Sparse regression with output correlation for cardiac ejection fraction estimation
Traditional regression methods minimize the sum of errors of samples with various regularization terms such as the ℓ1-norm and ℓ2-norm. For the diagnosis of cardiovascular diseases, the cardiac ejection fraction (EF) represents an essential measure. However, existing regularization terms do not cons...
Saved in:
Published in | Information sciences Vol. 423; pp. 303 - 312 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2018
|
Online Access | Get full text |
ISSN | 0020-0255 1872-6291 |
DOI | 10.1016/j.ins.2017.09.026 |
Cover
Loading…
Abstract | Traditional regression methods minimize the sum of errors of samples with various regularization terms such as the ℓ1-norm and ℓ2-norm. For the diagnosis of cardiovascular diseases, the cardiac ejection fraction (EF) represents an essential measure. However, existing regularization terms do not consider the output correlation (the correlation between ground truth volumes and estimated volumes w.r.t. each subject), which is beneficial in estimating the cardiac EF. In this paper, we first propose a sparse regression with two regularization terms of the ℓ1-norm and output correlation (SROC). Then, we propose a one-dimensional solution path algorithm for quickly finding two good regulation parameters in the formulation of SROC. The solution path algorithm can effectively handle singularities and infinities in the key matrix. Finally, we conduct experiments on a clinical cardiac image dataset with 100 subjects. The experimental results show that our method produces competitive and strong results for estimating the cardiac EF based on quantitative and qualitative analyses. |
---|---|
AbstractList | Traditional regression methods minimize the sum of errors of samples with various regularization terms such as the ℓ1-norm and ℓ2-norm. For the diagnosis of cardiovascular diseases, the cardiac ejection fraction (EF) represents an essential measure. However, existing regularization terms do not consider the output correlation (the correlation between ground truth volumes and estimated volumes w.r.t. each subject), which is beneficial in estimating the cardiac EF. In this paper, we first propose a sparse regression with two regularization terms of the ℓ1-norm and output correlation (SROC). Then, we propose a one-dimensional solution path algorithm for quickly finding two good regulation parameters in the formulation of SROC. The solution path algorithm can effectively handle singularities and infinities in the key matrix. Finally, we conduct experiments on a clinical cardiac image dataset with 100 subjects. The experimental results show that our method produces competitive and strong results for estimating the cardiac EF based on quantitative and qualitative analyses. |
Author | Gu, Bin Sheng, Victor S. Shan, Yingying Zheng, Yuhui Li, Shuo |
Author_xml | – sequence: 1 givenname: Bin surname: Gu fullname: Gu, Bin email: jsgubin@nuist.edu.cn organization: Jiangsu Key Laboratory of Big Data Analysis Technology/B-DAT, Nanjing University of Information Science & Technology, Nanjing, China – sequence: 2 givenname: Yingying surname: Shan fullname: Shan, Yingying organization: School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing, PR China – sequence: 3 givenname: Victor S. surname: Sheng fullname: Sheng, Victor S. organization: Department of Computer Science, University of Central Arkansas, Conway, Arkansas, USA – sequence: 4 givenname: Yuhui surname: Zheng fullname: Zheng, Yuhui organization: School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing, PR China – sequence: 5 givenname: Shuo surname: Li fullname: Li, Shuo organization: Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada |
BookMark | eNp9kMtOwzAQRS1UJNrCB7DLDySMnYcdsUIVL6kSEo-15doTcFSSauyC-HuShhWLruZqNGc0cxZs1vUdMnbJIePAq6s2813IBHCZQZ2BqE7YnCsp0krUfMbmAAJSEGV5xhYhtABQyKqas-eXnaGACeE7YQi-75JvHz-Sfh93-5jYngi3Jo79pqfEGnLe2ARbtFOTzBQwRP95GDxnp43ZBrz4q0v2dnf7unpI10_3j6ubdWpFLWMqCwkOnLRCqhxwk28a7oySuc2bsh5yYQrFm7J0yjgFqERpKlvUIldu46omXzI-7bXUh0DY6B0NJ9CP5qBHKbrVgxQ9StFQ60HKwMh_jPXxcHUk47dHyeuJxOGlL4-kg_XYWXSeBhfa9f4I_QuJ54C4 |
CitedBy_id | crossref_primary_10_1016_j_media_2019_101568 crossref_primary_10_1109_TNNLS_2020_3016928 crossref_primary_10_1016_j_media_2020_101723 crossref_primary_10_1080_21681163_2019_1650398 crossref_primary_10_1016_j_media_2022_102686 crossref_primary_10_1109_JBHI_2022_3171985 crossref_primary_10_1109_JBHI_2018_2865450 |
Cites_doi | 10.1109/TNNLS.2014.2342533 10.1016/j.ins.2017.02.017 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TNNLS.2013.2262180 10.1109/TCYB.2015.2403356 10.1161/hc0402.102975 10.1109/TNNLS.2012.2183644 10.1111/j.1467-9868.2005.00503.x 10.1109/TIT.2008.929958 10.1109/TPAMI.2008.79 10.1109/TIP.2012.2235849 10.1109/TBME.2014.2299433 10.1109/ACCESS.2015.2430359 10.1016/j.ins.2014.05.013 10.1016/j.patcog.2015.04.017 10.1109/TNN.2009.2039000 10.1016/S0140-6736(03)14285-7 10.1214/009053606000001370 10.1109/TPAMI.2016.2535218 10.1016/j.ins.2016.02.055 10.1016/j.jacc.2008.09.006 |
ContentType | Journal Article |
Copyright | 2017 |
Copyright_xml | – notice: 2017 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ins.2017.09.026 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 312 |
ExternalDocumentID | 10_1016_j_ins_2017_09_026 S0020025517300488 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-7470d0d7c27830eb3bf1da873c3f59f1d4a481f55d8ad80e825a6c49238dbd6f3 |
IEDL.DBID | .~1 |
ISSN | 0020-0255 |
IngestDate | Thu Apr 24 23:12:52 EDT 2025 Tue Jul 01 04:16:38 EDT 2025 Fri Feb 23 02:33:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-7470d0d7c27830eb3bf1da873c3f59f1d4a481f55d8ad80e825a6c49238dbd6f3 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_ins_2017_09_026 crossref_citationtrail_10_1016_j_ins_2017_09_026 elsevier_sciencedirect_doi_10_1016_j_ins_2017_09_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2018 2018-01-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: January 2018 |
PublicationDecade | 2010 |
PublicationTitle | Information sciences |
PublicationYear | 2018 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Afshin, Ayed, Islam, Goela, Peters, Li (bib0001) 2012 Cristianini, John (bib0005) 2000 Zhen, Wang, Islam, Chan, Li (bib0031) 2014 Rosset, Zhu (bib0020) 2007 Gu, Sheng, Shuo (bib0010) 2015 Guyon, Elisseeff (bib0013) 2003; 3 Ong, Shao, Yang (bib0017) 2010; 21 Yang, Luo, Qian, Tai, Zhang, Yong (bib0026) 2017; 39 Shao, Song, Feng, Wu, Yuhui (bib0022) 2017; 393 B. Gu, V. Sheng, K. Tay, W. Romano, S. Li., Incremental support vector learning for ordinal regression 26(7) (2015b) 1403–1416. Wang, Salah, Gu, Islam, Goela, Li (bib0024) 2014; 61 Mendis, Puska, Norrving (bib0016) 2011 François Le (bib0008) 2014 Yusuf, Pfeffer, Swedberg, Granger, Held, McMurray, Michelson, Olofsson, Ostergren (bib0028) 2003; 362 Wright, Yang, Ganesh, Sastry, Yi (bib0025) 2009; 31 Boyd, Vandenberghe (bib0003) 2009 Gu, Wang, Zheng, Yu (bib0012) 2012; 23 Zhu, Li, Shichao (bib0032) 2016; 46 Dai, Chang, Mai, Zhao, Xu (bib0006) 2013; 24 Gu, Victor (bib0009) 2016 Qian, Luo, Yang, Zhang, Zhouchen (bib0019) 2015; 48 D. Poole., Linear algebra: A modern introduction. cengage learning, 2014. Tibshirani (bib0023) 1996 Hendel, Budoff, Cardella, Chambers, Dent, Fitzgerald, Hodgson, Klodas, Kramer, Stillman (bib0014) 2009; 53 Yang, Zhang, Yang, David (bib0027) 2013; 22 Zhang, Yang, Xie, Qian, Bob (bib0030) 2017; 394 Liu, Zhang, Xindong (bib0015) 2014; 281 Cerqueira, Weissman, Dilsizian, Jacobs, Kaul, Laskey, Pennell, Rumberger, Ryan, Verani (bib0004) 2002; 105 Saunders, Gammerman, Volodya (bib0021) 1998 Zou, Trevor (bib0034) 2005; 67 An, Chen, Yang, Bir (bib0002) 2016; 355 Donoho, Yaakov (bib0007) 2008; 54 Zhang, Xu, Yang, Li, David (bib0029) 2015; 3 Guyon (10.1016/j.ins.2017.09.026_bib0013) 2003; 3 Yang (10.1016/j.ins.2017.09.026_bib0026) 2017; 39 Gu (10.1016/j.ins.2017.09.026_bib0010) 2015 Gu (10.1016/j.ins.2017.09.026_bib0009) 2016 Afshin (10.1016/j.ins.2017.09.026_bib0001) 2012 Liu (10.1016/j.ins.2017.09.026_bib0015) 2014; 281 Boyd (10.1016/j.ins.2017.09.026_bib0003) 2009 Donoho (10.1016/j.ins.2017.09.026_bib0007) 2008; 54 Hendel (10.1016/j.ins.2017.09.026_bib0014) 2009; 53 Ong (10.1016/j.ins.2017.09.026_bib0017) 2010; 21 Zhang (10.1016/j.ins.2017.09.026_bib0029) 2015; 3 Wright (10.1016/j.ins.2017.09.026_bib0025) 2009; 31 François Le (10.1016/j.ins.2017.09.026_bib0008) 2014 Tibshirani (10.1016/j.ins.2017.09.026_bib0023) 1996 Qian (10.1016/j.ins.2017.09.026_bib0019) 2015; 48 Cerqueira (10.1016/j.ins.2017.09.026_bib0004) 2002; 105 An (10.1016/j.ins.2017.09.026_bib0002) 2016; 355 Rosset (10.1016/j.ins.2017.09.026_bib0020) 2007 Gu (10.1016/j.ins.2017.09.026_bib0012) 2012; 23 Shao (10.1016/j.ins.2017.09.026_bib0022) 2017; 393 Cristianini (10.1016/j.ins.2017.09.026_bib0005) 2000 Wang (10.1016/j.ins.2017.09.026_bib0024) 2014; 61 Yusuf (10.1016/j.ins.2017.09.026_bib0028) 2003; 362 Dai (10.1016/j.ins.2017.09.026_bib0006) 2013; 24 Yang (10.1016/j.ins.2017.09.026_bib0027) 2013; 22 10.1016/j.ins.2017.09.026_bib0018 Saunders (10.1016/j.ins.2017.09.026_bib0021) 1998 Zhu (10.1016/j.ins.2017.09.026_bib0032) 2016; 46 10.1016/j.ins.2017.09.026_bib0011 Zhang (10.1016/j.ins.2017.09.026_bib0030) 2017; 394 Zhen (10.1016/j.ins.2017.09.026_bib0031) 2014 Mendis (10.1016/j.ins.2017.09.026_bib0016) 2011 Zou (10.1016/j.ins.2017.09.026_bib0034) 2005; 67 |
References_xml | – start-page: 1012 year: 2007 end-page: 1030 ident: bib0020 article-title: Piecewise linear regularized solution paths publication-title: Ann. Stat. – reference: B. Gu, V. Sheng, K. Tay, W. Romano, S. Li., Incremental support vector learning for ordinal regression 26(7) (2015b) 1403–1416. – volume: 46 start-page: 450 year: 2016 end-page: 461 ident: bib0032 article-title: Block-row sparse multiview multilabel learning for image classification publication-title: IEEE Trans. Cybern. – volume: 355 start-page: 74 year: 2016 end-page: 89 ident: bib0002 article-title: Sparse representation matching for person re-identification publication-title: Inf. Sci. – year: 2011 ident: bib0016 article-title: Global Atlas on Cardiovascular Disease Prevention and Control – start-page: 515 year: 1998 end-page: 521 ident: bib0021 article-title: Ridge regression learning algorithm in dual variables, (ICML-1998) Proceedings of the 15th International Conference on Machine Learning – volume: 22 start-page: 1753 year: 2013 end-page: 1766 ident: bib0027 article-title: Regularized robust coding for face recognition publication-title: IEEE Trans. Image Process. – start-page: 535 year: 2012 end-page: 543 ident: bib0001 article-title: Global assessment of cardiac function using image statistics in mri publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012 – volume: 53 start-page: 91 year: 2009 end-page: 124 ident: bib0014 publication-title: J. Am. Coll. Cardiol. – volume: 105 start-page: 539 year: 2002 end-page: 542 ident: bib0004 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association publication-title: Circulation – volume: 281 start-page: 310 year: 2014 end-page: 320 ident: bib0015 article-title: Mlslr: multilabel learning via sparse logistic regression publication-title: Inf. Sci. – volume: 31 start-page: 210 year: 2009 end-page: 227 ident: bib0025 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 296 year: 2014 end-page: 303 ident: bib0008 article-title: Powers of tensors and fast matrix multiplication publication-title: Proceedings of the 39th international symposium on symbolic and algebraic computation – year: 2009 ident: bib0003 article-title: Convex Optimization – volume: 39 start-page: 156 year: 2017 end-page: 171 ident: bib0026 article-title: Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 23 start-page: 800 year: 2012 end-page: 811 ident: bib0012 article-title: Regularization path for publication-title: Neural Netw. Learn. Syst. IEEE Trans. – volume: 393 start-page: 1 year: 2017 end-page: 14 ident: bib0022 article-title: Dynamic dictionary optimization for sparse-representation-based face classification using local difference images publication-title: Inf. Sci. – start-page: 3532 year: 2015 end-page: 3539 ident: bib0010 article-title: Bi-parameter space partition for cost-sensitive SVM. publication-title: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015 – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bib0034 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. – year: 2014 ident: bib0031 article-title: Direct estimation of cardiac bi-ventricular volumes with regression forests publication-title: in: Accepted by Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014. – volume: 362 start-page: 777 year: 2003 end-page: 781 ident: bib0028 article-title: Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the charm-preserved trial publication-title: The Lancet – start-page: 267 year: 1996 end-page: 288 ident: bib0023 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B (Methodological) – year: 2000 ident: bib0005 article-title: An Introduction to Support Vector Machines and other Kernel-Based Learning Methods – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib0013 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 24 start-page: 1736 year: 2013 end-page: 1748 ident: bib0006 article-title: On the svmpath singularity publication-title: Neural Netw. Learn. Syst. IEEE Trans. – volume: 21 start-page: 451 year: 2010 end-page: 462 ident: bib0017 article-title: An improved algorithm for the solution of the regularization path of support vector machine publication-title: Neural Netw. IEEE Trans. – volume: 61 start-page: 1251 year: 2014 end-page: 1260 ident: bib0024 article-title: Direct estimation of cardiac biventricular volumes with an adapted bayesian formulation publication-title: Biomed. Eng. IEEE Trans. – volume: 54 start-page: 4789 year: 2008 end-page: 4812 ident: bib0007 article-title: Fast solution of l publication-title: Trans. Inf. Theory – reference: D. Poole., Linear algebra: A modern introduction. cengage learning, 2014. – volume: 3 start-page: 490 year: 2015 end-page: 530 ident: bib0029 article-title: A survey of sparse representation: algorithms and applications publication-title: IEEE Access – volume: 48 start-page: 3145 year: 2015 end-page: 3159 ident: bib0019 article-title: Robust nuclear norm regularized regression for face recognition with occlusion publication-title: Pattern Recognit. – year: 2016 ident: bib0009 article-title: A robust regularization path algorithm for publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 394 start-page: 1 year: 2017 end-page: 17 ident: bib0030 article-title: Weighted sparse coding regularized nonconvex matrix regression for robust face recognition publication-title: Inf. Sci. – ident: 10.1016/j.ins.2017.09.026_bib0011 doi: 10.1109/TNNLS.2014.2342533 – volume: 393 start-page: 1 year: 2017 ident: 10.1016/j.ins.2017.09.026_bib0022 article-title: Dynamic dictionary optimization for sparse-representation-based face classification using local difference images publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.02.017 – year: 2014 ident: 10.1016/j.ins.2017.09.026_bib0031 article-title: Direct estimation of cardiac bi-ventricular volumes with regression forests – start-page: 535 year: 2012 ident: 10.1016/j.ins.2017.09.026_bib0001 article-title: Global assessment of cardiac function using image statistics in mri – start-page: 267 year: 1996 ident: 10.1016/j.ins.2017.09.026_bib0023 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: 10.1016/j.ins.2017.09.026_bib0018 – volume: 24 start-page: 1736 issue: 11 year: 2013 ident: 10.1016/j.ins.2017.09.026_bib0006 article-title: On the svmpath singularity publication-title: Neural Netw. Learn. Syst. IEEE Trans. doi: 10.1109/TNNLS.2013.2262180 – year: 2000 ident: 10.1016/j.ins.2017.09.026_bib0005 – start-page: 3532 year: 2015 ident: 10.1016/j.ins.2017.09.026_bib0010 article-title: Bi-parameter space partition for cost-sensitive SVM. – volume: 46 start-page: 450 issue: 2 year: 2016 ident: 10.1016/j.ins.2017.09.026_bib0032 article-title: Block-row sparse multiview multilabel learning for image classification publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2403356 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.ins.2017.09.026_bib0013 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – year: 2011 ident: 10.1016/j.ins.2017.09.026_bib0016 – volume: 105 start-page: 539 issue: 4 year: 2002 ident: 10.1016/j.ins.2017.09.026_bib0004 article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association publication-title: Circulation doi: 10.1161/hc0402.102975 – year: 2009 ident: 10.1016/j.ins.2017.09.026_bib0003 – volume: 23 start-page: 800 issue: 5 year: 2012 ident: 10.1016/j.ins.2017.09.026_bib0012 article-title: Regularization path for ν-support vector classification publication-title: Neural Netw. Learn. Syst. IEEE Trans. doi: 10.1109/TNNLS.2012.2183644 – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 10.1016/j.ins.2017.09.026_bib0034 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. doi: 10.1111/j.1467-9868.2005.00503.x – start-page: 515 year: 1998 ident: 10.1016/j.ins.2017.09.026_bib0021 – volume: 54 start-page: 4789 issue: 11 year: 2008 ident: 10.1016/j.ins.2017.09.026_bib0007 article-title: Fast solution of l1-norm minimization problems when the solution may be sparse publication-title: Trans. Inf. Theory doi: 10.1109/TIT.2008.929958 – volume: 394 start-page: 1 year: 2017 ident: 10.1016/j.ins.2017.09.026_bib0030 article-title: Weighted sparse coding regularized nonconvex matrix regression for robust face recognition publication-title: Inf. Sci. – volume: 31 start-page: 210 issue: 2 year: 2009 ident: 10.1016/j.ins.2017.09.026_bib0025 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – start-page: 296 year: 2014 ident: 10.1016/j.ins.2017.09.026_bib0008 article-title: Powers of tensors and fast matrix multiplication – volume: 22 start-page: 1753 issue: 5 year: 2013 ident: 10.1016/j.ins.2017.09.026_bib0027 article-title: Regularized robust coding for face recognition publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2235849 – year: 2016 ident: 10.1016/j.ins.2017.09.026_bib0009 article-title: A robust regularization path algorithm for ν-support vector classification publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 61 start-page: 1251 issue: 4 year: 2014 ident: 10.1016/j.ins.2017.09.026_bib0024 article-title: Direct estimation of cardiac biventricular volumes with an adapted bayesian formulation publication-title: Biomed. Eng. IEEE Trans. doi: 10.1109/TBME.2014.2299433 – volume: 3 start-page: 490 year: 2015 ident: 10.1016/j.ins.2017.09.026_bib0029 article-title: A survey of sparse representation: algorithms and applications publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2430359 – volume: 281 start-page: 310 year: 2014 ident: 10.1016/j.ins.2017.09.026_bib0015 article-title: Mlslr: multilabel learning via sparse logistic regression publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.05.013 – volume: 48 start-page: 3145 issue: 10 year: 2015 ident: 10.1016/j.ins.2017.09.026_bib0019 article-title: Robust nuclear norm regularized regression for face recognition with occlusion publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2015.04.017 – volume: 21 start-page: 451 issue: 3 year: 2010 ident: 10.1016/j.ins.2017.09.026_bib0017 article-title: An improved algorithm for the solution of the regularization path of support vector machine publication-title: Neural Netw. IEEE Trans. doi: 10.1109/TNN.2009.2039000 – volume: 362 start-page: 777 issue: 9386 year: 2003 ident: 10.1016/j.ins.2017.09.026_bib0028 article-title: Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the charm-preserved trial publication-title: The Lancet doi: 10.1016/S0140-6736(03)14285-7 – start-page: 1012 year: 2007 ident: 10.1016/j.ins.2017.09.026_bib0020 article-title: Piecewise linear regularized solution paths publication-title: Ann. Stat. doi: 10.1214/009053606000001370 – volume: 39 start-page: 156 issue: 1 year: 2017 ident: 10.1016/j.ins.2017.09.026_bib0026 article-title: Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2535218 – volume: 355 start-page: 74 year: 2016 ident: 10.1016/j.ins.2017.09.026_bib0002 article-title: Sparse representation matching for person re-identification publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.02.055 – volume: 53 start-page: 91 issue: 1 year: 2009 ident: 10.1016/j.ins.2017.09.026_bib0014 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2008.09.006 |
SSID | ssj0004766 |
Score | 2.2854683 |
Snippet | Traditional regression methods minimize the sum of errors of samples with various regularization terms such as the ℓ1-norm and ℓ2-norm. For the diagnosis of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 303 |
Title | Sparse regression with output correlation for cardiac ejection fraction estimation |
URI | https://dx.doi.org/10.1016/j.ins.2017.09.026 |
Volume | 423 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL3oQnYpTN3IQD0Jdsqa_jmM4psIO6mC3kCapbEhXRnf1bzcvSXWCevDWhrxSXl9f3ku-9z2ErkIqcqEHRRBqCVs3eRGIKIsCrZnKYkFhVQG0xTSezNjDPJq30KiphQFYpff9zqdbb-1H-l6b_WqxgBrfgY2IKVCuGzuECnaWgJXfvn_BPMxI7GAeJIDZzcmmxXgtSmDspomlOgV-hZ_Wpq31ZnyIDnygiIfuXY5QS5dttL9FH9hGXV90gK-xryoCLWP_ux6jp-fKpK0ar_WrQ7uWGLZd8WpTV5saS2jM4aBw2EhjaY1FYr208CwzuHZVDxiYONzDT9BsfPcymgS-h0IgB1lSByZbIIqoREJHDWIy57ygSqRJKMMiysw1EyylRRSpVKiUaJMwilgCa1uqchUX4SnaKVelPkOYaHtOTVWR5ExSkQqtI23iCxbGJBG6g0ijPS49wTj0uXjjDZJsyY3COSick4wbhXfQzadI5dg1_prMmk_Cv5kIN97_d7Hz_4ldoD1zl7rdlku0U683umvijzrvWQProd3h_eNk-gE2kNuP |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEL4gPKgPRlEjKtoH44PJwsZ-PxIiAUEeFBLemq7tDMSMhYz_397aKSbqg29Lt1uW66131373HcCd67CEyW5quZLj1k2SWsyPfUtKT8QBc9CrINpiGgzn3tPCX9SgX9XCIKzSrP16TS9XazPSMdrs5Msl1vh2y4jYQcp1ZYd70EB2Kr8Ojd5oPJx-lUeG-sgSMyUUqA43S5jXMkPSbics2U6RYuEn97TjcgbHcGRiRdLTn3MCNZk14XCHQbAJbVN3QO6JKSxCRRPzx57Cy2uuMldJNvJNA14zgjuvZL0t8m1BOPbm0Gg4oqQJL-2FE7kqEVpqcKMLHwiSceiXn8F88DjrDy3TRsHi3TgsLJUw2MIWIcemGrZKnpPUESwKXe6mfqyuPeZFTur7ImIisqXKGVnAkbgtEokIUvcc6tk6kxdAbFkeVTsiDROPOyxiUvpShRieG9ghky2wK-1RbjjGsdXFO63AZCuqFE5R4dSOqVJ4Cx4-RXJNsPHXw141JfSblVDlAH4Xu_yf2C3sD2fPEzoZTcdXcKDuRHrz5RrqxWYr2yocKZIbY24fxhDeQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+regression+with+output+correlation+for+cardiac+ejection+fraction+estimation&rft.jtitle=Information+sciences&rft.au=Gu%2C+Bin&rft.au=Shan%2C+Yingying&rft.au=Sheng%2C+Victor+S.&rft.au=Zheng%2C+Yuhui&rft.date=2018-01-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=423&rft.spage=303&rft.epage=312&rft_id=info:doi/10.1016%2Fj.ins.2017.09.026&rft.externalDocID=S0020025517300488 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |