Finite-time active fault-tolerant attitude control for flexible spacecraft with vibration suppression and anti-unwinding

In this paper, a finite-time active fault-tolerant control scheme is designed for a flexible spacecraft’s attitude control experiencing inertial parametric variations, external disturbances, multiple actuator faults, and estimation errors while suppressing the flexible appendages’ vibrations without...

Full description

Saved in:
Bibliographic Details
Published inAdvances in space research Vol. 71; no. 9; pp. 3644 - 3660
Main Authors Hasan, Muhammad Noman, Haris, Muhammad, Qin, Shiyin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, a finite-time active fault-tolerant control scheme is designed for a flexible spacecraft’s attitude control experiencing inertial parametric variations, external disturbances, multiple actuator faults, and estimation errors while suppressing the flexible appendages’ vibrations without using smart vibration suppression actuators. First, relative attitude dynamics of a flexible spacecraft with multiple actuator faults are outlined, and a sliding mode observer is designed to estimate flexible appendages-related vibrations. The proposed fault detection and identification (FDI) strategy can efficiently detect actuator faults, avoiding the false alarms caused by uncertainties and disturbances, and accurately estimate the cumulative fault effects on the spacecraft via Chebyshev neural network (CNN) based estimator. Based on a novel fast nonsingular terminal sliding mode surface, a finite-time, unwinding-free, and adaptive fault-tolerant attitude controller is designed to acclimatize the detected faults and uncertainties effectively, also heeding the errors in the estimation of flexible modes and faults. The spacecraft can carry out the coveted control objective in a definable time, and the stability of the proposed controller is corroborated via Lyapunov techniques. Finally, a comparative simulation analysis with the existing results elucidated the proposed scheme’s efficacy.
AbstractList In this paper, a finite-time active fault-tolerant control scheme is designed for a flexible spacecraft’s attitude control experiencing inertial parametric variations, external disturbances, multiple actuator faults, and estimation errors while suppressing the flexible appendages’ vibrations without using smart vibration suppression actuators. First, relative attitude dynamics of a flexible spacecraft with multiple actuator faults are outlined, and a sliding mode observer is designed to estimate flexible appendages-related vibrations. The proposed fault detection and identification (FDI) strategy can efficiently detect actuator faults, avoiding the false alarms caused by uncertainties and disturbances, and accurately estimate the cumulative fault effects on the spacecraft via Chebyshev neural network (CNN) based estimator. Based on a novel fast nonsingular terminal sliding mode surface, a finite-time, unwinding-free, and adaptive fault-tolerant attitude controller is designed to acclimatize the detected faults and uncertainties effectively, also heeding the errors in the estimation of flexible modes and faults. The spacecraft can carry out the coveted control objective in a definable time, and the stability of the proposed controller is corroborated via Lyapunov techniques. Finally, a comparative simulation analysis with the existing results elucidated the proposed scheme’s efficacy.
Author Qin, Shiyin
Hasan, Muhammad Noman
Haris, Muhammad
Author_xml – sequence: 1
  givenname: Muhammad Noman
  surname: Hasan
  fullname: Hasan, Muhammad Noman
  email: noman@buaa.edu.cn
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Muhammad
  surname: Haris
  fullname: Haris, Muhammad
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Shiyin
  surname: Qin
  fullname: Qin, Shiyin
  organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
BookMark eNp9kE1LAzEQhoNUsK3-AG_5A7sm6XbTxZMUq4LgRc8hTSY6ZZstyfTDf-_WevLQgWHeyzPwPiM2iF0Exm6lKKWQ9d2qtDmVSihViqoUQl2woZzpppBNNRuwoVB6Ukip9RUb5bwSQiqtxZAdFhiRoCBcA7eOcAc82G1LBXUtJBuJWyKkrQfuukipa3noEg8tHHDZAs8b68AlG4jvkb74DpfJEnaR5-1mkyDnY7bR90tYbOMeo8f4ec0ug20z3PzdMftYPL7Pn4vXt6eX-cNr4VSjqajVRAqoha8guMpZvdR1VU3rqW9qHWw_XtUV-KmYKi0nM-WaJYD03rqgwqyejJk8_XWpyzlBMJuEa5u-jRTmqM6sTK_OHNUZUZleXc_of4xD-i1FyWJ7lrw_kdBX2iEkkx1CdOAxgSPjOzxD_wBCg49X
CitedBy_id crossref_primary_10_1007_s40998_024_00761_7
crossref_primary_10_1016_j_conengprac_2024_106210
crossref_primary_10_1016_j_jfranklin_2023_09_026
crossref_primary_10_1016_j_asr_2024_07_083
crossref_primary_10_1061_JAEEEZ_ASENG_5294
crossref_primary_10_1155_2023_1983417
crossref_primary_10_1108_AEAT_06_2024_0188
crossref_primary_10_1016_j_asr_2022_11_052
crossref_primary_10_1360_SSPMA_2024_0217
crossref_primary_10_1007_s11071_023_09202_2
crossref_primary_10_1016_j_asr_2024_06_002
crossref_primary_10_1016_j_asr_2022_09_009
crossref_primary_10_1016_j_asr_2024_04_019
crossref_primary_10_1016_j_ast_2024_109085
crossref_primary_10_1109_TII_2024_3438256
crossref_primary_10_1016_j_asr_2024_05_021
crossref_primary_10_1016_j_asr_2024_03_043
crossref_primary_10_1177_01423312241299874
Cites_doi 10.1016/j.asr.2021.05.010
10.1109/TNNLS.2021.3059933
10.1109/TAES.2003.1238733
10.1115/1.2719773
10.1080/00207179.2020.1734235
10.1016/j.automatica.2021.109642
10.1016/j.actaastro.2020.05.041
10.1109/TIE.2018.2854602
10.1109/JMASS.2020.3022685
10.1049/iet-cta.2017.0969
10.1109/TNNLS.2014.2330336
10.1016/j.actaastro.2021.08.040
10.1016/j.automatica.2005.07.001
10.1007/s12555-016-0667-5
10.1007/s11071-019-04894-x
10.1049/iet-cta.2013.0133
10.1016/j.ejcon.2020.05.006
10.2514/1.G002129
10.1016/j.ast.2016.04.012
10.1109/TNN.2010.2050333
10.1016/j.cja.2020.06.026
10.1016/j.ast.2020.105706
10.1016/j.actaastro.2008.07.019
10.1016/j.ast.2019.105541
10.1016/j.actaastro.2020.10.017
10.1016/j.ast.2020.106368
10.1016/j.cja.2021.04.022
10.1109/TCST.2012.2237403
10.1109/ACCESS.2018.2868074
10.1016/j.actaastro.2020.10.010
10.1016/j.paerosci.2022.100806
10.1016/j.neucom.2018.10.051
10.1049/iet-cta.2016.0044
10.1109/TAC.2021.3079220
10.1016/j.jfranklin.2017.09.023
10.2514/3.21369
10.1109/TIE.2015.2455053
10.1016/j.arcontrol.2012.03.005
10.1016/j.asr.2020.06.019
10.2514/1.G001922
10.1109/TAES.2017.2649259
10.1002/rnc.4863
10.1016/j.cja.2020.02.014
10.1016/j.asr.2021.08.018
10.1016/j.ast.2020.105875
10.1016/j.ast.2019.105312
10.2514/1.G001414
ContentType Journal Article
Copyright 2022 COSPAR
Copyright_xml – notice: 2022 COSPAR
DBID AAYXX
CITATION
DOI 10.1016/j.asr.2022.04.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Astronomy & Astrophysics
Physics
EISSN 1879-1948
EndPage 3660
ExternalDocumentID 10_1016_j_asr_2022_04_002
S0273117722002526
GroupedDBID --K
--M
-~X
.~1
0R~
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IMUCA
J1W
KOM
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
ROL
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSQ
SSZ
T5K
ZMT
~02
~G-
1B1
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HME
HVGLF
HX~
HZ~
IHE
R2-
RIG
RPZ
SHN
SSH
T9H
UHS
VH1
VOH
WUQ
ZY4
ID FETCH-LOGICAL-c297t-62310e60d4efc4ca7b7644565d967faaaad264ed505271382c9bee1ddacf2f863
IEDL.DBID .~1
ISSN 0273-1177
IngestDate Tue Jul 01 03:24:52 EDT 2025
Thu Apr 24 22:50:42 EDT 2025
Fri Feb 23 02:37:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Fault detection and identification
Flexible spacecraft
Active fault-tolerant control
Actuator faults
Finite-time control
Chebyshev neural network
Anti-unwinding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-62310e60d4efc4ca7b7644565d967faaaad264ed505271382c9bee1ddacf2f863
PageCount 17
ParticipantIDs crossref_primary_10_1016_j_asr_2022_04_002
crossref_citationtrail_10_1016_j_asr_2022_04_002
elsevier_sciencedirect_doi_10_1016_j_asr_2022_04_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Advances in space research
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Gao, Qian (b0140) 2019
Wu, Luo, Wei (b0205) 2021; 178
Xu, Chen, Wu (b0215) 2015; 62
Azimi, Farzaneh Joubaneh (b0015) 2020; 102
Li, Liu, Shi (b0135) 2020; 175
Zhang, Ma, Sun (b0245) 2019; 96
Hasan, Haris, Qin (b0105) 2022; 122C
Han, Zhang, Yang (b0095) 2016; 10
Dong, Wu, Zhang (b0045) 2022; 67
Hu, Liu, Wang (b0115) 2020; 98
Yu, Zhang, Jiang (b0230) 2021; 35
Hu, Wang, Cheng (b0120) 2021; 108
Chen, Saif (b0040) 2007; 129
Amrr, Banerjee, Nabi (b0005) 2020; 1
Hasan, Haris, Qin (b0100) 2022; 130
Gao, Jing, Liu (b0065) 2021; 94
Yu, Yu, Shirinzadeh (b0220) 2005; 41
Chen, Ge (b0035) 2015; 62
Gao, Jing, Liu (b0060) 2020; 30
Xiao, Hu, Wang (b0210) 2013; 21
Gennaro (b0085) 2003; 39
Lasemi, Shaker (b0130) 2021; 68
Hasan, Haris, Qin (b0110) 2022; 120C
Gao, Han, Jiang (b0070) 2017; 354
Shen, Yue, Goh (b0185) 2019; 66
Jiang, Yu (b0125) 2012; 36
Yu, Zhang, Jiang (b0235) 2021; 32
Baldi, Blanke, Castaldi (b0020) 2016
Gao, Zhou, Qian (b0080) 2018; 12
Gao, Zhou, Jiang (b0075) 2018; 16
Golestani, Majid, Mobayen (b0090) 2021; 57
Lu, Yu, Yang (b0155) 2019; 329
Amrr, Nabi (b0010) 2020; 66
Zhu, Zhu, Chen (b0260) 2021; 189
Tao, Zhang, Liu (b0195) 2021; 179
Yu, Zhang, Liu (b0225) 2016; 39
Li, Yang, Zhao (b0145) 2020; 33
Miao, Wang, Liu (b0165) 2018; 6
Qi, Su, Meng (b0170) 2019; 141
Shen, Yue, Goh (b0180) 2017; 40
Sabatini, Palmerini, Gasbarri (b0175) 2020; 96
Bunryo, Satoh, Shoji (b0030) 2021; 68
Bukley (b0025) 1995; 18
Zhang, Hu, Friswell (b0240) 2013; 7
Liu, Tang, Tong (b0150) 2015; 26
Zhong, Chen, Guo (b0250) 2017; 53
Tiwari, Janardhanan, un Nabi (b0200) 2016; 54
Fan, Huang, Zhou (b0055) 2020; 33
Zhu, Wang, Shen (b0255) 2017; 40
Miao, Hwang, Liu (b0160) 2019; 93
Zou, Kumar, Hou (b0265) 2010; 21
Tafazoli (b0190) 2009; 64
Dong, Wu, Zhang (b0050) 2021; 129
Hu (10.1016/j.asr.2022.04.002_b0120) 2021; 108
Zhu (10.1016/j.asr.2022.04.002_b0260) 2021; 189
Jiang (10.1016/j.asr.2022.04.002_b0125) 2012; 36
Tao (10.1016/j.asr.2022.04.002_b0195) 2021; 179
Shen (10.1016/j.asr.2022.04.002_b0185) 2019; 66
Gao (10.1016/j.asr.2022.04.002_b0080) 2018; 12
Yu (10.1016/j.asr.2022.04.002_b0235) 2021; 32
Zhu (10.1016/j.asr.2022.04.002_b0255) 2017; 40
Gennaro (10.1016/j.asr.2022.04.002_b0085) 2003; 39
Lasemi (10.1016/j.asr.2022.04.002_b0130) 2021; 68
Gao (10.1016/j.asr.2022.04.002_b0075) 2018; 16
Miao (10.1016/j.asr.2022.04.002_b0160) 2019; 93
Zhang (10.1016/j.asr.2022.04.002_b0240) 2013; 7
Xu (10.1016/j.asr.2022.04.002_b0215) 2015; 62
Lu (10.1016/j.asr.2022.04.002_b0155) 2019; 329
Dong (10.1016/j.asr.2022.04.002_b0045) 2022; 67
Wu (10.1016/j.asr.2022.04.002_b0205) 2021; 178
Azimi (10.1016/j.asr.2022.04.002_b0015) 2020; 102
Bukley (10.1016/j.asr.2022.04.002_b0025) 1995; 18
Shen (10.1016/j.asr.2022.04.002_b0180) 2017; 40
Han (10.1016/j.asr.2022.04.002_b0095) 2016; 10
Qi (10.1016/j.asr.2022.04.002_b0170) 2019; 141
Zhang (10.1016/j.asr.2022.04.002_b0245) 2019; 96
Miao (10.1016/j.asr.2022.04.002_b0165) 2018; 6
Yu (10.1016/j.asr.2022.04.002_b0220) 2005; 41
Zou (10.1016/j.asr.2022.04.002_b0265) 2010; 21
Tiwari (10.1016/j.asr.2022.04.002_b0200) 2016; 54
Hasan (10.1016/j.asr.2022.04.002_b0105) 2022; 122C
Sabatini (10.1016/j.asr.2022.04.002_b0175) 2020; 96
Chen (10.1016/j.asr.2022.04.002_b0040) 2007; 129
Gao (10.1016/j.asr.2022.04.002_b0070) 2017; 354
Xiao (10.1016/j.asr.2022.04.002_b0210) 2013; 21
Yu (10.1016/j.asr.2022.04.002_b0225) 2016; 39
Baldi (10.1016/j.asr.2022.04.002_b0020) 2016
Dong (10.1016/j.asr.2022.04.002_b0050) 2021; 129
Liu (10.1016/j.asr.2022.04.002_b0150) 2015; 26
Gao (10.1016/j.asr.2022.04.002_b0065) 2021; 94
Fan (10.1016/j.asr.2022.04.002_b0055) 2020; 33
Amrr (10.1016/j.asr.2022.04.002_b0010) 2020; 66
Zhong (10.1016/j.asr.2022.04.002_b0250) 2017; 53
Li (10.1016/j.asr.2022.04.002_b0145) 2020; 33
Golestani (10.1016/j.asr.2022.04.002_b0090) 2021; 57
Amrr (10.1016/j.asr.2022.04.002_b0005) 2020; 1
Li (10.1016/j.asr.2022.04.002_b0135) 2020; 175
Chen (10.1016/j.asr.2022.04.002_b0035) 2015; 62
Gao (10.1016/j.asr.2022.04.002_b0060) 2020; 30
Li (10.1016/j.asr.2022.04.002_b0140) 2019
Yu (10.1016/j.asr.2022.04.002_b0230) 2021; 35
Hasan (10.1016/j.asr.2022.04.002_b0100) 2022; 130
Tafazoli (10.1016/j.asr.2022.04.002_b0190) 2009; 64
Hu (10.1016/j.asr.2022.04.002_b0115) 2020; 98
Bunryo (10.1016/j.asr.2022.04.002_b0030) 2021; 68
Hasan (10.1016/j.asr.2022.04.002_b0110) 2022; 120C
References_xml – volume: 102
  start-page: 105875
  year: 2020
  ident: b0015
  article-title: Dynamic modeling and vibration control of a coupled rigid-flexible high-order structural system: A comparative study
  publication-title: Aerospace Sci. Technol.
– volume: 7
  start-page: 2007
  year: 2013
  end-page: 2020
  ident: b0240
  article-title: Finite-time fault tolerant attitude control for over-activated spacecraft subject to actuator misalignment and faults
  publication-title: IET Control Theory Appl.
– volume: 30
  start-page: 1903
  year: 2020
  end-page: 1937
  ident: b0060
  article-title: Finite-time attitude-tracking control for rigid spacecraft with actuator failures and saturation constraints
  publication-title: Int. J. Robust Nonlinear Control
– volume: 96
  year: 2020
  ident: b0175
  article-title: Synergetic approach in attitude control of very flexible satellites by means of thrusters and PZT devices
  publication-title: Aerosp. Sci. Technol.
– volume: 62
  start-page: 3906
  year: 2015
  end-page: 3913
  ident: b0215
  article-title: Study of nonsingular fast terminal sliding-mode fault-tolerant control
  publication-title: IEEE Trans. Industr. Electron.
– volume: 36
  start-page: 60
  year: 2012
  end-page: 72
  ident: b0125
  article-title: Fault-tolerant control systems: A comparative study between active and passive approaches
  publication-title: Ann. Rev. Control
– volume: 179
  start-page: 646
  year: 2021
  end-page: 658
  ident: b0195
  article-title: Novel finite-time adaptive neural control of flexible spacecraft with actuator constraints and prescribed attitude tracking performance
  publication-title: Acta Astronaut.
– volume: 40
  start-page: 1293
  year: 2017
  end-page: 1299
  ident: b0180
  article-title: Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints
  publication-title: J. Guidance, Control, Dyn.
– volume: 39
  start-page: 556
  year: 2016
  end-page: 563
  ident: b0225
  article-title: Fault-tolerant flight control design with explicit consideration of reconfiguration transients
  publication-title: J. Guidance, Control, Dyn.
– volume: 354
  start-page: 8038
  year: 2017
  end-page: 8056
  ident: b0070
  article-title: Active fault tolerant control design approach for the flexible spacecraft with sensor faults
  publication-title: J. Franklin Inst.
– volume: 93
  year: 2019
  ident: b0160
  article-title: Adaptive fast nonsingular terminal sliding mode control for attitude tracking of flexible spacecraft with rotating appendage
  publication-title: Aerosp. Sci. Technol.
– volume: 16
  start-page: 1794
  year: 2018
  end-page: 1804
  ident: b0075
  article-title: Active fault tolerant control scheme for satellite attitude systems: Multiple actuator faults case
  publication-title: Int. J. Control Autom. Syst.
– volume: 12
  start-page: 405
  year: 2018
  end-page: 412
  ident: b0080
  article-title: Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults
  publication-title: IET Control Theory Appl.
– volume: 6
  start-page: 50729
  year: 2018
  end-page: 50736
  ident: b0165
  article-title: Anti-disturbance backstepping attitude Control for rigid-flexible coupling spacecraft
  publication-title: IEEE Access
– volume: 66
  start-page: 1659
  year: 2020
  end-page: 1671
  ident: b0010
  article-title: Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach
  publication-title: Adv. Space Res.
– volume: 53
  start-page: 101
  year: 2017
  end-page: 110
  ident: b0250
  article-title: Attitude control for flexible spacecraft with disturbance rejection
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– volume: 66
  start-page: 3763
  year: 2019
  end-page: 3772
  ident: b0185
  article-title: Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults
  publication-title: IEEE Trans. Industr. Electron.
– volume: 189
  start-page: 99
  year: 2021
  end-page: 118
  ident: b0260
  article-title: Dual quaternion-based adaptive iterative learning control for flexible spacecraft rendezvous
  publication-title: Acta Astronaut.
– volume: 329
  start-page: 153
  year: 2019
  end-page: 164
  ident: b0155
  article-title: Time delay Chebyshev functional link artificial neural network
  publication-title: Neurocomputing
– volume: 178
  start-page: 824
  year: 2021
  end-page: 834
  ident: b0205
  article-title: Observer-based fault-tolerant attitude tracking control for rigid spacecraft with actuator saturation and faults
  publication-title: Acta Astronaut.
– volume: 108
  year: 2021
  ident: b0120
  article-title: A novel active fault-tolerant control for spacecrafts with full state constraints and input saturation
  publication-title: Aerosp. Sci. Technol.
– volume: 41
  start-page: 1957
  year: 2005
  end-page: 1964
  ident: b0220
  article-title: Continuous finite-time control for robotic manipulators with terminal sliding mode
  publication-title: Automatica
– start-page: 4592
  year: 2019
  end-page: 4597
  ident: b0140
  article-title: Active fault tolerant control design for satellite attitude systems with mixed actuator faults
  publication-title: 2019 Chinese Control And Decision Conference (CCDC)
– volume: 130
  year: 2022
  ident: b0100
  article-title: Fault-tolerant spacecraft attitude control: A critical assessment
  publication-title: Prog. Aerosp. Sci.
– volume: 68
  start-page: 2713
  year: 2021
  end-page: 2726
  ident: b0030
  article-title: Feedback attitude control of spacecraft using two single gimbal control moment gyros
  publication-title: Adv. Space Res.
– volume: 120C
  year: 2022
  ident: b0110
  article-title: Vibration suppression and fault-tolerant attitude control for flexible spacecraft with actuator faults and malalignments
  publication-title: Aerosp. Sci. Technol.
– volume: 26
  start-page: 1007
  year: 2015
  end-page: 1018
  ident: b0150
  article-title: Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 33
  start-page: 3380
  year: 2020
  end-page: 3394
  ident: b0055
  article-title: Robust fault-tolerant attitude control for satellite with multiple uncertainties and actuator faults
  publication-title: Chin. J. Aeronaut.
– volume: 175
  start-page: 570
  year: 2020
  end-page: 581
  ident: b0135
  article-title: Adaptive sliding mode attitude tracking control for flexible spacecraft systems based on the Takagi-Sugeno fuzzy modelling method
  publication-title: Acta Astronaut.
– volume: 35
  start-page: 1
  year: 2021
  end-page: 18
  ident: b0230
  article-title: A review on fault-tolerant cooperative control of multiple unmanned aerial vehicles
  publication-title: Chin. J. Aeronaut.
– volume: 1
  start-page: 179
  year: 2020
  end-page: 187
  ident: b0005
  article-title: Fault-tolerant attitude control of small spacecraft using robust artificial time-delay approach
  publication-title: IEEE J. Miniaturizat. Air Space Syst.
– volume: 129
  start-page: 352
  year: 2007
  end-page: 356
  ident: b0040
  article-title: Observer-based fault diagnosis of satellite systems subject to time-varying thruster faults
  publication-title: J. Dyn. Syst. Meas. Contr.
– start-page: 672
  year: 2016
  end-page: 677
  ident: b0020
  article-title: Adaptive FTC based on control allocation and fault accommodation for satellite reaction wheels
  publication-title: 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol)
– volume: 141
  start-page: 1
  year: 2019
  end-page: 11
  ident: b0170
  article-title: Fault-tolerant attitude controller design for deep space probe via adaptive fast terminal sliding mode control
  publication-title: Trans. ASME J. Dyn. Syst., Measurem. Control
– volume: 54
  start-page: 108
  year: 2016
  end-page: 113
  ident: b0200
  article-title: Attitude control using higher order sliding mode
  publication-title: Aerosp. Sci. Technol.
– volume: 33
  start-page: 2014
  year: 2020
  end-page: 2023
  ident: b0145
  article-title: Fault-tolerant control and vibration suppression of flexible spacecraft: An interconnected system approach
  publication-title: Chin. J. Aeronaut.
– volume: 67
  start-page: 978
  year: 2022
  end-page: 985
  ident: b0045
  article-title: Anti-unwinding sliding mode attitude maneuver control for rigid spacecraft
  publication-title: IEEE Trans. Autom. Control
– volume: 21
  start-page: 1457
  year: 2010
  end-page: 1471
  ident: b0265
  article-title: Quaternion-based adaptive output feedback attitude control of spacecraft using chebyshev neural networks
  publication-title: IEEE Trans. Neural Networks
– volume: 96
  start-page: 1909
  year: 2019
  end-page: 1926
  ident: b0245
  article-title: Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression
  publication-title: Nonlinear Dyn.
– volume: 10
  start-page: 1991
  year: 2016
  end-page: 1999
  ident: b0095
  article-title: Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode
  publication-title: IET Control Theory Appl.
– volume: 40
  start-page: 1300
  year: 2017
  end-page: 1309
  ident: b0255
  article-title: Satellite attitude stabilization control with actuator faults
  publication-title: J. Guidance, Control, Dyn.
– volume: 122C
  year: 2022
  ident: b0105
  article-title: Flexible spacecraft’s active fault-tolerant and anti-unwinding attitude control with vibration suppression
  publication-title: Aerosp. Sci. Technol.
– volume: 64
  start-page: 195
  year: 2009
  end-page: 205
  ident: b0190
  article-title: A study of on-orbit spacecraft failures
  publication-title: Acta Astronaut.
– volume: 57
  start-page: 222
  year: 2021
  end-page: 231
  ident: b0090
  article-title: Fixed-time control for high-precision attitude stabilization of flexible spacecraft
  publication-title: Eur. J. Control
– volume: 98
  year: 2020
  ident: b0115
  article-title: Active fault-tolerant attitude tracking control with adaptive gain for spacecrafts
  publication-title: Aerosp. Sci. Technol.
– volume: 32
  start-page: 5539
  year: 2021
  end-page: 5553
  ident: b0235
  article-title: Fractional-order adaptive fault-tolerant synchronization tracking control of networked fixed-wing UAVs against actuator-sensor faults via intelligent learning mechanism
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 18
  start-page: 194
  year: 1995
  end-page: 199
  ident: b0025
  article-title: Hubble Space Telescope pointing control system design improvement study results
  publication-title: J. Guidance, Control, Dyn.
– volume: 94
  start-page: 2712
  year: 2021
  end-page: 2729
  ident: b0065
  article-title: Chebyshev neural network-based attitude-tracking control for rigid spacecraft with finite-time convergence
  publication-title: Int. J. Control
– volume: 21
  start-page: 2360
  year: 2013
  end-page: 2366
  ident: b0210
  article-title: Attitude tracking control of rigid spacecraft with actuator misalignment and fault
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 129
  year: 2021
  ident: b0050
  article-title: Anti-unwinding sliding mode attitude control via two modified Rodrigues parameter sets for spacecraft
  publication-title: Automatica
– volume: 68
  start-page: 3663
  year: 2021
  end-page: 3676
  ident: b0130
  article-title: Spacecraft attitude control: Application of fine trajectory linearization control
  publication-title: Adv. Space Res.
– volume: 39
  start-page: 747
  year: 2003
  end-page: 759
  ident: b0085
  article-title: Output stabilization of flexible spacecraft with active vibration suppression
  publication-title: IEEE Trans. Aerospace Electronic Syst.
– volume: 62
  start-page: 7706
  year: 2015
  end-page: 7716
  ident: b0035
  article-title: Adaptive neural output feedback control of uncertain nonlinear systems with unknown Hysteresis using disturbance observer
  publication-title: IEEE Trans. Industr. Electron.
– volume: 68
  start-page: 2713
  year: 2021
  ident: 10.1016/j.asr.2022.04.002_b0030
  article-title: Feedback attitude control of spacecraft using two single gimbal control moment gyros
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2021.05.010
– volume: 32
  start-page: 5539
  year: 2021
  ident: 10.1016/j.asr.2022.04.002_b0235
  article-title: Fractional-order adaptive fault-tolerant synchronization tracking control of networked fixed-wing UAVs against actuator-sensor faults via intelligent learning mechanism
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2021.3059933
– volume: 39
  start-page: 747
  year: 2003
  ident: 10.1016/j.asr.2022.04.002_b0085
  article-title: Output stabilization of flexible spacecraft with active vibration suppression
  publication-title: IEEE Trans. Aerospace Electronic Syst.
  doi: 10.1109/TAES.2003.1238733
– volume: 129
  start-page: 352
  year: 2007
  ident: 10.1016/j.asr.2022.04.002_b0040
  article-title: Observer-based fault diagnosis of satellite systems subject to time-varying thruster faults
  publication-title: J. Dyn. Syst. Meas. Contr.
  doi: 10.1115/1.2719773
– volume: 94
  start-page: 2712
  year: 2021
  ident: 10.1016/j.asr.2022.04.002_b0065
  article-title: Chebyshev neural network-based attitude-tracking control for rigid spacecraft with finite-time convergence
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2020.1734235
– volume: 129
  year: 2021
  ident: 10.1016/j.asr.2022.04.002_b0050
  article-title: Anti-unwinding sliding mode attitude control via two modified Rodrigues parameter sets for spacecraft
  publication-title: Automatica
  doi: 10.1016/j.automatica.2021.109642
– volume: 175
  start-page: 570
  year: 2020
  ident: 10.1016/j.asr.2022.04.002_b0135
  article-title: Adaptive sliding mode attitude tracking control for flexible spacecraft systems based on the Takagi-Sugeno fuzzy modelling method
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2020.05.041
– volume: 120C
  year: 2022
  ident: 10.1016/j.asr.2022.04.002_b0110
  article-title: Vibration suppression and fault-tolerant attitude control for flexible spacecraft with actuator faults and malalignments
  publication-title: Aerosp. Sci. Technol.
– volume: 66
  start-page: 3763
  year: 2019
  ident: 10.1016/j.asr.2022.04.002_b0185
  article-title: Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2018.2854602
– volume: 1
  start-page: 179
  year: 2020
  ident: 10.1016/j.asr.2022.04.002_b0005
  article-title: Fault-tolerant attitude control of small spacecraft using robust artificial time-delay approach
  publication-title: IEEE J. Miniaturizat. Air Space Syst.
  doi: 10.1109/JMASS.2020.3022685
– volume: 12
  start-page: 405
  year: 2018
  ident: 10.1016/j.asr.2022.04.002_b0080
  article-title: Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2017.0969
– volume: 26
  start-page: 1007
  year: 2015
  ident: 10.1016/j.asr.2022.04.002_b0150
  article-title: Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2014.2330336
– volume: 189
  start-page: 99
  year: 2021
  ident: 10.1016/j.asr.2022.04.002_b0260
  article-title: Dual quaternion-based adaptive iterative learning control for flexible spacecraft rendezvous
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2021.08.040
– volume: 41
  start-page: 1957
  year: 2005
  ident: 10.1016/j.asr.2022.04.002_b0220
  article-title: Continuous finite-time control for robotic manipulators with terminal sliding mode
  publication-title: Automatica
  doi: 10.1016/j.automatica.2005.07.001
– volume: 16
  start-page: 1794
  year: 2018
  ident: 10.1016/j.asr.2022.04.002_b0075
  article-title: Active fault tolerant control scheme for satellite attitude systems: Multiple actuator faults case
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-016-0667-5
– volume: 96
  start-page: 1909
  year: 2019
  ident: 10.1016/j.asr.2022.04.002_b0245
  article-title: Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04894-x
– start-page: 672
  year: 2016
  ident: 10.1016/j.asr.2022.04.002_b0020
  article-title: Adaptive FTC based on control allocation and fault accommodation for satellite reaction wheels
– volume: 7
  start-page: 2007
  year: 2013
  ident: 10.1016/j.asr.2022.04.002_b0240
  article-title: Finite-time fault tolerant attitude control for over-activated spacecraft subject to actuator misalignment and faults
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2013.0133
– volume: 57
  start-page: 222
  year: 2021
  ident: 10.1016/j.asr.2022.04.002_b0090
  article-title: Fixed-time control for high-precision attitude stabilization of flexible spacecraft
  publication-title: Eur. J. Control
  doi: 10.1016/j.ejcon.2020.05.006
– volume: 40
  start-page: 1293
  year: 2017
  ident: 10.1016/j.asr.2022.04.002_b0180
  article-title: Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints
  publication-title: J. Guidance, Control, Dyn.
  doi: 10.2514/1.G002129
– volume: 54
  start-page: 108
  year: 2016
  ident: 10.1016/j.asr.2022.04.002_b0200
  article-title: Attitude control using higher order sliding mode
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2016.04.012
– volume: 21
  start-page: 1457
  year: 2010
  ident: 10.1016/j.asr.2022.04.002_b0265
  article-title: Quaternion-based adaptive output feedback attitude control of spacecraft using chebyshev neural networks
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2010.2050333
– volume: 33
  start-page: 3380
  year: 2020
  ident: 10.1016/j.asr.2022.04.002_b0055
  article-title: Robust fault-tolerant attitude control for satellite with multiple uncertainties and actuator faults
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2020.06.026
– volume: 98
  year: 2020
  ident: 10.1016/j.asr.2022.04.002_b0115
  article-title: Active fault-tolerant attitude tracking control with adaptive gain for spacecrafts
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.105706
– volume: 64
  start-page: 195
  year: 2009
  ident: 10.1016/j.asr.2022.04.002_b0190
  article-title: A study of on-orbit spacecraft failures
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2008.07.019
– volume: 96
  year: 2020
  ident: 10.1016/j.asr.2022.04.002_b0175
  article-title: Synergetic approach in attitude control of very flexible satellites by means of thrusters and PZT devices
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.105541
– volume: 178
  start-page: 824
  year: 2021
  ident: 10.1016/j.asr.2022.04.002_b0205
  article-title: Observer-based fault-tolerant attitude tracking control for rigid spacecraft with actuator saturation and faults
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2020.10.017
– volume: 108
  year: 2021
  ident: 10.1016/j.asr.2022.04.002_b0120
  article-title: A novel active fault-tolerant control for spacecrafts with full state constraints and input saturation
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.106368
– volume: 35
  start-page: 1
  year: 2021
  ident: 10.1016/j.asr.2022.04.002_b0230
  article-title: A review on fault-tolerant cooperative control of multiple unmanned aerial vehicles
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2021.04.022
– volume: 21
  start-page: 2360
  year: 2013
  ident: 10.1016/j.asr.2022.04.002_b0210
  article-title: Attitude tracking control of rigid spacecraft with actuator misalignment and fault
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2012.2237403
– volume: 6
  start-page: 50729
  year: 2018
  ident: 10.1016/j.asr.2022.04.002_b0165
  article-title: Anti-disturbance backstepping attitude Control for rigid-flexible coupling spacecraft
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2868074
– volume: 179
  start-page: 646
  year: 2021
  ident: 10.1016/j.asr.2022.04.002_b0195
  article-title: Novel finite-time adaptive neural control of flexible spacecraft with actuator constraints and prescribed attitude tracking performance
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2020.10.010
– volume: 130
  year: 2022
  ident: 10.1016/j.asr.2022.04.002_b0100
  article-title: Fault-tolerant spacecraft attitude control: A critical assessment
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2022.100806
– volume: 329
  start-page: 153
  year: 2019
  ident: 10.1016/j.asr.2022.04.002_b0155
  article-title: Time delay Chebyshev functional link artificial neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.051
– volume: 10
  start-page: 1991
  year: 2016
  ident: 10.1016/j.asr.2022.04.002_b0095
  article-title: Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2016.0044
– start-page: 4592
  year: 2019
  ident: 10.1016/j.asr.2022.04.002_b0140
  article-title: Active fault tolerant control design for satellite attitude systems with mixed actuator faults
– volume: 67
  start-page: 978
  year: 2022
  ident: 10.1016/j.asr.2022.04.002_b0045
  article-title: Anti-unwinding sliding mode attitude maneuver control for rigid spacecraft
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2021.3079220
– volume: 354
  start-page: 8038
  year: 2017
  ident: 10.1016/j.asr.2022.04.002_b0070
  article-title: Active fault tolerant control design approach for the flexible spacecraft with sensor faults
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2017.09.023
– volume: 18
  start-page: 194
  year: 1995
  ident: 10.1016/j.asr.2022.04.002_b0025
  article-title: Hubble Space Telescope pointing control system design improvement study results
  publication-title: J. Guidance, Control, Dyn.
  doi: 10.2514/3.21369
– volume: 62
  start-page: 7706
  year: 2015
  ident: 10.1016/j.asr.2022.04.002_b0035
  article-title: Adaptive neural output feedback control of uncertain nonlinear systems with unknown Hysteresis using disturbance observer
  publication-title: IEEE Trans. Industr. Electron.
  doi: 10.1109/TIE.2015.2455053
– volume: 36
  start-page: 60
  year: 2012
  ident: 10.1016/j.asr.2022.04.002_b0125
  article-title: Fault-tolerant control systems: A comparative study between active and passive approaches
  publication-title: Ann. Rev. Control
  doi: 10.1016/j.arcontrol.2012.03.005
– volume: 66
  start-page: 1659
  year: 2020
  ident: 10.1016/j.asr.2022.04.002_b0010
  article-title: Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2020.06.019
– volume: 40
  start-page: 1300
  year: 2017
  ident: 10.1016/j.asr.2022.04.002_b0255
  article-title: Satellite attitude stabilization control with actuator faults
  publication-title: J. Guidance, Control, Dyn.
  doi: 10.2514/1.G001922
– volume: 53
  start-page: 101
  year: 2017
  ident: 10.1016/j.asr.2022.04.002_b0250
  article-title: Attitude control for flexible spacecraft with disturbance rejection
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2017.2649259
– volume: 62
  start-page: 3906
  year: 2015
  ident: 10.1016/j.asr.2022.04.002_b0215
  article-title: Study of nonsingular fast terminal sliding-mode fault-tolerant control
  publication-title: IEEE Trans. Industr. Electron.
– volume: 30
  start-page: 1903
  year: 2020
  ident: 10.1016/j.asr.2022.04.002_b0060
  article-title: Finite-time attitude-tracking control for rigid spacecraft with actuator failures and saturation constraints
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.4863
– volume: 122C
  year: 2022
  ident: 10.1016/j.asr.2022.04.002_b0105
  article-title: Flexible spacecraft’s active fault-tolerant and anti-unwinding attitude control with vibration suppression
  publication-title: Aerosp. Sci. Technol.
– volume: 33
  start-page: 2014
  year: 2020
  ident: 10.1016/j.asr.2022.04.002_b0145
  article-title: Fault-tolerant control and vibration suppression of flexible spacecraft: An interconnected system approach
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2020.02.014
– volume: 68
  start-page: 3663
  year: 2021
  ident: 10.1016/j.asr.2022.04.002_b0130
  article-title: Spacecraft attitude control: Application of fine trajectory linearization control
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2021.08.018
– volume: 102
  start-page: 105875
  year: 2020
  ident: 10.1016/j.asr.2022.04.002_b0015
  article-title: Dynamic modeling and vibration control of a coupled rigid-flexible high-order structural system: A comparative study
  publication-title: Aerospace Sci. Technol.
  doi: 10.1016/j.ast.2020.105875
– volume: 93
  year: 2019
  ident: 10.1016/j.asr.2022.04.002_b0160
  article-title: Adaptive fast nonsingular terminal sliding mode control for attitude tracking of flexible spacecraft with rotating appendage
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.105312
– volume: 39
  start-page: 556
  year: 2016
  ident: 10.1016/j.asr.2022.04.002_b0225
  article-title: Fault-tolerant flight control design with explicit consideration of reconfiguration transients
  publication-title: J. Guidance, Control, Dyn.
  doi: 10.2514/1.G001414
– volume: 141
  start-page: 1
  year: 2019
  ident: 10.1016/j.asr.2022.04.002_b0170
  article-title: Fault-tolerant attitude controller design for deep space probe via adaptive fast terminal sliding mode control
  publication-title: Trans. ASME J. Dyn. Syst., Measurem. Control
SSID ssj0012770
Score 2.4827883
Snippet In this paper, a finite-time active fault-tolerant control scheme is designed for a flexible spacecraft’s attitude control experiencing inertial parametric...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 3644
SubjectTerms Active fault-tolerant control
Actuator faults
Anti-unwinding
Chebyshev neural network
Fault detection and identification
Finite-time control
Flexible spacecraft
Title Finite-time active fault-tolerant attitude control for flexible spacecraft with vibration suppression and anti-unwinding
URI https://dx.doi.org/10.1016/j.asr.2022.04.002
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fSxwxEB5EEeqD2Kui1koexIdCvL1cLrl9PKTHtaUiqODbkssksHLdO3o5f7z0bzezmxVLqQ9dWFhCAksmzHyZfPkG4ERJLTFGDu572OdSGuS5zA1X6MUwQ9TDunTCjws1uZHfbge3a3De3oUhWmXy_Y1Pr711aumm2ewuyrJ7RUosdOQoiGcwECS7LaWmVX72-4Xm0RNaN3kW3efUuz3ZrDleZkmSoELUaqcps_JXbHoVb8Y7sJ2AIhs1__Ie1lzVgf3RklLX859P7JTV301mYtmBrVfKgh3YvGzaP8DjuCRYyamIPDO1d2PerGaBh_nMxUgVmAnEF0DHEm-dRSDLPCllTmeORZdjI7Y0PjBK2rJ72mCTOdlytUg02oqZCuMbSr6qHsr6pswu3Iy_XJ9PeCq3wK3IdeCKoJ5TGUrnrbRGT3UESxHwYa60N_HBiJ4cUuk7TdKFNp8610M01gs_VP09WK_mldsHJgciU1ai0ujiBlINRV-6XAysQi0znx9A1k50YZMWOZXEmBUt6eyuiLYpyDZFJotomwP4_DJk0QhxvNVZttYr_lhNRQwU_x52-H_DPsI7KkLf0CCPYD38WrlPEaqE6XG9Fo9hY_T1--TiGfrw6mQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED66lLHtYWzZRrufehh7GIi4iizFj6EspGsbBmuhb0LRSeCSOWFR9uO_n86WS8fYHmYwGOEDoxN3n0-fvgN4q6SWmDIHD0c45lJa5JWsLFcYxKRA1JO2dcL5Qs0v5cer8moPjvuzMESrzLG_i-lttM4jozybo01djz6TEgttOQriGZRC3YF9UqcqB7A_PTmdL242E4TWXalFjzkZ9JubLc3LbkkVVIhW8DQXV_5IT7dSzuwRPMxYkU27z3kMe74ZwsF0S9Xr9Zef7B1rn7vixHYID26JCw7h7qdu_An8mNWELDn1kWe2DXAs2N0q8rhe-ZSsIrORKAPoWaaus4RlWSCxzOXKsxR1XIKXNkRGdVv2jf6xyaNsu9tkJm3DbIPpjjXfNd_r9rDMU7icfbg4nvPccYE7UenIFaE9rwqUPjjprF7qhJcS5sNK6WDThQlAeaTud5rUC1219P4I0bogwkSNn8GgWTf-AJgsRaGcRKXRp39INRFj6StROoVaFqE6hKKfaOOyHDl1xViZnnd2bZJvDPnGFNIk3xzC-xuTTafF8a-XZe8989uCMilX_N3s-f-ZvYF784vzM3N2sjh9AfepJ33HinwJg_h1518l5BKXr_PK_AUCk-0V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-time+active+fault-tolerant+attitude+control+for+flexible+spacecraft+with+vibration+suppression+and+anti-unwinding&rft.jtitle=Advances+in+space+research&rft.au=Hasan%2C+Muhammad+Noman&rft.au=Haris%2C+Muhammad&rft.au=Qin%2C+Shiyin&rft.date=2023-05-01&rft.pub=Elsevier+B.V&rft.issn=0273-1177&rft.eissn=1879-1948&rft.volume=71&rft.issue=9&rft.spage=3644&rft.epage=3660&rft_id=info:doi/10.1016%2Fj.asr.2022.04.002&rft.externalDocID=S0273117722002526
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon