Single feature to achieve gas recognition: Humidity interference suppression strategy based on temperature modulation and principal component linear discriminant analysis
Metal oxide semiconductor (MOS) sensors have been broadly employed for gas detection. However, the distinctive chemical detection principle of MOS sensors renders them susceptible to interference by humidity. This paper proposes a novel method for suppressing humidity interference. This method posse...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 423; p. 136842 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal oxide semiconductor (MOS) sensors have been broadly employed for gas detection. However, the distinctive chemical detection principle of MOS sensors renders them susceptible to interference by humidity. This paper proposes a novel method for suppressing humidity interference. This method possesses advantages, including rapid recognition, low power consumption, and the capability to achieve recognition using a single feature. Temperature modulation technology was used to record the sensor's resistance variation, and the response features of the obtained dynamic response signal are affected by both humidity and the measured gas. The suppression of humidity interference is achieved through the investigation of the response features of humidity and the measured gas. The response features of humidity and gas are amplified by column normalization. Principal Component Linear Discriminant Analysis (PC-LDA) is utilized to acquire humidity and gas information within data. Using ethanol as the primary experimental subject, suppression of humidity interference is achieved through a single feature (PC-LD2). Quantitative recognition of relative humidity (RH) can be achieved using PC-LD1. Multiple types of waveform and sensor were used to demonstrate the generalization of this method.
•The principal component linear discriminant analysis was first used to suppress humidity interference.•Suppression of humidity interference was achieved through a single feature.•The response features of humidity and gas were amplified by column-wise normalization. |
---|---|
AbstractList | Metal oxide semiconductor (MOS) sensors have been broadly employed for gas detection. However, the distinctive chemical detection principle of MOS sensors renders them susceptible to interference by humidity. This paper proposes a novel method for suppressing humidity interference. This method possesses advantages, including rapid recognition, low power consumption, and the capability to achieve recognition using a single feature. Temperature modulation technology was used to record the sensor's resistance variation, and the response features of the obtained dynamic response signal are affected by both humidity and the measured gas. The suppression of humidity interference is achieved through the investigation of the response features of humidity and the measured gas. The response features of humidity and gas are amplified by column normalization. Principal Component Linear Discriminant Analysis (PC-LDA) is utilized to acquire humidity and gas information within data. Using ethanol as the primary experimental subject, suppression of humidity interference is achieved through a single feature (PC-LD2). Quantitative recognition of relative humidity (RH) can be achieved using PC-LD1. Multiple types of waveform and sensor were used to demonstrate the generalization of this method.
•The principal component linear discriminant analysis was first used to suppress humidity interference.•Suppression of humidity interference was achieved through a single feature.•The response features of humidity and gas were amplified by column-wise normalization. |
ArticleNumber | 136842 |
Author | Ji, Hanyang Meng, Fanli Yuan, Zhenyu Sun, Hao |
Author_xml | – sequence: 1 givenname: Zhenyu surname: Yuan fullname: Yuan, Zhenyu organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 2 givenname: Hao surname: Sun fullname: Sun, Hao organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 3 givenname: Hanyang surname: Ji fullname: Ji, Hanyang organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 4 givenname: Fanli surname: Meng fullname: Meng, Fanli email: mengfanli@ise.neu.edu.cn organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China |
BookMark | eNp9kE1OwzAQRr0oEi1wAHa-QIvtukkDK1TxJ1ViAaytiT0pUyVOZLuVeiVOiUtZsWA10mjep_nehI1875GxaylmUsjiZjuLvp4pofRMzoulViM2FpVaTLUQi3M2iXErhNDzQozZ1xv5TYu8QUi7gDz1HOwn4R75BiIPaPuNp0S9v-XPu44cpQMnnzA0GNBb5HE3DAFjzCc8pgAJNwdeQ0TH8yZhN2A4ZXe927VwzOLgHR8CeUsDtNz23ZAr-MRb8giBO4o2UEce8g48tIdI8ZKdNdBGvPqdF-zj8eF99Txdvz69rO7XU6uqMk1LsUBZ6mUDhV5ap4WqrLJKzmsArGotXOWg1I1b2NqpulqKRoNyuihlU4tCzi-YPOXa0McYsDH50w7CwUhhjoLN1mTB5ijYnARnpvzDWEo_VbMRav8l704k5kp7wmCipaNYR1l-Mq6nf-hv9sCgWw |
CitedBy_id | crossref_primary_10_3390_nano14242052 crossref_primary_10_1016_j_snb_2025_137606 |
Cites_doi | 10.1016/j.snb.2021.130035 10.1021/acssensors.1c01704 10.1016/j.snb.2020.127729 10.1016/j.snb.2021.130867 10.1016/j.snb.2008.04.011 10.1021/acs.nanolett.6b01713 10.1016/j.snb.2003.12.072 10.1021/acsanm.2c01963 10.1016/j.snb.2023.134710 10.1109/TIM.2019.2948413 10.1016/j.snb.2021.130698 10.1016/j.microrel.2018.03.034 10.1021/acssensors.3c01839 10.1016/j.measurement.2020.108022 10.1016/j.snb.2022.131894 10.1016/S0925-4005(99)00230-0 10.1016/j.snb.2022.131707 10.1109/JIOT.2023.3302408 10.3390/ma15248728 10.1016/S0925-4005(03)00411-8 10.1016/j.snb.2022.131418 10.1021/cr068116m 10.1016/j.snb.2003.09.011 10.1016/j.snb.2016.05.113 10.1016/j.apsusc.2020.145335 10.1016/j.snb.2020.128446 10.1002/1099-128X(200009/12)14:5/6<711::AID-CEM607>3.0.CO;2-4 10.1016/j.snb.2024.136088 10.1016/j.snb.2008.06.046 10.1088/1748-9326/acf7d7 10.1088/0953-8984/15/20/201 10.1109/TASE.2012.2236554 10.1016/j.snb.2023.134232 10.1016/j.snb.2015.03.018 10.1002/grl.50971 10.1016/j.snb.2020.129091 10.3390/s16020233 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.snb.2024.136842 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_snb_2024_136842 S0925400524015727 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABFNM ABMAC ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFJKZ AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB SCH SSH WUQ |
ID | FETCH-LOGICAL-c297t-705e1748fa648cd4029c2c213baae9b40d9da74fd5cbd2b980f4a2d4671fb0613 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Thu Apr 24 23:11:53 EDT 2025 Tue Jul 01 02:06:20 EDT 2025 Sat Dec 28 15:49:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Humidity interference Principal component linear discriminant analysis Temperature modulation Metal oxide semiconductor gas sensor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-705e1748fa648cd4029c2c213baae9b40d9da74fd5cbd2b980f4a2d4671fb0613 |
ParticipantIDs | crossref_primary_10_1016_j_snb_2024_136842 crossref_citationtrail_10_1016_j_snb_2024_136842 elsevier_sciencedirect_doi_10_1016_j_snb_2024_136842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-15 |
PublicationDateYYYYMMDD | 2025-01-15 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Hierlemann, Gutierrez-Osuna (bib28) 2008; 108 Delpha, Lumbreras, Siadat (bib31) 2004; 98 Wozniak, Kalinowski, Jasinski, Jasinski (bib22) 2018; 84 Ionescu, Llobet, Brezmes, Vilanova, Correig (bib26) 2003; 95 Meng, Shi, Yuan, Ji, Qin, Shen, Xing (bib4) 2022; 350 Shooshtari, Salehi (bib32) 2022; 357 Wang, Han, Yang, Cheng, Wang, Feng (bib18) 2022; 361 Struchkov, Romashkin, Rabchinskii, Saveliev, Cherviakova, Chumakov (bib40) 2024; 417 Artursson, Eklöv, Lundström, Mårtensson, Sjöström, Holmberg (bib29) 2000; 14 Xu, Jia, Guan, Shen (bib10) 2013; 10 Wang, Guo, Zhao, Hu, Tang, Zhou (bib17) 2024; 398 Ankara, Kammerer, Gramm, Schütze (bib30) 2004; 100 Li, Wu, Liu, Yuan, Chiang, Zhang, Wu (bib2) 2021; 341 Mahdavi, Rahbarpour, Hosseini-Golgoo, Jamaati (bib19) 2021; 331 Qi, Zhang, Zheng, Fan, Liu, Wang, Zeng (bib12) 2008; 134 Yin, Shen, Zhou, Lu, Li, Zhao (bib34) 2020; 509 Ko, Ho (bib7) 2013; 48 Byrne, O'Gorman (bib6) 2013; 40 Chen, Zhao, Yuan, Zhang, Li, Wang (bib11) 2023; 15 Zhao, Shen, Zhou, Hao, Xu, Gao (bib24) 2020; 308 Malyshev, Pislyakov (bib13) 2008; 134 Liu, Meng, Deng, Nagashima, Wang, Dai (bib3) 2021; 6 Lei, Rao, Zhang, Cai, Xie (bib27) 2016; 235 Li, Chananonnawathorn, Pan, Limwichean, Deng, Horprathum (bib33) 2023; 9 Illyaskutty, Knoblauch, Schwotzer, Kohler (bib36) 2015; 217 Cho, Yoo, Kim, Jung, Jin, Kim (bib1) 2016; 16 Tian, Zhang, Yang, Zhao, Liang, Liu, Wang (bib21) 2016; 16 Yuan, Han, Meng, Zuo (bib25) 2020; 69 Wu, Dai, Hu, Yu, Ogbeide, De Luca (bib39) 2020; 321 Bârsan, Weimar (bib15) 2003; 15 Di, Yu (bib9) 2012; 374 Ji, Qin, Yuan, Meng (bib37) 2021; 348 Yu, Yin, Zhao, Yuan (bib20) 2020; 164 Ji, Zhu, Wang, Kong, Cheng, Yuan, Meng (bib38) 2023; 393 Oh, Kim, Lee, Hwang, Ku, Lim (bib5) 2022; 364 Huang, Song (bib8) 2023; 18 Wang, Zhou (bib16) 2022; 15 Miao, Chen, Wang, Guo, Huang (bib35) 2022 Delpha, Siadat, Lumbreras (bib14) 1999; 59 Ji, Zhu, Zhang, Zhang, Yuan, Meng (bib23) 2024; 11 Wozniak (10.1016/j.snb.2024.136842_bib22) 2018; 84 Struchkov (10.1016/j.snb.2024.136842_bib40) 2024; 417 Yin (10.1016/j.snb.2024.136842_bib34) 2020; 509 Delpha (10.1016/j.snb.2024.136842_bib14) 1999; 59 Zhao (10.1016/j.snb.2024.136842_bib24) 2020; 308 Byrne (10.1016/j.snb.2024.136842_bib6) 2013; 40 Illyaskutty (10.1016/j.snb.2024.136842_bib36) 2015; 217 Malyshev (10.1016/j.snb.2024.136842_bib13) 2008; 134 Wang (10.1016/j.snb.2024.136842_bib16) 2022; 15 Yuan (10.1016/j.snb.2024.136842_bib25) 2020; 69 Ankara (10.1016/j.snb.2024.136842_bib30) 2004; 100 Wang (10.1016/j.snb.2024.136842_bib17) 2024; 398 Delpha (10.1016/j.snb.2024.136842_bib31) 2004; 98 Bârsan (10.1016/j.snb.2024.136842_bib15) 2003; 15 Ionescu (10.1016/j.snb.2024.136842_bib26) 2003; 95 Lei (10.1016/j.snb.2024.136842_bib27) 2016; 235 Yu (10.1016/j.snb.2024.136842_bib20) 2020; 164 Wu (10.1016/j.snb.2024.136842_bib39) 2020; 321 Chen (10.1016/j.snb.2024.136842_bib11) 2023; 15 Ji (10.1016/j.snb.2024.136842_bib23) 2024; 11 Li (10.1016/j.snb.2024.136842_bib33) 2023; 9 Ji (10.1016/j.snb.2024.136842_bib38) 2023; 393 Li (10.1016/j.snb.2024.136842_bib2) 2021; 341 Wang (10.1016/j.snb.2024.136842_bib18) 2022; 361 Cho (10.1016/j.snb.2024.136842_bib1) 2016; 16 Liu (10.1016/j.snb.2024.136842_bib3) 2021; 6 Xu (10.1016/j.snb.2024.136842_bib10) 2013; 10 Ji (10.1016/j.snb.2024.136842_bib37) 2021; 348 Ko (10.1016/j.snb.2024.136842_bib7) 2013; 48 Huang (10.1016/j.snb.2024.136842_bib8) 2023; 18 Di (10.1016/j.snb.2024.136842_bib9) 2012; 374 Qi (10.1016/j.snb.2024.136842_bib12) 2008; 134 Hierlemann (10.1016/j.snb.2024.136842_bib28) 2008; 108 Mahdavi (10.1016/j.snb.2024.136842_bib19) 2021; 331 Miao (10.1016/j.snb.2024.136842_bib35) 2022 Meng (10.1016/j.snb.2024.136842_bib4) 2022; 350 Tian (10.1016/j.snb.2024.136842_bib21) 2016; 16 Shooshtari (10.1016/j.snb.2024.136842_bib32) 2022; 357 Artursson (10.1016/j.snb.2024.136842_bib29) 2000; 14 Oh (10.1016/j.snb.2024.136842_bib5) 2022; 364 |
References_xml | – volume: 350 year: 2022 ident: bib4 article-title: Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode publication-title: Sens Actuator B Chem. – volume: 134 start-page: 36 year: 2008 end-page: 42 ident: bib12 article-title: Electrical response of Sm publication-title: Sens Actuator B Chem. – volume: 134 start-page: 913 year: 2008 end-page: 921 ident: bib13 article-title: Investigation of gas-sensitivity of sensor structures to hydrogen in a wide range of temperature, concentration and humidity of gas medium publication-title: Sens Actuator B Chem. – volume: 40 start-page: 5223 year: 2013 end-page: 5227 ident: bib6 article-title: Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models publication-title: Geophys. Res. Lett. – volume: 108 start-page: 563 year: 2008 end-page: 613 ident: bib28 article-title: Higher-order chemical sensing publication-title: Chem. Rev. – volume: 16 start-page: 4508 year: 2016 end-page: 4515 ident: bib1 article-title: High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds publication-title: Nano Lett. – volume: 11 start-page: 4934 year: 2024 end-page: 4941 ident: bib23 article-title: Semiconductor sensor virtual array: gas detection strategy in internet of things to suppress humidity interference publication-title: IEEE Internet Things J. – volume: 16 start-page: 17 year: 2016 ident: bib21 article-title: Suppression of strong background interference on E-Nose sensors in an open country environment publication-title: Sensors – volume: 321 year: 2020 ident: bib39 article-title: Machine-intelligent inkjet-printed α-Fe publication-title: Sens Actuator B Chem. – volume: 417 year: 2024 ident: bib40 article-title: Aminated reduced graphene oxide-carbon nanotube composite gas sensors for ammonia recognition publication-title: Sens Actuator B Chem. – volume: 100 start-page: 240 year: 2004 end-page: 245 ident: bib30 article-title: Low power virtual sensor array based on a micromachined gas sensor for fast discrimination between H publication-title: Sens Actuator B Chem. – start-page: 10636 year: 2022 end-page: 10644 ident: bib35 article-title: SnO publication-title: ACS Appl. Nano Mater. – volume: 341 year: 2021 ident: bib2 article-title: Mesoporous WO publication-title: Sens Actuator B Chem. – volume: 59 start-page: 255 year: 1999 end-page: 259 ident: bib14 article-title: Humidity dependence of a TGS gas sensor array in an air-conditioned atmosphere publication-title: Sens Actuator B Chem. – volume: 331 year: 2021 ident: bib19 article-title: Reducing the destructive effect of ambient humidity variations on gas detection capability of a temperature modulated gas sensor by calcium chloride publication-title: Sens Actuator B Chem. – volume: 374 start-page: 635 year: 2012 end-page: 638 ident: bib9 article-title: The feasibility research of temperature and humidity independent controlled air-conditioning system in textile factory publication-title: Adv. Mater. Res. – volume: 393 year: 2023 ident: bib38 article-title: Gas detection strategy to suppress flow rate interference baesd on semiconductor sensor dynamic temperature modulation measurement publication-title: Sens Actuator B Chem. – volume: 6 start-page: 4167 year: 2021 end-page: 4175 ident: bib3 article-title: Discriminating BTX molecules by the nonselective metal oxide sensor-based smart sensing system publication-title: ACS Sens. – volume: 217 start-page: 2 year: 2015 end-page: 12 ident: bib36 article-title: Thermally modulated multi sensor arrays of SnO publication-title: Sens Actuator B Chem. – volume: 164 year: 2020 ident: bib20 article-title: A recursive correction FDA method based on ICA combined with STAW of vinegar E-nose data publication-title: Measurement – volume: 69 start-page: 4533 year: 2020 end-page: 4544 ident: bib25 article-title: Detection and identification of volatile organic compounds based on temperature-modulated ZnO sensors publication-title: IEEE Trans. Instrum. Meas. – volume: 9 start-page: 206 year: 2023 end-page: 216 ident: bib33 article-title: Prompt electronic discrimination of gas molecules by self-heating temperature modulation publication-title: ACS Sens. – volume: 10 start-page: 603 year: 2013 end-page: 614 ident: bib10 article-title: Smart management of multiple energy systems in automotive painting shop publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 48 start-page: 19 year: 2013 end-page: 36 ident: bib7 article-title: A study on the change of humidity by City Size in South Korea publication-title: J. Korean Geogr. Soc. – volume: 95 start-page: 177 year: 2003 end-page: 182 ident: bib26 article-title: Dealing with humidity in the qualitative analysis of CO and publication-title: Sens Actuator B Chem. – volume: 15 start-page: R813 year: 2003 end-page: R839 ident: bib15 article-title: Understanding the fundamental principles of metal oxide based gas sensors: the example of CO sensing with publication-title: J. Phys. Condens. Matter – volume: 15 start-page: 8728 year: 2022 ident: bib16 article-title: Recent progress on anti-humidity strategies of chemiresistive gas sensors publication-title: Materials – volume: 398 year: 2024 ident: bib17 article-title: WO publication-title: Sens Actuator B Chem. – volume: 15 start-page: 15051288 year: 2023 ident: bib11 article-title: Drying process of waterborne paint film on bamboo laminated lumber for furniture publication-title: Polymers – volume: 235 start-page: 481 year: 2016 end-page: 491 ident: bib27 article-title: The irreversible R-T curves of metal oxide gas sensor under programmed temperature cycle publication-title: Sens Actuator B Chem. – volume: 357 year: 2022 ident: bib32 article-title: An electronic nose based on carbon nanotube-titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds publication-title: Sens Actuator B Chem. – volume: 14 start-page: 711 year: 2000 end-page: 723 ident: bib29 article-title: Drift correction for gas sensors using multivariate methods publication-title: J. Chemom. – volume: 509 year: 2020 ident: bib34 article-title: Fabrication, characterization and n-propanol sensing properties of perovskite-type ZnSnO publication-title: Appl. Surf. Sci. – volume: 348 year: 2021 ident: bib37 article-title: Qualitative and quantitative recognition method of drug-producing chemicals based on SnO publication-title: Sens Actuator B Chem. – volume: 308 year: 2020 ident: bib24 article-title: Enhanced NO publication-title: Sens. Actuators B – volume: 18 year: 2023 ident: bib8 article-title: Urban moisture and dry islands: spatiotemporal variation patterns and mechanisms of urban air humidity changes across the globe publication-title: Environ. Res. Lett. – volume: 364 year: 2022 ident: bib5 article-title: Machine learning-based discrimination of indoor pollutants using an oxide gas sensor array: high endurance against ambient humidity and temperature publication-title: Sens Actuator B Chem. – volume: 361 year: 2022 ident: bib18 article-title: Conductometric ppb-level triethylamine sensor based on macroporous WO publication-title: Sens Actuator B Chem. – volume: 84 start-page: 163 year: 2018 end-page: 169 ident: bib22 article-title: FFT analysis of temperature modulated semiconductor gas sensor response for the prediction of ammonia concentration under humidity interference publication-title: Microelectron. Reliab. – volume: 98 start-page: 46 year: 2004 end-page: 53 ident: bib31 article-title: Discrimination and identification of a refrigerant gas in a humidity controlled atmosphere containing or not carbon dioxide: application to the electronic nose publication-title: Sens Actuator B Chem. – volume: 341 year: 2021 ident: 10.1016/j.snb.2024.136842_bib2 article-title: Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2021.130035 – volume: 6 start-page: 4167 year: 2021 ident: 10.1016/j.snb.2024.136842_bib3 article-title: Discriminating BTX molecules by the nonselective metal oxide sensor-based smart sensing system publication-title: ACS Sens. doi: 10.1021/acssensors.1c01704 – volume: 308 year: 2020 ident: 10.1016/j.snb.2024.136842_bib24 article-title: Enhanced NO2 sensing performance of ZnO nanowires functionalized with ultra-fine In2O3 nanoparticles publication-title: Sens. Actuators B doi: 10.1016/j.snb.2020.127729 – volume: 350 year: 2022 ident: 10.1016/j.snb.2024.136842_bib4 article-title: Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2021.130867 – volume: 134 start-page: 36 year: 2008 ident: 10.1016/j.snb.2024.136842_bib12 article-title: Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2008.04.011 – volume: 16 start-page: 4508 year: 2016 ident: 10.1016/j.snb.2024.136842_bib1 article-title: High-resolution p-type metal oxide semiconductor nanowire array as an ultrasensitive sensor for volatile organic compounds publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01713 – volume: 100 start-page: 240 year: 2004 ident: 10.1016/j.snb.2024.136842_bib30 article-title: Low power virtual sensor array based on a micromachined gas sensor for fast discrimination between H2, CO and relative humidity publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2003.12.072 – start-page: 10636 year: 2022 ident: 10.1016/j.snb.2024.136842_bib35 article-title: SnO2 NAnostructures Exposed with Various Crystal Facets for Temperature-modulated Sensing of Volatile Organic Compounds publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c01963 – volume: 398 year: 2024 ident: 10.1016/j.snb.2024.136842_bib17 article-title: WO3 nanoparticles supported by Nb2CTx MXene for superior acetone detection under high humidity publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2023.134710 – volume: 69 start-page: 4533 year: 2020 ident: 10.1016/j.snb.2024.136842_bib25 article-title: Detection and identification of volatile organic compounds based on temperature-modulated ZnO sensors publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2948413 – volume: 348 year: 2021 ident: 10.1016/j.snb.2024.136842_bib37 article-title: Qualitative and quantitative recognition method of drug-producing chemicals based on SnO2 gas sensor with dynamic measurement and PCA weak separation publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2021.130698 – volume: 84 start-page: 163 year: 2018 ident: 10.1016/j.snb.2024.136842_bib22 article-title: FFT analysis of temperature modulated semiconductor gas sensor response for the prediction of ammonia concentration under humidity interference publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2018.03.034 – volume: 9 start-page: 206 year: 2023 ident: 10.1016/j.snb.2024.136842_bib33 article-title: Prompt electronic discrimination of gas molecules by self-heating temperature modulation publication-title: ACS Sens. doi: 10.1021/acssensors.3c01839 – volume: 164 year: 2020 ident: 10.1016/j.snb.2024.136842_bib20 article-title: A recursive correction FDA method based on ICA combined with STAW of vinegar E-nose data publication-title: Measurement doi: 10.1016/j.measurement.2020.108022 – volume: 364 year: 2022 ident: 10.1016/j.snb.2024.136842_bib5 article-title: Machine learning-based discrimination of indoor pollutants using an oxide gas sensor array: high endurance against ambient humidity and temperature publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2022.131894 – volume: 59 start-page: 255 year: 1999 ident: 10.1016/j.snb.2024.136842_bib14 article-title: Humidity dependence of a TGS gas sensor array in an air-conditioned atmosphere publication-title: Sens Actuator B Chem. doi: 10.1016/S0925-4005(99)00230-0 – volume: 361 year: 2022 ident: 10.1016/j.snb.2024.136842_bib18 article-title: Conductometric ppb-level triethylamine sensor based on macroporous WO3−W18O49 heterostructures functionalized with carbon layers and PdO nanoparticles publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2022.131707 – volume: 11 start-page: 4934 year: 2024 ident: 10.1016/j.snb.2024.136842_bib23 article-title: Semiconductor sensor virtual array: gas detection strategy in internet of things to suppress humidity interference publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2023.3302408 – volume: 15 start-page: 8728 year: 2022 ident: 10.1016/j.snb.2024.136842_bib16 article-title: Recent progress on anti-humidity strategies of chemiresistive gas sensors publication-title: Materials doi: 10.3390/ma15248728 – volume: 95 start-page: 177 year: 2003 ident: 10.1016/j.snb.2024.136842_bib26 article-title: Dealing with humidity in the qualitative analysis of CO and NO2 using a WO3 sensor and dynamic signal processing publication-title: Sens Actuator B Chem. doi: 10.1016/S0925-4005(03)00411-8 – volume: 357 year: 2022 ident: 10.1016/j.snb.2024.136842_bib32 article-title: An electronic nose based on carbon nanotube-titanium dioxide hybrid nanostructures for detection and discrimination of volatile organic compounds publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2022.131418 – volume: 108 start-page: 563 year: 2008 ident: 10.1016/j.snb.2024.136842_bib28 article-title: Higher-order chemical sensing publication-title: Chem. Rev. doi: 10.1021/cr068116m – volume: 98 start-page: 46 year: 2004 ident: 10.1016/j.snb.2024.136842_bib31 article-title: Discrimination and identification of a refrigerant gas in a humidity controlled atmosphere containing or not carbon dioxide: application to the electronic nose publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2003.09.011 – volume: 235 start-page: 481 year: 2016 ident: 10.1016/j.snb.2024.136842_bib27 article-title: The irreversible R-T curves of metal oxide gas sensor under programmed temperature cycle publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2016.05.113 – volume: 509 year: 2020 ident: 10.1016/j.snb.2024.136842_bib34 article-title: Fabrication, characterization and n-propanol sensing properties of perovskite-type ZnSnO3 nanospheres based gas sensor publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145335 – volume: 321 year: 2020 ident: 10.1016/j.snb.2024.136842_bib39 article-title: Machine-intelligent inkjet-printed α-Fe2O3/rGO towards NO2 quantification in ambient humidity publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2020.128446 – volume: 14 start-page: 711 year: 2000 ident: 10.1016/j.snb.2024.136842_bib29 article-title: Drift correction for gas sensors using multivariate methods publication-title: J. Chemom. doi: 10.1002/1099-128X(200009/12)14:5/6<711::AID-CEM607>3.0.CO;2-4 – volume: 417 year: 2024 ident: 10.1016/j.snb.2024.136842_bib40 article-title: Aminated reduced graphene oxide-carbon nanotube composite gas sensors for ammonia recognition publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2024.136088 – volume: 134 start-page: 913 year: 2008 ident: 10.1016/j.snb.2024.136842_bib13 article-title: Investigation of gas-sensitivity of sensor structures to hydrogen in a wide range of temperature, concentration and humidity of gas medium publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2008.06.046 – volume: 48 start-page: 19 year: 2013 ident: 10.1016/j.snb.2024.136842_bib7 article-title: A study on the change of humidity by City Size in South Korea publication-title: J. Korean Geogr. Soc. – volume: 18 year: 2023 ident: 10.1016/j.snb.2024.136842_bib8 article-title: Urban moisture and dry islands: spatiotemporal variation patterns and mechanisms of urban air humidity changes across the globe publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/acf7d7 – volume: 15 start-page: R813 year: 2003 ident: 10.1016/j.snb.2024.136842_bib15 article-title: Understanding the fundamental principles of metal oxide based gas sensors: the example of CO sensing with SnO2 sensors in the presence of humidity publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/15/20/201 – volume: 10 start-page: 603 year: 2013 ident: 10.1016/j.snb.2024.136842_bib10 article-title: Smart management of multiple energy systems in automotive painting shop publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2012.2236554 – volume: 393 year: 2023 ident: 10.1016/j.snb.2024.136842_bib38 article-title: Gas detection strategy to suppress flow rate interference baesd on semiconductor sensor dynamic temperature modulation measurement publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2023.134232 – volume: 217 start-page: 2 year: 2015 ident: 10.1016/j.snb.2024.136842_bib36 article-title: Thermally modulated multi sensor arrays of SnO2 /additive/electrode combinations for enhanced gas identification publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2015.03.018 – volume: 374 start-page: 635 year: 2012 ident: 10.1016/j.snb.2024.136842_bib9 article-title: The feasibility research of temperature and humidity independent controlled air-conditioning system in textile factory publication-title: Adv. Mater. Res. – volume: 40 start-page: 5223 year: 2013 ident: 10.1016/j.snb.2024.136842_bib6 article-title: Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50971 – volume: 15 start-page: 15051288 year: 2023 ident: 10.1016/j.snb.2024.136842_bib11 article-title: Drying process of waterborne paint film on bamboo laminated lumber for furniture publication-title: Polymers – volume: 331 year: 2021 ident: 10.1016/j.snb.2024.136842_bib19 article-title: Reducing the destructive effect of ambient humidity variations on gas detection capability of a temperature modulated gas sensor by calcium chloride publication-title: Sens Actuator B Chem. doi: 10.1016/j.snb.2020.129091 – volume: 16 start-page: 17 year: 2016 ident: 10.1016/j.snb.2024.136842_bib21 article-title: Suppression of strong background interference on E-Nose sensors in an open country environment publication-title: Sensors doi: 10.3390/s16020233 |
SSID | ssj0004360 |
Score | 2.4785078 |
Snippet | Metal oxide semiconductor (MOS) sensors have been broadly employed for gas detection. However, the distinctive chemical detection principle of MOS sensors... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 136842 |
SubjectTerms | Humidity interference Metal oxide semiconductor gas sensor Principal component linear discriminant analysis Temperature modulation |
Title | Single feature to achieve gas recognition: Humidity interference suppression strategy based on temperature modulation and principal component linear discriminant analysis |
URI | https://dx.doi.org/10.1016/j.snb.2024.136842 |
Volume | 423 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LXvQgPvG5zMGTUDdN023rbVmUVdGLCt5K0qSyou2yD8GLP8hf6UybrgrqwVMhJCRkhnmk33zD2GFMnGSh0Z7Is8CTylgviX1MVQIV2DhOTGSpwPnquju4kxf34X2L9ZtaGIJVOttf2_TKWruRjrvNzmg47NzwBJMbetbEFCFEN0wV7DIiLT9--4R5yKCqFKbJHs1u_mxWGK9JoTFFFJLAXrEUP_umL_7mbJWtuEARevVZ1ljLFuts-Qt94AZ7v8HPk4XcVuycMC2BoJH2xcKDmsAcG1QWJ4BiGxqMuIH4IcauyA8ms5EDwhYwqXlqX4EcmwEcIdoqx7kMz6Vxjb5AFQZG9Rs9HpAw6WWBrgsoYFVjoDrfulcYjinHebLJ7s5Ob_sDz_Ve8DKRRFMv4qHFZCXOVVdSfyMukkxkwg-0UjbRkpvEqEjmJsy0ETqJeS6VMGh2_VxTjLDFFgrcfZtB6EcmC4XJuPGJniw2vIuBSqSjwAod-DuMN7eeZo6YnPpjPKUNAu0xRUGlJKi0FtQOO5ovGdWsHH9Nlo0o02-qlaLX-H3Z7v-W7bElQS2Cue_54T5bmI5n9gDjlqluV4rZZou988vB9QcJk_Fb |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7relAP4hPfzsGTUDdN023rTRZlfV5U8FaSJpUV7S77ELz4g_yVzrSpD1APngohQ0MmnUf6zTeM7cXESRYa7Yk8CzypjPWS2MdUJVCBjePERJYKnC-v2t1beXYX3jVYp66FIVils_2VTS-ttRtpud1sDXq91jVPMLmha01MEUJ0w1NsWuLnS20MDl4_cR4yKEuFabZH0-tfmyXIa1RozBGFJLRXLMXPzumLwzlZYPMuUoSjajGLrGGLJTb3hT9wmb1d4-PRQm5Lek4Y94GwkfbZwr0awQc4qF8cAuqtZzDkBiKIGLoqPxhNBg4JW8CoIqp9AfJsBnCEeKsc6TI89Y3r9AWqMDCoLulxgQRK7xfou4AiVjUEKvStmoXhmHKkJyvs9uT4ptP1XPMFLxNJNPYiHlrMVuJctSU1OOIiyUQm_EArZRMtuUmMimRuwkwboZOY51IJg3bXzzUFCausWeDb1xiEfmSyUJiMG5_4yWLD2xipRDoKrNCBv854vetp5pjJqUHGY1pD0B5SVFRKikorRa2z_Q-RQUXL8ddkWasy_Xa2UnQbv4tt_E9sl810by4v0ovTq_NNNiuoXzD3PT_cYs3xcGK3MYgZ653ykL4DjkTy6Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+feature+to+achieve+gas+recognition%3A+Humidity+interference+suppression+strategy+based+on+temperature+modulation+and+principal+component+linear+discriminant+analysis&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Yuan%2C+Zhenyu&rft.au=Sun%2C+Hao&rft.au=Ji%2C+Hanyang&rft.au=Meng%2C+Fanli&rft.date=2025-01-15&rft.issn=0925-4005&rft.volume=423&rft.spage=136842&rft_id=info:doi/10.1016%2Fj.snb.2024.136842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_snb_2024_136842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |