Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass

Timely, spatially complete, and reliable forest above-ground biomass (AGB) data are a prerequisite to support forest management and policy formulation. Traditionally, forest AGB is spatially estimated by integrating satellite images, in particular, optical data, with field plots from forest inventor...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 10; no. 12; pp. 5569 - 5582
Main Authors Shao, Zhenfeng, Zhang, Linjing, Wang, Lei
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Timely, spatially complete, and reliable forest above-ground biomass (AGB) data are a prerequisite to support forest management and policy formulation. Traditionally, forest AGB is spatially estimated by integrating satellite images, in particular, optical data, with field plots from forest inventory programs. However, field data are limited in remote and unmanaged areas. In addition, optical reflectance usually saturates at high-density biomass level and is subject to cloud contaminations. Thus, this study aimed to develop a deep learning based workflow for mapping forest AGB by integrating Landsat 8 and Sentinel-1A images with airborne light detection and ranging (LiDAR) data. A reference AGB map was derived from the wall-to-wall LiDAR data and field measurements. The LiDAR plots-stratified random samples of forest biomass extracted from the LiDAR simulated strips in the reference map-were adopted as a surrogate for traditional field plots. In addition to the deep learning model, i.e., stacked sparse autoencoder network (SSAE), five different prediction techniques including multiple stepwise linear regressions, K-nearest neighbor, support vector machine, back propagation neural networks, and random forest were individually used to establish the relationship between LiDAR-derived forest biomass and the satellite predictors. Optical variables (Landsat 8 OLI), SAR variables (Sentinel-1A), and their combined variables were individually input to the six prediction models. Results showed that the SSAE model had the best performance for the forest biomass estimation. The combined optical and microwave dataset as explanatory variables improved the modeling performance compared to either the optical-only or microwave-only data, regardless of prediction algorithms. The best mapping accuracy was obtained by the SSAE model with inputs of optical and microwave integrated metrics that yielded R 2 of 0.812, root mean squared error (RMSE) of 21.753 Mg/ha, and relative RMSE (RMSEr) of 14.457%. Overall, the SSAE model with inputs of combined Landsat 8 OLI and Sentinel-1A information could result in accurate estimation of forest biomass by using the stratification-sampled and LiDAR-derived AGB as ground reference data. The modeling workflow has the potential to promote future forest growth monitoring and carbon stock assessment across large areas.
AbstractList Timely, spatially complete, and reliable forest above-ground biomass (AGB) data are a prerequisite to support forest management and policy formulation. Traditionally, forest AGB is spatially estimated by integrating satellite images, in particular, optical data, with field plots from forest inventory programs. However, field data are limited in remote and unmanaged areas. In addition, optical reflectance usually saturates at high-density biomass level and is subject to cloud contaminations. Thus, this study aimed to develop a deep learning based workflow for mapping forest AGB by integrating Landsat 8 and Sentinel-1A images with airborne light detection and ranging (LiDAR) data. A reference AGB map was derived from the wall-to-wall LiDAR data and field measurements. The LiDAR plots-stratified random samples of forest biomass extracted from the LiDAR simulated strips in the reference map-were adopted as a surrogate for traditional field plots. In addition to the deep learning model, i.e., stacked sparse autoencoder network (SSAE), five different prediction techniques including multiple stepwise linear regressions, K-nearest neighbor, support vector machine, back propagation neural networks, and random forest were individually used to establish the relationship between LiDAR-derived forest biomass and the satellite predictors. Optical variables (Landsat 8 OLI), SAR variables (Sentinel-1A), and their combined variables were individually input to the six prediction models. Results showed that the SSAE model had the best performance for the forest biomass estimation. The combined optical and microwave dataset as explanatory variables improved the modeling performance compared to either the optical-only or microwave-only data, regardless of prediction algorithms. The best mapping accuracy was obtained by the SSAE model with inputs of optical and microwave integrated metrics that yielded R2 of 0.812, root mean squared error (RMSE) of 21.753 Mg/ha, and relative RMSE (RMSEr) of 14.457%. Overall, the SSAE model with inputs of combined Landsat 8 OLI and Sentinel-1A information could result in accurate estimation of forest biomass by using the stratification-sampled and LiDAR-derived AGB as ground reference data. The modeling workflow has the potential to promote future forest growth monitoring and carbon stock assessment across large areas.
Timely, spatially complete, and reliable forest above-ground biomass (AGB) data are a prerequisite to support forest management and policy formulation. Traditionally, forest AGB is spatially estimated by integrating satellite images, in particular, optical data, with field plots from forest inventory programs. However, field data are limited in remote and unmanaged areas. In addition, optical reflectance usually saturates at high-density biomass level and is subject to cloud contaminations. Thus, this study aimed to develop a deep learning based workflow for mapping forest AGB by integrating Landsat 8 and Sentinel-1A images with airborne light detection and ranging (LiDAR) data. A reference AGB map was derived from the wall-to-wall LiDAR data and field measurements. The LiDAR plots-stratified random samples of forest biomass extracted from the LiDAR simulated strips in the reference map-were adopted as a surrogate for traditional field plots. In addition to the deep learning model, i.e., stacked sparse autoencoder network (SSAE), five different prediction techniques including multiple stepwise linear regressions, K-nearest neighbor, support vector machine, back propagation neural networks, and random forest were individually used to establish the relationship between LiDAR-derived forest biomass and the satellite predictors. Optical variables (Landsat 8 OLI), SAR variables (Sentinel-1A), and their combined variables were individually input to the six prediction models. Results showed that the SSAE model had the best performance for the forest biomass estimation. The combined optical and microwave dataset as explanatory variables improved the modeling performance compared to either the optical-only or microwave-only data, regardless of prediction algorithms. The best mapping accuracy was obtained by the SSAE model with inputs of optical and microwave integrated metrics that yielded R 2 of 0.812, root mean squared error (RMSE) of 21.753 Mg/ha, and relative RMSE (RMSEr) of 14.457%. Overall, the SSAE model with inputs of combined Landsat 8 OLI and Sentinel-1A information could result in accurate estimation of forest biomass by using the stratification-sampled and LiDAR-derived AGB as ground reference data. The modeling workflow has the potential to promote future forest growth monitoring and carbon stock assessment across large areas.
Author Shao, Zhenfeng
Wang, Lei
Zhang, Linjing
Author_xml – sequence: 1
  givenname: Zhenfeng
  surname: Shao
  fullname: Shao, Zhenfeng
  email: shaozhenfeng@whu.edu.cn
  organization: State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing & Collaborative Innovation Center for Geospatial Technology, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Linjing
  orcidid: 0000-0002-3023-5930
  surname: Zhang
  fullname: Zhang, Linjing
  email: zhanglinjing@whu.edu.cn
  organization: State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing & Collaborative Innovation Center for Geospatial Technology, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Lei
  orcidid: 0000-0001-6477-6172
  surname: Wang
  fullname: Wang, Lei
  email: wlei@whu.edu.cn
  organization: State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing & Collaborative Innovation Center for Geospatial Technology, Wuhan University, Wuhan, China
BookMark eNqFkM9O3DAQhy1EJZZtn4CLpZ6z9cT5Yx9TKNBqERKBc-Q4EzAEO7W9SPsQfWe8Cuqhl17G1ni-31jfKTm2ziIhZ8A2AEx--9XeN3ftJmdQb_K6ELyAI7LKoYQMSl4ekxVILjMoWHFCTkN4ZqzKa8lX5E8blX7Bgbaz8gFps4sOrXYDenqT6mTsI30IhxqfkLZ7i_5xT91IG-N75y3Srblo7qiyKUNFnCYTkd7O0Wg1Ld30eqGiotHRGzXTS-cxRNr07g2zK-92aea7ca8qhM_k06imgF8-zjV5uPxxf36dbW-vfp4320znso5ZpSvQQ8nqkg1yHFiNuRSiYKIs9IhKaIl5zUFopVGyPu9Vug3Alax7IcaRr8nXJXf27vcu_aZ7djtv08oOpGASiip5WxO5TGnvQvA4dtpEFY2z0SszdcC6g_1usd8d7Hcf9hPL_2Fnb16V3_-HOlsog4h_CcG4hIrxd_5TlC4
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_rs11121503
crossref_primary_10_1080_10095020_2020_1864232
crossref_primary_10_3390_rs16101676
crossref_primary_10_1080_01431161_2021_1984611
crossref_primary_10_3390_f15061055
crossref_primary_10_1038_s41586_025_08692_x
crossref_primary_10_1016_j_isprsjprs_2025_01_013
crossref_primary_10_1016_j_jag_2024_103960
crossref_primary_10_1109_MGRS_2018_2853555
crossref_primary_10_3390_rs13173535
crossref_primary_10_3390_rs15245653
crossref_primary_10_1109_TTE_2019_2946065
crossref_primary_10_1016_j_isprsjprs_2023_03_010
crossref_primary_10_1080_10106049_2022_2071475
crossref_primary_10_3390_f16030477
crossref_primary_10_3390_s23052820
crossref_primary_10_2989_20702620_2023_2251946
crossref_primary_10_1080_17538947_2023_2270459
crossref_primary_10_1109_JSEN_2019_2923982
crossref_primary_10_3390_app11104465
crossref_primary_10_1109_ACCESS_2021_3056671
crossref_primary_10_26848_rbgf_v17_2_p1127_1146
crossref_primary_10_3390_rs16122229
crossref_primary_10_3390_rs12244015
crossref_primary_10_1093_forestry_cpac002
crossref_primary_10_3390_rs12071101
crossref_primary_10_3390_f15010056
crossref_primary_10_1088_2515_7620_ac5b84
crossref_primary_10_1007_s10661_021_09561_6
crossref_primary_10_1109_JSTARS_2022_3179819
crossref_primary_10_1007_s12524_023_01746_5
crossref_primary_10_3390_f12091214
crossref_primary_10_1016_j_geoderma_2022_115712
crossref_primary_10_1109_ACCESS_2018_2830661
crossref_primary_10_1109_JSTARS_2023_3322344
crossref_primary_10_3390_rs16173241
crossref_primary_10_1109_JSTARS_2022_3179027
crossref_primary_10_1080_10095020_2021_1984183
crossref_primary_10_1109_ACCESS_2020_3027361
crossref_primary_10_14358_PERS_21_00045R2
crossref_primary_10_1016_j_rsase_2018_07_010
crossref_primary_10_1109_TIP_2020_3019925
crossref_primary_10_3390_rs16061074
crossref_primary_10_3390_rs13193910
crossref_primary_10_1080_01431161_2021_1954261
crossref_primary_10_1109_TGRS_2018_2873302
crossref_primary_10_1016_j_jag_2019_101986
crossref_primary_10_1109_JSTARS_2022_3188201
crossref_primary_10_3390_rs15041096
crossref_primary_10_1109_TGRS_2020_3025821
crossref_primary_10_1016_j_catena_2022_106263
crossref_primary_10_3390_rs16152690
crossref_primary_10_1016_j_jag_2022_102926
crossref_primary_10_3390_s23187955
crossref_primary_10_1016_j_srs_2023_100093
crossref_primary_10_1109_ACCESS_2021_3079327
crossref_primary_10_3390_rs14030478
crossref_primary_10_1080_01431161_2023_2240508
crossref_primary_10_1080_01431161_2020_1820618
crossref_primary_10_1080_10106049_2020_1756461
crossref_primary_10_3390_rs11121459
crossref_primary_10_1016_j_asr_2021_11_020
crossref_primary_10_1016_j_isprsjprs_2019_04_015
crossref_primary_10_3390_app13031772
crossref_primary_10_3390_rs13122392
crossref_primary_10_3390_su151310434
crossref_primary_10_3390_rs11182156
crossref_primary_10_3390_pr11071985
crossref_primary_10_7717_peerj_8282
crossref_primary_10_3390_f10100871
crossref_primary_10_3390_su11247075
crossref_primary_10_3390_s20051533
crossref_primary_10_1049_iet_ipr_2019_1611
crossref_primary_10_3390_rs16214079
crossref_primary_10_3390_rs10101550
crossref_primary_10_1080_17538947_2024_2430676
crossref_primary_10_1109_ACCESS_2019_2908975
crossref_primary_10_3390_land13101697
crossref_primary_10_14358_PERS_21_00021R2
crossref_primary_10_1016_j_rse_2024_114301
Cites_doi 10.1109/IGARSS.2012.6352718
10.1016/j.rse.2016.01.015
10.3390/rs2030673
10.1109/LGRS.2016.2586109
10.1016/j.rse.2005.12.010
10.1016/j.rse.2005.12.006
10.1016/j.isprsjprs.2014.11.007
10.1016/j.jag.2013.02.002
10.1016/j.rse.2013.12.013
10.2747/1548-1603.48.2.141
10.1109/JSTARS.2013.2241020
10.1016/j.rse.2012.02.012
10.1109/TGRS.2016.2537830
10.1016/j.ecoinf.2010.03.004
10.1016/j.landurbplan.2014.12.007
10.1080/01431161.2014.967888
10.3390/rs4051190
10.1016/j.rse.2013.08.012
10.1080/01431160701253295
10.1016/j.jag.2011.09.010
10.1007/s10021-001-0060-X
10.1080/01431161.2014.894656
10.1016/j.isprsjprs.2015.06.002
10.1016/j.rse.2010.02.022
10.5589/m08-004
10.1093/forestry/cpq022
10.1109/LGRS.2011.2109934
10.5589/m10-037
10.1016/S0034-4257(01)00343-1
10.3390/rs71215873
10.3390/rs8020099
10.14358/PERS.77.7.733
10.1109/JSTARS.2014.2329330
10.1080/01431160500486732
10.1016/S0034-4257(01)00290-5
10.1016/j.jag.2015.04.020
10.3390/s16060834
10.1016/j.rse.2010.12.011
10.1080/01431161.2012.693969
10.5589/m03-032
10.1016/j.rse.2007.10.009
10.1016/j.rse.2014.07.028
10.3390/rs6097878
10.1016/j.isprsjprs.2014.12.011
10.1109/JSTARS.2016.2522960
10.1080/01431161.2013.777486
10.1016/j.isprsjprs.2014.11.001
10.1109/JSTARS.2014.2304642
10.1007/978-3-540-28650-9_8
10.1023/A:1010933404324
10.1109/JSTARS.2014.2347276
10.1080/01431161.2011.577829
10.1016/j.rse.2012.02.001
10.3390/rs6053693
10.1029/2008JG000870
10.1139/X09-183
10.3390/rs6076407
10.1016/j.rse.2011.11.002
10.1080/01431161.2013.833361
10.1109/JSTARS.2015.2467377
10.1016/j.rse.2015.11.010
10.1016/j.foreco.2006.01.030
10.1016/j.isprsjprs.2014.12.021
10.1016/j.jag.2014.10.008
10.1109/JSTARS.2012.2235174
10.1016/j.rse.2015.12.002
10.1029/2009JG000935
10.1016/S0034-4257(02)00056-1
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/JSTARS.2017.2748341
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 5582
ExternalDocumentID 10_1109_JSTARS_2017_2748341
8039160
Genre orig-research
GrantInformation_xml – fundername: Special task of technical innovation in Hubei Province
  grantid: 2016AAA018
– fundername: National Key Technologies Research and Development Program
  grantid: 2016YFB0502603
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2042016kf0179; 2042016kf1019
– fundername: Guangzhou Science and Technology Project
  grantid: 201604020070
  funderid: 10.13039/501100004000
– fundername: Wuhan Chen Guang Project
  grantid: 2016070204010114
– fundername: National Administration of Surveying, Mapping and Geoinformation
  grantid: 2015NGCM
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c297t-6c61cd50750d9fd07e298840854cfea8c9e27318cace90b2bacacd13a97b88ff3
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Fri Jul 25 18:57:42 EDT 2025
Tue Jul 01 03:16:08 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
Wed Aug 27 02:51:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-6c61cd50750d9fd07e298840854cfea8c9e27318cace90b2bacacd13a97b88ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6477-6172
0000-0002-3023-5930
PQID 1980914615
PQPubID 75722
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_JSTARS_2017_2748341
proquest_journals_1980914615
crossref_primary_10_1109_JSTARS_2017_2748341
ieee_primary_8039160
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref10
ref17
ref16
ref19
ref18
(ref9) 2012
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref4
ref3
ref6
ref5
krahwinkler (ref68) 2011
ref40
el-askary (ref54) 2014; 35
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref72
ref24
ref67
ref23
ref26
ref69
ref25
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
team (ref64) 2013; 1
ref60
ref62
ref61
fang (ref47) 1996; 16
References_xml – ident: ref37
  doi: 10.1109/IGARSS.2012.6352718
– ident: ref13
  doi: 10.1016/j.rse.2016.01.015
– ident: ref36
  doi: 10.3390/rs2030673
– ident: ref44
  doi: 10.1109/LGRS.2016.2586109
– ident: ref59
  doi: 10.1016/j.rse.2005.12.010
– ident: ref57
  doi: 10.1016/j.rse.2005.12.006
– ident: ref14
  doi: 10.1016/j.isprsjprs.2014.11.007
– ident: ref18
  doi: 10.1016/j.jag.2013.02.002
– ident: ref5
  doi: 10.1016/j.rse.2013.12.013
– ident: ref51
  doi: 10.2747/1548-1603.48.2.141
– ident: ref25
  doi: 10.1109/JSTARS.2013.2241020
– ident: ref21
  doi: 10.1016/j.rse.2012.02.012
– ident: ref39
  doi: 10.1109/TGRS.2016.2537830
– ident: ref11
  doi: 10.1016/j.ecoinf.2010.03.004
– ident: ref46
  doi: 10.1016/j.landurbplan.2014.12.007
– ident: ref30
  doi: 10.1080/01431161.2014.967888
– ident: ref48
  doi: 10.3390/rs4051190
– ident: ref2
  doi: 10.1016/j.rse.2013.08.012
– ident: ref22
  doi: 10.1080/01431160701253295
– ident: ref10
  doi: 10.1016/j.jag.2011.09.010
– ident: ref58
  doi: 10.1007/s10021-001-0060-X
– volume: 35
  start-page: 2327
  year: 2014
  ident: ref54
  article-title: Change detection of coral reef habitat using Landsat-5 TM, Landsat 7 ETM+ and Landsat 8 OLI data in the Red Sea (Hurghada, Egypt)
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2014.894656
– ident: ref53
  doi: 10.1016/j.isprsjprs.2015.06.002
– ident: ref20
  doi: 10.1016/j.rse.2010.02.022
– ident: ref28
  doi: 10.5589/m08-004
– ident: ref38
  doi: 10.1093/forestry/cpq022
– ident: ref35
  doi: 10.1109/LGRS.2011.2109934
– ident: ref16
  doi: 10.5589/m10-037
– ident: ref19
  doi: 10.1016/S0034-4257(01)00343-1
– ident: ref23
  doi: 10.3390/rs71215873
– ident: ref42
  doi: 10.3390/rs8020099
– ident: ref29
  doi: 10.14358/PERS.77.7.733
– ident: ref40
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref50
  doi: 10.1080/01431160500486732
– volume: 1
  start-page: 12
  year: 2013
  ident: ref64
  article-title: Team RDC.R: A language and environment for statistical computing. R Foundation for statistical computing: Vienna, Austria
  publication-title: Computing
– ident: ref72
  doi: 10.1016/S0034-4257(01)00290-5
– ident: ref12
  doi: 10.1016/j.jag.2015.04.020
– ident: ref17
  doi: 10.3390/s16060834
– year: 2012
  ident: ref9
  article-title: Comparison of LiDAR- and photointerpretation-based estimates of canopy cover
– ident: ref8
  doi: 10.1016/j.rse.2010.12.011
– ident: ref33
  doi: 10.1080/01431161.2012.693969
– ident: ref27
  doi: 10.5589/m03-032
– ident: ref7
  doi: 10.1016/j.rse.2007.10.009
– start-page: 949
  year: 2011
  ident: ref68
  article-title: Using decision tree based multiclass support vector machines for forest mapping
  publication-title: Proc IEEE Int Geosci Remote Sens Symp
– ident: ref31
  doi: 10.1016/j.rse.2014.07.028
– ident: ref69
  doi: 10.3390/rs6097878
– ident: ref32
  doi: 10.1016/j.isprsjprs.2014.12.011
– ident: ref71
  doi: 10.1109/JSTARS.2016.2522960
– ident: ref70
  doi: 10.1080/01431161.2013.777486
– ident: ref52
  doi: 10.1016/j.isprsjprs.2014.11.001
– ident: ref62
  doi: 10.1109/JSTARS.2014.2304642
– ident: ref65
  doi: 10.1007/978-3-540-28650-9_8
– ident: ref67
  doi: 10.1023/A:1010933404324
– ident: ref43
  doi: 10.1109/JSTARS.2014.2347276
– ident: ref24
  doi: 10.1080/01431161.2011.577829
– ident: ref49
  doi: 10.1016/j.rse.2012.02.001
– volume: 16
  start-page: 497
  year: 1996
  ident: ref47
  article-title: Biomass and net production of forest vegetation in China
  publication-title: Acta Ecologica Sinica
– ident: ref26
  doi: 10.3390/rs6053693
– ident: ref4
  doi: 10.1029/2008JG000870
– ident: ref6
  doi: 10.1139/X09-183
– ident: ref60
  doi: 10.3390/rs6076407
– ident: ref34
  doi: 10.1016/j.rse.2011.11.002
– ident: ref3
  doi: 10.1080/01431161.2013.833361
– ident: ref41
  doi: 10.1109/JSTARS.2015.2467377
– ident: ref56
  doi: 10.1016/j.rse.2015.11.010
– ident: ref15
  doi: 10.1016/j.foreco.2006.01.030
– ident: ref45
  doi: 10.1016/j.isprsjprs.2014.12.021
– ident: ref66
  doi: 10.1016/j.jag.2014.10.008
– ident: ref55
  doi: 10.1109/JSTARS.2012.2235174
– ident: ref61
  doi: 10.1016/j.rse.2015.12.002
– ident: ref1
  doi: 10.1029/2009JG000935
– ident: ref63
  doi: 10.1016/S0034-4257(02)00056-1
SSID ssj0062793
Score 2.4575517
Snippet Timely, spatially complete, and reliable forest above-ground biomass (AGB) data are a prerequisite to support forest management and policy formulation....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5569
SubjectTerms Back propagation networks
Biomass
Biomedical optical imaging
Computer simulation
Data
deep learning (DL)
Density stratification
Detection
Forest biomass
Forest growth
Forest management
Forests
Image detection
Landsat
Landsat 8
Landsat satellites
Laser radar
Lidar
light detection and ranging (LiDAR)
Machine learning
Mapping
Mathematical models
Model accuracy
Modelling
Neural networks
Optical imaging
Optical saturation
Policies
Prediction models
Reflectance
Remote sensing
SAR (radar)
Satellite communication
Satellite imagery
Satellites
Sentinel-1A
stacked sparse autoencoder network (SSAE)
Stock assessment
Stratification
Workflow
Title Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass
URI https://ieeexplore.ieee.org/document/8039160
https://www.proquest.com/docview/1980914615
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpoNBLX2npNkmZQ4_RxvJTOrpJ01CaFrIN5Gb0GMOSYi-72kLyH_KfM5K9C31QejO2JAQzkr6Rv_mGsfeJFoUpnOCVM5rnUgguTZpxVencuBa1spFt8bU8v8o_XxfXO-xomwuDiJF8htPwGP_lu96uw1XZsQxy5iUF6I8ocBtytTa7bplWUWCX8IjiQTJmVBgSiTomF68vZ4HGVU0pCJNZLn45hWJZlT_24njAnD1jF5upDbySm-nam6m9-0218X_n_pw9HZEm1INrvGA72L1kjz_FSr63e-yeYCatYAezBcW2CPXa90HU0uESQoG0kKYOkVAAhBFhdhuTBKFvoZ4vyXE6hC_z0_oSdEdj6Cjs6RG-LeLl-PCWvp5qr8H3cKEXEMqArjzUpv-JPFx6UZsP80BQWr1iV2cfv5-c87E2A7epqjwvbSmsKwLgcKp1SYWpkjLIpeWWLCytQgJGQlptUSUmNZqenMi0qoyUbZu9Zrtd3-EbBgpdWljrtGplbpUzhOnKrCwl7RfSGj1h6cZWjR2Fy0P9jB9NDGAS1QwGboKBm9HAE3a07bQYdDv-3XwvmGzbdLTWhB1snKIZ1_aqEUoSyMoJCr79e6999iSMPZBeDtiuX67xkKCLN--izz4AEB3q7g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qRYhueBXUgQJewI5MY-dlL1gEhjKl0yJ1Wqm74FekUatkNJMBDf_AH_RX-m9cO5mReIhdJXZWYjuRc3x9rnN9LsCrUNJEJYYGmVEyiDmlAVcsCkQmY2VKK4X20RbH6fAs_nSenG_A1fosjLXWB5_Zviv6f_mm1gu3VbbHnZx5GnYhlId2-Q0dtPnbgwF-zdeM7X84fT8MuhwCgWYia4JUp1SbxC2MRpQmzCwTnDtZr1jjm3AtLC7glGuprQgVUxJLhkZSZIrzsoyw31twG3lGwtrTYSs7n7LMS_oiAxKBE6npNI1oKPZwUuUnYxc4lvXR7eNRTH9Z93wilz-sv1_S9u_D9Wow2kiWi_6iUX39_TedyP91tB7AvY5Lk7wF_0PYsNUjuPPR5ypebsMPJNJoowwZT9F7tyRfNLWT7TR2RlwKOHcQn_iQCYIsmIyX_hgkqUuST2Y4NSpLRpNBfkJkhX1IL13aWPJ56rf_26t4dyAbSZqaHMkpcYlO5w3JVf3VBm5bD-u8m7gQrPljOLuRsXgCm1Vd2R0gwhqWaG2kKHmshVHIWtMoTTlaRK6V7AFbYaPQnTS7yxByWXgXLRRFC6jCAaroANWDN-tG01aZ5N_Vtx1E1lU7dPRgdwXCorNe84IKjjQyRrL79O-tXsLd4enRqBgdHB8-gy33nDbEZxc2m9nCPkei1qgXfr4Q-HLTkPsJerNKoQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+Sparse+Autoencoder+Modeling+Using+the+Synergy+of+Airborne+LiDAR+and+Satellite+Optical+and+SAR+Data+to+Map+Forest+Above-Ground+Biomass&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Shao%2C+Zhenfeng&rft.au=Zhang%2C+Linjing&rft.au=Wang%2C+Lei&rft.date=2017-12-01&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=10&rft.issue=12&rft.spage=5569&rft.epage=5582&rft_id=info:doi/10.1109%2FJSTARS.2017.2748341&rft.externalDocID=8039160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon