Pre-Defined Sparse Neural Networks With Hardware Acceleration

Neural networks have proven to be extremely powerful tools for modern artificial intelligence applications, but computational and storage complexity remain limiting factors. This paper presents two compatible contributions towards reducing the time, energy, computational, and storage complexities as...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on emerging and selected topics in circuits and systems Vol. 9; no. 2; pp. 332 - 345
Main Authors Dey, Sourya, Huang, Kuan-Wen, Beerel, Peter A., Chugg, Keith M.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Neural networks have proven to be extremely powerful tools for modern artificial intelligence applications, but computational and storage complexity remain limiting factors. This paper presents two compatible contributions towards reducing the time, energy, computational, and storage complexities associated with multilayer perceptrons. Pre-defined sparsity is proposed to reduce the complexity during both training and inference, regardless of the implementation platform. Our results show that storage and computational complexity can be reduced by factors greater than 5X without significant performance loss. The second contribution is an architecture for hardware acceleration that is compatible with pre-defined sparsity. This architecture supports both training and inference modes and is flexible in the sense that it is not tied to a specific number of neurons. For example, this flexibility implies that various sized neural networks can be supported on various sized field programmable gate array (FPGA)s.
AbstractList Neural networks have proven to be extremely powerful tools for modern artificial intelligence applications, but computational and storage complexity remain limiting factors. This paper presents two compatible contributions towards reducing the time, energy, computational, and storage complexities associated with multilayer perceptrons. Pre-defined sparsity is proposed to reduce the complexity during both training and inference, regardless of the implementation platform. Our results show that storage and computational complexity can be reduced by factors greater than 5X without significant performance loss. The second contribution is an architecture for hardware acceleration that is compatible with pre-defined sparsity. This architecture supports both training and inference modes and is flexible in the sense that it is not tied to a specific number of neurons. For example, this flexibility implies that various sized neural networks can be supported on various sized field programmable gate array (FPGA)s.
Author Beerel, Peter A.
Huang, Kuan-Wen
Chugg, Keith M.
Dey, Sourya
Author_xml – sequence: 1
  givenname: Sourya
  orcidid: 0000-0003-3084-1428
  surname: Dey
  fullname: Dey, Sourya
  email: souryade@usc.edu
  organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
– sequence: 2
  givenname: Kuan-Wen
  surname: Huang
  fullname: Huang, Kuan-Wen
  email: kuanwenh@usc.edu
  organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
– sequence: 3
  givenname: Peter A.
  orcidid: 0000-0002-8283-0168
  surname: Beerel
  fullname: Beerel, Peter A.
  email: pabeerel@usc.edu
  organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
– sequence: 4
  givenname: Keith M.
  surname: Chugg
  fullname: Chugg, Keith M.
  email: chugg@usc.edu
  organization: Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
BookMark eNqFkLtOw0AQRVcIJELIF6SxRO2wz1lvQRGFR0ARIAVEaa3XY-Fg7LDrKOLvcXCUgoZp7hT3zOOekeO6qZGQMaMTxqi5fLh5mU2XE06ZmXDDaALyiAw4UxALAer40Ct9SkYhrGhXChhIOSBXzx7jayzKGvNoubY-YPSIG2-rTtpt4z9C9Fa279Hc-nxrPUZT57BCb9uyqc_JSWGrgKO9DsnrbXfNPF483d3PpovYcaPbWDOnGCLniZYSM55R63LhMiOVgdzlBVgJCm2SiVzrhLEClBUFZ6CA6gzEkFz0c9e--dpgaNNVs_F1tzLlXBgAoaXqXKJ3Od-E4LFI1778tP47ZTTdRZX2UaW7qNJ9VB1l_lCubH-_a70tq3_Ycc-WiHjYlkBiKDDxA8sEd9I
CODEN IJESLY
CitedBy_id crossref_primary_10_1109_TC_2020_2972520
crossref_primary_10_1002_cpe_6363
crossref_primary_10_1016_j_neucom_2021_08_059
crossref_primary_10_1109_JETCAS_2021_3101740
crossref_primary_10_1109_TSMC_2024_3370221
crossref_primary_10_1109_TCSI_2021_3099034
crossref_primary_10_1109_TPDS_2021_3067825
crossref_primary_10_1016_j_spl_2022_109698
crossref_primary_10_3389_fninf_2024_1430987
crossref_primary_10_1007_s41315_022_00231_5
crossref_primary_10_1109_JSAC_2021_3126024
Cites_doi 10.1109/JSSC.2016.2616357
10.1109/ACSSC.2017.8335713
10.1145/3007787.3001165
10.1109/CVPR.2015.7298594
10.1145/3007787.3001163
10.1038/s41467-018-04316-3
10.1109/ISPA/IUCC.2017.00099
10.1109/MICRO.2016.7783723
10.1109/ITA.2018.8502950
10.1145/2541940.2541967
10.1109/DATE.2007.364613
10.1109/92.784098
10.1145/3079856.3080246
10.1016/j.vlsi.2017.12.009
10.1109/29.46546
10.1145/2847263.2847276
10.1109/RECONFIG.2018.8641739
10.1109/ICCCNT.2018.8494011
10.1007/978-3-319-68600-4_32
10.1109/ICCV.2015.123
10.1109/VTC.2001.957178
10.1145/3007787.3001138
10.1093/imanum/20.3.389
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JETCAS.2019.2910864
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2156-3365
EndPage 345
ExternalDocumentID 10_1109_JETCAS_2019_2910864
8689061
Genre orig-research
GrantInformation_xml – fundername: Division of Computing and Communication Foundations
  grantid: 1763747
  funderid: 10.13039/100000143
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c297t-71c51ee228744eb2b0acd3cb94596dcdf6a465ea8b3d77811f65a3f2165607b63
IEDL.DBID RIE
ISSN 2156-3357
IngestDate Sun Jun 29 16:54:53 EDT 2025
Tue Jul 01 00:41:35 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Wed Aug 27 05:56:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-71c51ee228744eb2b0acd3cb94596dcdf6a465ea8b3d77811f65a3f2165607b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8283-0168
0000-0003-3084-1428
PQID 2239663745
PQPubID 2040416
PageCount 14
ParticipantIDs proquest_journals_2239663745
crossref_primary_10_1109_JETCAS_2019_2910864
crossref_citationtrail_10_1109_JETCAS_2019_2910864
ieee_primary_8689061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal on emerging and selected topics in circuits and systems
PublicationTitleAbbrev JETCAS
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
aghasi (ref13) 2017
goodfellow (ref34) 2016
ref11
jenatton (ref52) 2011; 12
xu (ref50) 2015
ref19
srivastava (ref10) 2014; 15
han (ref3) 2015
sindhwani (ref15) 2015
ref51
wen (ref14) 2016
guan (ref33) 2017
ref46
lewis (ref41) 2004; 5
ref48
ref44
chen (ref7) 2015
ref9
ref4
krizhevsky (ref1) 2012
ref5
masters (ref39) 2018
wang (ref16) 2018
lecun (ref40) 2018
coates (ref2) 2013; 28
ref37
ref31
ref30
prabhu (ref18) 2017
hinton (ref42) 2012
garofolo (ref43) 2018
krizhevsky (ref45) 2009
bourely (ref17) 2017
kingma (ref47) 2014
han (ref8) 2015
wang (ref32) 2017; 36
ref24
ref23
ref26
ref25
ref20
ref22
ref21
yosinski (ref35) 2012
ref28
ref27
goyal (ref38) 2017
ref29
weste (ref36) 2010
gong (ref6) 2014
ba (ref49) 2014
References_xml – volume: 5
  start-page: 361
  year: 2004
  ident: ref41
  article-title: RCV1: A new benchmark collection for text categorization research
  publication-title: J Mach Learn Res
– year: 2017
  ident: ref18
  publication-title: Deep expander networks Efficient deep networks from graph theory
– ident: ref23
  doi: 10.1109/JSSC.2016.2616357
– year: 2018
  ident: ref40
  publication-title: The MNIST Database of Handwritten Digits
– ident: ref21
  doi: 10.1109/ACSSC.2017.8335713
– year: 2016
  ident: ref34
  publication-title: Deep Learning
– ident: ref12
  doi: 10.1145/3007787.3001165
– ident: ref5
  doi: 10.1109/CVPR.2015.7298594
– volume: 28
  start-page: iii-1337
  year: 2013
  ident: ref2
  article-title: Deep learning with COTS HPC systems
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref9
  doi: 10.1145/3007787.3001163
– start-page: 1135
  year: 2015
  ident: ref3
  article-title: Learning both weights and connections for efficient neural network
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– year: 2014
  ident: ref6
  publication-title: Compressing deep convolutional networks using vector quantization
– year: 2010
  ident: ref36
  publication-title: CMOS VLSI Design A Circuits and Systems Perspective
– ident: ref19
  doi: 10.1038/s41467-018-04316-3
– start-page: 1097
  year: 2012
  ident: ref1
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref10
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– year: 2012
  ident: ref42
  publication-title: Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
– ident: ref31
  doi: 10.1109/ISPA/IUCC.2017.00099
– ident: ref25
  doi: 10.1109/MICRO.2016.7783723
– ident: ref22
  doi: 10.1109/ITA.2018.8502950
– year: 2015
  ident: ref8
  publication-title: Deep compression Compressing deep neural networks with pruning trained quantization and huffman coding
– year: 2014
  ident: ref49
  publication-title: Multiple object recognition with visual attention
– volume: 36
  start-page: 513
  year: 2017
  ident: ref32
  article-title: DLAU: A scalable deep learning accelerator unit on FPGA
  publication-title: IEEE Trans Comput -Aided Design Integr Circuits Syst
– ident: ref27
  doi: 10.1145/2541940.2541967
– ident: ref29
  doi: 10.1109/DATE.2007.364613
– year: 2018
  ident: ref39
  publication-title: Revisiting small batch training for deep neural networks
– year: 2017
  ident: ref38
  publication-title: Accurate large minibatch sgd Training imagenet in 1 hour
– volume: 12
  start-page: 2777
  year: 2011
  ident: ref52
  article-title: Structured variable selection with sparsity-inducing norms
  publication-title: J Mach Learn Res
– year: 2018
  ident: ref43
  publication-title: TIMIT Acoustic-Phonetic Continuous Speech Corpus
– year: 2009
  ident: ref45
  article-title: Learning multiple layers of features from tiny images
– ident: ref28
  doi: 10.1109/92.784098
– ident: ref4
  doi: 10.1145/3079856.3080246
– ident: ref24
  doi: 10.1016/j.vlsi.2017.12.009
– start-page: 3177
  year: 2017
  ident: ref13
  article-title: Net-trim: Convex pruning of deep neural networks with performance guarantee
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– start-page: 1
  year: 2012
  ident: ref35
  article-title: Visually debugging restricted Boltzmann machine training with a 3D example
  publication-title: Proc Int Conf Mach Learn (ICML)
– start-page: 2048
  year: 2015
  ident: ref50
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: Proc Int Conf Mach Learn (ICML)
– start-page: 2074
  year: 2016
  ident: ref14
  article-title: Learning structured sparsity in deep neural networks
  publication-title: Proc Adv Neural Inf Process Syst (NIPS)
– start-page: 3088
  year: 2015
  ident: ref15
  article-title: Structured transforms for small-footprint deep learning
  publication-title: Proc Adv Neural Inform Process Syst (NIPS)
– start-page: 11
  year: 2018
  ident: ref16
  article-title: C-LSTM: Enabling efficient LSTM using structured compression techniques on FPGAs
  publication-title: Proc ACM Int Symp Field-Program Gate Arrays (FPGA)
– ident: ref44
  doi: 10.1109/29.46546
– ident: ref26
  doi: 10.1145/2847263.2847276
– ident: ref37
  doi: 10.1109/RECONFIG.2018.8641739
– ident: ref48
  doi: 10.1109/ICCCNT.2018.8494011
– ident: ref20
  doi: 10.1007/978-3-319-68600-4_32
– ident: ref46
  doi: 10.1109/ICCV.2015.123
– year: 2017
  ident: ref33
  publication-title: Recursive binary neural network learning model with 2 28b/weight storage requirement
– year: 2017
  ident: ref17
  publication-title: Sparse neural networks topologies
– ident: ref30
  doi: 10.1109/VTC.2001.957178
– year: 2014
  ident: ref47
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– ident: ref11
  doi: 10.1145/3007787.3001138
– start-page: 1
  year: 2015
  ident: ref7
  article-title: Compressing neural networks with the hashing trick
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref51
  doi: 10.1093/imanum/20.3.389
SSID ssj0000561644
Score 2.3223886
Snippet Neural networks have proven to be extremely powerful tools for modern artificial intelligence applications, but computational and storage complexity remain...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 332
SubjectTerms Acceleration
Artificial intelligence
Artificial neural networks
Complexity
Complexity theory
Computation
Computer architecture
Energy storage
Field programmable gate arrays
Hardware
hardware acceleration
Inference
Junctions
Machine learning
multilayer perceptron
Multilayer perceptrons
neural network
Neural networks
Neurons
Sparsity
Training
Title Pre-Defined Sparse Neural Networks With Hardware Acceleration
URI https://ieeexplore.ieee.org/document/8689061
https://www.proquest.com/docview/2239663745
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT3rwLdYXOXjsxiT76h48FB8UwSJU0VvYxwRFaUtNEfz17m7S4AvxFsJu2MxM8s3sznyD0LH1xYwOljAklGJKjcJaCIIJyAwIFA5T_Yb-9ZAP7ujVA3tooW5TCwMAIfkMYn8ZzvLtxMz9VtlJj_dk4mOdJRe4VbVazX6K94R56N3qQIxjQpioSYbSRJ5cXdye9Uc-k0vGmfTdhegXIAqdVX78jgPGXK6h68XqqtSS53he6ti8fyNu_O_y19Fq7WxG_co6NlALxpto5RMF4RY6vZkBPofC3bHRaOrCXIg8YYebNqwyxF-j-6fyMfJH_G9qBlHfGAdVleFso7tL984DXLdUwCaTosQiNSwFyALrvQuqdaKMJUZLyiS3xhZcUc5A9TSxwhehFpwpUmSBo0doTnZQezwZwy6KlNOkYlZwZRwSpoVOnDUkxjBqMptw3UHZQr65qfnGfduLlzzEHYnMK6XkXil5rZQO6jaTphXdxt_Dt7yYm6G1hDvoYKHIvP4kX3PnB7nQjgjK9n6ftY-W_bOrPLAD1C5nczh0Hkepj4KpfQCwuM_1
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcgAOvAoiUMAHuLGps8_soYeIUqWvCKmt6M3sYywQKK0SRxX8Fv4K_43ZtRPxErdK3Cxr17Z2PvubWc98A_AipmJGoiWGpZRMyuCYN0YwgZajwJo4NW3oH030-FTun6mzNfi2qoVBxJx8hv10mP_lx_OwSFtlW0M9tMQ_XQrlAX65pABtvr23Q9Z8yfnum5PXY9b1EGCBW9MwMwhqgMizzDtFkb50IYrgrVRWxxBr7aRW6IZeRJOqLmutnKh5FqUxXgu67jW4Tn6G4m112GoHJ_neOneLJdrUTAhlOlmjQWm39ulhRscpd8z2uU39jOQv1Jd7ufxBAJnVdu_A9-V6tMksn_qLxvfD19-kIv_XBbsLtzt3uhi1-L8Hazi9D7d-ElncgO23M2Q7WNOZWBxfUCCPRZIkoWmTNgd-Xrz72HwoUhLDpZthMQqByLh9NR7A6ZU8_0NYn55P8REUjrDqVDTaBeL6Qe1LwnsZgpKBx1L7HvClPavQKaqnxh6fqxxZlbZqQVAlEFQdCHrwajXpohUU-ffwjWTW1dDOoj3YXAKn6j4684o8PQpehZHq8d9nPYcb45Ojw-pwb3LwBG6m-7RZb5uw3swW-JT8q8Y_yzAv4P1Vw-QHS_YtRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pre-Defined+Sparse+Neural+Networks+With+Hardware+Acceleration&rft.jtitle=IEEE+journal+on+emerging+and+selected+topics+in+circuits+and+systems&rft.au=Dey%2C+Sourya&rft.au=Huang%2C+Kuan-Wen&rft.au=Beerel%2C+Peter+A.&rft.au=Chugg%2C+Keith+M.&rft.date=2019-06-01&rft.issn=2156-3357&rft.eissn=2156-3365&rft.volume=9&rft.issue=2&rft.spage=332&rft.epage=345&rft_id=info:doi/10.1109%2FJETCAS.2019.2910864&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JETCAS_2019_2910864
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2156-3357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2156-3357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2156-3357&client=summon