The critical role of boric acid as electrolyte additive on the electrochemical performance of lead-acid battery

•Boric acid is used as electrolyte additive for lead-acid battery in the current research.•The working mechanism of the boric acid additive is studied thoroughly.•The boric acid can participate in the electrochemical reactions directly.•The battery with boric acid exhibit prolonged cycling performan...

Full description

Saved in:
Bibliographic Details
Published inJournal of energy storage Vol. 27; p. 101076
Main Authors Wu, Zhongfei, Liu, Yu, Deng, Chengzhi, Zhao, Haimin, Zhao, Ruirui, Chen, Hongyu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Boric acid is used as electrolyte additive for lead-acid battery in the current research.•The working mechanism of the boric acid additive is studied thoroughly.•The boric acid can participate in the electrochemical reactions directly.•The battery with boric acid exhibit prolonged cycling performance due to the improved anti-corrosion properties. Electrolyte additives are essential for the performance enhancement of lead-acid batteries, which are paid lots of attention in recent years. Even boric acid has been reported as a helpful additive in lead-acid battery in previous papers, but the insufficient understanding concerning to the working mechanism still hinder its practical application. In this paper, the boric acid is used as an additive in lead-acid electrolyte, while electrochemical methods, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectra are employed to study its critical effects on the battery performance. Results indicate that boric acid can increase both the hydrogen evolution overpotential and oxygen evolution overpotential of the lead grid due to the changed mean ionic activity coefficient of the solution, thus reducing the water loss during battery operation. The beneficial effects boric acid introduced possibly resulted from the formation of BO33−-contained products with dense morphology, which can hinder the further corrosion of the lead grids, results in prolonged battery life. [Display omitted]
AbstractList •Boric acid is used as electrolyte additive for lead-acid battery in the current research.•The working mechanism of the boric acid additive is studied thoroughly.•The boric acid can participate in the electrochemical reactions directly.•The battery with boric acid exhibit prolonged cycling performance due to the improved anti-corrosion properties. Electrolyte additives are essential for the performance enhancement of lead-acid batteries, which are paid lots of attention in recent years. Even boric acid has been reported as a helpful additive in lead-acid battery in previous papers, but the insufficient understanding concerning to the working mechanism still hinder its practical application. In this paper, the boric acid is used as an additive in lead-acid electrolyte, while electrochemical methods, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectra are employed to study its critical effects on the battery performance. Results indicate that boric acid can increase both the hydrogen evolution overpotential and oxygen evolution overpotential of the lead grid due to the changed mean ionic activity coefficient of the solution, thus reducing the water loss during battery operation. The beneficial effects boric acid introduced possibly resulted from the formation of BO33−-contained products with dense morphology, which can hinder the further corrosion of the lead grids, results in prolonged battery life. [Display omitted]
ArticleNumber 101076
Author Deng, Chengzhi
Liu, Yu
Wu, Zhongfei
Chen, Hongyu
Zhao, Ruirui
Zhao, Haimin
Author_xml – sequence: 1
  givenname: Zhongfei
  surname: Wu
  fullname: Wu, Zhongfei
  organization: School of Chemistry, South China Normal University, Guangzhou, 510006, China
– sequence: 2
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
  organization: Tianneng Battery Group Company, Huzhou, 313000, China
– sequence: 3
  givenname: Chengzhi
  surname: Deng
  fullname: Deng, Chengzhi
  organization: Tianneng Battery Group Company, Huzhou, 313000, China
– sequence: 4
  givenname: Haimin
  surname: Zhao
  fullname: Zhao, Haimin
  organization: Tianneng Battery Group Company, Huzhou, 313000, China
– sequence: 5
  givenname: Ruirui
  surname: Zhao
  fullname: Zhao, Ruirui
  email: zhaoruirui@m.scnu.edu.cn
  organization: School of Chemistry, South China Normal University, Guangzhou, 510006, China
– sequence: 6
  givenname: Hongyu
  surname: Chen
  fullname: Chen, Hongyu
  email: hychen@scnu.edu.cn
  organization: School of Chemistry, South China Normal University, Guangzhou, 510006, China
BookMark eNp9kE1rAyEQhqWk0DTND-jNP7Cpul2N9FRCvyDQSwq9iTs7EsNmDSqB_PuaD3rooadxnHlemOeWjIYwICH3nM044_JhM8OUZ4JxfeyZkldkLOpGVLyp56Pft_i-IdOUNowVqOFcyzEJqzVSiD57sD2NoUcaHG1D9EAt-I7aRLFHyGV0yEht15XdfdkaaC7oZQZr3J4SdhhdiFs7wCmoR9tVp5zW5ozxcEeune0TTi91Qr5eX1aL92r5-faxeF5WILTKlbTKYiOdbJTuGgDJgStQzs61AAkOm1a745-WkoHSTlhe1y3rpOLNXDzWE6LOuRBDShGdAZ9t9mHI0frecGaO6szGFHXmqM6c1RWS_yF30W9tPPzLPJ0ZLCftPUaTwGNx0PlY_Jgu-H_oH3PCiiQ
CitedBy_id crossref_primary_10_1016_j_electacta_2023_142492
crossref_primary_10_3390_molecules30040885
crossref_primary_10_1016_j_electacta_2023_143045
crossref_primary_10_1134_S2517751623010080
crossref_primary_10_31857_S221811722301008X
crossref_primary_10_1016_j_jtte_2021_09_001
crossref_primary_10_1149_1945_7111_acd351
crossref_primary_10_1016_j_est_2024_112738
crossref_primary_10_1149_1945_7111_ad3efd
crossref_primary_10_1016_j_matchemphys_2022_126764
crossref_primary_10_1007_s11581_025_06084_9
crossref_primary_10_1016_j_electacta_2022_139877
crossref_primary_10_1016_j_clet_2023_100705
crossref_primary_10_1016_j_scitotenv_2020_140763
crossref_primary_10_1007_s40820_020_0413_7
crossref_primary_10_1016_j_est_2023_108992
crossref_primary_10_1021_acs_energyfuels_2c01987
crossref_primary_10_1016_j_est_2022_104877
crossref_primary_10_1007_s41918_022_00134_w
crossref_primary_10_1007_s10008_024_05893_8
crossref_primary_10_1149_1945_7111_ab927b
crossref_primary_10_1016_j_est_2021_103454
crossref_primary_10_1016_j_ensm_2023_02_028
crossref_primary_10_1021_acs_energyfuels_3c03614
crossref_primary_10_1039_D2CE00111J
crossref_primary_10_1021_acs_jpcc_3c00953
crossref_primary_10_1016_j_jics_2022_100355
crossref_primary_10_1016_j_materresbull_2023_112298
crossref_primary_10_1039_D1DT01177D
crossref_primary_10_1016_j_est_2022_106429
crossref_primary_10_1016_j_jpowsour_2021_230800
crossref_primary_10_3389_fbael_2023_1268412
crossref_primary_10_3390_s21155041
crossref_primary_10_1016_j_est_2022_105932
Cites_doi 10.1016/j.jallcom.2008.08.011
10.1016/j.jpowsour.2014.01.111
10.1007/s40242-013-2261-1
10.1007/s10008-019-04265-x
10.1007/s11581-018-2437-2
10.1016/0378-7753(88)80113-7
10.1149/1.2133095
10.1016/0378-7753(94)01936-3
10.1016/0378-7753(94)01925-8
10.1016/j.jelechem.2018.02.030
10.1016/S0378-7753(00)00640-6
10.1016/j.jpowsour.2011.08.071
10.1007/s11581-011-0590-y
10.1016/0378-7753(94)02022-U
10.1016/S0925-8388(03)00649-2
10.1016/S0378-7753(97)02506-8
10.1016/j.est.2017.11.008
10.1016/j.jpowsour.2005.11.033
10.1016/0378-7753(83)80083-4
10.1007/s11665-014-1269-0
10.1016/0378-7753(94)01929-0
10.1016/j.jpowsour.2006.11.091
10.1016/S1003-6326(17)60235-8
10.1016/0378-7753(94)02001-J
10.1016/j.electacta.2016.10.159
10.1007/s11581-014-1155-7
10.1515/eetech-2018-0007
10.1007/s11434-016-1023-0
10.1016/j.jpowsour.2005.11.028
10.1016/S0378-7753(02)00368-3
10.1023/A:1003492329927
10.1016/S0378-7753(99)00380-8
10.1016/0378-7753(88)80001-6
10.1149/1.2048646
10.1016/j.jpowsour.2003.11.075
10.1016/j.jpowsour.2005.09.029
10.1016/S0378-7753(02)00552-9
10.1002/er.3729
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.est.2019.101076
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-1538
ExternalDocumentID 10_1016_j_est_2019_101076
S2352152X1931076X
GroupedDBID --M
0R~
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAOAW
AARIN
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSR
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-6a7ae56f6579d5cc61c17c7fa892c6cfe5b9f1c179660c79f2a133b0d67158243
IEDL.DBID AIKHN
ISSN 2352-152X
IngestDate Tue Jul 01 03:34:16 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Fri Feb 23 02:47:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lead-acid battery
Boric acid
Electrolyte additive
Corrosion properties
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-6a7ae56f6579d5cc61c17c7fa892c6cfe5b9f1c179660c79f2a133b0d67158243
ParticipantIDs crossref_citationtrail_10_1016_j_est_2019_101076
crossref_primary_10_1016_j_est_2019_101076
elsevier_sciencedirect_doi_10_1016_j_est_2019_101076
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Journal of energy storage
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wei, Wang (bib0020) 1994; 52
Bullock (bib0003) 1995; 142
Meissner (bib0017) 1997; 67
Bhattacharya, Basumallick (bib0027) 2003; 113
Wu. R. R. Zhao, Zhou, Zhang, Zhao, Chen (bib0002) 2016; 222
Petkova, Nikolov, Pavlov (bib0025) 2006; 158
Meenakorn, Termsuksawad, Phiboonkulsumrit (bib0016) 2015; 24
Bullock, Mcclelland (bib0019) 1977; 124
Chen, Li, Li, Shu, Li, Dou, Wang, Xiao, Peng, Chen, Zhang, Wang (bib0040) 2007; 168
Wei, Wang (bib0023) 1994; 52
Rezaei, Ensafi, Jahromi (bib0005) 2012; 18
Voss (bib0018) 1988; 24
May, Davidson, Monahov (bib0001) 2018; 15
Chen, Wu, Ren, Luo, Xie, Jiang, Zhu, Xia, Luo (bib0008) 2001; 95
Li, Chen, Tang, Wei, Xia, Wu, Li, Jiang (bib0036) 2006; 158
Rogatchev, Papazov, Pavlov (bib0029) 1983; 10
Zhou, Yang, Zhou, Liu (bib0006) 2004; 365
Slavkov, Haran, Popov, Fleming (bib0010) 2002; 112
Yazd, Molazemi, Moayed (bib0028) 2006; 158
Lang, Li, Cai, Li, Zhang, Wu (bib0015) 2018; 24
Guo, Shu, Chen, Li, Wang, Xiao, Duo, Peng, Wei, Zhang, Zhou, Chen (bib0011) 2009; 475
Kamenev, Shtompel, Ostapenko, Leonov (bib0030) 2014; 257
Yu, Qian, Zhao, Wang, Niu (bib0022) 2013; 29
Lang, Xiao, Cai, Li, Zhang, Yang (bib0013) 2017; 41
Wang, Hu, Zhou, Wang, Lian, Yan, Cheng, Jiang (bib0034) 2016; 61
Dietz, Hoogestraat, Laibach, von Borstel, Wiesener (bib0024) 1995; 53
Yan, Li, Zhan (bib0031) 2004; 133
Zhao, Zhao, Zhang, Zhao, Lv, Shi, Chen (bib0004) 2018; 814
Banerjee, Shukla (bib0014) 2015; 21
Bard, Faulkner (bib0037) 2001
Zhou, Wang, Yang, Guo, Yang, Ma, Chen (bib0033) 2017; 27
Babić, Melikoš-Hukorić, Lajqy, Brinić (bib0039) 1994; 52
Benhangi, Nakhaie, Moayed, Molazemi (bib0009) 2011; 196
Hu, Yang, Hu, Wang, Liang, Hou, Wu, Liu, Yu, He, Kumar (bib0012) 2018
Zhong, Wang, Liu, Dou (bib0035) 1999; 29
Hirasawa, Sasaki, Taguchi, Kanecho (bib0038) 2000; 85
Badawy, El-Egamy (bib0026) 1995; 55
Venkateswarlu, Balusamy, Murthy, Jagadish, Vijayanand (bib0021) 2018; 4
Maja, Penazzi (bib0032) 1988; 22
Yang, Cai, Li, Yang, Liu, Dai, Yin (bib0007) 2019; 23
Zhou (10.1016/j.est.2019.101076_bib0006) 2004; 365
Petkova (10.1016/j.est.2019.101076_bib0025) 2006; 158
Hu (10.1016/j.est.2019.101076_bib0012) 2018
Yang (10.1016/j.est.2019.101076_bib0007) 2019; 23
Yu (10.1016/j.est.2019.101076_bib0022) 2013; 29
Lang (10.1016/j.est.2019.101076_bib0013) 2017; 41
Maja (10.1016/j.est.2019.101076_bib0032) 1988; 22
Rezaei (10.1016/j.est.2019.101076_bib0005) 2012; 18
Wei (10.1016/j.est.2019.101076_bib0020) 1994; 52
Wu. R. R. Zhao (10.1016/j.est.2019.101076_bib0002) 2016; 222
Babić (10.1016/j.est.2019.101076_bib0039) 1994; 52
Bullock (10.1016/j.est.2019.101076_bib0019) 1977; 124
Venkateswarlu (10.1016/j.est.2019.101076_bib0021) 2018; 4
Li (10.1016/j.est.2019.101076_bib0036) 2006; 158
Bullock (10.1016/j.est.2019.101076_bib0003) 1995; 142
Badawy (10.1016/j.est.2019.101076_bib0026) 1995; 55
Hirasawa (10.1016/j.est.2019.101076_bib0038) 2000; 85
Zhong (10.1016/j.est.2019.101076_bib0035) 1999; 29
Lang (10.1016/j.est.2019.101076_bib0015) 2018; 24
Wei (10.1016/j.est.2019.101076_bib0023) 1994; 52
Yazd (10.1016/j.est.2019.101076_bib0028) 2006; 158
Rogatchev (10.1016/j.est.2019.101076_bib0029) 1983; 10
Zhou (10.1016/j.est.2019.101076_bib0033) 2017; 27
Voss (10.1016/j.est.2019.101076_bib0018) 1988; 24
Dietz (10.1016/j.est.2019.101076_bib0024) 1995; 53
Wang (10.1016/j.est.2019.101076_bib0034) 2016; 61
Meenakorn (10.1016/j.est.2019.101076_bib0016) 2015; 24
Bhattacharya (10.1016/j.est.2019.101076_bib0027) 2003; 113
Chen (10.1016/j.est.2019.101076_bib0040) 2007; 168
Yan (10.1016/j.est.2019.101076_bib0031) 2004; 133
Banerjee (10.1016/j.est.2019.101076_bib0014) 2015; 21
Bard (10.1016/j.est.2019.101076_bib0037) 2001
Slavkov (10.1016/j.est.2019.101076_bib0010) 2002; 112
Chen (10.1016/j.est.2019.101076_bib0008) 2001; 95
May (10.1016/j.est.2019.101076_bib0001) 2018; 15
Benhangi (10.1016/j.est.2019.101076_bib0009) 2011; 196
Zhao (10.1016/j.est.2019.101076_bib0004) 2018; 814
Kamenev (10.1016/j.est.2019.101076_bib0030) 2014; 257
Guo (10.1016/j.est.2019.101076_bib0011) 2009; 475
Meissner (10.1016/j.est.2019.101076_bib0017) 1997; 67
References_xml – volume: 24
  start-page: 45
  year: 2015
  end-page: 52
  ident: bib0016
  article-title: Effects of carbon structure and mixing sequence in an expander on the capacity of negative electrodes in a traction battery
  publication-title: J. Mater. Eng. Perform.
– volume: 52
  start-page: 25
  year: 1994
  end-page: 29
  ident: bib0020
  article-title: Electrochemical behaviour of lead electrode in sulfuric acid solution containing citric acid
  publication-title: J. Power Sources
– volume: 52
  start-page: 81
  year: 1994
  end-page: 85
  ident: bib0023
  article-title: Electrochemical behaviour of SnSO
  publication-title: J. Power Sources
– volume: 24
  start-page: 171
  year: 1988
  end-page: 184
  ident: bib0018
  article-title: Effects of phosphoric acid additions on the behaviour of the lead/acid cell. A Review
  publication-title: J. Power Sources
– volume: 257
  start-page: 181
  year: 2014
  end-page: 185
  ident: bib0030
  article-title: Influence of the active mass particle suspension in electrolyte upon corrosion of negative electrode of a lead-acid battery
  publication-title: J. Power Sources
– volume: 27
  start-page: 2096
  year: 2017
  end-page: 2103
  ident: bib0033
  article-title: Effect of cooling ways on properties of Al/Pb-0.2%Ag rolled alloy for zinc electrowinning
  publication-title: Trans. Nonferrous Met. Soc. China
– volume: 10
  start-page: 291
  year: 1983
  end-page: 303
  ident: bib0029
  article-title: The effect of current density and thickness of the active mass upon the corrosion rate of the spines of lead-acid battery plates
  publication-title: J. Power Sources
– volume: 142
  start-page: 1726
  year: 1995
  end-page: 1731
  ident: bib0003
  article-title: Progress and challenges in bipolar lead-acid battery development
  publication-title: J. Electrochem. Soc.
– volume: 158
  start-page: 914
  year: 2006
  end-page: 919
  ident: bib0036
  article-title: Electrochemical behavior of lead alloy in sulfuric and phosphoric acid electrolyte
  publication-title: J. Power sources
– volume: 67
  start-page: 135
  year: 1997
  end-page: 150
  ident: bib0017
  article-title: Phosphoric acid as an electrolyte addictive for lead/acid batteries in electric-vehicle applications
  publication-title: J. Power Sources
– volume: 55
  start-page: 11
  year: 1995
  end-page: 17
  ident: bib0026
  article-title: Improvement of the performance of the positive electrode in the lead/acid battery by addition of boric acid
  publication-title: J. Power Sources
– volume: 53
  start-page: 359
  year: 1995
  end-page: 365
  ident: bib0024
  article-title: Influence of substituted benzaldehydes and their derivatives as inhibitors for hydrogen evolution in lead/acid batteries
  publication-title: J. Power Sources
– volume: 29
  start-page: 1
  year: 1999
  end-page: 6
  ident: bib0035
  article-title: Influence of silver on electrochemical and corrosion behaviours of Pb-Ca-Sn-Al grid alloys Part I: potentiodynamic and potentiostatic studies
  publication-title: J. Appl. Electrochem.
– volume: 112
  start-page: 199
  year: 2002
  end-page: 208
  ident: bib0010
  article-title: Effect of Sn and Ca doping on the corrosion of Pb anodes in lead acid batteries
  publication-title: J. Power Sources
– volume: 18
  start-page: 109
  year: 2012
  end-page: 116
  ident: bib0005
  article-title: Electrochemical performance of lead acid battery using ammonium hydrogen sulphate with different alkyl groups
  publication-title: Ionics
– volume: 24
  start-page: 935
  year: 2018
  end-page: 941
  ident: bib0015
  article-title: Preparation of bipolar lead-carbon electrode and study on its electrochemical performance
  publication-title: Ionics
– volume: 124
  start-page: 1478
  year: 1977
  end-page: 1482
  ident: bib0019
  article-title: The effect of phosphoric acid on the positive electrode in the lead acid battery
  publication-title: J. Electrochem. Soc.
– volume: 85
  start-page: 44
  year: 2000
  end-page: 48
  ident: bib0038
  article-title: Electrochemical characteristics of Pb-Sb alloys in sulfuric acid solutions
  publication-title: J. Power Sources
– volume: 15
  start-page: 145
  year: 2018
  end-page: 157
  ident: bib0001
  article-title: Lead batteries for utility energy storage: a review
  publication-title: J. Energy Storage
– year: 2018
  ident: bib0012
  article-title: Synthesis of nanostructured PbO@C composite derived from spent lead-acid battery for next-generation lead-carbon battery
  publication-title: Adv. Funct. Mater.
– year: 2001
  ident: bib0037
  article-title: Electrochemical Methods: Fundamentals and Applications
– volume: 52
  start-page: 17
  year: 1994
  end-page: 24
  ident: bib0039
  article-title: The effect of alloying with antimony on the electrochemical properties of lead
  publication-title: J. Power Sources
– volume: 41
  start-page: 1504
  year: 2017
  end-page: 1509
  ident: bib0013
  article-title: High-performance porous lead/graphite composite electrode for bipolar lead-acid batteries
  publication-title: Int. J. Energy Res.
– volume: 22
  start-page: 1
  year: 1988
  end-page: 9
  ident: bib0032
  article-title: Effect of some elements on oxygen reduction and hydrogen evolution at lead-acid battery negative plates
  publication-title: J. Power Sources
– volume: 475
  start-page: 102
  year: 2009
  end-page: 109
  ident: bib0011
  article-title: Study on the structure and property of lead tellurium alloy as the positive grid of lead-acid batteries
  publication-title: J. Alloys Compd.
– volume: 133
  start-page: 135
  year: 2004
  end-page: 140
  ident: bib0031
  article-title: Failure mechanism of valve-regulated lead-acid batteries under high-power cycling
  publication-title: J. Power Sources
– volume: 365
  start-page: 108
  year: 2004
  end-page: 111
  ident: bib0006
  article-title: Comparison of Pb-Sm-Sn and Pb-Ca-Sn alloys for the positive grids in a lead acid battery
  publication-title: J. Alloys Compd.
– volume: 29
  start-page: 374
  year: 2013
  end-page: 378
  ident: bib0022
  article-title: Effects of sodium sulfate as electrolyte additive on electrochemical performance of lead electrode
  publication-title: Chem. Res. Chin. Univ.
– volume: 61
  start-page: 451
  year: 2016
  end-page: 458
  ident: bib0034
  article-title: Research progresses of cathodic hydrogen evolution in advanced lead-acid batteries
  publication-title: Sci. Bull.
– volume: 21
  start-page: 201
  year: 2015
  end-page: 212
  ident: bib0014
  article-title: Performance comparison for 12V lead-carbon hybrid ultracapacitors with substrate-integrated and conventional pasted positive plates
  publication-title: Ionics
– volume: 158
  start-page: 705
  year: 2006
  end-page: 709
  ident: bib0028
  article-title: The effects of different additives in electrolyte of AGM batteries on self-discharge
  publication-title: J. Power Sources
– volume: 4
  start-page: 55
  year: 2018
  end-page: 59
  ident: bib0021
  article-title: Effect of magnesium sulfate on the electrochemical behavior of lead electrodes for lead acid batteries
  publication-title: Electrochem. Energy Technol.
– volume: 196
  start-page: 10424
  year: 2011
  end-page: 10429
  ident: bib0009
  article-title: A novel electrochemical approach on the effect of alloying elements on self-discharge and discharge delivered current density of Pb-Ca-Ag lead-acid battery plates
  publication-title: J. Power Sources
– volume: 113
  start-page: 382
  year: 2003
  end-page: 387
  ident: bib0027
  article-title: Effect of mixed additives on lead–acid battery electrolyte
  publication-title: J. Power Sources
– volume: 222
  start-page: 116
  year: 2016
  end-page: 122
  ident: bib0002
  article-title: Synthesis and application of a novel Cu/RGO@Pb alloy for lead-acid batteries
  publication-title: Electrochim. Acta
– volume: 95
  start-page: 108
  year: 2001
  end-page: 118
  ident: bib0008
  article-title: The effect and mechanism of bismuth doped lead oxide on the performance of lead-acid batteries
  publication-title: J. Power Sources
– volume: 158
  start-page: 841
  year: 2006
  end-page: 845
  ident: bib0025
  article-title: Influence of polymer additive on the performance of lead-acid battery negative plates
  publication-title: J. Power Sources
– volume: 814
  start-page: 38
  year: 2018
  end-page: 44
  ident: bib0004
  article-title: Preparation of PbxOy@SiOz/Carbon composite and its electrochemical properties investigation in lead-acid battery
  publication-title: J. Electroanal. Chem.
– volume: 23
  start-page: 1715
  year: 2019
  end-page: 1725
  ident: bib0007
  article-title: Evaluation of the effect of additive group five elements on the properties of Pb-Ca-Sn-Al alloy as the positive grid for lead-acid batteries
  publication-title: J. Solid State Electrochem
– volume: 168
  start-page: 79
  year: 2007
  end-page: 89
  ident: bib0040
  article-title: Lead-samarium alloys for positive grids of valve-regulated lead-acid batteries
  publication-title: J. Power Sources
– volume: 475
  start-page: 102
  year: 2009
  ident: 10.1016/j.est.2019.101076_bib0011
  article-title: Study on the structure and property of lead tellurium alloy as the positive grid of lead-acid batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2008.08.011
– volume: 257
  start-page: 181
  year: 2014
  ident: 10.1016/j.est.2019.101076_bib0030
  article-title: Influence of the active mass particle suspension in electrolyte upon corrosion of negative electrode of a lead-acid battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.01.111
– volume: 29
  start-page: 374
  year: 2013
  ident: 10.1016/j.est.2019.101076_bib0022
  article-title: Effects of sodium sulfate as electrolyte additive on electrochemical performance of lead electrode
  publication-title: Chem. Res. Chin. Univ.
  doi: 10.1007/s40242-013-2261-1
– volume: 23
  start-page: 1715
  year: 2019
  ident: 10.1016/j.est.2019.101076_bib0007
  article-title: Evaluation of the effect of additive group five elements on the properties of Pb-Ca-Sn-Al alloy as the positive grid for lead-acid batteries
  publication-title: J. Solid State Electrochem
  doi: 10.1007/s10008-019-04265-x
– volume: 24
  start-page: 935
  year: 2018
  ident: 10.1016/j.est.2019.101076_bib0015
  article-title: Preparation of bipolar lead-carbon electrode and study on its electrochemical performance
  publication-title: Ionics
  doi: 10.1007/s11581-018-2437-2
– volume: 24
  start-page: 171
  year: 1988
  ident: 10.1016/j.est.2019.101076_bib0018
  article-title: Effects of phosphoric acid additions on the behaviour of the lead/acid cell. A Review
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(88)80113-7
– volume: 124
  start-page: 1478
  year: 1977
  ident: 10.1016/j.est.2019.101076_bib0019
  article-title: The effect of phosphoric acid on the positive electrode in the lead acid battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2133095
– volume: 52
  start-page: 81
  year: 1994
  ident: 10.1016/j.est.2019.101076_bib0023
  article-title: Electrochemical behaviour of SnSO4 in sulfuric acid solution
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(94)01936-3
– volume: 52
  start-page: 17
  year: 1994
  ident: 10.1016/j.est.2019.101076_bib0039
  article-title: The effect of alloying with antimony on the electrochemical properties of lead
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(94)01925-8
– volume: 814
  start-page: 38
  year: 2018
  ident: 10.1016/j.est.2019.101076_bib0004
  article-title: Preparation of PbxOy@SiOz/Carbon composite and its electrochemical properties investigation in lead-acid battery
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2018.02.030
– volume: 95
  start-page: 108
  year: 2001
  ident: 10.1016/j.est.2019.101076_bib0008
  article-title: The effect and mechanism of bismuth doped lead oxide on the performance of lead-acid batteries
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(00)00640-6
– volume: 196
  start-page: 10424
  year: 2011
  ident: 10.1016/j.est.2019.101076_bib0009
  article-title: A novel electrochemical approach on the effect of alloying elements on self-discharge and discharge delivered current density of Pb-Ca-Ag lead-acid battery plates
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.08.071
– volume: 18
  start-page: 109
  year: 2012
  ident: 10.1016/j.est.2019.101076_bib0005
  article-title: Electrochemical performance of lead acid battery using ammonium hydrogen sulphate with different alkyl groups
  publication-title: Ionics
  doi: 10.1007/s11581-011-0590-y
– volume: 55
  start-page: 11
  year: 1995
  ident: 10.1016/j.est.2019.101076_bib0026
  article-title: Improvement of the performance of the positive electrode in the lead/acid battery by addition of boric acid
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(94)02022-U
– volume: 365
  start-page: 108
  year: 2004
  ident: 10.1016/j.est.2019.101076_bib0006
  article-title: Comparison of Pb-Sm-Sn and Pb-Ca-Sn alloys for the positive grids in a lead acid battery
  publication-title: J. Alloys Compd.
  doi: 10.1016/S0925-8388(03)00649-2
– volume: 67
  start-page: 135
  year: 1997
  ident: 10.1016/j.est.2019.101076_bib0017
  article-title: Phosphoric acid as an electrolyte addictive for lead/acid batteries in electric-vehicle applications
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(97)02506-8
– volume: 15
  start-page: 145
  year: 2018
  ident: 10.1016/j.est.2019.101076_bib0001
  article-title: Lead batteries for utility energy storage: a review
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2017.11.008
– volume: 158
  start-page: 841
  year: 2006
  ident: 10.1016/j.est.2019.101076_bib0025
  article-title: Influence of polymer additive on the performance of lead-acid battery negative plates
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.11.033
– volume: 10
  start-page: 291
  year: 1983
  ident: 10.1016/j.est.2019.101076_bib0029
  article-title: The effect of current density and thickness of the active mass upon the corrosion rate of the spines of lead-acid battery plates
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(83)80083-4
– volume: 24
  start-page: 45
  year: 2015
  ident: 10.1016/j.est.2019.101076_bib0016
  article-title: Effects of carbon structure and mixing sequence in an expander on the capacity of negative electrodes in a traction battery
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-014-1269-0
– volume: 52
  start-page: 25
  year: 1994
  ident: 10.1016/j.est.2019.101076_bib0020
  article-title: Electrochemical behaviour of lead electrode in sulfuric acid solution containing citric acid
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(94)01929-0
– volume: 168
  start-page: 79
  year: 2007
  ident: 10.1016/j.est.2019.101076_bib0040
  article-title: Lead-samarium alloys for positive grids of valve-regulated lead-acid batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.11.091
– volume: 27
  start-page: 2096
  year: 2017
  ident: 10.1016/j.est.2019.101076_bib0033
  article-title: Effect of cooling ways on properties of Al/Pb-0.2%Ag rolled alloy for zinc electrowinning
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(17)60235-8
– volume: 53
  start-page: 359
  year: 1995
  ident: 10.1016/j.est.2019.101076_bib0024
  article-title: Influence of substituted benzaldehydes and their derivatives as inhibitors for hydrogen evolution in lead/acid batteries
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(94)02001-J
– volume: 222
  start-page: 116
  year: 2016
  ident: 10.1016/j.est.2019.101076_bib0002
  article-title: Synthesis and application of a novel Cu/RGO@Pb alloy for lead-acid batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.10.159
– volume: 21
  start-page: 201
  year: 2015
  ident: 10.1016/j.est.2019.101076_bib0014
  article-title: Performance comparison for 12V lead-carbon hybrid ultracapacitors with substrate-integrated and conventional pasted positive plates
  publication-title: Ionics
  doi: 10.1007/s11581-014-1155-7
– volume: 4
  start-page: 55
  year: 2018
  ident: 10.1016/j.est.2019.101076_bib0021
  article-title: Effect of magnesium sulfate on the electrochemical behavior of lead electrodes for lead acid batteries
  publication-title: Electrochem. Energy Technol.
  doi: 10.1515/eetech-2018-0007
– volume: 61
  start-page: 451
  year: 2016
  ident: 10.1016/j.est.2019.101076_bib0034
  article-title: Research progresses of cathodic hydrogen evolution in advanced lead-acid batteries
  publication-title: Sci. Bull.
  doi: 10.1007/s11434-016-1023-0
– volume: 158
  start-page: 914
  year: 2006
  ident: 10.1016/j.est.2019.101076_bib0036
  article-title: Electrochemical behavior of lead alloy in sulfuric and phosphoric acid electrolyte
  publication-title: J. Power sources
  doi: 10.1016/j.jpowsour.2005.11.028
– volume: 112
  start-page: 199
  year: 2002
  ident: 10.1016/j.est.2019.101076_bib0010
  article-title: Effect of Sn and Ca doping on the corrosion of Pb anodes in lead acid batteries
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00368-3
– volume: 29
  start-page: 1
  year: 1999
  ident: 10.1016/j.est.2019.101076_bib0035
  article-title: Influence of silver on electrochemical and corrosion behaviours of Pb-Ca-Sn-Al grid alloys Part I: potentiodynamic and potentiostatic studies
  publication-title: J. Appl. Electrochem.
  doi: 10.1023/A:1003492329927
– volume: 85
  start-page: 44
  year: 2000
  ident: 10.1016/j.est.2019.101076_bib0038
  article-title: Electrochemical characteristics of Pb-Sb alloys in sulfuric acid solutions
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00380-8
– volume: 22
  start-page: 1
  year: 1988
  ident: 10.1016/j.est.2019.101076_bib0032
  article-title: Effect of some elements on oxygen reduction and hydrogen evolution at lead-acid battery negative plates
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(88)80001-6
– year: 2001
  ident: 10.1016/j.est.2019.101076_bib0037
– volume: 142
  start-page: 1726
  year: 1995
  ident: 10.1016/j.est.2019.101076_bib0003
  article-title: Progress and challenges in bipolar lead-acid battery development
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2048646
– volume: 133
  start-page: 135
  year: 2004
  ident: 10.1016/j.est.2019.101076_bib0031
  article-title: Failure mechanism of valve-regulated lead-acid batteries under high-power cycling
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.11.075
– volume: 158
  start-page: 705
  year: 2006
  ident: 10.1016/j.est.2019.101076_bib0028
  article-title: The effects of different additives in electrolyte of AGM batteries on self-discharge
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.09.029
– volume: 113
  start-page: 382
  year: 2003
  ident: 10.1016/j.est.2019.101076_bib0027
  article-title: Effect of mixed additives on lead–acid battery electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00552-9
– year: 2018
  ident: 10.1016/j.est.2019.101076_bib0012
  article-title: Synthesis of nanostructured PbO@C composite derived from spent lead-acid battery for next-generation lead-carbon battery
  publication-title: Adv. Funct. Mater.
– volume: 41
  start-page: 1504
  year: 2017
  ident: 10.1016/j.est.2019.101076_bib0013
  article-title: High-performance porous lead/graphite composite electrode for bipolar lead-acid batteries
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3729
SSID ssj0001651196
Score 2.3255787
Snippet •Boric acid is used as electrolyte additive for lead-acid battery in the current research.•The working mechanism of the boric acid additive is studied...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101076
SubjectTerms Boric acid
Corrosion properties
Electrolyte additive
Lead-acid battery
Title The critical role of boric acid as electrolyte additive on the electrochemical performance of lead-acid battery
URI https://dx.doi.org/10.1016/j.est.2019.101076
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zu-hB_MT5RQ6ehLA2a9LlOIZjKu6ig95KkjYwGd3Qeth_73tt6iaoB49N80J5ebyP5uX3I-TGKQlOT3Nmwj4UKEYKpowKGHJtuzywPKrofJ6mcjKLHhKRtMiouQuDbZXe99c-vfLWfqTntdlbzee9Zw65A0SfBFIQqGFkskM6vK8kmHZneP84mW5-tUg8LKtp5gRnKNOcb1adXuB-scdL4XOA4CM_RaitqDM-IPs-XaTD-osOSSsvjsjeFojgMVnCTlPrGQsodgvSpaPIeGWptvOM6nfqyW4W6zKn2EGEPo4uCwrZX_POeuQAutpcJcCFFmAErFrHVFCc6xMyG9-9jCbM0ygwy1VcMqljnQvppIhVJqyVoQ1jGzs9UNxK63JhlMMxBOq0sXJcQ-FqgkzGoRjAZp2SdrEs8jNCRRA5JwaBtiaDzINrWMXlKooQ9k8o3iVBo7rUeoxxpLpYpE0z2WsK2k5R22mt7S65_RJZ1QAbf02Omv1Iv1lJCgHgd7Hz_4ldkF2O1XXVo31J2uXbR34FKUhprr2JfQKK_djf
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFOUpwcmpKipiZ16rCqqlj4WWilb5LixVFSlFZSh_567xIEiAQNjHmdFZ-se8efvA7izSmLQ09xLmg_YoCRSeCpRvkda2zb1DQ9yOZ_RWPamwVMkogp0yrMwBKt0sb-I6Xm0dncazpuN1XzeeOZYO2D2ibAEwR5GRjtQI3YqUYVauz_ojb9-tUjaLCtk5gT3yKbc38yRXhh-CeOl6Non8pGfMtRW1ukewoErF1m7-KIjqKTZMexvkQiewBJnmhmnWMAILciWlpHilWHazGdMvzEndrPYrFNGCCKKcWyZMaz-ymfGMQew1ddRAhpogYvAy8dJcirOzSlMu4-TTs9zMgqe4Spce1KHOhXSShGqmTBGNk0zNKHVLcWNNDYVibJ0j4g6Tags19i4Jv5Mhk3Rwsk6g2q2zNJzYMIPrBUtX5tkhpUH1ziKTVUQEO2fULwOfum62DiOcZK6WMQlmOwlRm_H5O248HYd7j9NVgXBxl8vB-V8xN9WSYwJ4Hezi_-Z3cJubzIaxsP-eHAJe5w67RyvfQXV9et7eo3lyDq5ccvtA8xy28U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+critical+role+of+boric+acid+as+electrolyte+additive+on+the+electrochemical+performance+of+lead-acid+battery&rft.jtitle=Journal+of+energy+storage&rft.au=Wu%2C+Zhongfei&rft.au=Liu%2C+Yu&rft.au=Deng%2C+Chengzhi&rft.au=Zhao%2C+Haimin&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.eissn=2352-1538&rft.volume=27&rft_id=info:doi/10.1016%2Fj.est.2019.101076&rft.externalDocID=S2352152X1931076X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon