title: Int. J. Heat Mass Transf.
– volume: 163
  start-page: 114345
  year: 2019
  ident: b0535
  article-title: Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling
  publication-title: Appl. Therm. Eng.
– volume: 154
  start-page: 562
  year: 2017
  end-page: 575
  ident: b0460
  article-title: Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials
  publication-title: Energy Convers. Manag.
– volume: 55
  start-page: 1753
  year: 2019
  end-page: 1767
  ident: b0260
  article-title: Improving the performance of a passive battery thermal management system based on PCM using lateral fins
  publication-title: Heat Mass Transf. Und Stoffuebertragung.
– volume: 188
  start-page: 116665
  year: 2021
  ident: b0585
  article-title: Design of battery thermal management system based on phase change material and heat pipe
  publication-title: Appl. Therm. Eng.
– reference: A.N. Zhoujian, J.I.A. Li, D. Yong, D. Chao, L.I. Xuejiao, A Review on Lithium-ion Power Battery Thermal Management Technologies and Thermal Safety, 26 (2017). https://doi.org/10.1007/s11630-017-0955-2.
– volume: 238
  start-page: 1407
  year: 2019
  end-page: 1416
  ident: b0320
  article-title: Development and characterization of novel and stable silicon nanoparticles- embedded PCM-in-water emulsions for thermal energy storage
  publication-title: Appl. Energy.
– reference: F. Kolodziejczyk, B. Mortazavi, T. Rabczuk, X. Zhuang, International Journal of Heat and Mass Transfer Machine learning assisted multiscale modeling of composite phase change materials for Li-ion batteries ’ thermal management, 172 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121199.
– volume: 141
  start-page: 613
  year: 2017
  end-page: 623
  ident: b0220
  article-title: A thermal management system for rectangular LiFePO 4 battery module using novel double copper mesh-enhanced phase change material plates
  publication-title: Energy.
– volume: 28
  start-page: 101235
  year: 2020
  ident: b0235
  article-title: Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle
  publication-title: J. Energy Storage.
– volume: 141
  start-page: 47
  year: 2019
  end-page: 61
  ident: b0465
  article-title: International Journal of Thermal Sciences A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection
  publication-title: Int. J. Therm. Sci.
– volume: 113
  start-page: 909
  year: 2016
  end-page: 916
  ident: b0225
  article-title: An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack
  publication-title: Energy.
– volume: 72
  start-page: 690
  year: 2014
  end-page: 703
  ident: b0160
  article-title: International Journal of Heat and Mass Transfer Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles
  publication-title: Int. J. Heat Mass Transf.
– volume: 480
  start-page: 229116
  year: 2020
  ident: b0115
  article-title: Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system
  publication-title: J. Power Sources.
– volume: 182
  start-page: 9
  year: 2019
  end-page: 20
  ident: b0410
  article-title: Thermal management of Li-ion battery pack with the application of fl exible form-stable composite phase change materials
  publication-title: Energy Convers. Manag.
– volume: 174
  start-page: 121318
  year: 2021
  ident: b0615
  article-title: International Journal of Heat and Mass Transfer Design and optimization of a hybrid battery thermal management system for electric vehicle based on surrogate model
  publication-title: Int. J. Heat Mass Transf.
– volume: 64
  start-page: 1092
  year: 2014
  end-page: 1101
  ident: b0345
  article-title: Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions
  publication-title: Energy.
– volume: 182
  start-page: 262
  year: 2019
  end-page: 281
  ident: b0010
  article-title: A critical review of battery thermal performance and liquid based battery thermal management
  publication-title: Energy Convers. Manag.
– volume: 8
  start-page: 20011
  year: 2020
  end-page: 20020
  ident: b0435
  article-title: Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management
  publication-title: J. Mater. Chem. A.
– volume: 311
  start-page: 127517
  year: 2021
  ident: b0455
  article-title: Development of flexible form-stable phase change material with enhanced electrical resistance for thermal management
  publication-title: J. Clean. Prod.
– volume: 165
  start-page: 106968
  year: 2021
  ident: b0470
  article-title: International Journal of Thermal Sciences Numerical study of combined air and phase change cooling for lithium-ion battery during dynamic cycles
  publication-title: Int. J. Therm. Sci.
– volume: 5
  start-page: 822
  year: 2019
  end-page: 827
  ident: b0155
  article-title: Electric vehicle battery thermal management system with thermoelectric cooling
  publication-title: Energy Reports.
– volume: 20
  year: 2021
  ident: b0670
  article-title: Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from −40 °C to 50 °C
  publication-title: Mater. Today Energy.
– volume: 235
  start-page: 110750
  year: 2021
  ident: b0090
  article-title: Energy & Buildings Research on falling film dehumidification performance of microencapsulated phase change materials slurry
  publication-title: Energy Build.
– volume: 185
  start-page: 116415
  year: 2021
  ident: b0540
  article-title: Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling
  publication-title: Appl. Therm. Eng.
– volume: 13
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0685
  article-title: Simulation of a Set of Lithium-Ion Batteries with Composite Phase Change Materials and Heating Films Thermal Management System at Low Temperature
  publication-title: J. Therm. Sci. Eng. Appl.
– volume: 73
  start-page: 21
  year: 2014
  end-page: 28
  ident: b0310
  article-title: International Journal of Heat and Mass Transfer Experimental study on laminar convective heat transfer of microencapsulated phase change material slurry using liquid metal with low melting point as carrying fluid
  publication-title: Int. J. Heat Mass Transf.
– volume: 167
  start-page: 561
  year: 2019
  end-page: 574
  ident: b0340
  article-title: Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate
  publication-title: Energy.
– volume: 115
  start-page: 104612
  year: 2020
  ident: b0175
  article-title: Numerical study on heat transfer enhancement of closed loop oscillating heat pipe through active incentive method
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 181
  start-page: 116028
  year: 2020
  ident: b0520
  article-title: Impact of configuration on the performance of a hybrid thermal management system including phase change material and water-cooling channels for Li-ion batteries
  publication-title: Appl. Therm. Eng.
– volume: 360
  start-page: 618
  year: 2017
  end-page: 633
  ident: b0045
  article-title: Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications
  publication-title: J. Power Sources.
– volume: 128
  start-page: 294
  year: 2016
  end-page: 302
  ident: b0295
  article-title: Thermal management of a LiFePO 4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates
  publication-title: Energy Convers. Manag.
– volume: 207
  start-page: 118215
  year: 2020
  ident: b0350
  article-title: Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack
  publication-title: Energy.
– volume: 32
  year: 2020
  ident: b0240
  article-title: Interfacial thermal conductance across hexagonal boron nitride & paraffin based thermal energy storage materials
  publication-title: J. Energy Storage.
– volume: 378
  start-page: 383
  year: 2018
  end-page: 403
  ident: b0075
  article-title: Electric vehicles batteries thermal management systems employing phase change materials
  publication-title: J. Power Sources.
– volume: 15
  start-page: 4554
  year: 2011
  end-page: 4571
  ident: b0015
  article-title: A review of power battery thermal energy management
  publication-title: Renew. Sustain. Energy Rev.
– volume: 116
  start-page: 1204
  year: 2018
  end-page: 1212
  ident: b0145
  article-title: International Journal of Heat and Mass Transfer Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent
  publication-title: Int. J. Heat Mass Transf.
– volume: 127
  start-page: 381
  year: 2018
  end-page: 393
  ident: b0215
  article-title: International Journal of Heat and Mass Transfer Copper foam / PCMs based heat sinks : An experimental study for electronic cooling systems
  publication-title: Int. J. Heat Mass Transf.
– volume: 170
  start-page: 849
  year: 2019
  end-page: 861
  ident: b0025
  article-title: Applications and thermal management of rechargeable batteries for industrial applications
  publication-title: Energy.
– volume: 193
  start-page: 116840
  year: 2020
  ident: b0490
  article-title: Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management
  publication-title: Energy.
– start-page: 1
  year: 2016
  end-page: 9
  ident: b0630
  article-title: Performance characteristics of PTC elements for an electric vehicle heating
  publication-title: System
– reference: Y. Wang, Y. Yu, Z. Jing, C. Wang, G. Zhou, International Journal of Heat and Mass Transfer Thermal performance of lithium-ion batteries applying forced air cooling with an improved aluminium foam heat sink design, 167 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120827.
– volume: 157
  start-page: 113683
  year: 2019
  ident: b0140
  article-title: Optimization on uniformity of lithium-ion cylindrical battery module by different arrangement strategy
  publication-title: Appl. Therm. Eng.
– volume: 114
  start-page: 408
  year: 2017
  end-page: 422
  ident: b0230
  article-title: Cutting copper fi ber / paraf fi n composite phase change material discharging experimental study based on heat dissipation capability of Li-ion battery
  publication-title: Renew. Energy.
– volume: 171
  start-page: 699
  year: 2018
  end-page: 709
  ident: b0330
  article-title: An experimental investigation of forced convection heat transfer with novel microencapsulated phase change material slurries in a circular tube under constant heat fl ux
  publication-title: Energy Convers. Manag.
– reference: P. Taylor, Z.H. Rao, S.F. Wang, Y.L. Zhang, Energy Sources , Part A : Recovery , Utilization , and Environmental Effects Thermal Management with Phase Change Material for a Power Battery under Cold Temperatures Thermal Management with Phase Change Material for a Power Battery under Cold Temperature, (n.d.) 37–41. https://doi.org/10.1080/15567036.2011.576411.
– volume: 219
  start-page: 119496
  year: 2021
  ident: b0665
  article-title: A fast-heat battery system using the heat released from detonated supercooled phase change materials
  publication-title: Energy.
– volume: 120
  start-page: 1
  year: 2017
  end-page: 9
  ident: b0480
  article-title: Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material
  publication-title: Appl. Therm. Eng.
– volume: 191
  start-page: 116565
  year: 2020
  ident: b0555
  article-title: Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study
  publication-title: Energy.
– volume: 141
  start-page: 1092
  year: 2018
  end-page: 1100
  ident: b0570
  article-title: Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system
  publication-title: Appl. Therm. Eng.
– reference: X. Du, Z. Qian, Z. Chen, Z. Rao, Experimental investigation on mini ‐ channel cooling – based thermal management for Li ‐ ion battery module under different cooling schemes, (2018) 1–8. https://doi.org/10.1002/er.4067.
– volume: 84–2
  start-page: 164
  year: 1984
  end-page: 165
  ident: b0095
  article-title: General Energy Balance for Battery Systems
  publication-title: Electrochem. Soc. Ext. Abstr.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0635
  article-title: Experimental Investigation on a Thermoelectric Cooler for Thermal Management of a Lithium-Ion Battery Module
  publication-title: Int. J. Photoenergy.
– volume: 356
  start-page: 71
  year: 2010
  end-page: 77
  ident: b0305
  article-title: Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method
  publication-title: Colloids Surfaces A Physicochem. Eng. Asp.
– volume: 122
  start-page: 215
  year: 2016
  end-page: 222
  ident: b0300
  article-title: Thermophysical properties of phase change emulsions prepared by D-phase emulsification
  publication-title: Energy Convers. Manag.
– volume: 279
  start-page: 115808
  year: 2020
  ident: b0355
  article-title: Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge
  publication-title: Appl. Energy.
– volume: 12
  start-page: 1937
  year: 2019
  ident: b0270
  article-title: Study of thermal management system using composite phase change materials and thermoelectric cooling sheet for power battery pack
  publication-title: Energies.
– volume: 293
  start-page: 498
  year: 2015
  end-page: 510
  ident: b0050
  article-title: A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation
  publication-title: J. Power Sources.
– volume: 52
  start-page: 101786
  year: 2020
  ident: b0360
  article-title: Experimental and numerical investigation of laminar heat transfer of microencapsulated phase change material slurry (MPCMS) in a circular tube with constant heat flux
  publication-title: Sustain. Cities Soc.
– reference: F. He, X. Li, Experimental investigation of thermal management system for lithium ion batteries module with coupling effect by heat sheets and phase change materials, (2018) 1–10. https://doi.org/10.1002/er.4081.
– volume: 259
  start-page: 114120
  year: 2020
  ident: b0660
  article-title: Computationally e ffi cient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment
  publication-title: Appl. Energy.
– volume: 146
  start-page: 106420
  year: 2021
  ident: b0085
  article-title: Flexible copper foam-based phase change materials with good stiffness-toughness balance, electro-to-thermal conversion ability and shape memory function for intelligent thermal management
  publication-title: Compos. Part A.
– volume: 169
  year: 2021
  ident: b0080
  article-title: International Journal of Heat and Mass Transfer A passive thermal management system of Li-ion batteries using PCM composites : Experimental and numerical investigations
  publication-title: Int. J. Heat Mass Transf.
– volume: 188
  start-page: 116649
  year: 2021
  ident: b0530
  article-title: Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery
  publication-title: Appl. Therm. Eng.
– volume: 236
  start-page: 10
  year: 2019
  end-page: 21
  ident: b0420
  article-title: Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications
  publication-title: Appl. Energy.
– reference: Y. Wang, Z. Wang, H. Min, H. Li, Q. Li, Performance investigation of a passive battery thermal management system applied with phase change material, 35 (2021).
– volume: 45
  start-page: 6198
  year: 2021
  end-page: 6212
  ident: b0550
  article-title: An experimental investigation for a hybrid phase change material-liquid cooling strategy to achieve high-temperature uniformity of Li-ion battery module under fast charging
  publication-title: Int. J. Energy Res.
– volume: 148
  start-page: 984
  year: 2019
  end-page: 991
  ident: b0290
  article-title: A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management
  publication-title: Appl. Therm. Eng.
– volume: 13
  start-page: 1
  year: 2020
  end-page: 14
  ident: b0250
  article-title: Preparation of binary thermal silicone grease and its application in battery thermal management
  publication-title: Materials (Basel).
– volume: 183
  start-page: 116151
  year: 2021
  ident: b0440
  article-title: Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials
  publication-title: Appl. Therm. Eng.
– volume: 31
  start-page: 1905099
  year: 2019
  ident: b0430
  article-title: High-Performance Thermally Conductive Phase Change Composites by Large-Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting
  publication-title: Adv. Mater.
– volume: 32
  year: 2020
  ident: b0005
  article-title: Thermal management technology of power lithium-ion batteries based on the phase transition of materials : A review
  publication-title: J. Energy Storage.
– volume: 113
  start-page: 1032
  year: 2016
  end-page: 1045
  ident: b0040
  article-title: Integration issues of lithium-ion battery into electric vehicles battery pack
  publication-title: J. Clean. Prod.
– volume: 191
  start-page: 116888
  year: 2021
  ident: b0370
  article-title: A delayed cooling system coupling composite phase change material and nano phase change material emulsion
  publication-title: Appl. Therm. Eng.
– volume: 473
  start-page: 228545
  year: 2020
  ident: b0575
  article-title: Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid
  publication-title: J. Power Sources.
– volume: 193
  start-page: 117002
  year: 2021
  ident: b0130
  article-title: Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability
  publication-title: Appl. Therm. Eng.
– reference: Y. Shi, M. Hu, Y. Xing, Y. Li, Materials & Design Temperature-dependent thermal and mechanical properties of fl exible functional PDMS / paraf fi n composites, 185 (2020). https://doi.org/10.1016/j.matdes.2019.108219.
– volume: 4
  start-page: 1978
  year: 2021
  end-page: 1992
  ident: b0450
  article-title: Pouch Lithium Battery with a Passive Thermal Management System Using Form-Stable and Flexible Composite Phase Change Materials
  publication-title: ACS Appl. Energy Mater.
– volume: 195
  start-page: 1371
  year: 2019
  end-page: 1381
  ident: b0495
  article-title: Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material
  publication-title: Energy Convers. Manag.
– volume: 149
  start-page: 1
  year: 2017
  end-page: 12
  ident: b0400
  article-title: Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage
  publication-title: Energy Convers. Manag.
– volume: 8
  start-page: 14624
  year: 2020
  end-page: 14633
  ident: b0275
  article-title: Custom design of solid-solid phase change material with ultra-high thermal stability for battery thermal management
  publication-title: J. Mater. Chem. A.
– volume: 32
  start-page: 101755
  year: 2020
  ident: b0445
  article-title: Experimental investigation on thermally induced aluminum nitride based fl exible composite phase change material for battery thermal management
  publication-title: J. Energy Storage.
– volume: 190
  start-page: 868
  year: 2017
  end-page: 879
  ident: b0325
  article-title: Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media
  publication-title: Appl. Energy.
– volume: 138
  start-page: 486
  year: 2017
  end-page: 492
  ident: b0610
  article-title: Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system
  publication-title: Energy Convers. Manag.
– volume: 480
  start-page: 228820
  year: 2020
  ident: b0060
  article-title: Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries
  publication-title: J. Power Sources.
– reference: Y. Huo, Y. Guo, Z. Rao, Investigation on the thermal performance of phase change material / porous medium ‐ based battery thermal management in pore scale, (2018) 1–12. https://doi.org/10.1002/er.4307.
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 11
  ident: b0200
  article-title: The Enhanced Performance of Phase-Change Materials via 3D Printing with Prickly Aluminum Honeycomb for Thermal Management of Ternary Lithium Batteries
  publication-title: Adv. Mater. Sci. Eng.
– volume: 144
  start-page: 977
  year: 2018
  end-page: 983
  ident: b0680
  article-title: Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures
  publication-title: Energy.
– volume: 133
  start-page: 204
  year: 2017
  end-page: 215
  ident: b0655
  article-title: Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method
  publication-title: Energy Convers. Manag.
– volume: 451
  start-page: 227820
  year: 2020
  ident: b0245
  article-title: Evaluation of lithium battery thermal management using sealant made of boron nitride and silicone
  publication-title: J. Power Sources.
– volume: 121
  start-page: 104
  year: 2014
  end-page: 113
  ident: b0100
  article-title: Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system
  publication-title: Appl. Energy.
– volume: 450
  start-page: 227673
  year: 2020
  ident: b0560
  article-title: Delayed liquid cooling strategy with phase change material to achieve high temperature uniformity of Li-ion battery under high-rate discharge
  publication-title: J. Power Sources.
– volume: 6
  start-page: 8
  year: 2020
  end-page: 19
  ident: b0210
  article-title: Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management
  publication-title: Energy Reports.
– volume: 45
  start-page: 9970
  year: 2021
  end-page: 9982
  ident: b0255
  article-title: The effect of reducing the thermal contact resistance on the performance of battery thermal management system
  publication-title: Int. J. Energy Res.
– reference: Z. Ling, X. Wen, Z. Zhang, X. Fang, T. Xu, Warming-Up Effects of Phase Change Materials on Lithium-Ion Batteries Operated at Low Temperatures, 510640 (2016) 1–7. https://doi.org/10.1002/ente.201600083.
– volume: 74
  start-page: 223
  year: 2013
  end-page: 236
  ident: b0265
  article-title: Enhance heat transfer for PCM melting in triplex tube with internal-external fins
  publication-title: Energy Convers. Manag.
– volume: 257
  start-page: 345
  year: 2017
  end-page: 355
  ident: b0185
  article-title: Experimental Investigation of a New Passive Thermal Management System for a Li-Ion Battery Pack Using Phase Change Composite Material
  publication-title: Electrochim. Acta.
– volume: 168
  start-page: 114792
  year: 2020
  ident: b0605
  article-title: A lithium-ion battery-thermal-management design based on phase-change- material thermal storage and spray cooling
  publication-title: Appl. Therm. Eng.
– volume: 148
  start-page: 403
  year: 2015
  end-page: 409
  ident: b0475
  article-title: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling
  publication-title: Appl. Energy.
– volume: 491
  start-page: 229624
  year: 2021
  ident: b0125
  article-title: Development of the inorganic composite phase change materials for passive thermal management of Li-ion batteries: Application
  publication-title: J. Power Sources.
– volume: 184
  start-page: 116380
  year: 2021
  ident: b0510
  article-title: Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling
  publication-title: Appl. Therm. Eng.
– volume: 180
  start-page: 1196
  year: 2019
  end-page: 1202
  ident: b0195
  article-title: Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module
  publication-title: Energy Convers. Manag.
– volume: 334
  start-page: 135551
  year: 2020
  ident: b0405
  article-title: Electrochimica Acta In-situ temperature regulation of fl exible supercapacitors by designing intelligent electrode with microencapsulated phase change materials
  publication-title: Electrochim. Acta.
– volume: 82
  start-page: 182
  year: 2017
  end-page: 188
  ident: b0170
  article-title: Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack
  publication-title: Exp. Therm. Fluid Sci.
– volume: 4
  start-page: 303
  year: 2018
  end-page: 307
  ident: b0650
  article-title: Cold temperature performance of phase change material based battery thermal management systems
  publication-title: Energy Reports.
– volume: 36
  start-page: 102448
  year: 2021
  ident: b0545
  article-title: Investigation on battery thermal management system combining phase changed material and liquid cooling considering non-uniform heat generation of battery
  publication-title: J. Energy Storage.
– volume: 58
  start-page: 615
  year: 2013
  end-page: 625
  ident: b0645
  article-title: Passive thermal management for PEM fuel cell stack under cold weather condition using phase change materials (PCM)
  publication-title: Appl. Therm. Eng.
– volume: 145
  start-page: 2046
  year: 2020
  end-page: 2055
  ident: b0280
  article-title: Experimental investigation on a novel phase change material composites coupled with graphite fi lm used for thermal management of lithium-ion batteries
  publication-title: Renew. Energy.
– volume: 194
  start-page: 268
  year: 2019
  end-page: 275
  ident: b0315
  article-title: Solar Energy Materials and Solar Cells Nano-encapsulated PCM emulsions prepared by a solvent-assisted method for solar applications
  publication-title: Sol. Energy Mater. Sol. Cells.
– volume: 45
  start-page: 5399
  year: 2021
  end-page: 5411
  ident: b0675
  article-title: Effect of coupling phase change materials and heat pipe on performance enhancement of Li-ion battery thermal management system
  publication-title: Int. J. Energy Res.
– volume: 156
  start-page: 119820
  year: 2020
  ident: b0525
  article-title: International Journal of Heat and Mass Transfer Thermal characteristics of power battery module with composite phase change material and external liquid cooling
  publication-title: Int. J. Heat Mass Transf.
– volume: 204
  start-page: 112280
  year: 2020
  ident: b0500
  article-title: A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for di ff erent ambient temperatures
  publication-title: Energy Convers. Manag.
– volume: 124
  start-page: 23
  year: 2018
  end-page: 35
  ident: b0285
  article-title: International Journal of Thermal Sciences Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials
  publication-title: Int. J. Therm. Sci.
– volume: 34
  start-page: 508
  year: 2021
  end-page: 514
  ident: b0395
  article-title: An intrinsically flexible phase change film for wearable thermal managements
  publication-title: Energy Storage Mater.
– volume: 161
  start-page: 114102
  year: 2019
  ident: b0595
  article-title: The thermal performance of a novel internal cooling method for the electric vehicle battery: An experimental study
  publication-title: Appl. Therm. Eng.
– volume: 189
  start-page: 116767
  year: 2021
  ident: b0020
  article-title: An intelligent thermal management system for optimized lithium-ion battery pack
  publication-title: Appl. Therm. Eng.
– volume: 468
  start-page: 228398
  year: 2020
  ident: b0485
  article-title: A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules
  publication-title: J. Power Sources.
– volume: 221
  start-page: 113145
  year: 2020
  ident: b0425
  article-title: An innovative battery thermal management with thermally induced flexible phase change material
  publication-title: Energy Convers. Manag.
– volume: 165
  start-page: 114571
  year: 2020
  ident: b0600
  article-title: A novel heat pipe assisted separation type battery thermal management system based on phase change material
  publication-title: Appl. Therm. Eng.
– volume: 166
  year: 2020
  ident: b0515
  article-title: Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes : An experimental investigation
  publication-title: Appl. Therm. Eng.
– volume: 210
  start-page: 112680
  year: 2020
  ident: b0415
  article-title: Study of using enhanced heat-transfer fl exible phase change material fi lm in thermal management of compact electronic device
  publication-title: Energy Convers. Manag.
– volume: 180
  start-page: 784
  year: 2019
  end-page: 795
  ident: b0590
  article-title: Enhancement of nanoparticle-phase change material melting performance using a sinusoidal heat pipe
  publication-title: Energy Convers. Manag.
– volume: 494
  start-page: 229727
  year: 2021
  ident: b0065
  article-title: Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning
  publication-title: J. Power Sources.
– volume: 172
  start-page: 195
  year: 2017
  end-page: 201
  ident: b0120
  article-title: MgCl2·6H2O-Mg(NO3)2·6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity
  publication-title: Sol. Energy Mater. Sol. Cells.
– volume: 111
  start-page: 802
  year: 2013
  end-page: 808
  ident: b0035
  article-title: Electrochimica Acta Capacity loss induced by lithium deposition at graphite anode for LiFePO 4 / graphite cell cycling at different temperatures
  publication-title: Electrochim. Acta.
– volume: 180
  start-page: 115795
  year: 2020
  ident: b0365
  article-title: Performance investigation of a battery thermal management system with microencapsulated phase change material suspension
  publication-title: Appl. Therm. Eng.
– volume: 25
  start-page: 100920
  year: 2021
  ident: b0580
  article-title: Case Studies in Thermal Engineering PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles
  publication-title: Case Stud. Therm. Eng.
– reference: A.A. Pesaran, Battery thermal models for hybrid vehicle simulations, 110 (2002) 377–382.
– volume: 40
  start-page: 102602
  year: 2021
  ident: b0375
  article-title: Cylindrical battery thermal management based on microencapsulated phase change slurry
  publication-title: J. Energy Storage.
– ident: 10.1016/j.cej.2021.132741_b0205
  doi: 10.1016/j.ijheatmasstransfer.2020.120827
– volume: 121
  start-page: 104
  year: 2014
  ident: 10.1016/j.cej.2021.132741_b0100
  article-title: Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2014.01.075
– volume: 32
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0005
  article-title: Thermal management technology of power lithium-ion batteries based on the phase transition of materials : A review
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2020.101816
– volume: 450
  start-page: 227673
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0560
  article-title: Delayed liquid cooling strategy with phase change material to achieve high temperature uniformity of Li-ion battery under high-rate discharge
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2019.227673
– volume: 193
  start-page: 117002
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0130
  article-title: Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117002
– volume: 111
  start-page: 802
  year: 2013
  ident: 10.1016/j.cej.2021.132741_b0035
  article-title: Electrochimica Acta Capacity loss induced by lithium deposition at graphite anode for LiFePO 4 / graphite cell cycling at different temperatures
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2013.08.074
– volume: 82
  start-page: 182
  year: 2017
  ident: 10.1016/j.cej.2021.132741_b0170
  article-title: Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2016.11.017
– volume: 221
  start-page: 113145
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0425
  article-title: An innovative battery thermal management with thermally induced flexible phase change material
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.113145
– ident: 10.1016/j.cej.2021.132741_b0640
  doi: 10.1080/15567036.2011.576411
– volume: 120
  start-page: 1
  year: 2017
  ident: 10.1016/j.cej.2021.132741_b0480
  article-title: Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.03.107
– volume: 165
  start-page: 106968
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0470
  article-title: International Journal of Thermal Sciences Numerical study of combined air and phase change cooling for lithium-ion battery during dynamic cycles
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2021.106968
– volume: 180
  start-page: 115795
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0365
  article-title: Performance investigation of a battery thermal management system with microencapsulated phase change material suspension
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.115795
– volume: 32
  start-page: 101755
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0445
  article-title: Experimental investigation on thermally induced aluminum nitride based fl exible composite phase change material for battery thermal management
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2020.101755
– volume: 122
  start-page: 215
  year: 2016
  ident: 10.1016/j.cej.2021.132741_b0300
  article-title: Thermophysical properties of phase change emulsions prepared by D-phase emulsification
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.05.065
– volume: 11
  start-page: 74
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0070
  article-title: A comparative study on battery thermal management using phase change material (PCM)
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2019.03.003
– volume: 191
  start-page: 116888
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0370
  article-title: A delayed cooling system coupling composite phase change material and nano phase change material emulsion
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116888
– volume: 195
  start-page: 1371
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0495
  article-title: Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.05.084
– volume: 120
  start-page: 33
  year: 2018
  ident: 10.1016/j.cej.2021.132741_b0190
  article-title: Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.12.024
– volume: 20
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0670
  article-title: Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from −40 °C to 50 °C
  publication-title: Mater. Today Energy.
– volume: 210
  start-page: 112680
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0415
  article-title: Study of using enhanced heat-transfer fl exible phase change material fi lm in thermal management of compact electronic device
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2020.112680
– volume: 114
  start-page: 408
  year: 2017
  ident: 10.1016/j.cej.2021.132741_b0230
  article-title: Cutting copper fi ber / paraf fi n composite phase change material discharging experimental study based on heat dissipation capability of Li-ion battery
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2017.07.004
– volume: 259
  start-page: 114120
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0660
  article-title: Computationally e ffi cient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2019.114120
– volume: 55
  start-page: 1753
  issue: 6
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0260
  article-title: Improving the performance of a passive battery thermal management system based on PCM using lateral fins
  publication-title: Heat Mass Transf. Und Stoffuebertragung.
  doi: 10.1007/s00231-018-02555-0
– volume: 34
  start-page: 508
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0395
  article-title: An intrinsically flexible phase change film for wearable thermal managements
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.10.014
– volume: 32
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0240
  article-title: Interfacial thermal conductance across hexagonal boron nitride & paraffin based thermal energy storage materials
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2020.101860
– volume: 115
  start-page: 104612
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0175
  article-title: Numerical study on heat transfer enhancement of closed loop oscillating heat pipe through active incentive method
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104612
– volume: 146
  start-page: 106420
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0085
  article-title: Flexible copper foam-based phase change materials with good stiffness-toughness balance, electro-to-thermal conversion ability and shape memory function for intelligent thermal management
  publication-title: Compos. Part A.
  doi: 10.1016/j.compositesa.2021.106420
– ident: 10.1016/j.cej.2021.132741_b0135
  doi: 10.1007/s11630-017-0955-2
– volume: 40
  start-page: 102602
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0375
  article-title: Cylindrical battery thermal management based on microencapsulated phase change slurry
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2021.102602
– volume: 8
  start-page: 20011
  issue: 38
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0435
  article-title: Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA05904H
– volume: 6
  start-page: 8
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0210
  article-title: Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management
  publication-title: Energy Reports.
  doi: 10.1016/j.egyr.2019.09.060
– ident: 10.1016/j.cej.2021.132741_b0620
  doi: 10.1002/ente.201600083
– volume: 194
  start-page: 268
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0315
  article-title: Solar Energy Materials and Solar Cells Nano-encapsulated PCM emulsions prepared by a solvent-assisted method for solar applications
  publication-title: Sol. Energy Mater. Sol. Cells.
  doi: 10.1016/j.solmat.2019.02.021
– volume: 189
  start-page: 116767
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0020
  article-title: An intelligent thermal management system for optimized lithium-ion battery pack
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116767
– volume: 334
  start-page: 135551
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0405
  article-title: Electrochimica Acta In-situ temperature regulation of fl exible supercapacitors by designing intelligent electrode with microencapsulated phase change materials
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2019.135551
– volume: 8
  start-page: 14624
  issue: 29
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0275
  article-title: Custom design of solid-solid phase change material with ultra-high thermal stability for battery thermal management
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA05247G
– volume: 45
  start-page: 9970
  issue: 7
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0255
  article-title: The effect of reducing the thermal contact resistance on the performance of battery thermal management system
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6491
– volume: 165
  start-page: 114571
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0600
  article-title: A novel heat pipe assisted separation type battery thermal management system based on phase change material
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114571
– volume: 13
  start-page: 1
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0685
  article-title: Simulation of a Set of Lithium-Ion Batteries with Composite Phase Change Materials and Heating Films Thermal Management System at Low Temperature
  publication-title: J. Therm. Sci. Eng. Appl.
  doi: 10.1115/1.4046983
– volume: 451
  start-page: 227820
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0245
  article-title: Evaluation of lithium battery thermal management using sealant made of boron nitride and silicone
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2020.227820
– volume: 163
  start-page: 114345
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0535
  article-title: Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114345
– volume: 31
  start-page: 1905099
  issue: 49
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0430
  article-title: High-Performance Thermally Conductive Phase Change Composites by Large-Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905099
– volume: 182
  start-page: 9
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0410
  article-title: Thermal management of Li-ion battery pack with the application of fl exible form-stable composite phase change materials
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.12.064
– volume: 4
  start-page: 1978
  issue: 2
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0450
  article-title: Pouch Lithium Battery with a Passive Thermal Management System Using Form-Stable and Flexible Composite Phase Change Materials
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c03116
– volume: 64
  start-page: 1092
  year: 2014
  ident: 10.1016/j.cej.2021.132741_b0345
  article-title: Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions
  publication-title: Energy.
  doi: 10.1016/j.energy.2013.10.088
– volume: 156
  start-page: 119820
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0525
  article-title: International Journal of Heat and Mass Transfer Thermal characteristics of power battery module with composite phase change material and external liquid cooling
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119820
– ident: 10.1016/j.cej.2021.132741_b0150
  doi: 10.1002/er.4067
– volume: 127
  start-page: 381
  year: 2018
  ident: 10.1016/j.cej.2021.132741_b0215
  article-title: International Journal of Heat and Mass Transfer Copper foam / PCMs based heat sinks : An experimental study for electronic cooling systems
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.07.120
– volume: 167
  start-page: 561
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0340
  article-title: Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate
  publication-title: Energy.
  doi: 10.1016/j.energy.2018.10.137
– volume: 73
  start-page: 21
  year: 2014
  ident: 10.1016/j.cej.2021.132741_b0310
  article-title: International Journal of Heat and Mass Transfer Experimental study on laminar convective heat transfer of microencapsulated phase change material slurry using liquid metal with low melting point as carrying fluid
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.01.059
– volume: 188
  start-page: 116649
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0530
  article-title: Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116649
– volume: 145
  start-page: 2046
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0280
  article-title: Experimental investigation on a novel phase change material composites coupled with graphite fi lm used for thermal management of lithium-ion batteries
  publication-title: Renew. Energy.
  doi: 10.1016/j.renene.2019.07.112
– volume: 169
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0080
  article-title: International Journal of Heat and Mass Transfer A passive thermal management system of Li-ion batteries using PCM composites : Experimental and numerical investigations
  publication-title: Int. J. Heat Mass Transf.
– volume: 133
  start-page: 827
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0505
  article-title: International Journal of Heat and Mass Transfer Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.12.157
– volume: 58
  start-page: 615
  issue: 1-2
  year: 2013
  ident: 10.1016/j.cej.2021.132741_b0645
  article-title: Passive thermal management for PEM fuel cell stack under cold weather condition using phase change materials (PCM)
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2013.04.064
– volume: 181
  start-page: 107714
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0390
  article-title: Flexible phase change composite materials with simultaneous light energy storage and light-actuated shape memory capability
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.107714
– volume: 171
  start-page: 699
  year: 2018
  ident: 10.1016/j.cej.2021.132741_b0330
  article-title: An experimental investigation of forced convection heat transfer with novel microencapsulated phase change material slurries in a circular tube under constant heat fl ux
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.06.029
– volume: 494
  start-page: 229727
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0065
  article-title: Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2021.229727
– volume: 378
  start-page: 383
  year: 2018
  ident: 10.1016/j.cej.2021.132741_b0075
  article-title: Electric vehicles batteries thermal management systems employing phase change materials
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2017.12.071
– volume: 144
  start-page: 977
  year: 2018
  ident: 10.1016/j.cej.2021.132741_b0680
  article-title: Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures
  publication-title: Energy.
  doi: 10.1016/j.energy.2017.12.098
– volume: 480
  start-page: 229116
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0115
  article-title: Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2020.229116
– volume: 72
  start-page: 690
  year: 2014
  ident: 10.1016/j.cej.2021.132741_b0160
  article-title: International Journal of Heat and Mass Transfer Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.12.076
– volume: 141
  start-page: 47
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0465
  article-title: International Journal of Thermal Sciences A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2019.03.026
– volume: 473
  start-page: 228545
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0575
  article-title: Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2020.228545
– volume: 360
  start-page: 618
  year: 2017
  ident: 10.1016/j.cej.2021.132741_b0045
  article-title: Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2017.06.031
– volume: 25
  start-page: 100920
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0580
  article-title: Case Studies in Thermal Engineering PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.100920
– volume: 293
  start-page: 498
  year: 2015
  ident: 10.1016/j.cej.2021.132741_b0050
  article-title: A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2015.05.095
– volume: 238
  start-page: 1407
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0320
  article-title: Development and characterization of novel and stable silicon nanoparticles- embedded PCM-in-water emulsions for thermal energy storage
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2019.01.159
– volume: 116
  start-page: 1204
  year: 2018
  ident: 10.1016/j.cej.2021.132741_b0145
  article-title: International Journal of Heat and Mass Transfer Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.09.092
– volume: 74
  start-page: 223
  year: 2013
  ident: 10.1016/j.cej.2021.132741_b0265
  article-title: Enhance heat transfer for PCM melting in triplex tube with internal-external fins
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.05.003
– volume: 204
  start-page: 112280
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0500
  article-title: A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for di ff erent ambient temperatures
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112280
– ident: 10.1016/j.cej.2021.132741_b0110
  doi: 10.1002/er.4307
– volume: 219
  start-page: 119496
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0665
  article-title: A fast-heat battery system using the heat released from detonated supercooled phase change materials
  publication-title: Energy.
  doi: 10.1016/j.energy.2020.119496
– volume: 45
  start-page: 5399
  issue: 4
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0675
  article-title: Effect of coupling phase change materials and heat pipe on performance enhancement of Li-ion battery thermal management system
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6165
– volume: 185
  start-page: 116415
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0540
  article-title: Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116415
– volume: 133
  start-page: 204
  year: 2017
  ident: 10.1016/j.cej.2021.132741_b0655
  article-title: Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.12.009
– volume: 69
  start-page: 174
  year: 2013
  ident: 10.1016/j.cej.2021.132741_b0105
  article-title: Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment
  publication-title: ENERGY Convers. Manag.
  doi: 10.1016/j.enconman.2013.01.025
– volume: 181
  start-page: 116028
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0520
  article-title: Impact of configuration on the performance of a hybrid thermal management system including phase change material and water-cooling channels for Li-ion batteries
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116028
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0635
  article-title: Experimental Investigation on a Thermoelectric Cooler for Thermal Management of a Lithium-Ion Battery Module
  publication-title: Int. J. Photoenergy.
  doi: 10.1155/2019/3725364
– volume: 183
  start-page: 116151
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0440
  article-title: Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116151
– volume: 279
  start-page: 115808
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0355
  article-title: Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2020.115808
– volume: 154
  start-page: 562
  year: 2017
  ident: 10.1016/j.cej.2021.132741_b0460
  article-title: Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.11.046
– volume: 468
  start-page: 228398
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0485
  article-title: A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2020.228398
– volume: 113
  start-page: 1032
  year: 2016
  ident: 10.1016/j.cej.2021.132741_b0040
  article-title: Integration issues of lithium-ion battery into electric vehicles battery pack
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.11.011
– volume: 257
  start-page: 345
  year: 2017
  ident: 10.1016/j.cej.2021.132741_b0185
  article-title: Experimental Investigation of a New Passive Thermal Management System for a Li-Ion Battery Pack Using Phase Change Composite Material
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2017.10.051
– volume: 190
  start-page: 868
  year: 2017
  ident: 10.1016/j.cej.2021.132741_b0325
  article-title: Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2017.01.012
– volume: 166
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0515
  article-title: Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes : An experimental investigation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114759
– volume: 28
  start-page: 101235
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0235
  article-title: Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2020.101235
– volume: 45
  start-page: 6198
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0550
  article-title: An experimental investigation for a hybrid phase change material-liquid cooling strategy to achieve high-temperature uniformity of Li-ion battery module under fast charging
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6241
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0200
  article-title: The Enhanced Performance of Phase-Change Materials via 3D Printing with Prickly Aluminum Honeycomb for Thermal Management of Ternary Lithium Batteries
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2020/8167386
– volume: 148
  start-page: 403
  year: 2015
  ident: 10.1016/j.cej.2021.132741_b0475
  article-title: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2015.03.080
– volume: 184
  start-page: 116380
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0510
  article-title: Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116380
– volume: 15
  start-page: 4554
  issue: 9
  year: 2011
  ident: 10.1016/j.cej.2021.132741_b0015
  article-title: A review of power battery thermal energy management
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2011.07.096
– volume: 118
  start-page: 872
  year: 2018
  ident: 10.1016/j.cej.2021.132741_b0335
  article-title: International Journal of Heat and Mass Transfer Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils : A numerical and analytical study
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.10.130
– volume: 311
  start-page: 127517
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0455
  article-title: Development of flexible form-stable phase change material with enhanced electrical resistance for thermal management
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127517
– volume: 141
  start-page: 1092
  year: 2018
  ident: 10.1016/j.cej.2021.132741_b0570
  article-title: Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.06.048
– volume: 188
  start-page: 116665
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0585
  article-title: Design of battery thermal management system based on phase change material and heat pipe
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.116665
– volume: 84–2
  start-page: 164
  year: 1984
  ident: 10.1016/j.cej.2021.132741_b0095
  article-title: General Energy Balance for Battery Systems
  publication-title: Electrochem. Soc. Ext. Abstr.
– volume: 180
  start-page: 1196
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0195
  article-title: Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.11.064
– volume: 170
  start-page: 849
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0025
  article-title: Applications and thermal management of rechargeable batteries for industrial applications
  publication-title: Energy.
  doi: 10.1016/j.energy.2018.12.218
– volume: 12
  start-page: 1937
  issue: 10
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0270
  article-title: Study of thermal management system using composite phase change materials and thermoelectric cooling sheet for power battery pack
  publication-title: Energies.
  doi: 10.3390/en12101937
– volume: 52
  start-page: 101786
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0360
  article-title: Experimental and numerical investigation of laminar heat transfer of microencapsulated phase change material slurry (MPCMS) in a circular tube with constant heat flux
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101786
– volume: 174
  start-page: 121318
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0615
  article-title: International Journal of Heat and Mass Transfer Design and optimization of a hybrid battery thermal management system for electric vehicle based on surrogate model
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121318
– ident: 10.1016/j.cej.2021.132741_b0180
  doi: 10.1016/j.est.2021.102279
– volume: 157
  start-page: 113683
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0140
  article-title: Optimization on uniformity of lithium-ion cylindrical battery module by different arrangement strategy
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.04.093
– volume: 480
  start-page: 228820
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0060
  article-title: Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2020.228820
– volume: 4
  start-page: 303
  year: 2018
  ident: 10.1016/j.cej.2021.132741_b0650
  article-title: Cold temperature performance of phase change material based battery thermal management systems
  publication-title: Energy Reports.
  doi: 10.1016/j.egyr.2018.04.001
– ident: 10.1016/j.cej.2021.132741_b0385
  doi: 10.1016/j.matdes.2019.108219
– volume: 356
  start-page: 71
  issue: 1-3
  year: 2010
  ident: 10.1016/j.cej.2021.132741_b0305
  article-title: Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method
  publication-title: Colloids Surfaces A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2009.12.036
– volume: 491
  start-page: 229624
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0125
  article-title: Development of the inorganic composite phase change materials for passive thermal management of Li-ion batteries: Application
  publication-title: J. Power Sources.
  doi: 10.1016/j.jpowsour.2021.229624
– volume: 141
  start-page: 613
  year: 2017
  ident: 10.1016/j.cej.2021.132741_b0220
  article-title: A thermal management system for rectangular LiFePO 4 battery module using novel double copper mesh-enhanced phase change material plates
  publication-title: Energy.
  doi: 10.1016/j.energy.2017.09.083
– volume: 13
  start-page: 1
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0250
  article-title: Preparation of binary thermal silicone grease and its application in battery thermal management
  publication-title: Materials (Basel).
  doi: 10.3390/ma13214763
– volume: 161
  start-page: 114102
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0595
  article-title: The thermal performance of a novel internal cooling method for the electric vehicle battery: An experimental study
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114102
– volume: 128
  start-page: 294
  year: 2016
  ident: 10.1016/j.cej.2021.132741_b0295
  article-title: Thermal management of a LiFePO 4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.09.081
– volume: 168
  start-page: 114792
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0605
  article-title: A lithium-ion battery-thermal-management design based on phase-change- material thermal storage and spray cooling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114792
– volume: 113
  start-page: 909
  year: 2016
  ident: 10.1016/j.cej.2021.132741_b0225
  article-title: An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack
  publication-title: Energy.
  doi: 10.1016/j.energy.2016.07.119
– volume: 65
  start-page: 92
  year: 2013
  ident: 10.1016/j.cej.2021.132741_b0055
  article-title: Experimental investigation on thermal management of electric vehicle battery with heat pipe
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2012.08.014
– volume: 149
  start-page: 1
  year: 2017
  ident: 10.1016/j.cej.2021.132741_b0400
  article-title: Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.07.019
– volume: 182
  start-page: 262
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0010
  article-title: A critical review of battery thermal performance and liquid based battery thermal management
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.12.051
– volume: 5
  start-page: 822
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0155
  article-title: Electric vehicle battery thermal management system with thermoelectric cooling
  publication-title: Energy Reports.
  doi: 10.1016/j.egyr.2019.06.016
– volume: 191
  start-page: 116565
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0555
  article-title: Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study
  publication-title: Energy.
  doi: 10.1016/j.energy.2019.116565
– volume: 235
  start-page: 110750
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0090
  article-title: Energy & Buildings Research on falling film dehumidification performance of microencapsulated phase change materials slurry
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.110750
– volume: 193
  start-page: 116840
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0490
  article-title: Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management
  publication-title: Energy.
  doi: 10.1016/j.energy.2019.116840
– start-page: 1
  year: 2016
  ident: 10.1016/j.cej.2021.132741_b0630
  article-title: Performance characteristics of PTC elements for an electric vehicle heating
  publication-title: System
– volume: 148
  start-page: 984
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0290
  article-title: A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.11.100
– ident: 10.1016/j.cej.2021.132741_b0165
  doi: 10.1016/j.ijheatmasstransfer.2021.121199
– volume: 138
  start-page: 486
  year: 2017
  ident: 10.1016/j.cej.2021.132741_b0610
  article-title: Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.02.022
– volume: 36
  start-page: 102448
  year: 2021
  ident: 10.1016/j.cej.2021.132741_b0545
  article-title: Investigation on battery thermal management system combining phase changed material and liquid cooling considering non-uniform heat generation of battery
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2021.102448
– volume: 207
  start-page: 118215
  year: 2020
  ident: 10.1016/j.cej.2021.132741_b0350
  article-title: Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack
  publication-title: Energy.
  doi: 10.1016/j.energy.2020.118215
– volume: 124
  start-page: 23
  year: 2018
  ident: 10.1016/j.cej.2021.132741_b0285
  article-title: International Journal of Thermal Sciences Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2017.09.019
– volume: 180
  start-page: 784
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0590
  article-title: Enhancement of nanoparticle-phase change material melting performance using a sinusoidal heat pipe
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.11.033
– volume: 228
  start-page: 777
  year: 2018
  ident: 10.1016/j.cej.2021.132741_b0565
  article-title: Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2018.06.143
– ident: 10.1016/j.cej.2021.132741_b0030
  doi: 10.1016/S0378-7753(02)00200-8
– ident: 10.1016/j.cej.2021.132741_b0625
  doi: 10.1002/er.4081
– volume: 172
  start-page: 195
  year: 2017
  ident: 10.1016/j.cej.2021.132741_b0120
  article-title: MgCl2·6H2O-Mg(NO3)2·6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity
  publication-title: Sol. Energy Mater. Sol. Cells.
  doi: 10.1016/j.solmat.2017.07.019
– volume: 20
  start-page: 545
  issue: 3
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0380
  article-title: Encapsulated Phase Change Material Embedded by Graphene Powders for Smart and Flexible Thermal Response
  publication-title: Fibers Polym.
  doi: 10.1007/s12221-019-1067-2
– volume: 236
  start-page: 10
  year: 2019
  ident: 10.1016/j.cej.2021.132741_b0420
  article-title: Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2018.11.071
SSID ssj0006919
Score 2.7209475
SecondaryResourceType review_article
Snippet •PCM-cooled and PCM-heated BTMS are reviewed.•Phase change fluid (PCF), flexible phase change material (FPCM) and Hybrid cooling are analyzed.•The flammability...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 132741
SubjectTerms Battery thermal management system (BTMs)
Flexible phase change material (FPCM)
Heat transfer enhancement
Inorganic PCMs
Organic PCMs
Phase change fluid (PCF)
Phase change material (PCM)
Title Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review
URI https://dx.doi.org/10.1016/j.cej.2021.132741
Volume 430
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IHvwACYLdLt9eUMiQQnEKERuTbuPAJFHoB68-Nvd6baoiXrw1KaZSZrpdB7Zb75B6JJa0vYCyyHSY4wwPxYEVlMSEXNdjlMaOVGK8u27nSG7HzmjAmrlszAAq8xiv4npabTOntQza9aXk0n9yYIzrYDpFgYIYgIY4mPMAy-vvX_CPNwgXe4BwgSk85PNFOPF5VS3iNSq6Z7MY9bPuelLvmnvod2sUMRN8y77qCDnB2jnC33gIVKGHPMNQxE308KzDZYFG4bmNa7cDHrrKoZkJfBijpdjfYfNuK-WT1IHxJWHVq96jZsYEOYrOTaodmzmWo7QsH07aHVItjeBcBp4CfGYtPw4Uo4UFOi6lBNTHvgiBppGFUvXh7xMY-oJlykmHVf_hZHdUL6Adeq2fYyK88VcniDs-kobTuoaiwNXPfcj3RDywOGWULwh_BJq5BYLeUYqDrstXsIcPTYNtZFDMHJojFxCVxuVpWHU-EuY5Z8h_OYWoY74v6ud_k_tDG1TmG6AfS_OOSomq1d5oWuOJC6nTlVGW827bqcP1-7jc_cDO37UdA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEA6lHtSD-MT6zEHBCtt20-xL8KDV0morgi30tu4mWdpia7EV8eKf8g86s9nVCupB6G1ZEpKdDPPYfPMNIQfMVGXHMy1DOZwb3A2lga0pDRkKCMcZC6wgRvne2LU2v-pYnQx5T2thEFaZ2H5t02NrnbwpJtIsjnq94p2Jd1oehxQGCWI8L0FWXqvXF8jbxqf1CzjkQ8aql61KzUhaCxiCec7EcLgy3TCILCUZMlpFVsiE58oQmQyjUNkuui4WMkfaPOLKskFRg3IpciV2HMe_oGD35ziYC2ybUHj7wpXYXtxNBHdn4PbSq9QYVCZUH3JSZhZgGYebPzvDKQdXXSZLSWRKz_THr5CMGq6SxSm-wjUSaTbOV4pR4wAGDz7BM1RTQo_p0XmrOc5T9I6SPg7pqAtPVNcXw_hJrPH06LbSzJ_QM4qQ9ifV1TB6qgtp1kl7JtLcINnh41BtEmq7EQhOQVAnkBxfuAFkoMKzhCkjUZJujpRSifkiYTHHZhoPfgpX6_sgZB-F7Gsh58jx55SRpvD4azBPj8H_poc-uJjfp239b9o-ma-1mg2_Ub-53iYLDEsrsNmMtUOyk6dntQsBzyTcixWMkvtZa_QHaIoNPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Battery+thermal+management+systems+%28BTMs%29+based+on+phase+change+material+%28PCM%29%3A+A+comprehensive+review&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Luo%2C+Jie&rft.au=Zou%2C+Deqiu&rft.au=Wang%2C+Yinshuang&rft.au=Wang%2C+Shuo&rft.date=2022-02-15&rft.issn=1385-8947&rft.volume=430&rft.spage=132741&rft_id=info:doi/10.1016%2Fj.cej.2021.132741&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2021_132741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon