Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review
•PCM-cooled and PCM-heated BTMS are reviewed.•Phase change fluid (PCF), flexible phase change material (FPCM) and Hybrid cooling are analyzed.•The flammability of organic PCM needs to be solved for BTMS.•The stability of inorganic PCM needs to be solved for BTMS.•Various issues and challenges of BTM...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 430; p. 132741 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •PCM-cooled and PCM-heated BTMS are reviewed.•Phase change fluid (PCF), flexible phase change material (FPCM) and Hybrid cooling are analyzed.•The flammability of organic PCM needs to be solved for BTMS.•The stability of inorganic PCM needs to be solved for BTMS.•Various issues and challenges of BTMS based on PCM are identified.
It is known that the performance of a power battery is greatly affected by temperature. The battery pack needs an efficient thermal management system to make the power battery work in a reasonable temperature range. Battery thermal management system (BTMs) based on phase change materials (PCM), as a passive thermal management method, has the advantages of low operating cost and good temperature uniformity. This paper mainly introduces the BTMs based on PCM, including the cooling and heating system based on PCM. For the cooling system of PCM, the performance of composite phase change materials (CPCM) and its heat transfer enhancement, phase change fluid (PCF), flexible phase change materials (FPCM), and hybrid cooling systems are analyzed. For the PCM heating system, the PCM latent heat for preheating of the power battery in a cold environment has also been discussed. Finally, this paper concluded that the next research directions should focus on the improvement of thermal conductivity of PCM, flame retardancy of organic PCM, thermal stability of inorganic PCM, PCF and FPCM, and PCM-based coupled battery thermal management. |
---|---|
AbstractList | •PCM-cooled and PCM-heated BTMS are reviewed.•Phase change fluid (PCF), flexible phase change material (FPCM) and Hybrid cooling are analyzed.•The flammability of organic PCM needs to be solved for BTMS.•The stability of inorganic PCM needs to be solved for BTMS.•Various issues and challenges of BTMS based on PCM are identified.
It is known that the performance of a power battery is greatly affected by temperature. The battery pack needs an efficient thermal management system to make the power battery work in a reasonable temperature range. Battery thermal management system (BTMs) based on phase change materials (PCM), as a passive thermal management method, has the advantages of low operating cost and good temperature uniformity. This paper mainly introduces the BTMs based on PCM, including the cooling and heating system based on PCM. For the cooling system of PCM, the performance of composite phase change materials (CPCM) and its heat transfer enhancement, phase change fluid (PCF), flexible phase change materials (FPCM), and hybrid cooling systems are analyzed. For the PCM heating system, the PCM latent heat for preheating of the power battery in a cold environment has also been discussed. Finally, this paper concluded that the next research directions should focus on the improvement of thermal conductivity of PCM, flame retardancy of organic PCM, thermal stability of inorganic PCM, PCF and FPCM, and PCM-based coupled battery thermal management. |
ArticleNumber | 132741 |
Author | Wang, Shuo Zou, Deqiu Luo, Jie Huang, Li Wang, Yinshuang |
Author_xml | – sequence: 1 givenname: Jie surname: Luo fullname: Luo, Jie organization: Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, Zhejiang, China – sequence: 2 givenname: Deqiu surname: Zou fullname: Zou, Deqiu email: zoudeqiu@nbu.edu.cn organization: Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, Zhejiang, China – sequence: 3 givenname: Yinshuang surname: Wang fullname: Wang, Yinshuang organization: Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, Zhejiang, China – sequence: 4 givenname: Shuo surname: Wang fullname: Wang, Shuo organization: Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, Zhejiang, China – sequence: 5 givenname: Li surname: Huang fullname: Huang, Li organization: Faculty of Architecture, Civil and Environmental Engineering, Ningbo University, Ningbo 315211, Zhejiang, China |
BookMark | eNp9kDtvwjAUha2KSgXaH9DNIwxJ_ciznQD1JYHagc6W49wQR8RBtkXFv68RnTp0ume435HON0EjMxhA6J6SmBKaPXSxgi5mhNGYcpYn9AqNaZHziDPKRiHzIo2KMslv0MS5jhCSlbQco2YpvQd7wr4F28s97qWRO-jBeOxOzkPv8Gy53bg5rqSDGg8GH9qQsGql2UH4D7gO4OxztZk_4gVWQ3-w0IJx-gjYwlHD9y26buTewd3vnaKvl-ft6i1af7y-rxbrSLEy91GeAC0q2aRQszTJiyatmCqLuuJhVFNBVrCEZaxieZ0lTQJpVmZcctIUNeGMcD5F-aVX2cE5C41Q2kuvB-Ot1HtBiTjrEp0IusRZl7joCiT9Qx6s7qU9_cs8XRgIk8JMK5zSYBTU2oLyoh70P_QPmFOD7w |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_2c00572 crossref_primary_10_1016_j_applthermaleng_2022_118510 crossref_primary_10_1016_j_applthermaleng_2022_119840 crossref_primary_10_1002_smtd_202300139 crossref_primary_10_1016_j_est_2024_111228 crossref_primary_10_1080_1536383X_2024_2392033 crossref_primary_10_1016_j_ijft_2023_100365 crossref_primary_10_1016_j_ijft_2023_100368 crossref_primary_10_1016_j_coco_2023_101614 crossref_primary_10_1016_j_est_2024_111227 crossref_primary_10_3390_fire6050175 crossref_primary_10_1021_acsapm_3c00372 crossref_primary_10_1016_j_tsep_2023_102120 crossref_primary_10_1016_j_csite_2024_104837 crossref_primary_10_1016_j_est_2023_107921 crossref_primary_10_1002_cplu_202400542 crossref_primary_10_1016_j_rser_2023_114052 crossref_primary_10_1016_j_cej_2023_144720 crossref_primary_10_1016_j_ijft_2023_100370 crossref_primary_10_1016_j_est_2022_104384 crossref_primary_10_1016_j_applthermaleng_2024_123777 crossref_primary_10_1016_j_cjche_2024_08_008 crossref_primary_10_1016_j_egyr_2023_07_041 crossref_primary_10_21597_jist_1190593 crossref_primary_10_1002_er_8272 crossref_primary_10_1016_j_applthermaleng_2024_123897 crossref_primary_10_1002_er_8273 crossref_primary_10_3390_en17133106 crossref_primary_10_3390_en17020543 crossref_primary_10_1016_j_tsep_2024_102758 crossref_primary_10_1016_j_est_2022_105202 crossref_primary_10_1016_j_est_2023_108918 crossref_primary_10_1016_j_polymer_2024_127632 crossref_primary_10_1016_j_jclepro_2021_130014 crossref_primary_10_1016_j_ensm_2023_102814 crossref_primary_10_1016_j_est_2024_113421 crossref_primary_10_1002_smtd_202201515 crossref_primary_10_1016_j_cej_2022_135648 crossref_primary_10_1016_j_jpowsour_2022_231606 crossref_primary_10_1016_j_est_2022_106538 crossref_primary_10_1016_j_est_2022_105214 crossref_primary_10_1016_j_est_2022_105335 crossref_primary_10_1016_j_cej_2023_142401 crossref_primary_10_1088_1402_4896_ad0000 crossref_primary_10_1021_acs_energyfuels_1c04444 crossref_primary_10_1021_acs_energyfuels_4c02062 crossref_primary_10_1016_j_enganabound_2023_02_008 crossref_primary_10_1016_j_applthermaleng_2024_123798 crossref_primary_10_1016_j_energy_2025_135343 crossref_primary_10_1016_j_csite_2024_103996 crossref_primary_10_1016_j_est_2023_106911 crossref_primary_10_1016_j_icheatmasstransfer_2022_106377 crossref_primary_10_1016_j_est_2022_105785 crossref_primary_10_1016_j_compositesa_2022_107139 crossref_primary_10_1016_j_cej_2024_150653 crossref_primary_10_1016_j_cej_2023_142514 crossref_primary_10_1080_01457632_2024_2437892 crossref_primary_10_1016_j_est_2024_110696 crossref_primary_10_1016_j_est_2024_113844 crossref_primary_10_1016_j_est_2024_111661 crossref_primary_10_12677_mos_2024_136588 crossref_primary_10_1016_j_compscitech_2022_109756 crossref_primary_10_1016_j_cej_2024_148577 crossref_primary_10_1016_j_est_2022_105549 crossref_primary_10_1061_JLEED9_EYENG_4740 crossref_primary_10_1016_j_compositesa_2022_107006 crossref_primary_10_1016_j_est_2023_110046 crossref_primary_10_3390_w14193148 crossref_primary_10_1016_j_cej_2022_137733 crossref_primary_10_1016_j_apenergy_2023_122352 crossref_primary_10_1016_j_est_2024_113731 crossref_primary_10_1016_j_jpowsour_2022_231610 crossref_primary_10_1002_est2_70076 crossref_primary_10_1088_2053_1591_ad1949 crossref_primary_10_3390_wevj15100464 crossref_primary_10_1016_j_est_2023_106933 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124712 crossref_primary_10_3390_batteries9030153 crossref_primary_10_1063_5_0223188 crossref_primary_10_1016_j_est_2023_106819 crossref_primary_10_1016_j_est_2024_111567 crossref_primary_10_1016_j_est_2024_113741 crossref_primary_10_1016_j_applthermaleng_2024_124330 crossref_primary_10_1515_ntrev_2023_0180 crossref_primary_10_1021_acsomega_1c06502 crossref_primary_10_1002_ente_202101135 crossref_primary_10_1016_j_est_2022_105524 crossref_primary_10_1016_j_ijheatmasstransfer_2023_123989 crossref_primary_10_1016_j_applthermaleng_2024_123118 crossref_primary_10_1016_j_est_2024_112306 crossref_primary_10_1016_j_est_2023_109081 crossref_primary_10_1016_j_apenergy_2022_119917 crossref_primary_10_1016_j_applthermaleng_2024_123475 crossref_primary_10_1016_j_compscitech_2023_109945 crossref_primary_10_1016_j_solener_2024_112800 crossref_primary_10_1016_j_est_2023_110180 crossref_primary_10_1016_j_cej_2023_146087 crossref_primary_10_3390_batteries10030083 crossref_primary_10_1063_5_0145904 crossref_primary_10_2298_TSCI240706226G crossref_primary_10_1016_j_est_2024_113927 crossref_primary_10_1016_j_est_2025_115397 crossref_primary_10_1016_j_est_2025_115399 crossref_primary_10_1016_j_est_2024_112952 crossref_primary_10_1016_j_tsep_2022_101282 crossref_primary_10_1016_j_est_2023_110259 crossref_primary_10_1021_acsapm_4c00977 crossref_primary_10_1016_j_asej_2024_102908 crossref_primary_10_1016_j_compositesb_2025_112376 crossref_primary_10_1016_j_est_2023_110372 crossref_primary_10_1002_ente_202200873 crossref_primary_10_1016_j_cej_2025_161599 crossref_primary_10_1016_j_enconman_2022_115383 crossref_primary_10_1039_D2TC04381E crossref_primary_10_1016_j_apenergy_2021_118433 crossref_primary_10_1016_j_ifacol_2024_11_175 crossref_primary_10_1016_j_apenergy_2024_123180 crossref_primary_10_1016_j_applthermaleng_2023_122104 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125354 crossref_primary_10_1007_s11431_024_2770_1 crossref_primary_10_1016_j_renene_2023_119922 crossref_primary_10_1016_j_solmat_2023_112594 crossref_primary_10_1016_j_applthermaleng_2025_126143 crossref_primary_10_1002_app_55956 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123734 crossref_primary_10_1016_j_est_2022_104873 crossref_primary_10_1016_j_enbuild_2023_112928 crossref_primary_10_1016_j_est_2025_116265 crossref_primary_10_1016_j_applthermaleng_2024_124813 crossref_primary_10_1016_j_est_2024_112978 crossref_primary_10_1016_j_energy_2024_131404 crossref_primary_10_1016_j_est_2024_112737 crossref_primary_10_1016_j_est_2024_112852 crossref_primary_10_1016_j_icheatmasstransfer_2024_107608 crossref_primary_10_1021_acsaem_3c01819 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126730 crossref_primary_10_1016_j_est_2023_110273 crossref_primary_10_3390_coatings14030257 crossref_primary_10_1002_ente_202300382 crossref_primary_10_1016_j_icheatmasstransfer_2024_107735 crossref_primary_10_3390_en16031059 crossref_primary_10_1016_j_applthermaleng_2024_122988 crossref_primary_10_1016_j_est_2025_116279 crossref_primary_10_1149_1945_7111_ac9ee4 crossref_primary_10_1016_j_est_2024_111412 crossref_primary_10_1016_j_est_2024_114920 crossref_primary_10_1016_j_est_2023_107096 crossref_primary_10_1016_j_solmat_2023_112336 crossref_primary_10_1016_j_apenergy_2025_125766 crossref_primary_10_1016_j_tsep_2022_101244 crossref_primary_10_1016_j_jobe_2022_105763 crossref_primary_10_1016_j_enbuild_2022_112451 crossref_primary_10_1002_admi_202202100 crossref_primary_10_1002_ente_202301247 crossref_primary_10_1016_j_mtsust_2023_100443 crossref_primary_10_1016_j_enconman_2024_119149 crossref_primary_10_1016_j_aej_2024_11_038 crossref_primary_10_1002_asia_202300391 crossref_primary_10_1016_j_applthermaleng_2024_122659 crossref_primary_10_1002_smll_202407626 crossref_primary_10_1016_j_cej_2025_161559 crossref_primary_10_1016_j_est_2023_108131 crossref_primary_10_1016_j_est_2023_107167 crossref_primary_10_1016_j_csite_2023_103388 crossref_primary_10_1016_j_est_2022_104857 crossref_primary_10_1002_ente_202401930 crossref_primary_10_1016_j_csite_2024_104752 crossref_primary_10_1016_j_etran_2024_100381 crossref_primary_10_1155_2023_9077046 crossref_primary_10_1108_HFF_12_2023_0732 crossref_primary_10_1016_j_energy_2024_130642 crossref_primary_10_3390_en17040939 crossref_primary_10_1007_s11630_024_1922_3 crossref_primary_10_1016_j_icheatmasstransfer_2024_107756 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126246 crossref_primary_10_1016_j_est_2024_112922 crossref_primary_10_1088_1755_1315_1161_1_012014 crossref_primary_10_1007_s10973_024_13172_x crossref_primary_10_1016_j_ensm_2023_103144 crossref_primary_10_1080_10407782_2023_2179559 crossref_primary_10_1007_s10973_023_12256_4 crossref_primary_10_1016_j_mtcomm_2024_108420 crossref_primary_10_3390_su15075868 crossref_primary_10_1016_j_icheatmasstransfer_2024_107401 crossref_primary_10_1016_j_est_2024_115072 crossref_primary_10_26599_NRE_2023_9120103 crossref_primary_10_1016_j_apenergy_2022_119509 crossref_primary_10_1016_j_est_2025_115490 crossref_primary_10_3390_en17184575 crossref_primary_10_1016_j_cej_2023_142336 crossref_primary_10_1016_j_est_2023_110234 crossref_primary_10_1016_j_cej_2024_150110 crossref_primary_10_1016_j_est_2023_108280 crossref_primary_10_1115_1_4056823 crossref_primary_10_1016_j_cej_2021_134231 crossref_primary_10_1016_j_applthermaleng_2024_122794 crossref_primary_10_1016_j_est_2023_108395 crossref_primary_10_1016_j_est_2023_109124 crossref_primary_10_1007_s11431_024_2683_2 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126778 crossref_primary_10_1016_j_etran_2024_100364 crossref_primary_10_1007_s10965_023_03553_5 crossref_primary_10_1016_j_enss_2022_07_004 crossref_primary_10_1080_15435075_2023_2253886 crossref_primary_10_1016_j_isci_2022_103744 crossref_primary_10_1016_j_tsep_2023_101862 crossref_primary_10_3390_ma18010213 crossref_primary_10_1016_j_est_2023_110340 crossref_primary_10_1016_j_est_2023_108389 crossref_primary_10_1016_j_jclepro_2022_133572 crossref_primary_10_3390_en17040912 crossref_primary_10_1016_j_applthermaleng_2023_120187 crossref_primary_10_1038_s44359_024_00020_2 crossref_primary_10_3390_app13158848 crossref_primary_10_1002_pc_27864 crossref_primary_10_1016_j_est_2022_103998 crossref_primary_10_29130_dubited_1379834 crossref_primary_10_1016_j_compchemeng_2022_107929 crossref_primary_10_1016_j_prime_2024_100526 crossref_primary_10_1016_j_applthermaleng_2022_119283 crossref_primary_10_1021_acssuschemeng_2c06598 crossref_primary_10_3390_designs6060117 crossref_primary_10_3390_ma17030633 crossref_primary_10_1016_j_solmat_2023_112406 crossref_primary_10_1016_j_solmat_2022_112124 crossref_primary_10_1016_j_est_2023_107001 crossref_primary_10_1016_j_ensm_2024_103602 crossref_primary_10_1021_acsaem_4c00081 crossref_primary_10_1080_09506608_2022_2053774 crossref_primary_10_1016_j_csite_2024_104145 crossref_primary_10_1016_j_csite_2024_104267 crossref_primary_10_1016_j_est_2024_110705 crossref_primary_10_1016_j_est_2024_110700 crossref_primary_10_1080_10407782_2024_2363506 crossref_primary_10_1016_j_cjsc_2022_100006 crossref_primary_10_1007_s10973_023_12341_8 crossref_primary_10_3390_ma16175979 crossref_primary_10_1016_j_tsep_2022_101547 crossref_primary_10_1016_j_est_2023_108205 crossref_primary_10_1063_5_0221003 crossref_primary_10_1007_s10973_024_13762_9 crossref_primary_10_1016_j_applthermaleng_2022_119026 crossref_primary_10_1016_j_applthermaleng_2023_121745 crossref_primary_10_1002_adfm_202213846 crossref_primary_10_1016_j_nxsust_2025_100114 crossref_primary_10_1016_j_solmat_2023_112628 crossref_primary_10_3390_batteries9060287 crossref_primary_10_1016_j_rser_2023_113978 crossref_primary_10_1016_j_est_2025_115579 crossref_primary_10_1080_10407790_2023_2219833 crossref_primary_10_1016_j_ensm_2022_01_017 crossref_primary_10_1016_j_applthermaleng_2023_120530 crossref_primary_10_1016_j_energy_2024_132685 crossref_primary_10_1021_acsaem_2c02080 crossref_primary_10_1002_smll_202312134 crossref_primary_10_1016_j_enganabound_2022_05_006 crossref_primary_10_1016_j_est_2025_115584 crossref_primary_10_1016_j_est_2024_111814 crossref_primary_10_1016_j_applthermaleng_2022_119491 crossref_primary_10_1016_j_est_2024_110725 crossref_primary_10_3390_en15041421 crossref_primary_10_1016_j_applthermaleng_2022_119495 crossref_primary_10_1016_j_apenergy_2025_125802 crossref_primary_10_1109_TTE_2024_3409164 crossref_primary_10_1007_s11431_023_2539_x crossref_primary_10_3934_energy_2025006 crossref_primary_10_1016_j_applthermaleng_2024_125091 crossref_primary_10_1016_j_rser_2023_113711 crossref_primary_10_1016_j_enconman_2023_116676 crossref_primary_10_1080_01457632_2025_2459983 crossref_primary_10_1007_s42405_023_00596_2 crossref_primary_10_1016_j_est_2025_115756 crossref_primary_10_1016_j_enganabound_2022_04_024 crossref_primary_10_1016_j_compfluid_2024_106176 crossref_primary_10_1016_j_polymer_2024_127250 crossref_primary_10_1016_j_ijheatfluidflow_2024_109299 crossref_primary_10_1016_j_est_2023_108775 crossref_primary_10_1016_j_est_2024_113160 crossref_primary_10_1016_j_ceramint_2023_02_208 crossref_primary_10_1016_j_icheatmasstransfer_2024_107473 crossref_primary_10_1016_j_apenergy_2022_120564 crossref_primary_10_1016_j_est_2025_115644 crossref_primary_10_1016_j_rser_2025_115466 crossref_primary_10_1016_j_compositesa_2024_108331 crossref_primary_10_1016_j_est_2025_115404 crossref_primary_10_1016_j_jpowsour_2022_232145 crossref_primary_10_1016_j_est_2024_114268 crossref_primary_10_1080_01457632_2024_2325275 crossref_primary_10_1016_j_est_2023_109852 crossref_primary_10_3390_molecules29153572 crossref_primary_10_1016_j_csite_2024_104347 crossref_primary_10_3390_designs8060113 crossref_primary_10_1016_j_compscitech_2023_110256 crossref_primary_10_1016_j_icheatmasstransfer_2024_107249 crossref_primary_10_1016_j_ijheatmasstransfer_2023_125005 crossref_primary_10_1016_j_cej_2023_145329 crossref_primary_10_1016_j_enconman_2022_116015 crossref_primary_10_1016_j_jpowsour_2024_235495 crossref_primary_10_1080_10407782_2024_2344068 crossref_primary_10_1016_j_renene_2024_121273 crossref_primary_10_1016_j_apenergy_2024_123899 crossref_primary_10_1016_j_est_2024_114395 crossref_primary_10_1115_1_4063848 crossref_primary_10_1016_j_egyr_2023_04_359 crossref_primary_10_3390_en16135040 crossref_primary_10_7836_kses_2023_43_2_055 crossref_primary_10_1016_j_apenergy_2022_120109 crossref_primary_10_18186_thermal_1334238 crossref_primary_10_1007_s00158_024_03932_6 crossref_primary_10_1016_j_polymer_2024_127148 crossref_primary_10_1002_apj_3061 crossref_primary_10_1016_j_renene_2022_09_026 crossref_primary_10_1016_j_est_2025_115666 crossref_primary_10_1016_j_psep_2024_02_077 crossref_primary_10_1016_j_est_2023_108661 crossref_primary_10_1016_j_ecmx_2024_100862 crossref_primary_10_3390_en16052187 crossref_primary_10_1061_JLEED9_EYENG_5237 crossref_primary_10_1016_j_aej_2023_05_001 crossref_primary_10_1080_15325008_2023_2249882 crossref_primary_10_1007_s11630_024_2020_2 crossref_primary_10_1016_j_energy_2023_127798 crossref_primary_10_1016_j_ijthermalsci_2023_108200 crossref_primary_10_1016_j_est_2023_108615 crossref_primary_10_1016_j_rineng_2023_101424 crossref_primary_10_1016_j_applthermaleng_2023_120963 crossref_primary_10_1021_acsaem_2c03671 crossref_primary_10_1016_j_est_2022_106163 crossref_primary_10_1016_j_rser_2023_113921 crossref_primary_10_1615_AnnualRevHeatTransfer_2023048695 crossref_primary_10_3389_fenrg_2024_1329392 crossref_primary_10_1016_j_est_2025_115604 crossref_primary_10_1016_j_renene_2024_120529 crossref_primary_10_1007_s12274_023_6179_8 crossref_primary_10_1016_j_compscitech_2025_111080 crossref_primary_10_1016_j_est_2024_114581 crossref_primary_10_1016_j_ijthermalsci_2023_108332 crossref_primary_10_1016_j_device_2023_100121 crossref_primary_10_1002_adfm_202314021 crossref_primary_10_1016_j_est_2022_106017 crossref_primary_10_12688_openreseurope_17021_1 crossref_primary_10_1016_j_rser_2024_115277 crossref_primary_10_20517_energymater_2024_112 crossref_primary_10_1016_j_icheatmasstransfer_2023_106912 crossref_primary_10_1016_j_coco_2023_101793 crossref_primary_10_1016_j_est_2022_106496 crossref_primary_10_1016_j_procir_2024_03_032 crossref_primary_10_1016_j_est_2025_115977 crossref_primary_10_1016_j_cej_2022_137423 crossref_primary_10_1016_j_applthermaleng_2024_125226 crossref_primary_10_1016_j_est_2024_112051 crossref_primary_10_1021_acsami_3c17269 crossref_primary_10_1016_j_est_2023_108515 crossref_primary_10_1016_j_seta_2024_103980 crossref_primary_10_1016_j_est_2023_108748 crossref_primary_10_1016_j_rser_2024_115021 crossref_primary_10_1016_j_est_2022_105052 crossref_primary_10_1016_j_ijbiomac_2024_138162 crossref_primary_10_1016_j_icheatmasstransfer_2024_108271 crossref_primary_10_1016_j_est_2024_114369 crossref_primary_10_1016_j_energy_2022_126416 crossref_primary_10_1016_j_applthermaleng_2024_125216 crossref_primary_10_1002_cey2_665 crossref_primary_10_1016_j_est_2023_108987 crossref_primary_10_1016_j_est_2023_106688 crossref_primary_10_1016_j_renene_2022_08_026 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124748 crossref_primary_10_1615_HeatTransRes_2024055041 crossref_primary_10_1080_10407782_2024_2305670 crossref_primary_10_1016_j_applthermaleng_2025_125647 crossref_primary_10_1016_j_jclepro_2023_138797 crossref_primary_10_1039_D4SE00871E crossref_primary_10_1016_j_desal_2024_117685 crossref_primary_10_1016_j_renene_2023_02_083 crossref_primary_10_1016_j_est_2022_106005 crossref_primary_10_1016_j_energy_2025_134623 crossref_primary_10_3390_wevj15010013 crossref_primary_10_1016_j_cej_2024_157322 crossref_primary_10_1016_j_cej_2024_157564 crossref_primary_10_1016_j_applthermaleng_2022_119352 crossref_primary_10_1016_j_applthermaleng_2024_123057 crossref_primary_10_1016_j_est_2024_114661 crossref_primary_10_1002_est2_522 crossref_primary_10_1002_est2_647 crossref_primary_10_1080_01430750_2024_2393728 crossref_primary_10_1016_j_applthermaleng_2024_123052 crossref_primary_10_1007_s10973_023_12426_4 crossref_primary_10_1016_j_applthermaleng_2023_119984 crossref_primary_10_1016_j_est_2023_109929 crossref_primary_10_1016_j_est_2022_106331 crossref_primary_10_1016_j_jpowsour_2025_236345 crossref_primary_10_1021_acsaem_2c03383 crossref_primary_10_1016_j_jmrt_2023_01_026 crossref_primary_10_1016_j_applthermaleng_2023_121949 crossref_primary_10_3390_wevj14010015 crossref_primary_10_1016_j_est_2024_112375 crossref_primary_10_1016_j_applthermaleng_2024_125265 crossref_primary_10_1016_j_cej_2024_157313 crossref_primary_10_1016_j_renene_2025_122716 crossref_primary_10_1016_j_cma_2023_116228 crossref_primary_10_1007_s11665_024_10184_4 crossref_primary_10_1016_j_est_2023_107858 crossref_primary_10_1016_j_mtsust_2024_101026 crossref_primary_10_1016_j_est_2022_105254 crossref_primary_10_1016_j_est_2022_106465 crossref_primary_10_1016_j_est_2022_104166 crossref_primary_10_1016_j_est_2022_106222 crossref_primary_10_1016_j_icheatmasstransfer_2023_106708 crossref_primary_10_1016_j_jobe_2025_112106 crossref_primary_10_1016_j_est_2024_113479 crossref_primary_10_1061__ASCE_EY_1943_7897_0000845 crossref_primary_10_1016_j_renene_2022_06_117 crossref_primary_10_1016_j_scib_2022_09_014 crossref_primary_10_1016_j_est_2024_113350 crossref_primary_10_1016_j_est_2024_113351 crossref_primary_10_1108_HFF_08_2023_0482 crossref_primary_10_1016_j_est_2023_107851 crossref_primary_10_1002_ente_202401362 crossref_primary_10_1002_ppsc_202400031 crossref_primary_10_1016_j_est_2023_108701 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124669 crossref_primary_10_1007_s12613_023_2794_3 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125814 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2020.120827 10.1016/j.apenergy.2014.01.075 10.1016/j.est.2020.101816 10.1016/j.jpowsour.2019.227673 10.1016/j.applthermaleng.2021.117002 10.1016/j.electacta.2013.08.074 10.1016/j.expthermflusci.2016.11.017 10.1016/j.enconman.2020.113145 10.1080/15567036.2011.576411 10.1016/j.applthermaleng.2017.03.107 10.1016/j.ijthermalsci.2021.106968 10.1016/j.applthermaleng.2020.115795 10.1016/j.est.2020.101755 10.1016/j.enconman.2016.05.065 10.1016/j.tsep.2019.03.003 10.1016/j.applthermaleng.2021.116888 10.1016/j.enconman.2019.05.084 10.1016/j.ijheatmasstransfer.2017.12.024 10.1016/j.enconman.2020.112680 10.1016/j.renene.2017.07.004 10.1016/j.apenergy.2019.114120 10.1007/s00231-018-02555-0 10.1016/j.ensm.2020.10.014 10.1016/j.est.2020.101860 10.1016/j.icheatmasstransfer.2020.104612 10.1016/j.compositesa.2021.106420 10.1007/s11630-017-0955-2 10.1016/j.est.2021.102602 10.1039/D0TA05904H 10.1016/j.egyr.2019.09.060 10.1002/ente.201600083 10.1016/j.solmat.2019.02.021 10.1016/j.applthermaleng.2021.116767 10.1016/j.electacta.2019.135551 10.1039/D0TA05247G 10.1002/er.6491 10.1016/j.applthermaleng.2019.114571 10.1115/1.4046983 10.1016/j.jpowsour.2020.227820 10.1016/j.applthermaleng.2019.114345 10.1002/adma.201905099 10.1016/j.enconman.2018.12.064 10.1021/acsaem.0c03116 10.1016/j.energy.2013.10.088 10.1016/j.ijheatmasstransfer.2020.119820 10.1002/er.4067 10.1016/j.ijheatmasstransfer.2018.07.120 10.1016/j.energy.2018.10.137 10.1016/j.ijheatmasstransfer.2014.01.059 10.1016/j.applthermaleng.2021.116649 10.1016/j.renene.2019.07.112 10.1016/j.ijheatmasstransfer.2018.12.157 10.1016/j.applthermaleng.2013.04.064 10.1016/j.compscitech.2019.107714 10.1016/j.enconman.2018.06.029 10.1016/j.jpowsour.2021.229727 10.1016/j.jpowsour.2017.12.071 10.1016/j.energy.2017.12.098 10.1016/j.jpowsour.2020.229116 10.1016/j.ijheatmasstransfer.2013.12.076 10.1016/j.ijthermalsci.2019.03.026 10.1016/j.jpowsour.2020.228545 10.1016/j.jpowsour.2017.06.031 10.1016/j.csite.2021.100920 10.1016/j.jpowsour.2015.05.095 10.1016/j.apenergy.2019.01.159 10.1016/j.ijheatmasstransfer.2017.09.092 10.1016/j.enconman.2013.05.003 10.1016/j.enconman.2019.112280 10.1002/er.4307 10.1016/j.energy.2020.119496 10.1002/er.6165 10.1016/j.applthermaleng.2020.116415 10.1016/j.enconman.2016.12.009 10.1016/j.enconman.2013.01.025 10.1016/j.applthermaleng.2020.116028 10.1155/2019/3725364 10.1016/j.applthermaleng.2020.116151 10.1016/j.apenergy.2020.115808 10.1016/j.enconman.2017.11.046 10.1016/j.jpowsour.2020.228398 10.1016/j.jclepro.2015.11.011 10.1016/j.electacta.2017.10.051 10.1016/j.apenergy.2017.01.012 10.1016/j.applthermaleng.2019.114759 10.1016/j.est.2020.101235 10.1002/er.6241 10.1155/2020/8167386 10.1016/j.apenergy.2015.03.080 10.1016/j.applthermaleng.2020.116380 10.1016/j.rser.2011.07.096 10.1016/j.ijheatmasstransfer.2017.10.130 10.1016/j.jclepro.2021.127517 10.1016/j.applthermaleng.2018.06.048 10.1016/j.applthermaleng.2021.116665 10.1016/j.enconman.2018.11.064 10.1016/j.energy.2018.12.218 10.3390/en12101937 10.1016/j.scs.2019.101786 10.1016/j.ijheatmasstransfer.2021.121318 10.1016/j.est.2021.102279 10.1016/j.applthermaleng.2019.04.093 10.1016/j.jpowsour.2020.228820 10.1016/j.egyr.2018.04.001 10.1016/j.matdes.2019.108219 10.1016/j.colsurfa.2009.12.036 10.1016/j.jpowsour.2021.229624 10.1016/j.energy.2017.09.083 10.3390/ma13214763 10.1016/j.applthermaleng.2019.114102 10.1016/j.enconman.2016.09.081 10.1016/j.applthermaleng.2019.114792 10.1016/j.energy.2016.07.119 10.1016/j.enconman.2012.08.014 10.1016/j.enconman.2017.07.019 10.1016/j.enconman.2018.12.051 10.1016/j.egyr.2019.06.016 10.1016/j.energy.2019.116565 10.1016/j.enbuild.2021.110750 10.1016/j.energy.2019.116840 10.1016/j.applthermaleng.2018.11.100 10.1016/j.ijheatmasstransfer.2021.121199 10.1016/j.enconman.2017.02.022 10.1016/j.est.2021.102448 10.1016/j.energy.2020.118215 10.1016/j.ijthermalsci.2017.09.019 10.1016/j.enconman.2018.11.033 10.1016/j.apenergy.2018.06.143 10.1016/S0378-7753(02)00200-8 10.1002/er.4081 10.1016/j.solmat.2017.07.019 10.1007/s12221-019-1067-2 10.1016/j.apenergy.2018.11.071 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2021.132741 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2021_132741 S1385894721043199 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-74e18baf5ed25478f5b2c98db3132fbe6824262b27d64f4e56963a30f8d032033 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 04:27:52 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Fri Feb 23 02:42:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Phase change material (PCM) Heat transfer enhancement Battery thermal management system (BTMs) Organic PCMs Flexible phase change material (FPCM) Inorganic PCMs Phase change fluid (PCF) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-74e18baf5ed25478f5b2c98db3132fbe6824262b27d64f4e56963a30f8d032033 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2021_132741 crossref_primary_10_1016_j_cej_2021_132741 elsevier_sciencedirect_doi_10_1016_j_cej_2021_132741 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-15 |
PublicationDateYYYYMMDD | 2022-02-15 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | F. He, X. Li, Experimental investigation of thermal management system for lithium ion batteries module with coupling effect by heat sheets and phase change materials, (2018) 1–10. https://doi.org/10.1002/er.4081. Zhao, Wu, Rao (b0175) 2020; 115 Qi, Shao, Wu, Yang, Wang (b0390) 2019; 181 Z. Ling, X. Wen, Z. Zhang, X. Fang, T. Xu, Warming-Up Effects of Phase Change Materials on Lithium-Ion Batteries Operated at Low Temperatures, 510640 (2016) 1–7. https://doi.org/10.1002/ente.201600083. Shojaeefard, Molaeimanesh, Ranjbaran (b0260) 2019; 55 Zhang, Liang, Wu, Ling, Ma (b0615) 2021; 174 Liu, Huang, Cao, Jiang, Hu, Chen (b0250) 2020; 13 Huang, Li, Zhang, Wang, Deng, Wang, Chen (b0450) 2021; 4 Javani, Dincer, Naterer, Yilbas (b0160) 2014; 72 Zhao, Lv, Rao (b0170) 2017; 82 Heyhat, Mousavi, Siavashi (b0235) 2020; 28 Rao, Wang (b0015) 2011; 15 Y. Huo, Y. Guo, Z. Rao, Investigation on the thermal performance of phase change material / porous medium ‐ based battery thermal management in pore scale, (2018) 1–12. https://doi.org/10.1002/er.4307. Wang, Niu, Yan, Gao, Duan (b0090) 2021; 235 Wu, Yang, Zhang, Ke, Wang, Situ, Li, Zhang (b0225) 2016; 113 Gou, Liu, Luo (b0595) 2019; 161 Wu, Liu, Cheng, Liu (b0105) 2013; 69 Zhang, Kong, Li, Li (b0345) 2014; 64 Li, Cheng, Xie, Liu, Zhang (b0400) 2017; 149 Sasmito, Shamim, Mujumdar (b0645) 2013; 58 Zhang, Qiu, Yin, Wang (b0600) 2020; 165 Huang, Li, Hong, Wu, Yu (b0210) 2020; 6 Situ, Zhang, Li, Yang, Wei, Rao, Wang, Wang, Wu (b0220) 2017; 141 He, Yang, Zhang (b0290) 2019; 148 Mehrabi-kermani, Houshfar, Ashjaee (b0465) 2019; 141 Tan, Zhang, Sun, Shen, Qu, Zheng (b0035) 2013; 111 Verma, Shashidhara, Rakshit (b0070) 2019; 11 Luo, Song, Ling, Zhang, Fang (b0670) 2021; 20 Morimoto, Togashi, Kumano, Hong (b0300) 2016; 122 Rehman, Muhammad, Saieed, Pao, Ali (b0215) 2018; 127 Agresti, Fedele, Rossi, Cabaleiro, Bobbo, Ischia, Barison (b0315) 2019; 194 Qiu, Li (b0360) 2020; 52 Chen, Hou, Song, Wang, Wu, Zhang (b0585) 2021; 188 Pan, Lai (b0230) 2017; 114 Lin, Zhang, Ji, Liu, Wu, Yang, Lu, Zheng (b0455) 2021; 311 Ling, Wang, Fang, Gao, Zhang (b0475) 2015; 148 Kong, Peng, Ping, Du, Chen, Wen (b0500) 2020; 204 Jiang, Liao, Jiaqiang, Zhang, Chen, Leng (b0005) 2020; 32 Y. Wang, Y. Yu, Z. Jing, C. Wang, G. Zhou, International Journal of Heat and Mass Transfer Thermal performance of lithium-ion batteries applying forced air cooling with an improved aluminium foam heat sink design, 167 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120827. Xu, Liu, Ouyang, Cui, Hong, Meng, Qin, Liu, Tang, Chen (b0405) 2020; 334 Ling, Lin, Zhang, Fang (b0660) 2020; 259 Malik, Dincer, Rosen, Fowler (b0185) 2017; 257 Ji, Wang, Wang, Pan, Wang, Qi, Zhang (b0140) 2019; 157 Ping, Zhang, Kong, Du (b0545) 2021; 36 Tian, Liu, Zhang, Liu (b0685) 2021; 13 Huang, Cheng, Zhao (b0410) 2019; 182 Xiao, Zhang, Li, Yang (b0275) 2020; 8 Lee, Bae, Jang (b0050) 2015; 293 Yang, Zhou, Liu, Xu, Chen (b0530) 2021; 188 Kou, Sun, Luo, Zhou, Huang, Wu, Shi (b0395) 2021; 34 Song, Zhang, Yang (b0505) 2019; 133 Ling, Wen, Zhang, Fang, Gao (b0680) 2018; 144 Li, Xiao, Wang, Lian, Li, Wang (b0365) 2020; 180 Cao, Ling, Fang, Zhang (b0560) 2020; 450 Cao, Luo, Fang, Ling, Zhang (b0555) 2020; 191 An, Chen, Zhao, Gao (b0535) 2019; 163 Safdari, Ahmadi, Sadeghzadeh (b0490) 2020; 193 Yuan, Xu, Tong, Ding (b0675) 2021; 45 Li, Mei, Liu, Wang, Xu, Sun (b0305) 2010; 356 Languri, Rokni, Alvarado, Takabi, Kong (b0335) 2018; 118 Pakrouh, Hosseini, Bahrampoury, Ranjbar, Borhani (b0375) 2021; 40 Ling, Luo, Song, Zhang, Zhang, Fang (b0665) 2021; 219 Ghadbeigi, Day, Lundgren, Sparks (b0650) 2018; 4 Ling, Chen, Fang, Zhang, Xu, Gao, Wang (b0100) 2014; 121 Zhang, Chen, Gao, Xu, Xia, Li (b0270) 2019; 12 Ling, Li, Cai, Lin, Fang, Zhang (b0130) 2021; 193 Lei, Shi, Chen (b0605) 2020; 168 Zou, Ma, Liu, Zheng, Hu (b0190) 2018; 120 Galazutdinova, Ushak, Farid, Al-Hallaj, Grágeda (b0125) 2021; 491 Azizi, Sadrameli (b0295) 2016; 128 Huang, Deng, Li, Zhang, Xu (b0445) 2020; 32 Wu, Liu, Liu, Rao, Deng, Wang, Qi, Wang (b0425) 2020; 221 Luo, Guo, Li, Tao, Lei, Liu, Kang, Zheng, Liu (b0280) 2020; 145 Li, Zhang (b0525) 2020; 156 Farag, Sweity, Fleckenstein, Habibi (b0045) 2017; 360 Wu, Li, Tong, Chao, Zhai, Xu, Yan, Wu, Xu, Bao, Deng, Wang (b0430) 2019; 31 Moussa, Idi, Karkri, Tankari (b0080) 2021; 169 Xie, Tang, Shi, Xing, Wu, Hu, Wen (b0460) 2017; 154 Ling, Liu, Wang, Lin, Fang, Zhang (b0120) 2017; 172 Wu, Wang, Wu, Chen, Hong, Lai (b0010) 2019; 182 Lyu, Siddique, Majid, Biglarbegian, Gadsden, Mahmud (b0155) 2019; 5 Cao, He, Feng, Lin, Ling, Zhang, Fang (b0355) 2020; 279 Li, Wang, Cheng, Chen, Zhao (b0415) 2020; 210 Li, Zhong, Luo, Wang, Yuan, Zhang, Yang, Yang (b0635) 2019; 2019 Zhang, Niu, Wu (b0320) 2019; 238 Wu, Wu, Wang (b0420) 2019; 236 Wu, Yang, Zhang, Chen, Wang (b0610) 2017; 138 Li, Huang, Deng, Zhang, Zhong, He (b0245) 2020; 451 Shin, Ahn, Kim (b0630) 2016 Behi, Karimi, Gandoman, Akbarzadeh, Khaleghi, Kalogiannis, Hosen, Jaguemont, Van Mierlo, Berecibar (b0580) 2021; 25 F. Kolodziejczyk, B. Mortazavi, T. Rabczuk, X. Zhuang, International Journal of Heat and Mass Transfer Machine learning assisted multiscale modeling of composite phase change materials for Li-ion batteries ’ thermal management, 172 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121199. Liu, Rao (b0240) 2020; 32 Yu, Youn, Song (b0380) 2019; 20 Liu, Huang, Cao, Jiang, Yan, Hu (b0540) 2021; 185 Xiao, Bai, Xie, Yang, Yang, Qi, Wang (b0085) 2021; 146 Jouhara, Khordehgah, Serey, Almahmoud, Lester, Machen, Wrobel (b0025) 2019; 170 Tang, Guo, Li, Wei, Pan, Wang (b0065) 2021; 494 Y. Shi, M. Hu, Y. Xing, Y. Li, Materials & Design Temperature-dependent thermal and mechanical properties of fl exible functional PDMS / paraf fi n composites, 185 (2020). https://doi.org/10.1016/j.matdes.2019.108219. Ling, Cao, Zhang, Zhang, Fang, Gao (b0565) 2018; 228 Zhang, Cui, Dou, Wang, Goula (b0330) 2018; 171 Zhou, Dai, Liu, Fu, Du (b0575) 2020; 473 Wu, Li, Wu, Xu, Hu, Chao, Yan, Wang (b0435) 2020; 8 Chen, Zhang (b0325) 2017; 190 Hekmat, Molaeimanesh (b0515) 2020; 166 Bernardi, Pawlikowski, Newman (b0095) 1984; 84–2 A.A. Pesaran, Battery thermal models for hybrid vehicle simulations, 110 (2002) 377–382. Zhang, Liang, Yin, Ling (b0510) 2021; 184 Wang, Cao, Ling, Zhang, Fang (b0350) 2020; 207 Yang, Chen, Yang, Du (b0470) 2021; 165 Ren (b0590) 2019; 180 Cao, Feng, Fang, Ling, Zhang (b0370) 2021; 191 Rao, Wang, Wu, Lin, Li (b0055) 2013; 65 Hong, Zhang, Chen, Wang (b0145) 2018; 116 Zou, Liu, He, Zhu, Bao, Guo, Hu, Wang (b0195) 2019; 180 Zhuang, Liu, Su, Chen (b0020) 2021; 189 Hussain, Abidi, Tso, Chan, Luo, Chao (b0285) 2018; 124 Huang, Li, Zhang, Deng, Wang (b0440) 2021; 183 Molaeimanesh, Mirfallah Nasiry, Dahmardeh (b0520) 2020; 181 Ianniciello, Biwolé, Achard (b0075) 2018; 378 Qin, Liao, Zhang, Liu, Sun, Wang (b0495) 2019; 195 Huo, Rao (b0655) 2017; 133 Song, Shen, Wang, Wang, Xu (b0310) 2014; 73 P. Taylor, Z.H. Rao, S.F. Wang, Y.L. Zhang, Energy Sources , Part A : Recovery , Utilization , and Environmental Effects Thermal Management with Phase Change Material for a Power Battery under Cold Temperatures Thermal Management with Phase Change Material for a Power Battery under Cold Temperature, (n.d.) 37–41. https://doi.org/10.1080/15567036.2011.576411. Bai, Chen, Song, Yu, Li, Feng, Ding (b0340) 2019; 167 Huang, Li, Zhang, Zhang, He, Li (b0570) 2018; 141 Cao, Huang, Liu (b0200) 2020; 2020 Huat, Ye, Tay (b0040) 2016; 113 Zhang, Ling, Zhuang, Liang (b0255) 2021; 45 Jiang, Huang, Liu, Cao (b0480) 2017; 120 X. Du, Z. Qian, Z. Chen, Z. Rao, Experimental investigation on mini ‐ channel cooling – based thermal management for Li ‐ ion battery module under different cooling schemes, (2018) 1–8. https://doi.org/10.1002/er.4067. Zhang, Li, Zhang, Wu, Rao, Guo, Zhou (b0115) 2020; 480 Lv, Liu, Zhang, Yang (b0485) 2020; 468 Y. Wang, Z. Wang, H. Min, H. Li, Q. Li, Performance investigation of a passive battery thermal management system applied with phase change material, 35 (2021). Patel, Rathod (b0060) 2020; 480 A.N. Zhoujian, J.I.A. Li, D. Yong, D. Chao, L.I. Xuejiao, A Review on Lithium-ion Power Battery Thermal Management Technologies and Thermal Safety, 26 (2017). https://doi.org/10.1007/s11630-017-0955-2. Chen, Garg, Gao, Wei (b0550) 2021; 45 Mat, Al-Abidi, Sopian, Sulaiman, Mohammad (b0265) 2013; 74 Rehman (10.1016/j.cej.2021.132741_b0215) 2018; 127 10.1016/j.cej.2021.132741_b0180 Bai (10.1016/j.cej.2021.132741_b0340) 2019; 167 Chen (10.1016/j.cej.2021.132741_b0585) 2021; 188 Ling (10.1016/j.cej.2021.132741_b0100) 2014; 121 Wu (10.1016/j.cej.2021.132741_b0225) 2016; 113 Zhang (10.1016/j.cej.2021.132741_b0320) 2019; 238 Zhang (10.1016/j.cej.2021.132741_b0600) 2020; 165 Moussa (10.1016/j.cej.2021.132741_b0080) 2021; 169 10.1016/j.cej.2021.132741_b0625 Li (10.1016/j.cej.2021.132741_b0415) 2020; 210 Ren (10.1016/j.cej.2021.132741_b0590) 2019; 180 Lee (10.1016/j.cej.2021.132741_b0050) 2015; 293 10.1016/j.cej.2021.132741_b0620 Agresti (10.1016/j.cej.2021.132741_b0315) 2019; 194 Wu (10.1016/j.cej.2021.132741_b0420) 2019; 236 Li (10.1016/j.cej.2021.132741_b0635) 2019; 2019 An (10.1016/j.cej.2021.132741_b0535) 2019; 163 Luo (10.1016/j.cej.2021.132741_b0280) 2020; 145 Sasmito (10.1016/j.cej.2021.132741_b0645) 2013; 58 Jiang (10.1016/j.cej.2021.132741_b0005) 2020; 32 10.1016/j.cej.2021.132741_b0110 Lyu (10.1016/j.cej.2021.132741_b0155) 2019; 5 Wu (10.1016/j.cej.2021.132741_b0610) 2017; 138 Shin (10.1016/j.cej.2021.132741_b0630) 2016 Bernardi (10.1016/j.cej.2021.132741_b0095) 1984; 84–2 Cao (10.1016/j.cej.2021.132741_b0560) 2020; 450 Rao (10.1016/j.cej.2021.132741_b0015) 2011; 15 Li (10.1016/j.cej.2021.132741_b0400) 2017; 149 Wu (10.1016/j.cej.2021.132741_b0425) 2020; 221 Qiu (10.1016/j.cej.2021.132741_b0360) 2020; 52 Li (10.1016/j.cej.2021.132741_b0365) 2020; 180 Mat (10.1016/j.cej.2021.132741_b0265) 2013; 74 10.1016/j.cej.2021.132741_b0205 Zhang (10.1016/j.cej.2021.132741_b0255) 2021; 45 Tian (10.1016/j.cej.2021.132741_b0685) 2021; 13 Safdari (10.1016/j.cej.2021.132741_b0490) 2020; 193 10.1016/j.cej.2021.132741_b0165 Huang (10.1016/j.cej.2021.132741_b0410) 2019; 182 Wang (10.1016/j.cej.2021.132741_b0090) 2021; 235 Zhang (10.1016/j.cej.2021.132741_b0615) 2021; 174 Song (10.1016/j.cej.2021.132741_b0505) 2019; 133 Ling (10.1016/j.cej.2021.132741_b0680) 2018; 144 Zhao (10.1016/j.cej.2021.132741_b0170) 2017; 82 Farag (10.1016/j.cej.2021.132741_b0045) 2017; 360 Liu (10.1016/j.cej.2021.132741_b0250) 2020; 13 Huang (10.1016/j.cej.2021.132741_b0445) 2020; 32 Lei (10.1016/j.cej.2021.132741_b0605) 2020; 168 Li (10.1016/j.cej.2021.132741_b0305) 2010; 356 Kou (10.1016/j.cej.2021.132741_b0395) 2021; 34 Ji (10.1016/j.cej.2021.132741_b0140) 2019; 157 Languri (10.1016/j.cej.2021.132741_b0335) 2018; 118 Zou (10.1016/j.cej.2021.132741_b0190) 2018; 120 Jiang (10.1016/j.cej.2021.132741_b0480) 2017; 120 Yang (10.1016/j.cej.2021.132741_b0470) 2021; 165 Qi (10.1016/j.cej.2021.132741_b0390) 2019; 181 Qin (10.1016/j.cej.2021.132741_b0495) 2019; 195 Xu (10.1016/j.cej.2021.132741_b0405) 2020; 334 Kong (10.1016/j.cej.2021.132741_b0500) 2020; 204 Molaeimanesh (10.1016/j.cej.2021.132741_b0520) 2020; 181 Mehrabi-kermani (10.1016/j.cej.2021.132741_b0465) 2019; 141 Situ (10.1016/j.cej.2021.132741_b0220) 2017; 141 Azizi (10.1016/j.cej.2021.132741_b0295) 2016; 128 Ling (10.1016/j.cej.2021.132741_b0130) 2021; 193 Hussain (10.1016/j.cej.2021.132741_b0285) 2018; 124 Rao (10.1016/j.cej.2021.132741_b0055) 2013; 65 Cao (10.1016/j.cej.2021.132741_b0200) 2020; 2020 Wu (10.1016/j.cej.2021.132741_b0435) 2020; 8 Zhuang (10.1016/j.cej.2021.132741_b0020) 2021; 189 Liu (10.1016/j.cej.2021.132741_b0240) 2020; 32 Heyhat (10.1016/j.cej.2021.132741_b0235) 2020; 28 Galazutdinova (10.1016/j.cej.2021.132741_b0125) 2021; 491 Huo (10.1016/j.cej.2021.132741_b0655) 2017; 133 Yu (10.1016/j.cej.2021.132741_b0380) 2019; 20 Ling (10.1016/j.cej.2021.132741_b0665) 2021; 219 Cao (10.1016/j.cej.2021.132741_b0355) 2020; 279 Xie (10.1016/j.cej.2021.132741_b0460) 2017; 154 Luo (10.1016/j.cej.2021.132741_b0670) 2021; 20 Li (10.1016/j.cej.2021.132741_b0525) 2020; 156 Morimoto (10.1016/j.cej.2021.132741_b0300) 2016; 122 10.1016/j.cej.2021.132741_b0385 Huang (10.1016/j.cej.2021.132741_b0570) 2018; 141 Lv (10.1016/j.cej.2021.132741_b0485) 2020; 468 Zhang (10.1016/j.cej.2021.132741_b0510) 2021; 184 Cao (10.1016/j.cej.2021.132741_b0555) 2020; 191 Cao (10.1016/j.cej.2021.132741_b0370) 2021; 191 Yuan (10.1016/j.cej.2021.132741_b0675) 2021; 45 Wang (10.1016/j.cej.2021.132741_b0350) 2020; 207 Wu (10.1016/j.cej.2021.132741_b0430) 2019; 31 10.1016/j.cej.2021.132741_b0030 Chen (10.1016/j.cej.2021.132741_b0550) 2021; 45 10.1016/j.cej.2021.132741_b0150 Gou (10.1016/j.cej.2021.132741_b0595) 2019; 161 Zhang (10.1016/j.cej.2021.132741_b0270) 2019; 12 Lin (10.1016/j.cej.2021.132741_b0455) 2021; 311 Shojaeefard (10.1016/j.cej.2021.132741_b0260) 2019; 55 Javani (10.1016/j.cej.2021.132741_b0160) 2014; 72 Huang (10.1016/j.cej.2021.132741_b0450) 2021; 4 Xiao (10.1016/j.cej.2021.132741_b0085) 2021; 146 Huang (10.1016/j.cej.2021.132741_b0210) 2020; 6 Huat (10.1016/j.cej.2021.132741_b0040) 2016; 113 Xiao (10.1016/j.cej.2021.132741_b0275) 2020; 8 He (10.1016/j.cej.2021.132741_b0290) 2019; 148 Liu (10.1016/j.cej.2021.132741_b0540) 2021; 185 Wu (10.1016/j.cej.2021.132741_b0105) 2013; 69 Hekmat (10.1016/j.cej.2021.132741_b0515) 2020; 166 Song (10.1016/j.cej.2021.132741_b0310) 2014; 73 Chen (10.1016/j.cej.2021.132741_b0325) 2017; 190 Zhang (10.1016/j.cej.2021.132741_b0330) 2018; 171 Jouhara (10.1016/j.cej.2021.132741_b0025) 2019; 170 Hong (10.1016/j.cej.2021.132741_b0145) 2018; 116 Zhang (10.1016/j.cej.2021.132741_b0345) 2014; 64 Huang (10.1016/j.cej.2021.132741_b0440) 2021; 183 Ling (10.1016/j.cej.2021.132741_b0565) 2018; 228 Yang (10.1016/j.cej.2021.132741_b0530) 2021; 188 Zhao (10.1016/j.cej.2021.132741_b0175) 2020; 115 Behi (10.1016/j.cej.2021.132741_b0580) 2021; 25 Tang (10.1016/j.cej.2021.132741_b0065) 2021; 494 10.1016/j.cej.2021.132741_b0640 Malik (10.1016/j.cej.2021.132741_b0185) 2017; 257 Li (10.1016/j.cej.2021.132741_b0245) 2020; 451 Ling (10.1016/j.cej.2021.132741_b0120) 2017; 172 Zou (10.1016/j.cej.2021.132741_b0195) 2019; 180 Tan (10.1016/j.cej.2021.132741_b0035) 2013; 111 Pakrouh (10.1016/j.cej.2021.132741_b0375) 2021; 40 Ianniciello (10.1016/j.cej.2021.132741_b0075) 2018; 378 Ping (10.1016/j.cej.2021.132741_b0545) 2021; 36 Wu (10.1016/j.cej.2021.132741_b0010) 2019; 182 Zhang (10.1016/j.cej.2021.132741_b0115) 2020; 480 Verma (10.1016/j.cej.2021.132741_b0070) 2019; 11 Pan (10.1016/j.cej.2021.132741_b0230) 2017; 114 Ling (10.1016/j.cej.2021.132741_b0475) 2015; 148 Zhou (10.1016/j.cej.2021.132741_b0575) 2020; 473 Patel (10.1016/j.cej.2021.132741_b0060) 2020; 480 Ling (10.1016/j.cej.2021.132741_b0660) 2020; 259 10.1016/j.cej.2021.132741_b0135 Ghadbeigi (10.1016/j.cej.2021.132741_b0650) 2018; 4 |
References_xml | – volume: 20 start-page: 545 year: 2019 end-page: 554 ident: b0380 article-title: Encapsulated Phase Change Material Embedded by Graphene Powders for Smart and Flexible Thermal Response publication-title: Fibers Polym. – volume: 69 start-page: 174 year: 2013 end-page: 180 ident: b0105 article-title: Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment publication-title: ENERGY Convers. Manag. – volume: 181 start-page: 107714 year: 2019 ident: b0390 article-title: Flexible phase change composite materials with simultaneous light energy storage and light-actuated shape memory capability publication-title: Compos. Sci. Technol. – volume: 65 start-page: 92 year: 2013 end-page: 97 ident: b0055 article-title: Experimental investigation on thermal management of electric vehicle battery with heat pipe publication-title: Energy Convers. Manag. – volume: 120 start-page: 33 year: 2018 end-page: 41 ident: b0190 article-title: Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery publication-title: Int. J. Heat Mass Transf. – volume: 228 start-page: 777 year: 2018 end-page: 788 ident: b0565 article-title: Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology publication-title: Appl. Energy. – volume: 118 start-page: 872 year: 2018 end-page: 878 ident: b0335 article-title: International Journal of Heat and Mass Transfer Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils : A numerical and analytical study publication-title: Int. J. Heat Mass Transf. – volume: 11 start-page: 74 year: 2019 end-page: 83 ident: b0070 article-title: A comparative study on battery thermal management using phase change material (PCM) publication-title: Therm. Sci. Eng. Prog. – volume: 133 start-page: 827 year: 2019 end-page: 841 ident: b0505 article-title: International Journal of Heat and Mass Transfer Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module publication-title: Int. J. Heat Mass Transf. – volume: 163 start-page: 114345 year: 2019 ident: b0535 article-title: Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling publication-title: Appl. Therm. Eng. – volume: 154 start-page: 562 year: 2017 end-page: 575 ident: b0460 article-title: Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials publication-title: Energy Convers. Manag. – volume: 55 start-page: 1753 year: 2019 end-page: 1767 ident: b0260 article-title: Improving the performance of a passive battery thermal management system based on PCM using lateral fins publication-title: Heat Mass Transf. Und Stoffuebertragung. – volume: 188 start-page: 116665 year: 2021 ident: b0585 article-title: Design of battery thermal management system based on phase change material and heat pipe publication-title: Appl. Therm. Eng. – reference: A.N. Zhoujian, J.I.A. Li, D. Yong, D. Chao, L.I. Xuejiao, A Review on Lithium-ion Power Battery Thermal Management Technologies and Thermal Safety, 26 (2017). https://doi.org/10.1007/s11630-017-0955-2. – volume: 238 start-page: 1407 year: 2019 end-page: 1416 ident: b0320 article-title: Development and characterization of novel and stable silicon nanoparticles- embedded PCM-in-water emulsions for thermal energy storage publication-title: Appl. Energy. – reference: F. Kolodziejczyk, B. Mortazavi, T. Rabczuk, X. Zhuang, International Journal of Heat and Mass Transfer Machine learning assisted multiscale modeling of composite phase change materials for Li-ion batteries ’ thermal management, 172 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121199. – volume: 141 start-page: 613 year: 2017 end-page: 623 ident: b0220 article-title: A thermal management system for rectangular LiFePO 4 battery module using novel double copper mesh-enhanced phase change material plates publication-title: Energy. – volume: 28 start-page: 101235 year: 2020 ident: b0235 article-title: Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle publication-title: J. Energy Storage. – volume: 141 start-page: 47 year: 2019 end-page: 61 ident: b0465 article-title: International Journal of Thermal Sciences A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection publication-title: Int. J. Therm. Sci. – volume: 113 start-page: 909 year: 2016 end-page: 916 ident: b0225 article-title: An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack publication-title: Energy. – volume: 72 start-page: 690 year: 2014 end-page: 703 ident: b0160 article-title: International Journal of Heat and Mass Transfer Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles publication-title: Int. J. Heat Mass Transf. – volume: 480 start-page: 229116 year: 2020 ident: b0115 article-title: Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system publication-title: J. Power Sources. – volume: 182 start-page: 9 year: 2019 end-page: 20 ident: b0410 article-title: Thermal management of Li-ion battery pack with the application of fl exible form-stable composite phase change materials publication-title: Energy Convers. Manag. – volume: 174 start-page: 121318 year: 2021 ident: b0615 article-title: International Journal of Heat and Mass Transfer Design and optimization of a hybrid battery thermal management system for electric vehicle based on surrogate model publication-title: Int. J. Heat Mass Transf. – volume: 64 start-page: 1092 year: 2014 end-page: 1101 ident: b0345 article-title: Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions publication-title: Energy. – volume: 182 start-page: 262 year: 2019 end-page: 281 ident: b0010 article-title: A critical review of battery thermal performance and liquid based battery thermal management publication-title: Energy Convers. Manag. – volume: 8 start-page: 20011 year: 2020 end-page: 20020 ident: b0435 article-title: Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management publication-title: J. Mater. Chem. A. – volume: 311 start-page: 127517 year: 2021 ident: b0455 article-title: Development of flexible form-stable phase change material with enhanced electrical resistance for thermal management publication-title: J. Clean. Prod. – volume: 165 start-page: 106968 year: 2021 ident: b0470 article-title: International Journal of Thermal Sciences Numerical study of combined air and phase change cooling for lithium-ion battery during dynamic cycles publication-title: Int. J. Therm. Sci. – volume: 5 start-page: 822 year: 2019 end-page: 827 ident: b0155 article-title: Electric vehicle battery thermal management system with thermoelectric cooling publication-title: Energy Reports. – volume: 20 year: 2021 ident: b0670 article-title: Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from −40 °C to 50 °C publication-title: Mater. Today Energy. – volume: 235 start-page: 110750 year: 2021 ident: b0090 article-title: Energy & Buildings Research on falling film dehumidification performance of microencapsulated phase change materials slurry publication-title: Energy Build. – volume: 185 start-page: 116415 year: 2021 ident: b0540 article-title: Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling publication-title: Appl. Therm. Eng. – volume: 13 start-page: 1 year: 2021 end-page: 10 ident: b0685 article-title: Simulation of a Set of Lithium-Ion Batteries with Composite Phase Change Materials and Heating Films Thermal Management System at Low Temperature publication-title: J. Therm. Sci. Eng. Appl. – volume: 73 start-page: 21 year: 2014 end-page: 28 ident: b0310 article-title: International Journal of Heat and Mass Transfer Experimental study on laminar convective heat transfer of microencapsulated phase change material slurry using liquid metal with low melting point as carrying fluid publication-title: Int. J. Heat Mass Transf. – volume: 167 start-page: 561 year: 2019 end-page: 574 ident: b0340 article-title: Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate publication-title: Energy. – volume: 115 start-page: 104612 year: 2020 ident: b0175 article-title: Numerical study on heat transfer enhancement of closed loop oscillating heat pipe through active incentive method publication-title: Int. Commun. Heat Mass Transf. – volume: 181 start-page: 116028 year: 2020 ident: b0520 article-title: Impact of configuration on the performance of a hybrid thermal management system including phase change material and water-cooling channels for Li-ion batteries publication-title: Appl. Therm. Eng. – volume: 360 start-page: 618 year: 2017 end-page: 633 ident: b0045 article-title: Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications publication-title: J. Power Sources. – volume: 128 start-page: 294 year: 2016 end-page: 302 ident: b0295 article-title: Thermal management of a LiFePO 4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates publication-title: Energy Convers. Manag. – volume: 207 start-page: 118215 year: 2020 ident: b0350 article-title: Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack publication-title: Energy. – volume: 32 year: 2020 ident: b0240 article-title: Interfacial thermal conductance across hexagonal boron nitride & paraffin based thermal energy storage materials publication-title: J. Energy Storage. – volume: 378 start-page: 383 year: 2018 end-page: 403 ident: b0075 article-title: Electric vehicles batteries thermal management systems employing phase change materials publication-title: J. Power Sources. – volume: 15 start-page: 4554 year: 2011 end-page: 4571 ident: b0015 article-title: A review of power battery thermal energy management publication-title: Renew. Sustain. Energy Rev. – volume: 116 start-page: 1204 year: 2018 end-page: 1212 ident: b0145 article-title: International Journal of Heat and Mass Transfer Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent publication-title: Int. J. Heat Mass Transf. – volume: 127 start-page: 381 year: 2018 end-page: 393 ident: b0215 article-title: International Journal of Heat and Mass Transfer Copper foam / PCMs based heat sinks : An experimental study for electronic cooling systems publication-title: Int. J. Heat Mass Transf. – volume: 170 start-page: 849 year: 2019 end-page: 861 ident: b0025 article-title: Applications and thermal management of rechargeable batteries for industrial applications publication-title: Energy. – volume: 193 start-page: 116840 year: 2020 ident: b0490 article-title: Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management publication-title: Energy. – start-page: 1 year: 2016 end-page: 9 ident: b0630 article-title: Performance characteristics of PTC elements for an electric vehicle heating publication-title: System – reference: Y. Wang, Y. Yu, Z. Jing, C. Wang, G. Zhou, International Journal of Heat and Mass Transfer Thermal performance of lithium-ion batteries applying forced air cooling with an improved aluminium foam heat sink design, 167 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120827. – volume: 157 start-page: 113683 year: 2019 ident: b0140 article-title: Optimization on uniformity of lithium-ion cylindrical battery module by different arrangement strategy publication-title: Appl. Therm. Eng. – volume: 114 start-page: 408 year: 2017 end-page: 422 ident: b0230 article-title: Cutting copper fi ber / paraf fi n composite phase change material discharging experimental study based on heat dissipation capability of Li-ion battery publication-title: Renew. Energy. – volume: 171 start-page: 699 year: 2018 end-page: 709 ident: b0330 article-title: An experimental investigation of forced convection heat transfer with novel microencapsulated phase change material slurries in a circular tube under constant heat fl ux publication-title: Energy Convers. Manag. – reference: P. Taylor, Z.H. Rao, S.F. Wang, Y.L. Zhang, Energy Sources , Part A : Recovery , Utilization , and Environmental Effects Thermal Management with Phase Change Material for a Power Battery under Cold Temperatures Thermal Management with Phase Change Material for a Power Battery under Cold Temperature, (n.d.) 37–41. https://doi.org/10.1080/15567036.2011.576411. – volume: 219 start-page: 119496 year: 2021 ident: b0665 article-title: A fast-heat battery system using the heat released from detonated supercooled phase change materials publication-title: Energy. – volume: 120 start-page: 1 year: 2017 end-page: 9 ident: b0480 article-title: Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material publication-title: Appl. Therm. Eng. – volume: 191 start-page: 116565 year: 2020 ident: b0555 article-title: Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study publication-title: Energy. – volume: 141 start-page: 1092 year: 2018 end-page: 1100 ident: b0570 article-title: Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system publication-title: Appl. Therm. Eng. – reference: X. Du, Z. Qian, Z. Chen, Z. Rao, Experimental investigation on mini ‐ channel cooling – based thermal management for Li ‐ ion battery module under different cooling schemes, (2018) 1–8. https://doi.org/10.1002/er.4067. – volume: 84–2 start-page: 164 year: 1984 end-page: 165 ident: b0095 article-title: General Energy Balance for Battery Systems publication-title: Electrochem. Soc. Ext. Abstr. – volume: 2019 start-page: 1 year: 2019 end-page: 10 ident: b0635 article-title: Experimental Investigation on a Thermoelectric Cooler for Thermal Management of a Lithium-Ion Battery Module publication-title: Int. J. Photoenergy. – volume: 356 start-page: 71 year: 2010 end-page: 77 ident: b0305 article-title: Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method publication-title: Colloids Surfaces A Physicochem. Eng. Asp. – volume: 122 start-page: 215 year: 2016 end-page: 222 ident: b0300 article-title: Thermophysical properties of phase change emulsions prepared by D-phase emulsification publication-title: Energy Convers. Manag. – volume: 279 start-page: 115808 year: 2020 ident: b0355 article-title: Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge publication-title: Appl. Energy. – volume: 12 start-page: 1937 year: 2019 ident: b0270 article-title: Study of thermal management system using composite phase change materials and thermoelectric cooling sheet for power battery pack publication-title: Energies. – volume: 293 start-page: 498 year: 2015 end-page: 510 ident: b0050 article-title: A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation publication-title: J. Power Sources. – volume: 52 start-page: 101786 year: 2020 ident: b0360 article-title: Experimental and numerical investigation of laminar heat transfer of microencapsulated phase change material slurry (MPCMS) in a circular tube with constant heat flux publication-title: Sustain. Cities Soc. – reference: F. He, X. Li, Experimental investigation of thermal management system for lithium ion batteries module with coupling effect by heat sheets and phase change materials, (2018) 1–10. https://doi.org/10.1002/er.4081. – volume: 259 start-page: 114120 year: 2020 ident: b0660 article-title: Computationally e ffi cient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment publication-title: Appl. Energy. – volume: 146 start-page: 106420 year: 2021 ident: b0085 article-title: Flexible copper foam-based phase change materials with good stiffness-toughness balance, electro-to-thermal conversion ability and shape memory function for intelligent thermal management publication-title: Compos. Part A. – volume: 169 year: 2021 ident: b0080 article-title: International Journal of Heat and Mass Transfer A passive thermal management system of Li-ion batteries using PCM composites : Experimental and numerical investigations publication-title: Int. J. Heat Mass Transf. – volume: 188 start-page: 116649 year: 2021 ident: b0530 article-title: Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery publication-title: Appl. Therm. Eng. – volume: 236 start-page: 10 year: 2019 end-page: 21 ident: b0420 article-title: Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications publication-title: Appl. Energy. – reference: Y. Wang, Z. Wang, H. Min, H. Li, Q. Li, Performance investigation of a passive battery thermal management system applied with phase change material, 35 (2021). – volume: 45 start-page: 6198 year: 2021 end-page: 6212 ident: b0550 article-title: An experimental investigation for a hybrid phase change material-liquid cooling strategy to achieve high-temperature uniformity of Li-ion battery module under fast charging publication-title: Int. J. Energy Res. – volume: 148 start-page: 984 year: 2019 end-page: 991 ident: b0290 article-title: A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management publication-title: Appl. Therm. Eng. – volume: 13 start-page: 1 year: 2020 end-page: 14 ident: b0250 article-title: Preparation of binary thermal silicone grease and its application in battery thermal management publication-title: Materials (Basel). – volume: 183 start-page: 116151 year: 2021 ident: b0440 article-title: Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials publication-title: Appl. Therm. Eng. – volume: 31 start-page: 1905099 year: 2019 ident: b0430 article-title: High-Performance Thermally Conductive Phase Change Composites by Large-Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting publication-title: Adv. Mater. – volume: 32 year: 2020 ident: b0005 article-title: Thermal management technology of power lithium-ion batteries based on the phase transition of materials : A review publication-title: J. Energy Storage. – volume: 113 start-page: 1032 year: 2016 end-page: 1045 ident: b0040 article-title: Integration issues of lithium-ion battery into electric vehicles battery pack publication-title: J. Clean. Prod. – volume: 191 start-page: 116888 year: 2021 ident: b0370 article-title: A delayed cooling system coupling composite phase change material and nano phase change material emulsion publication-title: Appl. Therm. Eng. – volume: 473 start-page: 228545 year: 2020 ident: b0575 article-title: Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid publication-title: J. Power Sources. – volume: 193 start-page: 117002 year: 2021 ident: b0130 article-title: Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability publication-title: Appl. Therm. Eng. – reference: Y. Shi, M. Hu, Y. Xing, Y. Li, Materials & Design Temperature-dependent thermal and mechanical properties of fl exible functional PDMS / paraf fi n composites, 185 (2020). https://doi.org/10.1016/j.matdes.2019.108219. – volume: 4 start-page: 1978 year: 2021 end-page: 1992 ident: b0450 article-title: Pouch Lithium Battery with a Passive Thermal Management System Using Form-Stable and Flexible Composite Phase Change Materials publication-title: ACS Appl. Energy Mater. – volume: 195 start-page: 1371 year: 2019 end-page: 1381 ident: b0495 article-title: Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material publication-title: Energy Convers. Manag. – volume: 149 start-page: 1 year: 2017 end-page: 12 ident: b0400 article-title: Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage publication-title: Energy Convers. Manag. – volume: 8 start-page: 14624 year: 2020 end-page: 14633 ident: b0275 article-title: Custom design of solid-solid phase change material with ultra-high thermal stability for battery thermal management publication-title: J. Mater. Chem. A. – volume: 32 start-page: 101755 year: 2020 ident: b0445 article-title: Experimental investigation on thermally induced aluminum nitride based fl exible composite phase change material for battery thermal management publication-title: J. Energy Storage. – volume: 190 start-page: 868 year: 2017 end-page: 879 ident: b0325 article-title: Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media publication-title: Appl. Energy. – volume: 138 start-page: 486 year: 2017 end-page: 492 ident: b0610 article-title: Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system publication-title: Energy Convers. Manag. – volume: 480 start-page: 228820 year: 2020 ident: b0060 article-title: Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries publication-title: J. Power Sources. – reference: Y. Huo, Y. Guo, Z. Rao, Investigation on the thermal performance of phase change material / porous medium ‐ based battery thermal management in pore scale, (2018) 1–12. https://doi.org/10.1002/er.4307. – volume: 2020 start-page: 1 year: 2020 end-page: 11 ident: b0200 article-title: The Enhanced Performance of Phase-Change Materials via 3D Printing with Prickly Aluminum Honeycomb for Thermal Management of Ternary Lithium Batteries publication-title: Adv. Mater. Sci. Eng. – volume: 144 start-page: 977 year: 2018 end-page: 983 ident: b0680 article-title: Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures publication-title: Energy. – volume: 133 start-page: 204 year: 2017 end-page: 215 ident: b0655 article-title: Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method publication-title: Energy Convers. Manag. – volume: 451 start-page: 227820 year: 2020 ident: b0245 article-title: Evaluation of lithium battery thermal management using sealant made of boron nitride and silicone publication-title: J. Power Sources. – volume: 121 start-page: 104 year: 2014 end-page: 113 ident: b0100 article-title: Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system publication-title: Appl. Energy. – volume: 450 start-page: 227673 year: 2020 ident: b0560 article-title: Delayed liquid cooling strategy with phase change material to achieve high temperature uniformity of Li-ion battery under high-rate discharge publication-title: J. Power Sources. – volume: 6 start-page: 8 year: 2020 end-page: 19 ident: b0210 article-title: Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management publication-title: Energy Reports. – volume: 45 start-page: 9970 year: 2021 end-page: 9982 ident: b0255 article-title: The effect of reducing the thermal contact resistance on the performance of battery thermal management system publication-title: Int. J. Energy Res. – reference: Z. Ling, X. Wen, Z. Zhang, X. Fang, T. Xu, Warming-Up Effects of Phase Change Materials on Lithium-Ion Batteries Operated at Low Temperatures, 510640 (2016) 1–7. https://doi.org/10.1002/ente.201600083. – volume: 74 start-page: 223 year: 2013 end-page: 236 ident: b0265 article-title: Enhance heat transfer for PCM melting in triplex tube with internal-external fins publication-title: Energy Convers. Manag. – volume: 257 start-page: 345 year: 2017 end-page: 355 ident: b0185 article-title: Experimental Investigation of a New Passive Thermal Management System for a Li-Ion Battery Pack Using Phase Change Composite Material publication-title: Electrochim. Acta. – volume: 168 start-page: 114792 year: 2020 ident: b0605 article-title: A lithium-ion battery-thermal-management design based on phase-change- material thermal storage and spray cooling publication-title: Appl. Therm. Eng. – volume: 148 start-page: 403 year: 2015 end-page: 409 ident: b0475 article-title: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling publication-title: Appl. Energy. – volume: 491 start-page: 229624 year: 2021 ident: b0125 article-title: Development of the inorganic composite phase change materials for passive thermal management of Li-ion batteries: Application publication-title: J. Power Sources. – volume: 184 start-page: 116380 year: 2021 ident: b0510 article-title: Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling publication-title: Appl. Therm. Eng. – volume: 180 start-page: 1196 year: 2019 end-page: 1202 ident: b0195 article-title: Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module publication-title: Energy Convers. Manag. – volume: 334 start-page: 135551 year: 2020 ident: b0405 article-title: Electrochimica Acta In-situ temperature regulation of fl exible supercapacitors by designing intelligent electrode with microencapsulated phase change materials publication-title: Electrochim. Acta. – volume: 82 start-page: 182 year: 2017 end-page: 188 ident: b0170 article-title: Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack publication-title: Exp. Therm. Fluid Sci. – volume: 4 start-page: 303 year: 2018 end-page: 307 ident: b0650 article-title: Cold temperature performance of phase change material based battery thermal management systems publication-title: Energy Reports. – volume: 36 start-page: 102448 year: 2021 ident: b0545 article-title: Investigation on battery thermal management system combining phase changed material and liquid cooling considering non-uniform heat generation of battery publication-title: J. Energy Storage. – volume: 58 start-page: 615 year: 2013 end-page: 625 ident: b0645 article-title: Passive thermal management for PEM fuel cell stack under cold weather condition using phase change materials (PCM) publication-title: Appl. Therm. Eng. – volume: 145 start-page: 2046 year: 2020 end-page: 2055 ident: b0280 article-title: Experimental investigation on a novel phase change material composites coupled with graphite fi lm used for thermal management of lithium-ion batteries publication-title: Renew. Energy. – volume: 194 start-page: 268 year: 2019 end-page: 275 ident: b0315 article-title: Solar Energy Materials and Solar Cells Nano-encapsulated PCM emulsions prepared by a solvent-assisted method for solar applications publication-title: Sol. Energy Mater. Sol. Cells. – volume: 45 start-page: 5399 year: 2021 end-page: 5411 ident: b0675 article-title: Effect of coupling phase change materials and heat pipe on performance enhancement of Li-ion battery thermal management system publication-title: Int. J. Energy Res. – volume: 156 start-page: 119820 year: 2020 ident: b0525 article-title: International Journal of Heat and Mass Transfer Thermal characteristics of power battery module with composite phase change material and external liquid cooling publication-title: Int. J. Heat Mass Transf. – volume: 204 start-page: 112280 year: 2020 ident: b0500 article-title: A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for di ff erent ambient temperatures publication-title: Energy Convers. Manag. – volume: 124 start-page: 23 year: 2018 end-page: 35 ident: b0285 article-title: International Journal of Thermal Sciences Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials publication-title: Int. J. Therm. Sci. – volume: 34 start-page: 508 year: 2021 end-page: 514 ident: b0395 article-title: An intrinsically flexible phase change film for wearable thermal managements publication-title: Energy Storage Mater. – volume: 161 start-page: 114102 year: 2019 ident: b0595 article-title: The thermal performance of a novel internal cooling method for the electric vehicle battery: An experimental study publication-title: Appl. Therm. Eng. – volume: 189 start-page: 116767 year: 2021 ident: b0020 article-title: An intelligent thermal management system for optimized lithium-ion battery pack publication-title: Appl. Therm. Eng. – volume: 468 start-page: 228398 year: 2020 ident: b0485 article-title: A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules publication-title: J. Power Sources. – volume: 221 start-page: 113145 year: 2020 ident: b0425 article-title: An innovative battery thermal management with thermally induced flexible phase change material publication-title: Energy Convers. Manag. – volume: 165 start-page: 114571 year: 2020 ident: b0600 article-title: A novel heat pipe assisted separation type battery thermal management system based on phase change material publication-title: Appl. Therm. Eng. – volume: 166 year: 2020 ident: b0515 article-title: Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes : An experimental investigation publication-title: Appl. Therm. Eng. – volume: 210 start-page: 112680 year: 2020 ident: b0415 article-title: Study of using enhanced heat-transfer fl exible phase change material fi lm in thermal management of compact electronic device publication-title: Energy Convers. Manag. – volume: 180 start-page: 784 year: 2019 end-page: 795 ident: b0590 article-title: Enhancement of nanoparticle-phase change material melting performance using a sinusoidal heat pipe publication-title: Energy Convers. Manag. – volume: 494 start-page: 229727 year: 2021 ident: b0065 article-title: Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning publication-title: J. Power Sources. – volume: 172 start-page: 195 year: 2017 end-page: 201 ident: b0120 article-title: MgCl2·6H2O-Mg(NO3)2·6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity publication-title: Sol. Energy Mater. Sol. Cells. – volume: 111 start-page: 802 year: 2013 end-page: 808 ident: b0035 article-title: Electrochimica Acta Capacity loss induced by lithium deposition at graphite anode for LiFePO 4 / graphite cell cycling at different temperatures publication-title: Electrochim. Acta. – volume: 180 start-page: 115795 year: 2020 ident: b0365 article-title: Performance investigation of a battery thermal management system with microencapsulated phase change material suspension publication-title: Appl. Therm. Eng. – volume: 25 start-page: 100920 year: 2021 ident: b0580 article-title: Case Studies in Thermal Engineering PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles publication-title: Case Stud. Therm. Eng. – reference: A.A. Pesaran, Battery thermal models for hybrid vehicle simulations, 110 (2002) 377–382. – volume: 40 start-page: 102602 year: 2021 ident: b0375 article-title: Cylindrical battery thermal management based on microencapsulated phase change slurry publication-title: J. Energy Storage. – ident: 10.1016/j.cej.2021.132741_b0205 doi: 10.1016/j.ijheatmasstransfer.2020.120827 – volume: 121 start-page: 104 year: 2014 ident: 10.1016/j.cej.2021.132741_b0100 article-title: Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2014.01.075 – volume: 32 year: 2020 ident: 10.1016/j.cej.2021.132741_b0005 article-title: Thermal management technology of power lithium-ion batteries based on the phase transition of materials : A review publication-title: J. Energy Storage. doi: 10.1016/j.est.2020.101816 – volume: 450 start-page: 227673 year: 2020 ident: 10.1016/j.cej.2021.132741_b0560 article-title: Delayed liquid cooling strategy with phase change material to achieve high temperature uniformity of Li-ion battery under high-rate discharge publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2019.227673 – volume: 193 start-page: 117002 year: 2021 ident: 10.1016/j.cej.2021.132741_b0130 article-title: Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.117002 – volume: 111 start-page: 802 year: 2013 ident: 10.1016/j.cej.2021.132741_b0035 article-title: Electrochimica Acta Capacity loss induced by lithium deposition at graphite anode for LiFePO 4 / graphite cell cycling at different temperatures publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2013.08.074 – volume: 82 start-page: 182 year: 2017 ident: 10.1016/j.cej.2021.132741_b0170 article-title: Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2016.11.017 – volume: 221 start-page: 113145 year: 2020 ident: 10.1016/j.cej.2021.132741_b0425 article-title: An innovative battery thermal management with thermally induced flexible phase change material publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.113145 – ident: 10.1016/j.cej.2021.132741_b0640 doi: 10.1080/15567036.2011.576411 – volume: 120 start-page: 1 year: 2017 ident: 10.1016/j.cej.2021.132741_b0480 article-title: Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.03.107 – volume: 165 start-page: 106968 year: 2021 ident: 10.1016/j.cej.2021.132741_b0470 article-title: International Journal of Thermal Sciences Numerical study of combined air and phase change cooling for lithium-ion battery during dynamic cycles publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2021.106968 – volume: 180 start-page: 115795 year: 2020 ident: 10.1016/j.cej.2021.132741_b0365 article-title: Performance investigation of a battery thermal management system with microencapsulated phase change material suspension publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.115795 – volume: 32 start-page: 101755 year: 2020 ident: 10.1016/j.cej.2021.132741_b0445 article-title: Experimental investigation on thermally induced aluminum nitride based fl exible composite phase change material for battery thermal management publication-title: J. Energy Storage. doi: 10.1016/j.est.2020.101755 – volume: 122 start-page: 215 year: 2016 ident: 10.1016/j.cej.2021.132741_b0300 article-title: Thermophysical properties of phase change emulsions prepared by D-phase emulsification publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.05.065 – volume: 11 start-page: 74 year: 2019 ident: 10.1016/j.cej.2021.132741_b0070 article-title: A comparative study on battery thermal management using phase change material (PCM) publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2019.03.003 – volume: 191 start-page: 116888 year: 2021 ident: 10.1016/j.cej.2021.132741_b0370 article-title: A delayed cooling system coupling composite phase change material and nano phase change material emulsion publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116888 – volume: 195 start-page: 1371 year: 2019 ident: 10.1016/j.cej.2021.132741_b0495 article-title: Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.05.084 – volume: 120 start-page: 33 year: 2018 ident: 10.1016/j.cej.2021.132741_b0190 article-title: Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.12.024 – volume: 20 year: 2021 ident: 10.1016/j.cej.2021.132741_b0670 article-title: Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from −40 °C to 50 °C publication-title: Mater. Today Energy. – volume: 210 start-page: 112680 year: 2020 ident: 10.1016/j.cej.2021.132741_b0415 article-title: Study of using enhanced heat-transfer fl exible phase change material fi lm in thermal management of compact electronic device publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2020.112680 – volume: 114 start-page: 408 year: 2017 ident: 10.1016/j.cej.2021.132741_b0230 article-title: Cutting copper fi ber / paraf fi n composite phase change material discharging experimental study based on heat dissipation capability of Li-ion battery publication-title: Renew. Energy. doi: 10.1016/j.renene.2017.07.004 – volume: 259 start-page: 114120 year: 2020 ident: 10.1016/j.cej.2021.132741_b0660 article-title: Computationally e ffi cient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2019.114120 – volume: 55 start-page: 1753 issue: 6 year: 2019 ident: 10.1016/j.cej.2021.132741_b0260 article-title: Improving the performance of a passive battery thermal management system based on PCM using lateral fins publication-title: Heat Mass Transf. Und Stoffuebertragung. doi: 10.1007/s00231-018-02555-0 – volume: 34 start-page: 508 year: 2021 ident: 10.1016/j.cej.2021.132741_b0395 article-title: An intrinsically flexible phase change film for wearable thermal managements publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.10.014 – volume: 32 year: 2020 ident: 10.1016/j.cej.2021.132741_b0240 article-title: Interfacial thermal conductance across hexagonal boron nitride & paraffin based thermal energy storage materials publication-title: J. Energy Storage. doi: 10.1016/j.est.2020.101860 – volume: 115 start-page: 104612 year: 2020 ident: 10.1016/j.cej.2021.132741_b0175 article-title: Numerical study on heat transfer enhancement of closed loop oscillating heat pipe through active incentive method publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104612 – volume: 146 start-page: 106420 year: 2021 ident: 10.1016/j.cej.2021.132741_b0085 article-title: Flexible copper foam-based phase change materials with good stiffness-toughness balance, electro-to-thermal conversion ability and shape memory function for intelligent thermal management publication-title: Compos. Part A. doi: 10.1016/j.compositesa.2021.106420 – ident: 10.1016/j.cej.2021.132741_b0135 doi: 10.1007/s11630-017-0955-2 – volume: 40 start-page: 102602 year: 2021 ident: 10.1016/j.cej.2021.132741_b0375 article-title: Cylindrical battery thermal management based on microencapsulated phase change slurry publication-title: J. Energy Storage. doi: 10.1016/j.est.2021.102602 – volume: 8 start-page: 20011 issue: 38 year: 2020 ident: 10.1016/j.cej.2021.132741_b0435 article-title: Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA05904H – volume: 6 start-page: 8 year: 2020 ident: 10.1016/j.cej.2021.132741_b0210 article-title: Experimental and numerical study of PCM thermophysical parameters on lithium-ion battery thermal management publication-title: Energy Reports. doi: 10.1016/j.egyr.2019.09.060 – ident: 10.1016/j.cej.2021.132741_b0620 doi: 10.1002/ente.201600083 – volume: 194 start-page: 268 year: 2019 ident: 10.1016/j.cej.2021.132741_b0315 article-title: Solar Energy Materials and Solar Cells Nano-encapsulated PCM emulsions prepared by a solvent-assisted method for solar applications publication-title: Sol. Energy Mater. Sol. Cells. doi: 10.1016/j.solmat.2019.02.021 – volume: 189 start-page: 116767 year: 2021 ident: 10.1016/j.cej.2021.132741_b0020 article-title: An intelligent thermal management system for optimized lithium-ion battery pack publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116767 – volume: 334 start-page: 135551 year: 2020 ident: 10.1016/j.cej.2021.132741_b0405 article-title: Electrochimica Acta In-situ temperature regulation of fl exible supercapacitors by designing intelligent electrode with microencapsulated phase change materials publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2019.135551 – volume: 8 start-page: 14624 issue: 29 year: 2020 ident: 10.1016/j.cej.2021.132741_b0275 article-title: Custom design of solid-solid phase change material with ultra-high thermal stability for battery thermal management publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA05247G – volume: 45 start-page: 9970 issue: 7 year: 2021 ident: 10.1016/j.cej.2021.132741_b0255 article-title: The effect of reducing the thermal contact resistance on the performance of battery thermal management system publication-title: Int. J. Energy Res. doi: 10.1002/er.6491 – volume: 165 start-page: 114571 year: 2020 ident: 10.1016/j.cej.2021.132741_b0600 article-title: A novel heat pipe assisted separation type battery thermal management system based on phase change material publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114571 – volume: 13 start-page: 1 year: 2021 ident: 10.1016/j.cej.2021.132741_b0685 article-title: Simulation of a Set of Lithium-Ion Batteries with Composite Phase Change Materials and Heating Films Thermal Management System at Low Temperature publication-title: J. Therm. Sci. Eng. Appl. doi: 10.1115/1.4046983 – volume: 451 start-page: 227820 year: 2020 ident: 10.1016/j.cej.2021.132741_b0245 article-title: Evaluation of lithium battery thermal management using sealant made of boron nitride and silicone publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2020.227820 – volume: 163 start-page: 114345 year: 2019 ident: 10.1016/j.cej.2021.132741_b0535 article-title: Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114345 – volume: 31 start-page: 1905099 issue: 49 year: 2019 ident: 10.1016/j.cej.2021.132741_b0430 article-title: High-Performance Thermally Conductive Phase Change Composites by Large-Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting publication-title: Adv. Mater. doi: 10.1002/adma.201905099 – volume: 182 start-page: 9 year: 2019 ident: 10.1016/j.cej.2021.132741_b0410 article-title: Thermal management of Li-ion battery pack with the application of fl exible form-stable composite phase change materials publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.12.064 – volume: 4 start-page: 1978 issue: 2 year: 2021 ident: 10.1016/j.cej.2021.132741_b0450 article-title: Pouch Lithium Battery with a Passive Thermal Management System Using Form-Stable and Flexible Composite Phase Change Materials publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c03116 – volume: 64 start-page: 1092 year: 2014 ident: 10.1016/j.cej.2021.132741_b0345 article-title: Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions publication-title: Energy. doi: 10.1016/j.energy.2013.10.088 – volume: 156 start-page: 119820 year: 2020 ident: 10.1016/j.cej.2021.132741_b0525 article-title: International Journal of Heat and Mass Transfer Thermal characteristics of power battery module with composite phase change material and external liquid cooling publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119820 – ident: 10.1016/j.cej.2021.132741_b0150 doi: 10.1002/er.4067 – volume: 127 start-page: 381 year: 2018 ident: 10.1016/j.cej.2021.132741_b0215 article-title: International Journal of Heat and Mass Transfer Copper foam / PCMs based heat sinks : An experimental study for electronic cooling systems publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.07.120 – volume: 167 start-page: 561 year: 2019 ident: 10.1016/j.cej.2021.132741_b0340 article-title: Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate publication-title: Energy. doi: 10.1016/j.energy.2018.10.137 – volume: 73 start-page: 21 year: 2014 ident: 10.1016/j.cej.2021.132741_b0310 article-title: International Journal of Heat and Mass Transfer Experimental study on laminar convective heat transfer of microencapsulated phase change material slurry using liquid metal with low melting point as carrying fluid publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.01.059 – volume: 188 start-page: 116649 year: 2021 ident: 10.1016/j.cej.2021.132741_b0530 article-title: Thermal performance of honeycomb-like battery thermal management system with bionic liquid mini-channel and phase change materials for cylindrical lithium-ion battery publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116649 – volume: 145 start-page: 2046 year: 2020 ident: 10.1016/j.cej.2021.132741_b0280 article-title: Experimental investigation on a novel phase change material composites coupled with graphite fi lm used for thermal management of lithium-ion batteries publication-title: Renew. Energy. doi: 10.1016/j.renene.2019.07.112 – volume: 169 year: 2021 ident: 10.1016/j.cej.2021.132741_b0080 article-title: International Journal of Heat and Mass Transfer A passive thermal management system of Li-ion batteries using PCM composites : Experimental and numerical investigations publication-title: Int. J. Heat Mass Transf. – volume: 133 start-page: 827 year: 2019 ident: 10.1016/j.cej.2021.132741_b0505 article-title: International Journal of Heat and Mass Transfer Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.12.157 – volume: 58 start-page: 615 issue: 1-2 year: 2013 ident: 10.1016/j.cej.2021.132741_b0645 article-title: Passive thermal management for PEM fuel cell stack under cold weather condition using phase change materials (PCM) publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2013.04.064 – volume: 181 start-page: 107714 year: 2019 ident: 10.1016/j.cej.2021.132741_b0390 article-title: Flexible phase change composite materials with simultaneous light energy storage and light-actuated shape memory capability publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107714 – volume: 171 start-page: 699 year: 2018 ident: 10.1016/j.cej.2021.132741_b0330 article-title: An experimental investigation of forced convection heat transfer with novel microencapsulated phase change material slurries in a circular tube under constant heat fl ux publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.06.029 – volume: 494 start-page: 229727 year: 2021 ident: 10.1016/j.cej.2021.132741_b0065 article-title: Performance analysis on liquid-cooled battery thermal management for electric vehicles based on machine learning publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2021.229727 – volume: 378 start-page: 383 year: 2018 ident: 10.1016/j.cej.2021.132741_b0075 article-title: Electric vehicles batteries thermal management systems employing phase change materials publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2017.12.071 – volume: 144 start-page: 977 year: 2018 ident: 10.1016/j.cej.2021.132741_b0680 article-title: Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures publication-title: Energy. doi: 10.1016/j.energy.2017.12.098 – volume: 480 start-page: 229116 year: 2020 ident: 10.1016/j.cej.2021.132741_b0115 article-title: Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2020.229116 – volume: 72 start-page: 690 year: 2014 ident: 10.1016/j.cej.2021.132741_b0160 article-title: International Journal of Heat and Mass Transfer Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.12.076 – volume: 141 start-page: 47 year: 2019 ident: 10.1016/j.cej.2021.132741_b0465 article-title: International Journal of Thermal Sciences A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2019.03.026 – volume: 473 start-page: 228545 year: 2020 ident: 10.1016/j.cej.2021.132741_b0575 article-title: Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2020.228545 – volume: 360 start-page: 618 year: 2017 ident: 10.1016/j.cej.2021.132741_b0045 article-title: Combined electrochemical, heat generation, and thermal model for large prismatic lithium-ion batteries in real-time applications publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2017.06.031 – volume: 25 start-page: 100920 year: 2021 ident: 10.1016/j.cej.2021.132741_b0580 article-title: Case Studies in Thermal Engineering PCM assisted heat pipe cooling system for the thermal management of an LTO cell for high-current profiles publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.100920 – volume: 293 start-page: 498 year: 2015 ident: 10.1016/j.cej.2021.132741_b0050 article-title: A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2015.05.095 – volume: 238 start-page: 1407 year: 2019 ident: 10.1016/j.cej.2021.132741_b0320 article-title: Development and characterization of novel and stable silicon nanoparticles- embedded PCM-in-water emulsions for thermal energy storage publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2019.01.159 – volume: 116 start-page: 1204 year: 2018 ident: 10.1016/j.cej.2021.132741_b0145 article-title: International Journal of Heat and Mass Transfer Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.09.092 – volume: 74 start-page: 223 year: 2013 ident: 10.1016/j.cej.2021.132741_b0265 article-title: Enhance heat transfer for PCM melting in triplex tube with internal-external fins publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.05.003 – volume: 204 start-page: 112280 year: 2020 ident: 10.1016/j.cej.2021.132741_b0500 article-title: A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for di ff erent ambient temperatures publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112280 – ident: 10.1016/j.cej.2021.132741_b0110 doi: 10.1002/er.4307 – volume: 219 start-page: 119496 year: 2021 ident: 10.1016/j.cej.2021.132741_b0665 article-title: A fast-heat battery system using the heat released from detonated supercooled phase change materials publication-title: Energy. doi: 10.1016/j.energy.2020.119496 – volume: 45 start-page: 5399 issue: 4 year: 2021 ident: 10.1016/j.cej.2021.132741_b0675 article-title: Effect of coupling phase change materials and heat pipe on performance enhancement of Li-ion battery thermal management system publication-title: Int. J. Energy Res. doi: 10.1002/er.6165 – volume: 185 start-page: 116415 year: 2021 ident: 10.1016/j.cej.2021.132741_b0540 article-title: Experimental study on the thermal management of batteries based on the coupling of composite phase change materials and liquid cooling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116415 – volume: 133 start-page: 204 year: 2017 ident: 10.1016/j.cej.2021.132741_b0655 article-title: Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.12.009 – volume: 69 start-page: 174 year: 2013 ident: 10.1016/j.cej.2021.132741_b0105 article-title: Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment publication-title: ENERGY Convers. Manag. doi: 10.1016/j.enconman.2013.01.025 – volume: 181 start-page: 116028 year: 2020 ident: 10.1016/j.cej.2021.132741_b0520 article-title: Impact of configuration on the performance of a hybrid thermal management system including phase change material and water-cooling channels for Li-ion batteries publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116028 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.cej.2021.132741_b0635 article-title: Experimental Investigation on a Thermoelectric Cooler for Thermal Management of a Lithium-Ion Battery Module publication-title: Int. J. Photoenergy. doi: 10.1155/2019/3725364 – volume: 183 start-page: 116151 year: 2021 ident: 10.1016/j.cej.2021.132741_b0440 article-title: Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116151 – volume: 279 start-page: 115808 year: 2020 ident: 10.1016/j.cej.2021.132741_b0355 article-title: Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2020.115808 – volume: 154 start-page: 562 year: 2017 ident: 10.1016/j.cej.2021.132741_b0460 article-title: Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.11.046 – volume: 468 start-page: 228398 year: 2020 ident: 10.1016/j.cej.2021.132741_b0485 article-title: A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2020.228398 – volume: 113 start-page: 1032 year: 2016 ident: 10.1016/j.cej.2021.132741_b0040 article-title: Integration issues of lithium-ion battery into electric vehicles battery pack publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.11.011 – volume: 257 start-page: 345 year: 2017 ident: 10.1016/j.cej.2021.132741_b0185 article-title: Experimental Investigation of a New Passive Thermal Management System for a Li-Ion Battery Pack Using Phase Change Composite Material publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2017.10.051 – volume: 190 start-page: 868 year: 2017 ident: 10.1016/j.cej.2021.132741_b0325 article-title: Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2017.01.012 – volume: 166 year: 2020 ident: 10.1016/j.cej.2021.132741_b0515 article-title: Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes : An experimental investigation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114759 – volume: 28 start-page: 101235 year: 2020 ident: 10.1016/j.cej.2021.132741_b0235 article-title: Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle publication-title: J. Energy Storage. doi: 10.1016/j.est.2020.101235 – volume: 45 start-page: 6198 year: 2021 ident: 10.1016/j.cej.2021.132741_b0550 article-title: An experimental investigation for a hybrid phase change material-liquid cooling strategy to achieve high-temperature uniformity of Li-ion battery module under fast charging publication-title: Int. J. Energy Res. doi: 10.1002/er.6241 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.cej.2021.132741_b0200 article-title: The Enhanced Performance of Phase-Change Materials via 3D Printing with Prickly Aluminum Honeycomb for Thermal Management of Ternary Lithium Batteries publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2020/8167386 – volume: 148 start-page: 403 year: 2015 ident: 10.1016/j.cej.2021.132741_b0475 article-title: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2015.03.080 – volume: 184 start-page: 116380 year: 2021 ident: 10.1016/j.cej.2021.132741_b0510 article-title: Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116380 – volume: 15 start-page: 4554 issue: 9 year: 2011 ident: 10.1016/j.cej.2021.132741_b0015 article-title: A review of power battery thermal energy management publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2011.07.096 – volume: 118 start-page: 872 year: 2018 ident: 10.1016/j.cej.2021.132741_b0335 article-title: International Journal of Heat and Mass Transfer Heat transfer analysis of microencapsulated phase change material slurry flow in heated helical coils : A numerical and analytical study publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.10.130 – volume: 311 start-page: 127517 year: 2021 ident: 10.1016/j.cej.2021.132741_b0455 article-title: Development of flexible form-stable phase change material with enhanced electrical resistance for thermal management publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127517 – volume: 141 start-page: 1092 year: 2018 ident: 10.1016/j.cej.2021.132741_b0570 article-title: Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.06.048 – volume: 188 start-page: 116665 year: 2021 ident: 10.1016/j.cej.2021.132741_b0585 article-title: Design of battery thermal management system based on phase change material and heat pipe publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2021.116665 – volume: 84–2 start-page: 164 year: 1984 ident: 10.1016/j.cej.2021.132741_b0095 article-title: General Energy Balance for Battery Systems publication-title: Electrochem. Soc. Ext. Abstr. – volume: 180 start-page: 1196 year: 2019 ident: 10.1016/j.cej.2021.132741_b0195 article-title: Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.11.064 – volume: 170 start-page: 849 year: 2019 ident: 10.1016/j.cej.2021.132741_b0025 article-title: Applications and thermal management of rechargeable batteries for industrial applications publication-title: Energy. doi: 10.1016/j.energy.2018.12.218 – volume: 12 start-page: 1937 issue: 10 year: 2019 ident: 10.1016/j.cej.2021.132741_b0270 article-title: Study of thermal management system using composite phase change materials and thermoelectric cooling sheet for power battery pack publication-title: Energies. doi: 10.3390/en12101937 – volume: 52 start-page: 101786 year: 2020 ident: 10.1016/j.cej.2021.132741_b0360 article-title: Experimental and numerical investigation of laminar heat transfer of microencapsulated phase change material slurry (MPCMS) in a circular tube with constant heat flux publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101786 – volume: 174 start-page: 121318 year: 2021 ident: 10.1016/j.cej.2021.132741_b0615 article-title: International Journal of Heat and Mass Transfer Design and optimization of a hybrid battery thermal management system for electric vehicle based on surrogate model publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.121318 – ident: 10.1016/j.cej.2021.132741_b0180 doi: 10.1016/j.est.2021.102279 – volume: 157 start-page: 113683 year: 2019 ident: 10.1016/j.cej.2021.132741_b0140 article-title: Optimization on uniformity of lithium-ion cylindrical battery module by different arrangement strategy publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.04.093 – volume: 480 start-page: 228820 year: 2020 ident: 10.1016/j.cej.2021.132741_b0060 article-title: Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2020.228820 – volume: 4 start-page: 303 year: 2018 ident: 10.1016/j.cej.2021.132741_b0650 article-title: Cold temperature performance of phase change material based battery thermal management systems publication-title: Energy Reports. doi: 10.1016/j.egyr.2018.04.001 – ident: 10.1016/j.cej.2021.132741_b0385 doi: 10.1016/j.matdes.2019.108219 – volume: 356 start-page: 71 issue: 1-3 year: 2010 ident: 10.1016/j.cej.2021.132741_b0305 article-title: Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method publication-title: Colloids Surfaces A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2009.12.036 – volume: 491 start-page: 229624 year: 2021 ident: 10.1016/j.cej.2021.132741_b0125 article-title: Development of the inorganic composite phase change materials for passive thermal management of Li-ion batteries: Application publication-title: J. Power Sources. doi: 10.1016/j.jpowsour.2021.229624 – volume: 141 start-page: 613 year: 2017 ident: 10.1016/j.cej.2021.132741_b0220 article-title: A thermal management system for rectangular LiFePO 4 battery module using novel double copper mesh-enhanced phase change material plates publication-title: Energy. doi: 10.1016/j.energy.2017.09.083 – volume: 13 start-page: 1 year: 2020 ident: 10.1016/j.cej.2021.132741_b0250 article-title: Preparation of binary thermal silicone grease and its application in battery thermal management publication-title: Materials (Basel). doi: 10.3390/ma13214763 – volume: 161 start-page: 114102 year: 2019 ident: 10.1016/j.cej.2021.132741_b0595 article-title: The thermal performance of a novel internal cooling method for the electric vehicle battery: An experimental study publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114102 – volume: 128 start-page: 294 year: 2016 ident: 10.1016/j.cej.2021.132741_b0295 article-title: Thermal management of a LiFePO 4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.09.081 – volume: 168 start-page: 114792 year: 2020 ident: 10.1016/j.cej.2021.132741_b0605 article-title: A lithium-ion battery-thermal-management design based on phase-change- material thermal storage and spray cooling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114792 – volume: 113 start-page: 909 year: 2016 ident: 10.1016/j.cej.2021.132741_b0225 article-title: An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack publication-title: Energy. doi: 10.1016/j.energy.2016.07.119 – volume: 65 start-page: 92 year: 2013 ident: 10.1016/j.cej.2021.132741_b0055 article-title: Experimental investigation on thermal management of electric vehicle battery with heat pipe publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2012.08.014 – volume: 149 start-page: 1 year: 2017 ident: 10.1016/j.cej.2021.132741_b0400 article-title: Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.07.019 – volume: 182 start-page: 262 year: 2019 ident: 10.1016/j.cej.2021.132741_b0010 article-title: A critical review of battery thermal performance and liquid based battery thermal management publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.12.051 – volume: 5 start-page: 822 year: 2019 ident: 10.1016/j.cej.2021.132741_b0155 article-title: Electric vehicle battery thermal management system with thermoelectric cooling publication-title: Energy Reports. doi: 10.1016/j.egyr.2019.06.016 – volume: 191 start-page: 116565 year: 2020 ident: 10.1016/j.cej.2021.132741_b0555 article-title: Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study publication-title: Energy. doi: 10.1016/j.energy.2019.116565 – volume: 235 start-page: 110750 year: 2021 ident: 10.1016/j.cej.2021.132741_b0090 article-title: Energy & Buildings Research on falling film dehumidification performance of microencapsulated phase change materials slurry publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.110750 – volume: 193 start-page: 116840 year: 2020 ident: 10.1016/j.cej.2021.132741_b0490 article-title: Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management publication-title: Energy. doi: 10.1016/j.energy.2019.116840 – start-page: 1 year: 2016 ident: 10.1016/j.cej.2021.132741_b0630 article-title: Performance characteristics of PTC elements for an electric vehicle heating publication-title: System – volume: 148 start-page: 984 year: 2019 ident: 10.1016/j.cej.2021.132741_b0290 article-title: A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.11.100 – ident: 10.1016/j.cej.2021.132741_b0165 doi: 10.1016/j.ijheatmasstransfer.2021.121199 – volume: 138 start-page: 486 year: 2017 ident: 10.1016/j.cej.2021.132741_b0610 article-title: Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.02.022 – volume: 36 start-page: 102448 year: 2021 ident: 10.1016/j.cej.2021.132741_b0545 article-title: Investigation on battery thermal management system combining phase changed material and liquid cooling considering non-uniform heat generation of battery publication-title: J. Energy Storage. doi: 10.1016/j.est.2021.102448 – volume: 207 start-page: 118215 year: 2020 ident: 10.1016/j.cej.2021.132741_b0350 article-title: Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack publication-title: Energy. doi: 10.1016/j.energy.2020.118215 – volume: 124 start-page: 23 year: 2018 ident: 10.1016/j.cej.2021.132741_b0285 article-title: International Journal of Thermal Sciences Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2017.09.019 – volume: 180 start-page: 784 year: 2019 ident: 10.1016/j.cej.2021.132741_b0590 article-title: Enhancement of nanoparticle-phase change material melting performance using a sinusoidal heat pipe publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.11.033 – volume: 228 start-page: 777 year: 2018 ident: 10.1016/j.cej.2021.132741_b0565 article-title: Compact liquid cooling strategy with phase change materials for Li-ion batteries optimized using response surface methodology publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2018.06.143 – ident: 10.1016/j.cej.2021.132741_b0030 doi: 10.1016/S0378-7753(02)00200-8 – ident: 10.1016/j.cej.2021.132741_b0625 doi: 10.1002/er.4081 – volume: 172 start-page: 195 year: 2017 ident: 10.1016/j.cej.2021.132741_b0120 article-title: MgCl2·6H2O-Mg(NO3)2·6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity publication-title: Sol. Energy Mater. Sol. Cells. doi: 10.1016/j.solmat.2017.07.019 – volume: 20 start-page: 545 issue: 3 year: 2019 ident: 10.1016/j.cej.2021.132741_b0380 article-title: Encapsulated Phase Change Material Embedded by Graphene Powders for Smart and Flexible Thermal Response publication-title: Fibers Polym. doi: 10.1007/s12221-019-1067-2 – volume: 236 start-page: 10 year: 2019 ident: 10.1016/j.cej.2021.132741_b0420 article-title: Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2018.11.071 |
SSID | ssj0006919 |
Score | 2.7209475 |
SecondaryResourceType | review_article |
Snippet | •PCM-cooled and PCM-heated BTMS are reviewed.•Phase change fluid (PCF), flexible phase change material (FPCM) and Hybrid cooling are analyzed.•The flammability... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 132741 |
SubjectTerms | Battery thermal management system (BTMs) Flexible phase change material (FPCM) Heat transfer enhancement Inorganic PCMs Organic PCMs Phase change fluid (PCF) Phase change material (PCM) |
Title | Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review |
URI | https://dx.doi.org/10.1016/j.cej.2021.132741 |
Volume | 430 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-Iz4IHvwACYLdLt9eUMiQQnEKERuTbuPAJFHoB68-Nvd6baoiXrw1KaZSZrpdB7Zb75B6JJa0vYCyyHSY4wwPxYEVlMSEXNdjlMaOVGK8u27nSG7HzmjAmrlszAAq8xiv4npabTOntQza9aXk0n9yYIzrYDpFgYIYgIY4mPMAy-vvX_CPNwgXe4BwgSk85PNFOPF5VS3iNSq6Z7MY9bPuelLvmnvod2sUMRN8y77qCDnB2jnC33gIVKGHPMNQxE308KzDZYFG4bmNa7cDHrrKoZkJfBijpdjfYfNuK-WT1IHxJWHVq96jZsYEOYrOTaodmzmWo7QsH07aHVItjeBcBp4CfGYtPw4Uo4UFOi6lBNTHvgiBppGFUvXh7xMY-oJlykmHVf_hZHdUL6Adeq2fYyK88VcniDs-kobTuoaiwNXPfcj3RDywOGWULwh_BJq5BYLeUYqDrstXsIcPTYNtZFDMHJojFxCVxuVpWHU-EuY5Z8h_OYWoY74v6ud_k_tDG1TmG6AfS_OOSomq1d5oWuOJC6nTlVGW827bqcP1-7jc_cDO37UdA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEA6lHtSD-MT6zEHBCtt20-xL8KDV0morgi30tu4mWdpia7EV8eKf8g86s9nVCupB6G1ZEpKdDPPYfPMNIQfMVGXHMy1DOZwb3A2lga0pDRkKCMcZC6wgRvne2LU2v-pYnQx5T2thEFaZ2H5t02NrnbwpJtIsjnq94p2Jd1oehxQGCWI8L0FWXqvXF8jbxqf1CzjkQ8aql61KzUhaCxiCec7EcLgy3TCILCUZMlpFVsiE58oQmQyjUNkuui4WMkfaPOLKskFRg3IpciV2HMe_oGD35ziYC2ybUHj7wpXYXtxNBHdn4PbSq9QYVCZUH3JSZhZgGYebPzvDKQdXXSZLSWRKz_THr5CMGq6SxSm-wjUSaTbOV4pR4wAGDz7BM1RTQo_p0XmrOc5T9I6SPg7pqAtPVNcXw_hJrPH06LbSzJ_QM4qQ9ifV1TB6qgtp1kl7JtLcINnh41BtEmq7EQhOQVAnkBxfuAFkoMKzhCkjUZJujpRSifkiYTHHZhoPfgpX6_sgZB-F7Gsh58jx55SRpvD4azBPj8H_poc-uJjfp239b9o-ma-1mg2_Ub-53iYLDEsrsNmMtUOyk6dntQsBzyTcixWMkvtZa_QHaIoNPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Battery+thermal+management+systems+%28BTMs%29+based+on+phase+change+material+%28PCM%29%3A+A+comprehensive+review&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Luo%2C+Jie&rft.au=Zou%2C+Deqiu&rft.au=Wang%2C+Yinshuang&rft.au=Wang%2C+Shuo&rft.date=2022-02-15&rft.issn=1385-8947&rft.volume=430&rft.spage=132741&rft_id=info:doi/10.1016%2Fj.cej.2021.132741&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2021_132741 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |