Single feature to achieve gas recognition: Humidity interference suppression strategy based on temperature modulation and principal component linear discriminant analysis

Metal oxide semiconductor (MOS) sensors have been broadly employed for gas detection. However, the distinctive chemical detection principle of MOS sensors renders them susceptible to interference by humidity. This paper proposes a novel method for suppressing humidity interference. This method posse...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 423; p. 136842
Main Authors Yuan, Zhenyu, Sun, Hao, Ji, Hanyang, Meng, Fanli
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal oxide semiconductor (MOS) sensors have been broadly employed for gas detection. However, the distinctive chemical detection principle of MOS sensors renders them susceptible to interference by humidity. This paper proposes a novel method for suppressing humidity interference. This method possesses advantages, including rapid recognition, low power consumption, and the capability to achieve recognition using a single feature. Temperature modulation technology was used to record the sensor's resistance variation, and the response features of the obtained dynamic response signal are affected by both humidity and the measured gas. The suppression of humidity interference is achieved through the investigation of the response features of humidity and the measured gas. The response features of humidity and gas are amplified by column normalization. Principal Component Linear Discriminant Analysis (PC-LDA) is utilized to acquire humidity and gas information within data. Using ethanol as the primary experimental subject, suppression of humidity interference is achieved through a single feature (PC-LD2). Quantitative recognition of relative humidity (RH) can be achieved using PC-LD1. Multiple types of waveform and sensor were used to demonstrate the generalization of this method. •The principal component linear discriminant analysis was first used to suppress humidity interference.•Suppression of humidity interference was achieved through a single feature.•The response features of humidity and gas were amplified by column-wise normalization.
AbstractList Metal oxide semiconductor (MOS) sensors have been broadly employed for gas detection. However, the distinctive chemical detection principle of MOS sensors renders them susceptible to interference by humidity. This paper proposes a novel method for suppressing humidity interference. This method possesses advantages, including rapid recognition, low power consumption, and the capability to achieve recognition using a single feature. Temperature modulation technology was used to record the sensor's resistance variation, and the response features of the obtained dynamic response signal are affected by both humidity and the measured gas. The suppression of humidity interference is achieved through the investigation of the response features of humidity and the measured gas. The response features of humidity and gas are amplified by column normalization. Principal Component Linear Discriminant Analysis (PC-LDA) is utilized to acquire humidity and gas information within data. Using ethanol as the primary experimental subject, suppression of humidity interference is achieved through a single feature (PC-LD2). Quantitative recognition of relative humidity (RH) can be achieved using PC-LD1. Multiple types of waveform and sensor were used to demonstrate the generalization of this method. •The principal component linear discriminant analysis was first used to suppress humidity interference.•Suppression of humidity interference was achieved through a single feature.•The response features of humidity and gas were amplified by column-wise normalization.
ArticleNumber 136842
Author Ji, Hanyang
Meng, Fanli
Yuan, Zhenyu
Sun, Hao
Author_xml – sequence: 1
  givenname: Zhenyu
  surname: Yuan
  fullname: Yuan, Zhenyu
  organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 2
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
  organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 3
  givenname: Hanyang
  surname: Ji
  fullname: Ji, Hanyang
  organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 4
  givenname: Fanli
  surname: Meng
  fullname: Meng, Fanli
  email: mengfanli@ise.neu.edu.cn
  organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
BookMark eNp9kE1OwzAQRr0oEi1wAHa-QIvtukkDK1TxJ1ViAaytiT0pUyVOZLuVeiVOiUtZsWA10mjep_nehI1875GxaylmUsjiZjuLvp4pofRMzoulViM2FpVaTLUQi3M2iXErhNDzQozZ1xv5TYu8QUi7gDz1HOwn4R75BiIPaPuNp0S9v-XPu44cpQMnnzA0GNBb5HE3DAFjzCc8pgAJNwdeQ0TH8yZhN2A4ZXe927VwzOLgHR8CeUsDtNz23ZAr-MRb8giBO4o2UEce8g48tIdI8ZKdNdBGvPqdF-zj8eF99Txdvz69rO7XU6uqMk1LsUBZ6mUDhV5ap4WqrLJKzmsArGotXOWg1I1b2NqpulqKRoNyuihlU4tCzi-YPOXa0McYsDH50w7CwUhhjoLN1mTB5ijYnARnpvzDWEo_VbMRav8l704k5kp7wmCipaNYR1l-Mq6nf-hv9sCgWw
CitedBy_id crossref_primary_10_3390_nano14242052
crossref_primary_10_1016_j_snb_2025_137606
Cites_doi 10.1016/j.snb.2021.130035
10.1021/acssensors.1c01704
10.1016/j.snb.2020.127729
10.1016/j.snb.2021.130867
10.1016/j.snb.2008.04.011
10.1021/acs.nanolett.6b01713
10.1016/j.snb.2003.12.072
10.1021/acsanm.2c01963
10.1016/j.snb.2023.134710
10.1109/TIM.2019.2948413
10.1016/j.snb.2021.130698
10.1016/j.microrel.2018.03.034
10.1021/acssensors.3c01839
10.1016/j.measurement.2020.108022
10.1016/j.snb.2022.131894
10.1016/S0925-4005(99)00230-0
10.1016/j.snb.2022.131707
10.1109/JIOT.2023.3302408
10.3390/ma15248728
10.1016/S0925-4005(03)00411-8
10.1016/j.snb.2022.131418
10.1021/cr068116m
10.1016/j.snb.2003.09.011
10.1016/j.snb.2016.05.113
10.1016/j.apsusc.2020.145335
10.1016/j.snb.2020.128446
10.1002/1099-128X(200009/12)14:5/6<711::AID-CEM607>3.0.CO;2-4
10.1016/j.snb.2024.136088
10.1016/j.snb.2008.06.046
10.1088/1748-9326/acf7d7
10.1088/0953-8984/15/20/201
10.1109/TASE.2012.2236554
10.1016/j.snb.2023.134232
10.1016/j.snb.2015.03.018
10.1002/grl.50971
10.1016/j.snb.2020.129091
10.3390/s16020233
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.snb.2024.136842
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_snb_2024_136842
S0925400524015727
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABFNM
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFJKZ
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
RIG
SCB
SCH
SSH
WUQ
ID FETCH-LOGICAL-c297t-705e1748fa648cd4029c2c213baae9b40d9da74fd5cbd2b980f4a2d4671fb0613
IEDL.DBID .~1
ISSN 0925-4005
IngestDate Thu Apr 24 23:11:53 EDT 2025
Tue Jul 01 02:06:20 EDT 2025
Sat Dec 28 15:49:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Humidity interference
Principal component linear discriminant analysis
Temperature modulation
Metal oxide semiconductor gas sensor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-705e1748fa648cd4029c2c213baae9b40d9da74fd5cbd2b980f4a2d4671fb0613
ParticipantIDs crossref_primary_10_1016_j_snb_2024_136842
crossref_citationtrail_10_1016_j_snb_2024_136842
elsevier_sciencedirect_doi_10_1016_j_snb_2024_136842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hierlemann, Gutierrez-Osuna (bib28) 2008; 108
Delpha, Lumbreras, Siadat (bib31) 2004; 98
Wozniak, Kalinowski, Jasinski, Jasinski (bib22) 2018; 84
Ionescu, Llobet, Brezmes, Vilanova, Correig (bib26) 2003; 95
Meng, Shi, Yuan, Ji, Qin, Shen, Xing (bib4) 2022; 350
Shooshtari, Salehi (bib32) 2022; 357
Wang, Han, Yang, Cheng, Wang, Feng (bib18) 2022; 361
Struchkov, Romashkin, Rabchinskii, Saveliev, Cherviakova, Chumakov (bib40) 2024; 417
Artursson, Eklöv, Lundström, Mårtensson, Sjöström, Holmberg (bib29) 2000; 14
Xu, Jia, Guan, Shen (bib10) 2013; 10
Wang, Guo, Zhao, Hu, Tang, Zhou (bib17) 2024; 398
Ankara, Kammerer, Gramm, Schütze (bib30) 2004; 100
Li, Wu, Liu, Yuan, Chiang, Zhang, Wu (bib2) 2021; 341
Mahdavi, Rahbarpour, Hosseini-Golgoo, Jamaati (bib19) 2021; 331
Qi, Zhang, Zheng, Fan, Liu, Wang, Zeng (bib12) 2008; 134
Yin, Shen, Zhou, Lu, Li, Zhao (bib34) 2020; 509
Ko, Ho (bib7) 2013; 48
Byrne, O'Gorman (bib6) 2013; 40
Chen, Zhao, Yuan, Zhang, Li, Wang (bib11) 2023; 15
Zhao, Shen, Zhou, Hao, Xu, Gao (bib24) 2020; 308
Malyshev, Pislyakov (bib13) 2008; 134
Liu, Meng, Deng, Nagashima, Wang, Dai (bib3) 2021; 6
Lei, Rao, Zhang, Cai, Xie (bib27) 2016; 235
Li, Chananonnawathorn, Pan, Limwichean, Deng, Horprathum (bib33) 2023; 9
Illyaskutty, Knoblauch, Schwotzer, Kohler (bib36) 2015; 217
Cho, Yoo, Kim, Jung, Jin, Kim (bib1) 2016; 16
Tian, Zhang, Yang, Zhao, Liang, Liu, Wang (bib21) 2016; 16
Yuan, Han, Meng, Zuo (bib25) 2020; 69
Wu, Dai, Hu, Yu, Ogbeide, De Luca (bib39) 2020; 321
Bârsan, Weimar (bib15) 2003; 15
Di, Yu (bib9) 2012; 374
Ji, Qin, Yuan, Meng (bib37) 2021; 348
Yu, Yin, Zhao, Yuan (bib20) 2020; 164
Ji, Zhu, Wang, Kong, Cheng, Yuan, Meng (bib38) 2023; 393
Oh, Kim, Lee, Hwang, Ku, Lim (bib5) 2022; 364
Huang, Song (bib8) 2023; 18
Wang, Zhou (bib16) 2022; 15
Miao, Chen, Wang, Guo, Huang (bib35) 2022
Delpha, Siadat, Lumbreras (bib14) 1999; 59
Ji, Zhu, Zhang, Zhang, Yuan, Meng (bib23) 2024; 11
Wozniak (10.1016/j.snb.2024.136842_bib22) 2018; 84
Struchkov (10.1016/j.snb.2024.136842_bib40) 2024; 417
Yin (10.1016/j.snb.2024.136842_bib34) 2020; 509
Delpha (10.1016/j.snb.2024.136842_bib14) 1999; 59
Zhao (10.1016/j.snb.2024.136842_bib24) 2020; 308
Byrne (10.1016/j.snb.2024.136842_bib6) 2013; 40
Illyaskutty (10.1016/j.snb.2024.136842_bib36) 2015; 217
Malyshev (10.1016/j.snb.2024.136842_bib13) 2008; 134
Wang (10.1016/j.snb.2024.136842_bib16) 2022; 15
Yuan (10.1016/j.snb.2024.136842_bib25) 2020; 69
Ankara (10.1016/j.snb.2024.136842_bib30) 2004; 100
Wang (10.1016/j.snb.2024.136842_bib17) 2024; 398
Delpha (10.1016/j.snb.2024.136842_bib31) 2004; 98
Bârsan (10.1016/j.snb.2024.136842_bib15) 2003; 15
Ionescu (10.1016/j.snb.2024.136842_bib26) 2003; 95
Lei (10.1016/j.snb.2024.136842_bib27) 2016; 235
Yu (10.1016/j.snb.2024.136842_bib20) 2020; 164
Wu (10.1016/j.snb.2024.136842_bib39) 2020; 321
Chen (10.1016/j.snb.2024.136842_bib11) 2023; 15
Ji (10.1016/j.snb.2024.136842_bib23) 2024; 11
Li (10.1016/j.snb.2024.136842_bib33) 2023; 9
Ji (10.1016/j.snb.2024.136842_bib38) 2023; 393
Li (10.1016/j.snb.2024.136842_bib2) 2021; 341
Wang (10.1016/j.snb.2024.136842_bib18) 2022; 361
Cho (10.1016/j.snb.2024.136842_bib1) 2016; 16
Liu (10.1016/j.snb.2024.136842_bib3) 2021; 6
Xu (10.1016/j.snb.2024.136842_bib10) 2013; 10
Ji (10.1016/j.snb.2024.136842_bib37) 2021; 348
Ko (10.1016/j.snb.2024.136842_bib7) 2013; 48
Huang (10.1016/j.snb.2024.136842_bib8) 2023; 18
Di (10.1016/j.snb.2024.136842_bib9) 2012; 374
Qi (10.1016/j.snb.2024.136842_bib12) 2008; 134
Hierlemann (10.1016/j.snb.2024.136842_bib28) 2008; 108
Mahdavi (10.1016/j.snb.2024.136842_bib19) 2021; 331
Miao (10.1016/j.snb.2024.136842_bib35) 2022
Meng (10.1016/j.snb.2024.136842_bib4) 2022; 350
Tian (10.1016/j.snb.2024.136842_bib21) 2016; 16
Shooshtari (10.1016/j.snb.2024.136842_bib32) 2022; 357
Artursson (10.1016/j.snb.2024.136842_bib29) 2000; 14
Oh (10.1016/j.snb.2024.136842_bib5) 2022; 364
References_xml – volume: 350
  year: 2022
  ident: bib4
  article-title: Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode
  publication-title: Sens Actuator B Chem.
– volume: 134
  start-page: 36
  year: 2008
  end-page: 42
  ident: bib12
  article-title: Electrical response of Sm
  publication-title: Sens Actuator B Chem.
– volume: 134
  start-page: 913
  year: 2008
  end-page: 921
  ident: bib13
  article-title: Investigation of gas-sensitivity of sensor structures to hydrogen in a wide range of temperature, concentration and humidity of gas medium
  publication-title: Sens Actuator B Chem.
– volume: 40
  start-page: 5223
  year: 2013
  end-page: 5227
  ident: bib6
  article-title: Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models
  publication-title: Geophys. Res. Lett.
– volume: 108
  start-page: 563
  year: 2008
  end-page: 613
  ident: bib28
  article-title: Higher-order chemical sensing
  publication-title: Chem. Rev.
– volume: 16
  start-page: 4508
  year: 2016
  end-page: 4515
  ident: bib1
  article-title: High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds
  publication-title: Nano Lett.
– volume: 11
  start-page: 4934
  year: 2024
  end-page: 4941
  ident: bib23
  article-title: Semiconductor sensor virtual array: gas detection strategy in internet of things to suppress humidity interference
  publication-title: IEEE Internet Things J.
– volume: 16
  start-page: 17
  year: 2016
  ident: bib21
  article-title: Suppression of strong background interference on E-Nose sensors in an open country environment
  publication-title: Sensors
– volume: 321
  year: 2020
  ident: bib39
  article-title: Machine-intelligent inkjet-printed α-Fe
  publication-title: Sens Actuator B Chem.
– volume: 417
  year: 2024
  ident: bib40
  article-title: Aminated reduced graphene oxide-carbon nanotube composite gas sensors for ammonia recognition
  publication-title: Sens Actuator B Chem.
– volume: 100
  start-page: 240
  year: 2004
  end-page: 245
  ident: bib30
  article-title: Low power virtual sensor array based on a micromachined gas sensor for fast discrimination between H
  publication-title: Sens Actuator B Chem.
– start-page: 10636
  year: 2022
  end-page: 10644
  ident: bib35
  article-title: SnO
  publication-title: ACS Appl. Nano Mater.
– volume: 341
  year: 2021
  ident: bib2
  article-title: Mesoporous WO
  publication-title: Sens Actuator B Chem.
– volume: 59
  start-page: 255
  year: 1999
  end-page: 259
  ident: bib14
  article-title: Humidity dependence of a TGS gas sensor array in an air-conditioned atmosphere
  publication-title: Sens Actuator B Chem.
– volume: 331
  year: 2021
  ident: bib19
  article-title: Reducing the destructive effect of ambient humidity variations on gas detection capability of a temperature modulated gas sensor by calcium chloride
  publication-title: Sens Actuator B Chem.
– volume: 374
  start-page: 635
  year: 2012
  end-page: 638
  ident: bib9
  article-title: The feasibility research of temperature and humidity independent controlled air-conditioning system in textile factory
  publication-title: Adv. Mater. Res.
– volume: 393
  year: 2023
  ident: bib38
  article-title: Gas detection strategy to suppress flow rate interference baesd on semiconductor sensor dynamic temperature modulation measurement
  publication-title: Sens Actuator B Chem.
– volume: 6
  start-page: 4167
  year: 2021
  end-page: 4175
  ident: bib3
  article-title: Discriminating BTX molecules by the nonselective metal oxide sensor-based smart sensing system
  publication-title: ACS Sens.
– volume: 217
  start-page: 2
  year: 2015
  end-page: 12
  ident: bib36
  article-title: Thermally modulated multi sensor arrays of SnO
  publication-title: Sens Actuator B Chem.
– volume: 164
  year: 2020
  ident: bib20
  article-title: A recursive correction FDA method based on ICA combined with STAW of vinegar E-nose data
  publication-title: Measurement
– volume: 69
  start-page: 4533
  year: 2020
  end-page: 4544
  ident: bib25
  article-title: Detection and identification of volatile organic compounds based on temperature-modulated ZnO sensors
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 9
  start-page: 206
  year: 2023
  end-page: 216
  ident: bib33
  article-title: Prompt electronic discrimination of gas molecules by self-heating temperature modulation
  publication-title: ACS Sens.
– volume: 10
  start-page: 603
  year: 2013
  end-page: 614
  ident: bib10
  article-title: Smart management of multiple energy systems in automotive painting shop
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 48
  start-page: 19
  year: 2013
  end-page: 36
  ident: bib7
  article-title: A study on the change of humidity by City Size in South Korea
  publication-title: J. Korean Geogr. Soc.
– volume: 95
  start-page: 177
  year: 2003
  end-page: 182
  ident: bib26
  article-title: Dealing with humidity in the qualitative analysis of CO and
  publication-title: Sens Actuator B Chem.
– volume: 15
  start-page: R813
  year: 2003
  end-page: R839
  ident: bib15
  article-title: Understanding the fundamental principles of metal oxide based gas sensors: the example of CO sensing with
  publication-title: J. Phys. Condens. Matter
– volume: 15
  start-page: 8728
  year: 2022
  ident: bib16
  article-title: Recent progress on anti-humidity strategies of chemiresistive gas sensors
  publication-title: Materials
– volume: 398
  year: 2024
  ident: bib17
  article-title: WO
  publication-title: Sens Actuator B Chem.
– volume: 15
  start-page: 15051288
  year: 2023
  ident: bib11
  article-title: Drying process of waterborne paint film on bamboo laminated lumber for furniture
  publication-title: Polymers
– volume: 235
  start-page: 481
  year: 2016
  end-page: 491
  ident: bib27
  article-title: The irreversible R-T curves of metal oxide gas sensor under programmed temperature cycle
  publication-title: Sens Actuator B Chem.
– volume: 357
  year: 2022
  ident: bib32
  article-title: An electronic nose based on carbon nanotube-titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds
  publication-title: Sens Actuator B Chem.
– volume: 14
  start-page: 711
  year: 2000
  end-page: 723
  ident: bib29
  article-title: Drift correction for gas sensors using multivariate methods
  publication-title: J. Chemom.
– volume: 509
  year: 2020
  ident: bib34
  article-title: Fabrication, characterization and n-propanol sensing properties of perovskite-type ZnSnO
  publication-title: Appl. Surf. Sci.
– volume: 348
  year: 2021
  ident: bib37
  article-title: Qualitative and quantitative recognition method of drug-producing chemicals based on SnO
  publication-title: Sens Actuator B Chem.
– volume: 308
  year: 2020
  ident: bib24
  article-title: Enhanced NO
  publication-title: Sens. Actuators B
– volume: 18
  year: 2023
  ident: bib8
  article-title: Urban moisture and dry islands: spatiotemporal variation patterns and mechanisms of urban air humidity changes across the globe
  publication-title: Environ. Res. Lett.
– volume: 364
  year: 2022
  ident: bib5
  article-title: Machine learning-based discrimination of indoor pollutants using an oxide gas sensor array: high endurance against ambient humidity and temperature
  publication-title: Sens Actuator B Chem.
– volume: 361
  year: 2022
  ident: bib18
  article-title: Conductometric ppb-level triethylamine sensor based on macroporous WO
  publication-title: Sens Actuator B Chem.
– volume: 84
  start-page: 163
  year: 2018
  end-page: 169
  ident: bib22
  article-title: FFT analysis of temperature modulated semiconductor gas sensor response for the prediction of ammonia concentration under humidity interference
  publication-title: Microelectron. Reliab.
– volume: 98
  start-page: 46
  year: 2004
  end-page: 53
  ident: bib31
  article-title: Discrimination and identification of a refrigerant gas in a humidity controlled atmosphere containing or not carbon dioxide: application to the electronic nose
  publication-title: Sens Actuator B Chem.
– volume: 341
  year: 2021
  ident: 10.1016/j.snb.2024.136842_bib2
  article-title: Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2021.130035
– volume: 6
  start-page: 4167
  year: 2021
  ident: 10.1016/j.snb.2024.136842_bib3
  article-title: Discriminating BTX molecules by the nonselective metal oxide sensor-based smart sensing system
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.1c01704
– volume: 308
  year: 2020
  ident: 10.1016/j.snb.2024.136842_bib24
  article-title: Enhanced NO2 sensing performance of ZnO nanowires functionalized with ultra-fine In2O3 nanoparticles
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2020.127729
– volume: 350
  year: 2022
  ident: 10.1016/j.snb.2024.136842_bib4
  article-title: Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2021.130867
– volume: 134
  start-page: 36
  year: 2008
  ident: 10.1016/j.snb.2024.136842_bib12
  article-title: Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2008.04.011
– volume: 16
  start-page: 4508
  year: 2016
  ident: 10.1016/j.snb.2024.136842_bib1
  article-title: High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01713
– volume: 100
  start-page: 240
  year: 2004
  ident: 10.1016/j.snb.2024.136842_bib30
  article-title: Low power virtual sensor array based on a micromachined gas sensor for fast discrimination between H2, CO and relative humidity
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2003.12.072
– start-page: 10636
  year: 2022
  ident: 10.1016/j.snb.2024.136842_bib35
  article-title: SnO2 NAnostructures Exposed with Various Crystal Facets for Temperature-modulated Sensing of Volatile Organic Compounds
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.2c01963
– volume: 398
  year: 2024
  ident: 10.1016/j.snb.2024.136842_bib17
  article-title: WO3 nanoparticles supported by Nb2CTx MXene for superior acetone detection under high humidity
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2023.134710
– volume: 69
  start-page: 4533
  year: 2020
  ident: 10.1016/j.snb.2024.136842_bib25
  article-title: Detection and identification of volatile organic compounds based on temperature-modulated ZnO sensors
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2948413
– volume: 348
  year: 2021
  ident: 10.1016/j.snb.2024.136842_bib37
  article-title: Qualitative and quantitative recognition method of drug-producing chemicals based on SnO2 gas sensor with dynamic measurement and PCA weak separation
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2021.130698
– volume: 84
  start-page: 163
  year: 2018
  ident: 10.1016/j.snb.2024.136842_bib22
  article-title: FFT analysis of temperature modulated semiconductor gas sensor response for the prediction of ammonia concentration under humidity interference
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2018.03.034
– volume: 9
  start-page: 206
  year: 2023
  ident: 10.1016/j.snb.2024.136842_bib33
  article-title: Prompt electronic discrimination of gas molecules by self-heating temperature modulation
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.3c01839
– volume: 164
  year: 2020
  ident: 10.1016/j.snb.2024.136842_bib20
  article-title: A recursive correction FDA method based on ICA combined with STAW of vinegar E-nose data
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108022
– volume: 364
  year: 2022
  ident: 10.1016/j.snb.2024.136842_bib5
  article-title: Machine learning-based discrimination of indoor pollutants using an oxide gas sensor array: high endurance against ambient humidity and temperature
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2022.131894
– volume: 59
  start-page: 255
  year: 1999
  ident: 10.1016/j.snb.2024.136842_bib14
  article-title: Humidity dependence of a TGS gas sensor array in an air-conditioned atmosphere
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/S0925-4005(99)00230-0
– volume: 361
  year: 2022
  ident: 10.1016/j.snb.2024.136842_bib18
  article-title: Conductometric ppb-level triethylamine sensor based on macroporous WO3−W18O49 heterostructures functionalized with carbon layers and PdO nanoparticles
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2022.131707
– volume: 11
  start-page: 4934
  year: 2024
  ident: 10.1016/j.snb.2024.136842_bib23
  article-title: Semiconductor sensor virtual array: gas detection strategy in internet of things to suppress humidity interference
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2023.3302408
– volume: 15
  start-page: 8728
  year: 2022
  ident: 10.1016/j.snb.2024.136842_bib16
  article-title: Recent progress on anti-humidity strategies of chemiresistive gas sensors
  publication-title: Materials
  doi: 10.3390/ma15248728
– volume: 95
  start-page: 177
  year: 2003
  ident: 10.1016/j.snb.2024.136842_bib26
  article-title: Dealing with humidity in the qualitative analysis of CO and NO2 using a WO3 sensor and dynamic signal processing
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/S0925-4005(03)00411-8
– volume: 357
  year: 2022
  ident: 10.1016/j.snb.2024.136842_bib32
  article-title: An electronic nose based on carbon nanotube-titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2022.131418
– volume: 108
  start-page: 563
  year: 2008
  ident: 10.1016/j.snb.2024.136842_bib28
  article-title: Higher-order chemical sensing
  publication-title: Chem. Rev.
  doi: 10.1021/cr068116m
– volume: 98
  start-page: 46
  year: 2004
  ident: 10.1016/j.snb.2024.136842_bib31
  article-title: Discrimination and identification of a refrigerant gas in a humidity controlled atmosphere containing or not carbon dioxide: application to the electronic nose
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2003.09.011
– volume: 235
  start-page: 481
  year: 2016
  ident: 10.1016/j.snb.2024.136842_bib27
  article-title: The irreversible R-T curves of metal oxide gas sensor under programmed temperature cycle
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2016.05.113
– volume: 509
  year: 2020
  ident: 10.1016/j.snb.2024.136842_bib34
  article-title: Fabrication, characterization and n-propanol sensing properties of perovskite-type ZnSnO3 nanospheres based gas sensor
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145335
– volume: 321
  year: 2020
  ident: 10.1016/j.snb.2024.136842_bib39
  article-title: Machine-intelligent inkjet-printed α-Fe2O3/rGO towards NO2 quantification in ambient humidity
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2020.128446
– volume: 14
  start-page: 711
  year: 2000
  ident: 10.1016/j.snb.2024.136842_bib29
  article-title: Drift correction for gas sensors using multivariate methods
  publication-title: J. Chemom.
  doi: 10.1002/1099-128X(200009/12)14:5/6<711::AID-CEM607>3.0.CO;2-4
– volume: 417
  year: 2024
  ident: 10.1016/j.snb.2024.136842_bib40
  article-title: Aminated reduced graphene oxide-carbon nanotube composite gas sensors for ammonia recognition
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2024.136088
– volume: 134
  start-page: 913
  year: 2008
  ident: 10.1016/j.snb.2024.136842_bib13
  article-title: Investigation of gas-sensitivity of sensor structures to hydrogen in a wide range of temperature, concentration and humidity of gas medium
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2008.06.046
– volume: 48
  start-page: 19
  year: 2013
  ident: 10.1016/j.snb.2024.136842_bib7
  article-title: A study on the change of humidity by City Size in South Korea
  publication-title: J. Korean Geogr. Soc.
– volume: 18
  year: 2023
  ident: 10.1016/j.snb.2024.136842_bib8
  article-title: Urban moisture and dry islands: spatiotemporal variation patterns and mechanisms of urban air humidity changes across the globe
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/acf7d7
– volume: 15
  start-page: R813
  year: 2003
  ident: 10.1016/j.snb.2024.136842_bib15
  article-title: Understanding the fundamental principles of metal oxide based gas sensors: the example of CO sensing with SnO2 sensors in the presence of humidity
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/15/20/201
– volume: 10
  start-page: 603
  year: 2013
  ident: 10.1016/j.snb.2024.136842_bib10
  article-title: Smart management of multiple energy systems in automotive painting shop
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2012.2236554
– volume: 393
  year: 2023
  ident: 10.1016/j.snb.2024.136842_bib38
  article-title: Gas detection strategy to suppress flow rate interference baesd on semiconductor sensor dynamic temperature modulation measurement
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2023.134232
– volume: 217
  start-page: 2
  year: 2015
  ident: 10.1016/j.snb.2024.136842_bib36
  article-title: Thermally modulated multi sensor arrays of SnO2 /additive/electrode combinations for enhanced gas identification
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2015.03.018
– volume: 374
  start-page: 635
  year: 2012
  ident: 10.1016/j.snb.2024.136842_bib9
  article-title: The feasibility research of temperature and humidity independent controlled air-conditioning system in textile factory
  publication-title: Adv. Mater. Res.
– volume: 40
  start-page: 5223
  year: 2013
  ident: 10.1016/j.snb.2024.136842_bib6
  article-title: Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50971
– volume: 15
  start-page: 15051288
  year: 2023
  ident: 10.1016/j.snb.2024.136842_bib11
  article-title: Drying process of waterborne paint film on bamboo laminated lumber for furniture
  publication-title: Polymers
– volume: 331
  year: 2021
  ident: 10.1016/j.snb.2024.136842_bib19
  article-title: Reducing the destructive effect of ambient humidity variations on gas detection capability of a temperature modulated gas sensor by calcium chloride
  publication-title: Sens Actuator B Chem.
  doi: 10.1016/j.snb.2020.129091
– volume: 16
  start-page: 17
  year: 2016
  ident: 10.1016/j.snb.2024.136842_bib21
  article-title: Suppression of strong background interference on E-Nose sensors in an open country environment
  publication-title: Sensors
  doi: 10.3390/s16020233
SSID ssj0004360
Score 2.4785078
Snippet Metal oxide semiconductor (MOS) sensors have been broadly employed for gas detection. However, the distinctive chemical detection principle of MOS sensors...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 136842
SubjectTerms Humidity interference
Metal oxide semiconductor gas sensor
Principal component linear discriminant analysis
Temperature modulation
Title Single feature to achieve gas recognition: Humidity interference suppression strategy based on temperature modulation and principal component linear discriminant analysis
URI https://dx.doi.org/10.1016/j.snb.2024.136842
Volume 423
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvG5zMGTUDdN023rbVmUVdGLCt5K0qSyou2yD8GLP8hf6UybrgrqwVMhJCRkhnmk33zD2GFMnGSh0Z7Is8CTylgviX1MVQIV2DhOTGSpwPnquju4kxf34X2L9ZtaGIJVOttf2_TKWruRjrvNzmg47NzwBJMbetbEFCFEN0wV7DIiLT9--4R5yKCqFKbJHs1u_mxWGK9JoTFFFJLAXrEUP_umL_7mbJWtuEARevVZ1ljLFuts-Qt94AZ7v8HPk4XcVuycMC2BoJH2xcKDmsAcG1QWJ4BiGxqMuIH4IcauyA8ms5EDwhYwqXlqX4EcmwEcIdoqx7kMz6Vxjb5AFQZG9Rs9HpAw6WWBrgsoYFVjoDrfulcYjinHebLJ7s5Ob_sDz_Ve8DKRRFMv4qHFZCXOVVdSfyMukkxkwg-0UjbRkpvEqEjmJsy0ETqJeS6VMGh2_VxTjLDFFgrcfZtB6EcmC4XJuPGJniw2vIuBSqSjwAod-DuMN7eeZo6YnPpjPKUNAu0xRUGlJKi0FtQOO5ovGdWsHH9Nlo0o02-qlaLX-H3Z7v-W7bElQS2Cue_54T5bmI5n9gDjlqluV4rZZou988vB9QcJk_Fb
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7relAP4hPfzsGTUDdN023rTRZlfV5U8FaSJpUV7S77ELz4g_yVzrSpD1APngohQ0MmnUf6zTeM7cXESRYa7Yk8CzypjPWS2MdUJVCBjePERJYKnC-v2t1beXYX3jVYp66FIVils_2VTS-ttRtpud1sDXq91jVPMLmha01MEUJ0w1NsWuLnS20MDl4_cR4yKEuFabZH0-tfmyXIa1RozBGFJLRXLMXPzumLwzlZYPMuUoSjajGLrGGLJTb3hT9wmb1d4-PRQm5Lek4Y94GwkfbZwr0awQc4qF8cAuqtZzDkBiKIGLoqPxhNBg4JW8CoIqp9AfJsBnCEeKsc6TI89Y3r9AWqMDCoLulxgQRK7xfou4AiVjUEKvStmoXhmHKkJyvs9uT4ptP1XPMFLxNJNPYiHlrMVuJctSU1OOIiyUQm_EArZRMtuUmMimRuwkwboZOY51IJg3bXzzUFCausWeDb1xiEfmSyUJiMG5_4yWLD2xipRDoKrNCBv854vetp5pjJqUHGY1pD0B5SVFRKikorRa2z_Q-RQUXL8ddkWasy_Xa2UnQbv4tt_E9sl810by4v0ovTq_NNNiuoXzD3PT_cYs3xcGK3MYgZ653ykL4DjkTy6Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+feature+to+achieve+gas+recognition%3A+Humidity+interference+suppression+strategy+based+on+temperature+modulation+and+principal+component+linear+discriminant+analysis&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Yuan%2C+Zhenyu&rft.au=Sun%2C+Hao&rft.au=Ji%2C+Hanyang&rft.au=Meng%2C+Fanli&rft.date=2025-01-15&rft.issn=0925-4005&rft.volume=423&rft.spage=136842&rft_id=info:doi/10.1016%2Fj.snb.2024.136842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_snb_2024_136842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon