Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass
Timely, spatially complete, and reliable forest above-ground biomass (AGB) data are a prerequisite to support forest management and policy formulation. Traditionally, forest AGB is spatially estimated by integrating satellite images, in particular, optical data, with field plots from forest inventor...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 10; no. 12; pp. 5569 - 5582 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.12.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Timely, spatially complete, and reliable forest above-ground biomass (AGB) data are a prerequisite to support forest management and policy formulation. Traditionally, forest AGB is spatially estimated by integrating satellite images, in particular, optical data, with field plots from forest inventory programs. However, field data are limited in remote and unmanaged areas. In addition, optical reflectance usually saturates at high-density biomass level and is subject to cloud contaminations. Thus, this study aimed to develop a deep learning based workflow for mapping forest AGB by integrating Landsat 8 and Sentinel-1A images with airborne light detection and ranging (LiDAR) data. A reference AGB map was derived from the wall-to-wall LiDAR data and field measurements. The LiDAR plots-stratified random samples of forest biomass extracted from the LiDAR simulated strips in the reference map-were adopted as a surrogate for traditional field plots. In addition to the deep learning model, i.e., stacked sparse autoencoder network (SSAE), five different prediction techniques including multiple stepwise linear regressions, K-nearest neighbor, support vector machine, back propagation neural networks, and random forest were individually used to establish the relationship between LiDAR-derived forest biomass and the satellite predictors. Optical variables (Landsat 8 OLI), SAR variables (Sentinel-1A), and their combined variables were individually input to the six prediction models. Results showed that the SSAE model had the best performance for the forest biomass estimation. The combined optical and microwave dataset as explanatory variables improved the modeling performance compared to either the optical-only or microwave-only data, regardless of prediction algorithms. The best mapping accuracy was obtained by the SSAE model with inputs of optical and microwave integrated metrics that yielded R 2 of 0.812, root mean squared error (RMSE) of 21.753 Mg/ha, and relative RMSE (RMSEr) of 14.457%. Overall, the SSAE model with inputs of combined Landsat 8 OLI and Sentinel-1A information could result in accurate estimation of forest biomass by using the stratification-sampled and LiDAR-derived AGB as ground reference data. The modeling workflow has the potential to promote future forest growth monitoring and carbon stock assessment across large areas. |
---|---|
AbstractList | Timely, spatially complete, and reliable forest above-ground biomass (AGB) data are a prerequisite to support forest management and policy formulation. Traditionally, forest AGB is spatially estimated by integrating satellite images, in particular, optical data, with field plots from forest inventory programs. However, field data are limited in remote and unmanaged areas. In addition, optical reflectance usually saturates at high-density biomass level and is subject to cloud contaminations. Thus, this study aimed to develop a deep learning based workflow for mapping forest AGB by integrating Landsat 8 and Sentinel-1A images with airborne light detection and ranging (LiDAR) data. A reference AGB map was derived from the wall-to-wall LiDAR data and field measurements. The LiDAR plots-stratified random samples of forest biomass extracted from the LiDAR simulated strips in the reference map-were adopted as a surrogate for traditional field plots. In addition to the deep learning model, i.e., stacked sparse autoencoder network (SSAE), five different prediction techniques including multiple stepwise linear regressions, K-nearest neighbor, support vector machine, back propagation neural networks, and random forest were individually used to establish the relationship between LiDAR-derived forest biomass and the satellite predictors. Optical variables (Landsat 8 OLI), SAR variables (Sentinel-1A), and their combined variables were individually input to the six prediction models. Results showed that the SSAE model had the best performance for the forest biomass estimation. The combined optical and microwave dataset as explanatory variables improved the modeling performance compared to either the optical-only or microwave-only data, regardless of prediction algorithms. The best mapping accuracy was obtained by the SSAE model with inputs of optical and microwave integrated metrics that yielded R2 of 0.812, root mean squared error (RMSE) of 21.753 Mg/ha, and relative RMSE (RMSEr) of 14.457%. Overall, the SSAE model with inputs of combined Landsat 8 OLI and Sentinel-1A information could result in accurate estimation of forest biomass by using the stratification-sampled and LiDAR-derived AGB as ground reference data. The modeling workflow has the potential to promote future forest growth monitoring and carbon stock assessment across large areas. Timely, spatially complete, and reliable forest above-ground biomass (AGB) data are a prerequisite to support forest management and policy formulation. Traditionally, forest AGB is spatially estimated by integrating satellite images, in particular, optical data, with field plots from forest inventory programs. However, field data are limited in remote and unmanaged areas. In addition, optical reflectance usually saturates at high-density biomass level and is subject to cloud contaminations. Thus, this study aimed to develop a deep learning based workflow for mapping forest AGB by integrating Landsat 8 and Sentinel-1A images with airborne light detection and ranging (LiDAR) data. A reference AGB map was derived from the wall-to-wall LiDAR data and field measurements. The LiDAR plots-stratified random samples of forest biomass extracted from the LiDAR simulated strips in the reference map-were adopted as a surrogate for traditional field plots. In addition to the deep learning model, i.e., stacked sparse autoencoder network (SSAE), five different prediction techniques including multiple stepwise linear regressions, K-nearest neighbor, support vector machine, back propagation neural networks, and random forest were individually used to establish the relationship between LiDAR-derived forest biomass and the satellite predictors. Optical variables (Landsat 8 OLI), SAR variables (Sentinel-1A), and their combined variables were individually input to the six prediction models. Results showed that the SSAE model had the best performance for the forest biomass estimation. The combined optical and microwave dataset as explanatory variables improved the modeling performance compared to either the optical-only or microwave-only data, regardless of prediction algorithms. The best mapping accuracy was obtained by the SSAE model with inputs of optical and microwave integrated metrics that yielded R 2 of 0.812, root mean squared error (RMSE) of 21.753 Mg/ha, and relative RMSE (RMSEr) of 14.457%. Overall, the SSAE model with inputs of combined Landsat 8 OLI and Sentinel-1A information could result in accurate estimation of forest biomass by using the stratification-sampled and LiDAR-derived AGB as ground reference data. The modeling workflow has the potential to promote future forest growth monitoring and carbon stock assessment across large areas. |
Author | Shao, Zhenfeng Wang, Lei Zhang, Linjing |
Author_xml | – sequence: 1 givenname: Zhenfeng surname: Shao fullname: Shao, Zhenfeng email: shaozhenfeng@whu.edu.cn organization: State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing & Collaborative Innovation Center for Geospatial Technology, Wuhan University, Wuhan, China – sequence: 2 givenname: Linjing orcidid: 0000-0002-3023-5930 surname: Zhang fullname: Zhang, Linjing email: zhanglinjing@whu.edu.cn organization: State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing & Collaborative Innovation Center for Geospatial Technology, Wuhan University, Wuhan, China – sequence: 3 givenname: Lei orcidid: 0000-0001-6477-6172 surname: Wang fullname: Wang, Lei email: wlei@whu.edu.cn organization: State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing & Collaborative Innovation Center for Geospatial Technology, Wuhan University, Wuhan, China |
BookMark | eNqFkM9O3DAQhy1EJZZtn4CLpZ6z9cT5Yx9TKNBqERKBc-Q4EzAEO7W9SPsQfWe8Cuqhl17G1ni-31jfKTm2ziIhZ8A2AEx--9XeN3ftJmdQb_K6ELyAI7LKoYQMSl4ekxVILjMoWHFCTkN4ZqzKa8lX5E8blX7Bgbaz8gFps4sOrXYDenqT6mTsI30IhxqfkLZ7i_5xT91IG-N75y3Srblo7qiyKUNFnCYTkd7O0Wg1Ld30eqGiotHRGzXTS-cxRNr07g2zK-92aea7ca8qhM_k06imgF8-zjV5uPxxf36dbW-vfp4320znso5ZpSvQQ8nqkg1yHFiNuRSiYKIs9IhKaIl5zUFopVGyPu9Vug3Alax7IcaRr8nXJXf27vcu_aZ7djtv08oOpGASiip5WxO5TGnvQvA4dtpEFY2z0SszdcC6g_1usd8d7Hcf9hPL_2Fnb16V3_-HOlsog4h_CcG4hIrxd_5TlC4 |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_3390_rs11121503 crossref_primary_10_1080_10095020_2020_1864232 crossref_primary_10_3390_rs16101676 crossref_primary_10_1080_01431161_2021_1984611 crossref_primary_10_3390_f15061055 crossref_primary_10_1038_s41586_025_08692_x crossref_primary_10_1016_j_isprsjprs_2025_01_013 crossref_primary_10_1016_j_jag_2024_103960 crossref_primary_10_1109_MGRS_2018_2853555 crossref_primary_10_3390_rs13173535 crossref_primary_10_3390_rs15245653 crossref_primary_10_1109_TTE_2019_2946065 crossref_primary_10_1016_j_isprsjprs_2023_03_010 crossref_primary_10_1080_10106049_2022_2071475 crossref_primary_10_3390_f16030477 crossref_primary_10_3390_s23052820 crossref_primary_10_2989_20702620_2023_2251946 crossref_primary_10_1080_17538947_2023_2270459 crossref_primary_10_1109_JSEN_2019_2923982 crossref_primary_10_3390_app11104465 crossref_primary_10_1109_ACCESS_2021_3056671 crossref_primary_10_26848_rbgf_v17_2_p1127_1146 crossref_primary_10_3390_rs16122229 crossref_primary_10_3390_rs12244015 crossref_primary_10_1093_forestry_cpac002 crossref_primary_10_3390_rs12071101 crossref_primary_10_3390_f15010056 crossref_primary_10_1088_2515_7620_ac5b84 crossref_primary_10_1007_s10661_021_09561_6 crossref_primary_10_1109_JSTARS_2022_3179819 crossref_primary_10_1007_s12524_023_01746_5 crossref_primary_10_3390_f12091214 crossref_primary_10_1016_j_geoderma_2022_115712 crossref_primary_10_1109_ACCESS_2018_2830661 crossref_primary_10_1109_JSTARS_2023_3322344 crossref_primary_10_3390_rs16173241 crossref_primary_10_1109_JSTARS_2022_3179027 crossref_primary_10_1080_10095020_2021_1984183 crossref_primary_10_1109_ACCESS_2020_3027361 crossref_primary_10_14358_PERS_21_00045R2 crossref_primary_10_1016_j_rsase_2018_07_010 crossref_primary_10_1109_TIP_2020_3019925 crossref_primary_10_3390_rs16061074 crossref_primary_10_3390_rs13193910 crossref_primary_10_1080_01431161_2021_1954261 crossref_primary_10_1109_TGRS_2018_2873302 crossref_primary_10_1016_j_jag_2019_101986 crossref_primary_10_1109_JSTARS_2022_3188201 crossref_primary_10_3390_rs15041096 crossref_primary_10_1109_TGRS_2020_3025821 crossref_primary_10_1016_j_catena_2022_106263 crossref_primary_10_3390_rs16152690 crossref_primary_10_1016_j_jag_2022_102926 crossref_primary_10_3390_s23187955 crossref_primary_10_1016_j_srs_2023_100093 crossref_primary_10_1109_ACCESS_2021_3079327 crossref_primary_10_3390_rs14030478 crossref_primary_10_1080_01431161_2023_2240508 crossref_primary_10_1080_01431161_2020_1820618 crossref_primary_10_1080_10106049_2020_1756461 crossref_primary_10_3390_rs11121459 crossref_primary_10_1016_j_asr_2021_11_020 crossref_primary_10_1016_j_isprsjprs_2019_04_015 crossref_primary_10_3390_app13031772 crossref_primary_10_3390_rs13122392 crossref_primary_10_3390_su151310434 crossref_primary_10_3390_rs11182156 crossref_primary_10_3390_pr11071985 crossref_primary_10_7717_peerj_8282 crossref_primary_10_3390_f10100871 crossref_primary_10_3390_su11247075 crossref_primary_10_3390_s20051533 crossref_primary_10_1049_iet_ipr_2019_1611 crossref_primary_10_3390_rs16214079 crossref_primary_10_3390_rs10101550 crossref_primary_10_1080_17538947_2024_2430676 crossref_primary_10_1109_ACCESS_2019_2908975 crossref_primary_10_3390_land13101697 crossref_primary_10_14358_PERS_21_00021R2 crossref_primary_10_1016_j_rse_2024_114301 |
Cites_doi | 10.1109/IGARSS.2012.6352718 10.1016/j.rse.2016.01.015 10.3390/rs2030673 10.1109/LGRS.2016.2586109 10.1016/j.rse.2005.12.010 10.1016/j.rse.2005.12.006 10.1016/j.isprsjprs.2014.11.007 10.1016/j.jag.2013.02.002 10.1016/j.rse.2013.12.013 10.2747/1548-1603.48.2.141 10.1109/JSTARS.2013.2241020 10.1016/j.rse.2012.02.012 10.1109/TGRS.2016.2537830 10.1016/j.ecoinf.2010.03.004 10.1016/j.landurbplan.2014.12.007 10.1080/01431161.2014.967888 10.3390/rs4051190 10.1016/j.rse.2013.08.012 10.1080/01431160701253295 10.1016/j.jag.2011.09.010 10.1007/s10021-001-0060-X 10.1080/01431161.2014.894656 10.1016/j.isprsjprs.2015.06.002 10.1016/j.rse.2010.02.022 10.5589/m08-004 10.1093/forestry/cpq022 10.1109/LGRS.2011.2109934 10.5589/m10-037 10.1016/S0034-4257(01)00343-1 10.3390/rs71215873 10.3390/rs8020099 10.14358/PERS.77.7.733 10.1109/JSTARS.2014.2329330 10.1080/01431160500486732 10.1016/S0034-4257(01)00290-5 10.1016/j.jag.2015.04.020 10.3390/s16060834 10.1016/j.rse.2010.12.011 10.1080/01431161.2012.693969 10.5589/m03-032 10.1016/j.rse.2007.10.009 10.1016/j.rse.2014.07.028 10.3390/rs6097878 10.1016/j.isprsjprs.2014.12.011 10.1109/JSTARS.2016.2522960 10.1080/01431161.2013.777486 10.1016/j.isprsjprs.2014.11.001 10.1109/JSTARS.2014.2304642 10.1007/978-3-540-28650-9_8 10.1023/A:1010933404324 10.1109/JSTARS.2014.2347276 10.1080/01431161.2011.577829 10.1016/j.rse.2012.02.001 10.3390/rs6053693 10.1029/2008JG000870 10.1139/X09-183 10.3390/rs6076407 10.1016/j.rse.2011.11.002 10.1080/01431161.2013.833361 10.1109/JSTARS.2015.2467377 10.1016/j.rse.2015.11.010 10.1016/j.foreco.2006.01.030 10.1016/j.isprsjprs.2014.12.021 10.1016/j.jag.2014.10.008 10.1109/JSTARS.2012.2235174 10.1016/j.rse.2015.12.002 10.1029/2009JG000935 10.1016/S0034-4257(02)00056-1 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/JSTARS.2017.2748341 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 5582 |
ExternalDocumentID | 10_1109_JSTARS_2017_2748341 8039160 |
Genre | orig-research |
GrantInformation_xml | – fundername: Special task of technical innovation in Hubei Province grantid: 2016AAA018 – fundername: National Key Technologies Research and Development Program grantid: 2016YFB0502603 – fundername: Fundamental Research Funds for the Central Universities grantid: 2042016kf0179; 2042016kf1019 – fundername: Guangzhou Science and Technology Project grantid: 201604020070 funderid: 10.13039/501100004000 – fundername: Wuhan Chen Guang Project grantid: 2016070204010114 – fundername: National Administration of Surveying, Mapping and Geoinformation grantid: 2015NGCM |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c297t-6c61cd50750d9fd07e298840854cfea8c9e27318cace90b2bacacd13a97b88ff3 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Fri Jul 25 18:57:42 EDT 2025 Tue Jul 01 03:16:08 EDT 2025 Thu Apr 24 22:58:42 EDT 2025 Wed Aug 27 02:51:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-6c61cd50750d9fd07e298840854cfea8c9e27318cace90b2bacacd13a97b88ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6477-6172 0000-0002-3023-5930 |
PQID | 1980914615 |
PQPubID | 75722 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_JSTARS_2017_2748341 proquest_journals_1980914615 crossref_primary_10_1109_JSTARS_2017_2748341 ieee_primary_8039160 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref55 ref11 ref10 ref17 ref16 ref19 ref18 (ref9) 2012 ref51 ref50 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref4 ref3 ref6 ref5 krahwinkler (ref68) 2011 ref40 el-askary (ref54) 2014; 35 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref72 ref24 ref67 ref23 ref26 ref69 ref25 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 team (ref64) 2013; 1 ref60 ref62 ref61 fang (ref47) 1996; 16 |
References_xml | – ident: ref37 doi: 10.1109/IGARSS.2012.6352718 – ident: ref13 doi: 10.1016/j.rse.2016.01.015 – ident: ref36 doi: 10.3390/rs2030673 – ident: ref44 doi: 10.1109/LGRS.2016.2586109 – ident: ref59 doi: 10.1016/j.rse.2005.12.010 – ident: ref57 doi: 10.1016/j.rse.2005.12.006 – ident: ref14 doi: 10.1016/j.isprsjprs.2014.11.007 – ident: ref18 doi: 10.1016/j.jag.2013.02.002 – ident: ref5 doi: 10.1016/j.rse.2013.12.013 – ident: ref51 doi: 10.2747/1548-1603.48.2.141 – ident: ref25 doi: 10.1109/JSTARS.2013.2241020 – ident: ref21 doi: 10.1016/j.rse.2012.02.012 – ident: ref39 doi: 10.1109/TGRS.2016.2537830 – ident: ref11 doi: 10.1016/j.ecoinf.2010.03.004 – ident: ref46 doi: 10.1016/j.landurbplan.2014.12.007 – ident: ref30 doi: 10.1080/01431161.2014.967888 – ident: ref48 doi: 10.3390/rs4051190 – ident: ref2 doi: 10.1016/j.rse.2013.08.012 – ident: ref22 doi: 10.1080/01431160701253295 – ident: ref10 doi: 10.1016/j.jag.2011.09.010 – ident: ref58 doi: 10.1007/s10021-001-0060-X – volume: 35 start-page: 2327 year: 2014 ident: ref54 article-title: Change detection of coral reef habitat using Landsat-5 TM, Landsat 7 ETM+ and Landsat 8 OLI data in the Red Sea (Hurghada, Egypt) publication-title: Int J Remote Sens doi: 10.1080/01431161.2014.894656 – ident: ref53 doi: 10.1016/j.isprsjprs.2015.06.002 – ident: ref20 doi: 10.1016/j.rse.2010.02.022 – ident: ref28 doi: 10.5589/m08-004 – ident: ref38 doi: 10.1093/forestry/cpq022 – ident: ref35 doi: 10.1109/LGRS.2011.2109934 – ident: ref16 doi: 10.5589/m10-037 – ident: ref19 doi: 10.1016/S0034-4257(01)00343-1 – ident: ref23 doi: 10.3390/rs71215873 – ident: ref42 doi: 10.3390/rs8020099 – ident: ref29 doi: 10.14358/PERS.77.7.733 – ident: ref40 doi: 10.1109/JSTARS.2014.2329330 – ident: ref50 doi: 10.1080/01431160500486732 – volume: 1 start-page: 12 year: 2013 ident: ref64 article-title: Team RDC.R: A language and environment for statistical computing. R Foundation for statistical computing: Vienna, Austria publication-title: Computing – ident: ref72 doi: 10.1016/S0034-4257(01)00290-5 – ident: ref12 doi: 10.1016/j.jag.2015.04.020 – ident: ref17 doi: 10.3390/s16060834 – year: 2012 ident: ref9 article-title: Comparison of LiDAR- and photointerpretation-based estimates of canopy cover – ident: ref8 doi: 10.1016/j.rse.2010.12.011 – ident: ref33 doi: 10.1080/01431161.2012.693969 – ident: ref27 doi: 10.5589/m03-032 – ident: ref7 doi: 10.1016/j.rse.2007.10.009 – start-page: 949 year: 2011 ident: ref68 article-title: Using decision tree based multiclass support vector machines for forest mapping publication-title: Proc IEEE Int Geosci Remote Sens Symp – ident: ref31 doi: 10.1016/j.rse.2014.07.028 – ident: ref69 doi: 10.3390/rs6097878 – ident: ref32 doi: 10.1016/j.isprsjprs.2014.12.011 – ident: ref71 doi: 10.1109/JSTARS.2016.2522960 – ident: ref70 doi: 10.1080/01431161.2013.777486 – ident: ref52 doi: 10.1016/j.isprsjprs.2014.11.001 – ident: ref62 doi: 10.1109/JSTARS.2014.2304642 – ident: ref65 doi: 10.1007/978-3-540-28650-9_8 – ident: ref67 doi: 10.1023/A:1010933404324 – ident: ref43 doi: 10.1109/JSTARS.2014.2347276 – ident: ref24 doi: 10.1080/01431161.2011.577829 – ident: ref49 doi: 10.1016/j.rse.2012.02.001 – volume: 16 start-page: 497 year: 1996 ident: ref47 article-title: Biomass and net production of forest vegetation in China publication-title: Acta Ecologica Sinica – ident: ref26 doi: 10.3390/rs6053693 – ident: ref4 doi: 10.1029/2008JG000870 – ident: ref6 doi: 10.1139/X09-183 – ident: ref60 doi: 10.3390/rs6076407 – ident: ref34 doi: 10.1016/j.rse.2011.11.002 – ident: ref3 doi: 10.1080/01431161.2013.833361 – ident: ref41 doi: 10.1109/JSTARS.2015.2467377 – ident: ref56 doi: 10.1016/j.rse.2015.11.010 – ident: ref15 doi: 10.1016/j.foreco.2006.01.030 – ident: ref45 doi: 10.1016/j.isprsjprs.2014.12.021 – ident: ref66 doi: 10.1016/j.jag.2014.10.008 – ident: ref55 doi: 10.1109/JSTARS.2012.2235174 – ident: ref61 doi: 10.1016/j.rse.2015.12.002 – ident: ref1 doi: 10.1029/2009JG000935 – ident: ref63 doi: 10.1016/S0034-4257(02)00056-1 |
SSID | ssj0062793 |
Score | 2.4575517 |
Snippet | Timely, spatially complete, and reliable forest above-ground biomass (AGB) data are a prerequisite to support forest management and policy formulation.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5569 |
SubjectTerms | Back propagation networks Biomass Biomedical optical imaging Computer simulation Data deep learning (DL) Density stratification Detection Forest biomass Forest growth Forest management Forests Image detection Landsat Landsat 8 Landsat satellites Laser radar Lidar light detection and ranging (LiDAR) Machine learning Mapping Mathematical models Model accuracy Modelling Neural networks Optical imaging Optical saturation Policies Prediction models Reflectance Remote sensing SAR (radar) Satellite communication Satellite imagery Satellites Sentinel-1A stacked sparse autoencoder network (SSAE) Stock assessment Stratification Workflow |
Title | Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-Ground Biomass |
URI | https://ieeexplore.ieee.org/document/8039160 https://www.proquest.com/docview/1980914615 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpoNBLX2npNkmZQ4_RxvJTOrpJ01CaFrIN5Gb0GMOSYi-72kLyH_KfM5K9C31QejO2JAQzkr6Rv_mGsfeJFoUpnOCVM5rnUgguTZpxVencuBa1spFt8bU8v8o_XxfXO-xomwuDiJF8htPwGP_lu96uw1XZsQxy5iUF6I8ocBtytTa7bplWUWCX8IjiQTJmVBgSiTomF68vZ4HGVU0pCJNZLn45hWJZlT_24njAnD1jF5upDbySm-nam6m9-0218X_n_pw9HZEm1INrvGA72L1kjz_FSr63e-yeYCatYAezBcW2CPXa90HU0uESQoG0kKYOkVAAhBFhdhuTBKFvoZ4vyXE6hC_z0_oSdEdj6Cjs6RG-LeLl-PCWvp5qr8H3cKEXEMqArjzUpv-JPFx6UZsP80BQWr1iV2cfv5-c87E2A7epqjwvbSmsKwLgcKp1SYWpkjLIpeWWLCytQgJGQlptUSUmNZqenMi0qoyUbZu9Zrtd3-EbBgpdWljrtGplbpUzhOnKrCwl7RfSGj1h6cZWjR2Fy0P9jB9NDGAS1QwGboKBm9HAE3a07bQYdDv-3XwvmGzbdLTWhB1snKIZ1_aqEUoSyMoJCr79e6999iSMPZBeDtiuX67xkKCLN--izz4AEB3q7g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qRYhueBXUgQJewI5MY-dlL1gEhjKl0yJ1Wqm74FekUatkNJMBDf_AH_RX-m9cO5mReIhdJXZWYjuRc3x9rnN9LsCrUNJEJYYGmVEyiDmlAVcsCkQmY2VKK4X20RbH6fAs_nSenG_A1fosjLXWB5_Zviv6f_mm1gu3VbbHnZx5GnYhlId2-Q0dtPnbgwF-zdeM7X84fT8MuhwCgWYia4JUp1SbxC2MRpQmzCwTnDtZr1jjm3AtLC7glGuprQgVUxJLhkZSZIrzsoyw31twG3lGwtrTYSs7n7LMS_oiAxKBE6npNI1oKPZwUuUnYxc4lvXR7eNRTH9Z93wilz-sv1_S9u_D9Wow2kiWi_6iUX39_TedyP91tB7AvY5Lk7wF_0PYsNUjuPPR5ypebsMPJNJoowwZT9F7tyRfNLWT7TR2RlwKOHcQn_iQCYIsmIyX_hgkqUuST2Y4NSpLRpNBfkJkhX1IL13aWPJ56rf_26t4dyAbSZqaHMkpcYlO5w3JVf3VBm5bD-u8m7gQrPljOLuRsXgCm1Vd2R0gwhqWaG2kKHmshVHIWtMoTTlaRK6V7AFbYaPQnTS7yxByWXgXLRRFC6jCAaroANWDN-tG01aZ5N_Vtx1E1lU7dPRgdwXCorNe84IKjjQyRrL79O-tXsLd4enRqBgdHB8-gy33nDbEZxc2m9nCPkei1qgXfr4Q-HLTkPsJerNKoQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacked+Sparse+Autoencoder+Modeling+Using+the+Synergy+of+Airborne+LiDAR+and+Satellite+Optical+and+SAR+Data+to+Map+Forest+Above-Ground+Biomass&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Shao%2C+Zhenfeng&rft.au=Zhang%2C+Linjing&rft.au=Wang%2C+Lei&rft.date=2017-12-01&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=10&rft.issue=12&rft.spage=5569&rft.epage=5582&rft_id=info:doi/10.1109%2FJSTARS.2017.2748341&rft.externalDocID=8039160 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |