Sparse regression with output correlation for cardiac ejection fraction estimation

Traditional regression methods minimize the sum of errors of samples with various regularization terms such as the ℓ1-norm and ℓ2-norm. For the diagnosis of cardiovascular diseases, the cardiac ejection fraction (EF) represents an essential measure. However, existing regularization terms do not cons...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 423; pp. 303 - 312
Main Authors Gu, Bin, Shan, Yingying, Sheng, Victor S., Zheng, Yuhui, Li, Shuo
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2018
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2017.09.026

Cover

Loading…
Abstract Traditional regression methods minimize the sum of errors of samples with various regularization terms such as the ℓ1-norm and ℓ2-norm. For the diagnosis of cardiovascular diseases, the cardiac ejection fraction (EF) represents an essential measure. However, existing regularization terms do not consider the output correlation (the correlation between ground truth volumes and estimated volumes w.r.t. each subject), which is beneficial in estimating the cardiac EF. In this paper, we first propose a sparse regression with two regularization terms of the ℓ1-norm and output correlation (SROC). Then, we propose a one-dimensional solution path algorithm for quickly finding two good regulation parameters in the formulation of SROC. The solution path algorithm can effectively handle singularities and infinities in the key matrix. Finally, we conduct experiments on a clinical cardiac image dataset with 100 subjects. The experimental results show that our method produces competitive and strong results for estimating the cardiac EF based on quantitative and qualitative analyses.
AbstractList Traditional regression methods minimize the sum of errors of samples with various regularization terms such as the ℓ1-norm and ℓ2-norm. For the diagnosis of cardiovascular diseases, the cardiac ejection fraction (EF) represents an essential measure. However, existing regularization terms do not consider the output correlation (the correlation between ground truth volumes and estimated volumes w.r.t. each subject), which is beneficial in estimating the cardiac EF. In this paper, we first propose a sparse regression with two regularization terms of the ℓ1-norm and output correlation (SROC). Then, we propose a one-dimensional solution path algorithm for quickly finding two good regulation parameters in the formulation of SROC. The solution path algorithm can effectively handle singularities and infinities in the key matrix. Finally, we conduct experiments on a clinical cardiac image dataset with 100 subjects. The experimental results show that our method produces competitive and strong results for estimating the cardiac EF based on quantitative and qualitative analyses.
Author Gu, Bin
Sheng, Victor S.
Shan, Yingying
Zheng, Yuhui
Li, Shuo
Author_xml – sequence: 1
  givenname: Bin
  surname: Gu
  fullname: Gu, Bin
  email: jsgubin@nuist.edu.cn
  organization: Jiangsu Key Laboratory of Big Data Analysis Technology/B-DAT, Nanjing University of Information Science & Technology, Nanjing, China
– sequence: 2
  givenname: Yingying
  surname: Shan
  fullname: Shan, Yingying
  organization: School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing, PR China
– sequence: 3
  givenname: Victor S.
  surname: Sheng
  fullname: Sheng, Victor S.
  organization: Department of Computer Science, University of Central Arkansas, Conway, Arkansas, USA
– sequence: 4
  givenname: Yuhui
  surname: Zheng
  fullname: Zheng, Yuhui
  organization: School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing, PR China
– sequence: 5
  givenname: Shuo
  surname: Li
  fullname: Li, Shuo
  organization: Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
BookMark eNp9kMtOwzAQRS1UJNrCB7DLDySMnYcdsUIVL6kSEo-15doTcFSSauyC-HuShhWLruZqNGc0cxZs1vUdMnbJIePAq6s2813IBHCZQZ2BqE7YnCsp0krUfMbmAAJSEGV5xhYhtABQyKqas-eXnaGACeE7YQi-75JvHz-Sfh93-5jYngi3Jo79pqfEGnLe2ARbtFOTzBQwRP95GDxnp43ZBrz4q0v2dnf7unpI10_3j6ubdWpFLWMqCwkOnLRCqhxwk28a7oySuc2bsh5yYQrFm7J0yjgFqERpKlvUIldu46omXzI-7bXUh0DY6B0NJ9CP5qBHKbrVgxQ9StFQ60HKwMh_jPXxcHUk47dHyeuJxOGlL4-kg_XYWXSeBhfa9f4I_QuJ54C4
CitedBy_id crossref_primary_10_1016_j_media_2019_101568
crossref_primary_10_1109_TNNLS_2020_3016928
crossref_primary_10_1016_j_media_2020_101723
crossref_primary_10_1080_21681163_2019_1650398
crossref_primary_10_1016_j_media_2022_102686
crossref_primary_10_1109_JBHI_2022_3171985
crossref_primary_10_1109_JBHI_2018_2865450
Cites_doi 10.1109/TNNLS.2014.2342533
10.1016/j.ins.2017.02.017
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TNNLS.2013.2262180
10.1109/TCYB.2015.2403356
10.1161/hc0402.102975
10.1109/TNNLS.2012.2183644
10.1111/j.1467-9868.2005.00503.x
10.1109/TIT.2008.929958
10.1109/TPAMI.2008.79
10.1109/TIP.2012.2235849
10.1109/TBME.2014.2299433
10.1109/ACCESS.2015.2430359
10.1016/j.ins.2014.05.013
10.1016/j.patcog.2015.04.017
10.1109/TNN.2009.2039000
10.1016/S0140-6736(03)14285-7
10.1214/009053606000001370
10.1109/TPAMI.2016.2535218
10.1016/j.ins.2016.02.055
10.1016/j.jacc.2008.09.006
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2017.09.026
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 312
ExternalDocumentID 10_1016_j_ins_2017_09_026
S0020025517300488
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-7470d0d7c27830eb3bf1da873c3f59f1d4a481f55d8ad80e825a6c49238dbd6f3
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Thu Apr 24 23:12:52 EDT 2025
Tue Jul 01 04:16:38 EDT 2025
Fri Feb 23 02:33:55 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-7470d0d7c27830eb3bf1da873c3f59f1d4a481f55d8ad80e825a6c49238dbd6f3
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_ins_2017_09_026
crossref_citationtrail_10_1016_j_ins_2017_09_026
elsevier_sciencedirect_doi_10_1016_j_ins_2017_09_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Afshin, Ayed, Islam, Goela, Peters, Li (bib0001) 2012
Cristianini, John (bib0005) 2000
Zhen, Wang, Islam, Chan, Li (bib0031) 2014
Rosset, Zhu (bib0020) 2007
Gu, Sheng, Shuo (bib0010) 2015
Guyon, Elisseeff (bib0013) 2003; 3
Ong, Shao, Yang (bib0017) 2010; 21
Yang, Luo, Qian, Tai, Zhang, Yong (bib0026) 2017; 39
Shao, Song, Feng, Wu, Yuhui (bib0022) 2017; 393
B. Gu, V. Sheng, K. Tay, W. Romano, S. Li., Incremental support vector learning for ordinal regression 26(7) (2015b) 1403–1416.
Wang, Salah, Gu, Islam, Goela, Li (bib0024) 2014; 61
Mendis, Puska, Norrving (bib0016) 2011
François Le (bib0008) 2014
Yusuf, Pfeffer, Swedberg, Granger, Held, McMurray, Michelson, Olofsson, Ostergren (bib0028) 2003; 362
Wright, Yang, Ganesh, Sastry, Yi (bib0025) 2009; 31
Boyd, Vandenberghe (bib0003) 2009
Gu, Wang, Zheng, Yu (bib0012) 2012; 23
Zhu, Li, Shichao (bib0032) 2016; 46
Dai, Chang, Mai, Zhao, Xu (bib0006) 2013; 24
Gu, Victor (bib0009) 2016
Qian, Luo, Yang, Zhang, Zhouchen (bib0019) 2015; 48
D. Poole., Linear algebra: A modern introduction. cengage learning, 2014.
Tibshirani (bib0023) 1996
Hendel, Budoff, Cardella, Chambers, Dent, Fitzgerald, Hodgson, Klodas, Kramer, Stillman (bib0014) 2009; 53
Yang, Zhang, Yang, David (bib0027) 2013; 22
Zhang, Yang, Xie, Qian, Bob (bib0030) 2017; 394
Liu, Zhang, Xindong (bib0015) 2014; 281
Cerqueira, Weissman, Dilsizian, Jacobs, Kaul, Laskey, Pennell, Rumberger, Ryan, Verani (bib0004) 2002; 105
Saunders, Gammerman, Volodya (bib0021) 1998
Zou, Trevor (bib0034) 2005; 67
An, Chen, Yang, Bir (bib0002) 2016; 355
Donoho, Yaakov (bib0007) 2008; 54
Zhang, Xu, Yang, Li, David (bib0029) 2015; 3
Guyon (10.1016/j.ins.2017.09.026_bib0013) 2003; 3
Yang (10.1016/j.ins.2017.09.026_bib0026) 2017; 39
Gu (10.1016/j.ins.2017.09.026_bib0010) 2015
Gu (10.1016/j.ins.2017.09.026_bib0009) 2016
Afshin (10.1016/j.ins.2017.09.026_bib0001) 2012
Liu (10.1016/j.ins.2017.09.026_bib0015) 2014; 281
Boyd (10.1016/j.ins.2017.09.026_bib0003) 2009
Donoho (10.1016/j.ins.2017.09.026_bib0007) 2008; 54
Hendel (10.1016/j.ins.2017.09.026_bib0014) 2009; 53
Ong (10.1016/j.ins.2017.09.026_bib0017) 2010; 21
Zhang (10.1016/j.ins.2017.09.026_bib0029) 2015; 3
Wright (10.1016/j.ins.2017.09.026_bib0025) 2009; 31
François Le (10.1016/j.ins.2017.09.026_bib0008) 2014
Tibshirani (10.1016/j.ins.2017.09.026_bib0023) 1996
Qian (10.1016/j.ins.2017.09.026_bib0019) 2015; 48
Cerqueira (10.1016/j.ins.2017.09.026_bib0004) 2002; 105
An (10.1016/j.ins.2017.09.026_bib0002) 2016; 355
Rosset (10.1016/j.ins.2017.09.026_bib0020) 2007
Gu (10.1016/j.ins.2017.09.026_bib0012) 2012; 23
Shao (10.1016/j.ins.2017.09.026_bib0022) 2017; 393
Cristianini (10.1016/j.ins.2017.09.026_bib0005) 2000
Wang (10.1016/j.ins.2017.09.026_bib0024) 2014; 61
Yusuf (10.1016/j.ins.2017.09.026_bib0028) 2003; 362
Dai (10.1016/j.ins.2017.09.026_bib0006) 2013; 24
Yang (10.1016/j.ins.2017.09.026_bib0027) 2013; 22
10.1016/j.ins.2017.09.026_bib0018
Saunders (10.1016/j.ins.2017.09.026_bib0021) 1998
Zhu (10.1016/j.ins.2017.09.026_bib0032) 2016; 46
10.1016/j.ins.2017.09.026_bib0011
Zhang (10.1016/j.ins.2017.09.026_bib0030) 2017; 394
Zhen (10.1016/j.ins.2017.09.026_bib0031) 2014
Mendis (10.1016/j.ins.2017.09.026_bib0016) 2011
Zou (10.1016/j.ins.2017.09.026_bib0034) 2005; 67
References_xml – start-page: 1012
  year: 2007
  end-page: 1030
  ident: bib0020
  article-title: Piecewise linear regularized solution paths
  publication-title: Ann. Stat.
– reference: B. Gu, V. Sheng, K. Tay, W. Romano, S. Li., Incremental support vector learning for ordinal regression 26(7) (2015b) 1403–1416.
– volume: 46
  start-page: 450
  year: 2016
  end-page: 461
  ident: bib0032
  article-title: Block-row sparse multiview multilabel learning for image classification
  publication-title: IEEE Trans. Cybern.
– volume: 355
  start-page: 74
  year: 2016
  end-page: 89
  ident: bib0002
  article-title: Sparse representation matching for person re-identification
  publication-title: Inf. Sci.
– year: 2011
  ident: bib0016
  article-title: Global Atlas on Cardiovascular Disease Prevention and Control
– start-page: 515
  year: 1998
  end-page: 521
  ident: bib0021
  article-title: Ridge regression learning algorithm in dual variables, (ICML-1998) Proceedings of the 15th International Conference on Machine Learning
– volume: 22
  start-page: 1753
  year: 2013
  end-page: 1766
  ident: bib0027
  article-title: Regularized robust coding for face recognition
  publication-title: IEEE Trans. Image Process.
– start-page: 535
  year: 2012
  end-page: 543
  ident: bib0001
  article-title: Global assessment of cardiac function using image statistics in mri
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012
– volume: 53
  start-page: 91
  year: 2009
  end-page: 124
  ident: bib0014
  publication-title: J. Am. Coll. Cardiol.
– volume: 105
  start-page: 539
  year: 2002
  end-page: 542
  ident: bib0004
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association
  publication-title: Circulation
– volume: 281
  start-page: 310
  year: 2014
  end-page: 320
  ident: bib0015
  article-title: Mlslr: multilabel learning via sparse logistic regression
  publication-title: Inf. Sci.
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  ident: bib0025
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 296
  year: 2014
  end-page: 303
  ident: bib0008
  article-title: Powers of tensors and fast matrix multiplication
  publication-title: Proceedings of the 39th international symposium on symbolic and algebraic computation
– year: 2009
  ident: bib0003
  article-title: Convex Optimization
– volume: 39
  start-page: 156
  year: 2017
  end-page: 171
  ident: bib0026
  article-title: Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 23
  start-page: 800
  year: 2012
  end-page: 811
  ident: bib0012
  article-title: Regularization path for
  publication-title: Neural Netw. Learn. Syst. IEEE Trans.
– volume: 393
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib0022
  article-title: Dynamic dictionary optimization for sparse-representation-based face classification using local difference images
  publication-title: Inf. Sci.
– start-page: 3532
  year: 2015
  end-page: 3539
  ident: bib0010
  article-title: Bi-parameter space partition for cost-sensitive SVM.
  publication-title: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib0034
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc.
– year: 2014
  ident: bib0031
  article-title: Direct estimation of cardiac bi-ventricular volumes with regression forests
  publication-title: in: Accepted by Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014.
– volume: 362
  start-page: 777
  year: 2003
  end-page: 781
  ident: bib0028
  article-title: Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the charm-preserved trial
  publication-title: The Lancet
– start-page: 267
  year: 1996
  end-page: 288
  ident: bib0023
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
– year: 2000
  ident: bib0005
  article-title: An Introduction to Support Vector Machines and other Kernel-Based Learning Methods
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0013
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 1736
  year: 2013
  end-page: 1748
  ident: bib0006
  article-title: On the svmpath singularity
  publication-title: Neural Netw. Learn. Syst. IEEE Trans.
– volume: 21
  start-page: 451
  year: 2010
  end-page: 462
  ident: bib0017
  article-title: An improved algorithm for the solution of the regularization path of support vector machine
  publication-title: Neural Netw. IEEE Trans.
– volume: 61
  start-page: 1251
  year: 2014
  end-page: 1260
  ident: bib0024
  article-title: Direct estimation of cardiac biventricular volumes with an adapted bayesian formulation
  publication-title: Biomed. Eng. IEEE Trans.
– volume: 54
  start-page: 4789
  year: 2008
  end-page: 4812
  ident: bib0007
  article-title: Fast solution of l
  publication-title: Trans. Inf. Theory
– reference: D. Poole., Linear algebra: A modern introduction. cengage learning, 2014.
– volume: 3
  start-page: 490
  year: 2015
  end-page: 530
  ident: bib0029
  article-title: A survey of sparse representation: algorithms and applications
  publication-title: IEEE Access
– volume: 48
  start-page: 3145
  year: 2015
  end-page: 3159
  ident: bib0019
  article-title: Robust nuclear norm regularized regression for face recognition with occlusion
  publication-title: Pattern Recognit.
– year: 2016
  ident: bib0009
  article-title: A robust regularization path algorithm for
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 394
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib0030
  article-title: Weighted sparse coding regularized nonconvex matrix regression for robust face recognition
  publication-title: Inf. Sci.
– ident: 10.1016/j.ins.2017.09.026_bib0011
  doi: 10.1109/TNNLS.2014.2342533
– volume: 393
  start-page: 1
  year: 2017
  ident: 10.1016/j.ins.2017.09.026_bib0022
  article-title: Dynamic dictionary optimization for sparse-representation-based face classification using local difference images
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.02.017
– year: 2014
  ident: 10.1016/j.ins.2017.09.026_bib0031
  article-title: Direct estimation of cardiac bi-ventricular volumes with regression forests
– start-page: 535
  year: 2012
  ident: 10.1016/j.ins.2017.09.026_bib0001
  article-title: Global assessment of cardiac function using image statistics in mri
– start-page: 267
  year: 1996
  ident: 10.1016/j.ins.2017.09.026_bib0023
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: 10.1016/j.ins.2017.09.026_bib0018
– volume: 24
  start-page: 1736
  issue: 11
  year: 2013
  ident: 10.1016/j.ins.2017.09.026_bib0006
  article-title: On the svmpath singularity
  publication-title: Neural Netw. Learn. Syst. IEEE Trans.
  doi: 10.1109/TNNLS.2013.2262180
– year: 2000
  ident: 10.1016/j.ins.2017.09.026_bib0005
– start-page: 3532
  year: 2015
  ident: 10.1016/j.ins.2017.09.026_bib0010
  article-title: Bi-parameter space partition for cost-sensitive SVM.
– volume: 46
  start-page: 450
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2017.09.026_bib0032
  article-title: Block-row sparse multiview multilabel learning for image classification
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2403356
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.ins.2017.09.026_bib0013
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– year: 2011
  ident: 10.1016/j.ins.2017.09.026_bib0016
– volume: 105
  start-page: 539
  issue: 4
  year: 2002
  ident: 10.1016/j.ins.2017.09.026_bib0004
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association
  publication-title: Circulation
  doi: 10.1161/hc0402.102975
– year: 2009
  ident: 10.1016/j.ins.2017.09.026_bib0003
– volume: 23
  start-page: 800
  issue: 5
  year: 2012
  ident: 10.1016/j.ins.2017.09.026_bib0012
  article-title: Regularization path for ν-support vector classification
  publication-title: Neural Netw. Learn. Syst. IEEE Trans.
  doi: 10.1109/TNNLS.2012.2183644
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10.1016/j.ins.2017.09.026_bib0034
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.1467-9868.2005.00503.x
– start-page: 515
  year: 1998
  ident: 10.1016/j.ins.2017.09.026_bib0021
– volume: 54
  start-page: 4789
  issue: 11
  year: 2008
  ident: 10.1016/j.ins.2017.09.026_bib0007
  article-title: Fast solution of l1-norm minimization problems when the solution may be sparse
  publication-title: Trans. Inf. Theory
  doi: 10.1109/TIT.2008.929958
– volume: 394
  start-page: 1
  year: 2017
  ident: 10.1016/j.ins.2017.09.026_bib0030
  article-title: Weighted sparse coding regularized nonconvex matrix regression for robust face recognition
  publication-title: Inf. Sci.
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2017.09.026_bib0025
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– start-page: 296
  year: 2014
  ident: 10.1016/j.ins.2017.09.026_bib0008
  article-title: Powers of tensors and fast matrix multiplication
– volume: 22
  start-page: 1753
  issue: 5
  year: 2013
  ident: 10.1016/j.ins.2017.09.026_bib0027
  article-title: Regularized robust coding for face recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2235849
– year: 2016
  ident: 10.1016/j.ins.2017.09.026_bib0009
  article-title: A robust regularization path algorithm for ν-support vector classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 61
  start-page: 1251
  issue: 4
  year: 2014
  ident: 10.1016/j.ins.2017.09.026_bib0024
  article-title: Direct estimation of cardiac biventricular volumes with an adapted bayesian formulation
  publication-title: Biomed. Eng. IEEE Trans.
  doi: 10.1109/TBME.2014.2299433
– volume: 3
  start-page: 490
  year: 2015
  ident: 10.1016/j.ins.2017.09.026_bib0029
  article-title: A survey of sparse representation: algorithms and applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2430359
– volume: 281
  start-page: 310
  year: 2014
  ident: 10.1016/j.ins.2017.09.026_bib0015
  article-title: Mlslr: multilabel learning via sparse logistic regression
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.05.013
– volume: 48
  start-page: 3145
  issue: 10
  year: 2015
  ident: 10.1016/j.ins.2017.09.026_bib0019
  article-title: Robust nuclear norm regularized regression for face recognition with occlusion
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2015.04.017
– volume: 21
  start-page: 451
  issue: 3
  year: 2010
  ident: 10.1016/j.ins.2017.09.026_bib0017
  article-title: An improved algorithm for the solution of the regularization path of support vector machine
  publication-title: Neural Netw. IEEE Trans.
  doi: 10.1109/TNN.2009.2039000
– volume: 362
  start-page: 777
  issue: 9386
  year: 2003
  ident: 10.1016/j.ins.2017.09.026_bib0028
  article-title: Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the charm-preserved trial
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(03)14285-7
– start-page: 1012
  year: 2007
  ident: 10.1016/j.ins.2017.09.026_bib0020
  article-title: Piecewise linear regularized solution paths
  publication-title: Ann. Stat.
  doi: 10.1214/009053606000001370
– volume: 39
  start-page: 156
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2017.09.026_bib0026
  article-title: Nuclear norm based matrix regression with applications to face recognition with occlusion and illumination changes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2535218
– volume: 355
  start-page: 74
  year: 2016
  ident: 10.1016/j.ins.2017.09.026_bib0002
  article-title: Sparse representation matching for person re-identification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.02.055
– volume: 53
  start-page: 91
  issue: 1
  year: 2009
  ident: 10.1016/j.ins.2017.09.026_bib0014
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2008.09.006
SSID ssj0004766
Score 2.2854683
Snippet Traditional regression methods minimize the sum of errors of samples with various regularization terms such as the ℓ1-norm and ℓ2-norm. For the diagnosis of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 303
Title Sparse regression with output correlation for cardiac ejection fraction estimation
URI https://dx.doi.org/10.1016/j.ins.2017.09.026
Volume 423
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DL3oQnYpTN3IQD0Jdsqa_jmM4psIO6mC3kCapbEhXRnf1bzcvSXWCevDWhrxSXl9f3ku-9z2ErkIqcqEHRRBqCVs3eRGIKIsCrZnKYkFhVQG0xTSezNjDPJq30KiphQFYpff9zqdbb-1H-l6b_WqxgBrfgY2IKVCuGzuECnaWgJXfvn_BPMxI7GAeJIDZzcmmxXgtSmDspomlOgV-hZ_Wpq31ZnyIDnygiIfuXY5QS5dttL9FH9hGXV90gK-xryoCLWP_ux6jp-fKpK0ar_WrQ7uWGLZd8WpTV5saS2jM4aBw2EhjaY1FYr208CwzuHZVDxiYONzDT9BsfPcymgS-h0IgB1lSByZbIIqoREJHDWIy57ygSqRJKMMiysw1EyylRRSpVKiUaJMwilgCa1uqchUX4SnaKVelPkOYaHtOTVWR5ExSkQqtI23iCxbGJBG6g0ijPS49wTj0uXjjDZJsyY3COSick4wbhXfQzadI5dg1_prMmk_Cv5kIN97_d7Hz_4ldoD1zl7rdlku0U683umvijzrvWQProd3h_eNk-gE2kNuP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEL4gPKgPRlEjKtoH44PJwsZ-PxIiAUEeFBLemq7tDMSMhYz_397aKSbqg29Lt1uW66131373HcCd67CEyW5quZLj1k2SWsyPfUtKT8QBc9CrINpiGgzn3tPCX9SgX9XCIKzSrP16TS9XazPSMdrs5Msl1vh2y4jYQcp1ZYd70EB2Kr8Ojd5oPJx-lUeG-sgSMyUUqA43S5jXMkPSbics2U6RYuEn97TjcgbHcGRiRdLTn3MCNZk14XCHQbAJbVN3QO6JKSxCRRPzx57Cy2uuMldJNvJNA14zgjuvZL0t8m1BOPbm0Gg4oqQJL-2FE7kqEVpqcKMLHwiSceiXn8F88DjrDy3TRsHi3TgsLJUw2MIWIcemGrZKnpPUESwKXe6mfqyuPeZFTur7ImIisqXKGVnAkbgtEokIUvcc6tk6kxdAbFkeVTsiDROPOyxiUvpShRieG9ghky2wK-1RbjjGsdXFO63AZCuqFE5R4dSOqVJ4Cx4-RXJNsPHXw141JfSblVDlAH4Xu_yf2C3sD2fPEzoZTcdXcKDuRHrz5RrqxWYr2yocKZIbY24fxhDeQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+regression+with+output+correlation+for+cardiac+ejection+fraction+estimation&rft.jtitle=Information+sciences&rft.au=Gu%2C+Bin&rft.au=Shan%2C+Yingying&rft.au=Sheng%2C+Victor+S.&rft.au=Zheng%2C+Yuhui&rft.date=2018-01-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=423&rft.spage=303&rft.epage=312&rft_id=info:doi/10.1016%2Fj.ins.2017.09.026&rft.externalDocID=S0020025517300488
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon