Finite-time active fault-tolerant attitude control for flexible spacecraft with vibration suppression and anti-unwinding
In this paper, a finite-time active fault-tolerant control scheme is designed for a flexible spacecraft’s attitude control experiencing inertial parametric variations, external disturbances, multiple actuator faults, and estimation errors while suppressing the flexible appendages’ vibrations without...
Saved in:
Published in | Advances in space research Vol. 71; no. 9; pp. 3644 - 3660 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a finite-time active fault-tolerant control scheme is designed for a flexible spacecraft’s attitude control experiencing inertial parametric variations, external disturbances, multiple actuator faults, and estimation errors while suppressing the flexible appendages’ vibrations without using smart vibration suppression actuators. First, relative attitude dynamics of a flexible spacecraft with multiple actuator faults are outlined, and a sliding mode observer is designed to estimate flexible appendages-related vibrations. The proposed fault detection and identification (FDI) strategy can efficiently detect actuator faults, avoiding the false alarms caused by uncertainties and disturbances, and accurately estimate the cumulative fault effects on the spacecraft via Chebyshev neural network (CNN) based estimator. Based on a novel fast nonsingular terminal sliding mode surface, a finite-time, unwinding-free, and adaptive fault-tolerant attitude controller is designed to acclimatize the detected faults and uncertainties effectively, also heeding the errors in the estimation of flexible modes and faults. The spacecraft can carry out the coveted control objective in a definable time, and the stability of the proposed controller is corroborated via Lyapunov techniques. Finally, a comparative simulation analysis with the existing results elucidated the proposed scheme’s efficacy. |
---|---|
AbstractList | In this paper, a finite-time active fault-tolerant control scheme is designed for a flexible spacecraft’s attitude control experiencing inertial parametric variations, external disturbances, multiple actuator faults, and estimation errors while suppressing the flexible appendages’ vibrations without using smart vibration suppression actuators. First, relative attitude dynamics of a flexible spacecraft with multiple actuator faults are outlined, and a sliding mode observer is designed to estimate flexible appendages-related vibrations. The proposed fault detection and identification (FDI) strategy can efficiently detect actuator faults, avoiding the false alarms caused by uncertainties and disturbances, and accurately estimate the cumulative fault effects on the spacecraft via Chebyshev neural network (CNN) based estimator. Based on a novel fast nonsingular terminal sliding mode surface, a finite-time, unwinding-free, and adaptive fault-tolerant attitude controller is designed to acclimatize the detected faults and uncertainties effectively, also heeding the errors in the estimation of flexible modes and faults. The spacecraft can carry out the coveted control objective in a definable time, and the stability of the proposed controller is corroborated via Lyapunov techniques. Finally, a comparative simulation analysis with the existing results elucidated the proposed scheme’s efficacy. |
Author | Qin, Shiyin Hasan, Muhammad Noman Haris, Muhammad |
Author_xml | – sequence: 1 givenname: Muhammad Noman surname: Hasan fullname: Hasan, Muhammad Noman email: noman@buaa.edu.cn organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China – sequence: 2 givenname: Muhammad surname: Haris fullname: Haris, Muhammad organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China – sequence: 3 givenname: Shiyin surname: Qin fullname: Qin, Shiyin organization: School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China |
BookMark | eNp9kE1LAzEQhoNUsK3-AG_5A7sm6XbTxZMUq4LgRc8hTSY6ZZstyfTDf-_WevLQgWHeyzPwPiM2iF0Exm6lKKWQ9d2qtDmVSihViqoUQl2woZzpppBNNRuwoVB6Ukip9RUb5bwSQiqtxZAdFhiRoCBcA7eOcAc82G1LBXUtJBuJWyKkrQfuukipa3noEg8tHHDZAs8b68AlG4jvkb74DpfJEnaR5-1mkyDnY7bR90tYbOMeo8f4ec0ug20z3PzdMftYPL7Pn4vXt6eX-cNr4VSjqajVRAqoha8guMpZvdR1VU3rqW9qHWw_XtUV-KmYKi0nM-WaJYD03rqgwqyejJk8_XWpyzlBMJuEa5u-jRTmqM6sTK_OHNUZUZleXc_of4xD-i1FyWJ7lrw_kdBX2iEkkx1CdOAxgSPjOzxD_wBCg49X |
CitedBy_id | crossref_primary_10_1007_s40998_024_00761_7 crossref_primary_10_1016_j_conengprac_2024_106210 crossref_primary_10_1016_j_jfranklin_2023_09_026 crossref_primary_10_1016_j_asr_2024_07_083 crossref_primary_10_1061_JAEEEZ_ASENG_5294 crossref_primary_10_1155_2023_1983417 crossref_primary_10_1108_AEAT_06_2024_0188 crossref_primary_10_1016_j_asr_2022_11_052 crossref_primary_10_1360_SSPMA_2024_0217 crossref_primary_10_1007_s11071_023_09202_2 crossref_primary_10_1016_j_asr_2024_06_002 crossref_primary_10_1016_j_asr_2022_09_009 crossref_primary_10_1016_j_asr_2024_04_019 crossref_primary_10_1016_j_ast_2024_109085 crossref_primary_10_1109_TII_2024_3438256 crossref_primary_10_1016_j_asr_2024_05_021 crossref_primary_10_1016_j_asr_2024_03_043 crossref_primary_10_1177_01423312241299874 |
Cites_doi | 10.1016/j.asr.2021.05.010 10.1109/TNNLS.2021.3059933 10.1109/TAES.2003.1238733 10.1115/1.2719773 10.1080/00207179.2020.1734235 10.1016/j.automatica.2021.109642 10.1016/j.actaastro.2020.05.041 10.1109/TIE.2018.2854602 10.1109/JMASS.2020.3022685 10.1049/iet-cta.2017.0969 10.1109/TNNLS.2014.2330336 10.1016/j.actaastro.2021.08.040 10.1016/j.automatica.2005.07.001 10.1007/s12555-016-0667-5 10.1007/s11071-019-04894-x 10.1049/iet-cta.2013.0133 10.1016/j.ejcon.2020.05.006 10.2514/1.G002129 10.1016/j.ast.2016.04.012 10.1109/TNN.2010.2050333 10.1016/j.cja.2020.06.026 10.1016/j.ast.2020.105706 10.1016/j.actaastro.2008.07.019 10.1016/j.ast.2019.105541 10.1016/j.actaastro.2020.10.017 10.1016/j.ast.2020.106368 10.1016/j.cja.2021.04.022 10.1109/TCST.2012.2237403 10.1109/ACCESS.2018.2868074 10.1016/j.actaastro.2020.10.010 10.1016/j.paerosci.2022.100806 10.1016/j.neucom.2018.10.051 10.1049/iet-cta.2016.0044 10.1109/TAC.2021.3079220 10.1016/j.jfranklin.2017.09.023 10.2514/3.21369 10.1109/TIE.2015.2455053 10.1016/j.arcontrol.2012.03.005 10.1016/j.asr.2020.06.019 10.2514/1.G001922 10.1109/TAES.2017.2649259 10.1002/rnc.4863 10.1016/j.cja.2020.02.014 10.1016/j.asr.2021.08.018 10.1016/j.ast.2020.105875 10.1016/j.ast.2019.105312 10.2514/1.G001414 |
ContentType | Journal Article |
Copyright | 2022 COSPAR |
Copyright_xml | – notice: 2022 COSPAR |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asr.2022.04.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Astronomy & Astrophysics Physics |
EISSN | 1879-1948 |
EndPage | 3660 |
ExternalDocumentID | 10_1016_j_asr_2022_04_002 S0273117722002526 |
GroupedDBID | --K --M -~X .~1 0R~ 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNEU ABQEM ABQYD ABYKQ ACDAQ ACFVG ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IMUCA J1W KOM LY3 LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 ROL SDF SDG SEP SES SEW SPC SPCBC SSE SSQ SSZ T5K ZMT ~02 ~G- 1B1 AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HME HVGLF HX~ HZ~ IHE R2- RIG RPZ SHN SSH T9H UHS VH1 VOH WUQ ZY4 |
ID | FETCH-LOGICAL-c297t-62310e60d4efc4ca7b7644565d967faaaad264ed505271382c9bee1ddacf2f863 |
IEDL.DBID | .~1 |
ISSN | 0273-1177 |
IngestDate | Tue Jul 01 03:24:52 EDT 2025 Thu Apr 24 22:50:42 EDT 2025 Fri Feb 23 02:37:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Fault detection and identification Flexible spacecraft Active fault-tolerant control Actuator faults Finite-time control Chebyshev neural network Anti-unwinding |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-62310e60d4efc4ca7b7644565d967faaaad264ed505271382c9bee1ddacf2f863 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1016_j_asr_2022_04_002 crossref_citationtrail_10_1016_j_asr_2022_04_002 elsevier_sciencedirect_doi_10_1016_j_asr_2022_04_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 2023-05-00 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Advances in space research |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Gao, Qian (b0140) 2019 Wu, Luo, Wei (b0205) 2021; 178 Xu, Chen, Wu (b0215) 2015; 62 Azimi, Farzaneh Joubaneh (b0015) 2020; 102 Li, Liu, Shi (b0135) 2020; 175 Zhang, Ma, Sun (b0245) 2019; 96 Hasan, Haris, Qin (b0105) 2022; 122C Han, Zhang, Yang (b0095) 2016; 10 Dong, Wu, Zhang (b0045) 2022; 67 Hu, Liu, Wang (b0115) 2020; 98 Yu, Zhang, Jiang (b0230) 2021; 35 Hu, Wang, Cheng (b0120) 2021; 108 Chen, Saif (b0040) 2007; 129 Amrr, Banerjee, Nabi (b0005) 2020; 1 Hasan, Haris, Qin (b0100) 2022; 130 Gao, Jing, Liu (b0065) 2021; 94 Yu, Yu, Shirinzadeh (b0220) 2005; 41 Chen, Ge (b0035) 2015; 62 Gao, Jing, Liu (b0060) 2020; 30 Xiao, Hu, Wang (b0210) 2013; 21 Gennaro (b0085) 2003; 39 Lasemi, Shaker (b0130) 2021; 68 Hasan, Haris, Qin (b0110) 2022; 120C Gao, Han, Jiang (b0070) 2017; 354 Shen, Yue, Goh (b0185) 2019; 66 Jiang, Yu (b0125) 2012; 36 Yu, Zhang, Jiang (b0235) 2021; 32 Baldi, Blanke, Castaldi (b0020) 2016 Gao, Zhou, Qian (b0080) 2018; 12 Gao, Zhou, Jiang (b0075) 2018; 16 Golestani, Majid, Mobayen (b0090) 2021; 57 Lu, Yu, Yang (b0155) 2019; 329 Amrr, Nabi (b0010) 2020; 66 Zhu, Zhu, Chen (b0260) 2021; 189 Tao, Zhang, Liu (b0195) 2021; 179 Yu, Zhang, Liu (b0225) 2016; 39 Li, Yang, Zhao (b0145) 2020; 33 Miao, Wang, Liu (b0165) 2018; 6 Qi, Su, Meng (b0170) 2019; 141 Shen, Yue, Goh (b0180) 2017; 40 Sabatini, Palmerini, Gasbarri (b0175) 2020; 96 Bunryo, Satoh, Shoji (b0030) 2021; 68 Bukley (b0025) 1995; 18 Zhang, Hu, Friswell (b0240) 2013; 7 Liu, Tang, Tong (b0150) 2015; 26 Zhong, Chen, Guo (b0250) 2017; 53 Tiwari, Janardhanan, un Nabi (b0200) 2016; 54 Fan, Huang, Zhou (b0055) 2020; 33 Zhu, Wang, Shen (b0255) 2017; 40 Miao, Hwang, Liu (b0160) 2019; 93 Zou, Kumar, Hou (b0265) 2010; 21 Tafazoli (b0190) 2009; 64 Dong, Wu, Zhang (b0050) 2021; 129 Hu (10.1016/j.asr.2022.04.002_b0120) 2021; 108 Zhu (10.1016/j.asr.2022.04.002_b0260) 2021; 189 Jiang (10.1016/j.asr.2022.04.002_b0125) 2012; 36 Tao (10.1016/j.asr.2022.04.002_b0195) 2021; 179 Shen (10.1016/j.asr.2022.04.002_b0185) 2019; 66 Gao (10.1016/j.asr.2022.04.002_b0080) 2018; 12 Yu (10.1016/j.asr.2022.04.002_b0235) 2021; 32 Zhu (10.1016/j.asr.2022.04.002_b0255) 2017; 40 Gennaro (10.1016/j.asr.2022.04.002_b0085) 2003; 39 Lasemi (10.1016/j.asr.2022.04.002_b0130) 2021; 68 Gao (10.1016/j.asr.2022.04.002_b0075) 2018; 16 Miao (10.1016/j.asr.2022.04.002_b0160) 2019; 93 Zhang (10.1016/j.asr.2022.04.002_b0240) 2013; 7 Xu (10.1016/j.asr.2022.04.002_b0215) 2015; 62 Lu (10.1016/j.asr.2022.04.002_b0155) 2019; 329 Dong (10.1016/j.asr.2022.04.002_b0045) 2022; 67 Wu (10.1016/j.asr.2022.04.002_b0205) 2021; 178 Azimi (10.1016/j.asr.2022.04.002_b0015) 2020; 102 Bukley (10.1016/j.asr.2022.04.002_b0025) 1995; 18 Shen (10.1016/j.asr.2022.04.002_b0180) 2017; 40 Han (10.1016/j.asr.2022.04.002_b0095) 2016; 10 Qi (10.1016/j.asr.2022.04.002_b0170) 2019; 141 Zhang (10.1016/j.asr.2022.04.002_b0245) 2019; 96 Miao (10.1016/j.asr.2022.04.002_b0165) 2018; 6 Yu (10.1016/j.asr.2022.04.002_b0220) 2005; 41 Zou (10.1016/j.asr.2022.04.002_b0265) 2010; 21 Tiwari (10.1016/j.asr.2022.04.002_b0200) 2016; 54 Hasan (10.1016/j.asr.2022.04.002_b0105) 2022; 122C Sabatini (10.1016/j.asr.2022.04.002_b0175) 2020; 96 Chen (10.1016/j.asr.2022.04.002_b0040) 2007; 129 Gao (10.1016/j.asr.2022.04.002_b0070) 2017; 354 Xiao (10.1016/j.asr.2022.04.002_b0210) 2013; 21 Yu (10.1016/j.asr.2022.04.002_b0225) 2016; 39 Baldi (10.1016/j.asr.2022.04.002_b0020) 2016 Dong (10.1016/j.asr.2022.04.002_b0050) 2021; 129 Liu (10.1016/j.asr.2022.04.002_b0150) 2015; 26 Gao (10.1016/j.asr.2022.04.002_b0065) 2021; 94 Fan (10.1016/j.asr.2022.04.002_b0055) 2020; 33 Amrr (10.1016/j.asr.2022.04.002_b0010) 2020; 66 Zhong (10.1016/j.asr.2022.04.002_b0250) 2017; 53 Li (10.1016/j.asr.2022.04.002_b0145) 2020; 33 Golestani (10.1016/j.asr.2022.04.002_b0090) 2021; 57 Amrr (10.1016/j.asr.2022.04.002_b0005) 2020; 1 Li (10.1016/j.asr.2022.04.002_b0135) 2020; 175 Chen (10.1016/j.asr.2022.04.002_b0035) 2015; 62 Gao (10.1016/j.asr.2022.04.002_b0060) 2020; 30 Li (10.1016/j.asr.2022.04.002_b0140) 2019 Yu (10.1016/j.asr.2022.04.002_b0230) 2021; 35 Hasan (10.1016/j.asr.2022.04.002_b0100) 2022; 130 Tafazoli (10.1016/j.asr.2022.04.002_b0190) 2009; 64 Hu (10.1016/j.asr.2022.04.002_b0115) 2020; 98 Bunryo (10.1016/j.asr.2022.04.002_b0030) 2021; 68 Hasan (10.1016/j.asr.2022.04.002_b0110) 2022; 120C |
References_xml | – volume: 102 start-page: 105875 year: 2020 ident: b0015 article-title: Dynamic modeling and vibration control of a coupled rigid-flexible high-order structural system: A comparative study publication-title: Aerospace Sci. Technol. – volume: 7 start-page: 2007 year: 2013 end-page: 2020 ident: b0240 article-title: Finite-time fault tolerant attitude control for over-activated spacecraft subject to actuator misalignment and faults publication-title: IET Control Theory Appl. – volume: 30 start-page: 1903 year: 2020 end-page: 1937 ident: b0060 article-title: Finite-time attitude-tracking control for rigid spacecraft with actuator failures and saturation constraints publication-title: Int. J. Robust Nonlinear Control – volume: 96 year: 2020 ident: b0175 article-title: Synergetic approach in attitude control of very flexible satellites by means of thrusters and PZT devices publication-title: Aerosp. Sci. Technol. – volume: 62 start-page: 3906 year: 2015 end-page: 3913 ident: b0215 article-title: Study of nonsingular fast terminal sliding-mode fault-tolerant control publication-title: IEEE Trans. Industr. Electron. – volume: 36 start-page: 60 year: 2012 end-page: 72 ident: b0125 article-title: Fault-tolerant control systems: A comparative study between active and passive approaches publication-title: Ann. Rev. Control – volume: 179 start-page: 646 year: 2021 end-page: 658 ident: b0195 article-title: Novel finite-time adaptive neural control of flexible spacecraft with actuator constraints and prescribed attitude tracking performance publication-title: Acta Astronaut. – volume: 40 start-page: 1293 year: 2017 end-page: 1299 ident: b0180 article-title: Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints publication-title: J. Guidance, Control, Dyn. – volume: 39 start-page: 556 year: 2016 end-page: 563 ident: b0225 article-title: Fault-tolerant flight control design with explicit consideration of reconfiguration transients publication-title: J. Guidance, Control, Dyn. – volume: 354 start-page: 8038 year: 2017 end-page: 8056 ident: b0070 article-title: Active fault tolerant control design approach for the flexible spacecraft with sensor faults publication-title: J. Franklin Inst. – volume: 93 year: 2019 ident: b0160 article-title: Adaptive fast nonsingular terminal sliding mode control for attitude tracking of flexible spacecraft with rotating appendage publication-title: Aerosp. Sci. Technol. – volume: 16 start-page: 1794 year: 2018 end-page: 1804 ident: b0075 article-title: Active fault tolerant control scheme for satellite attitude systems: Multiple actuator faults case publication-title: Int. J. Control Autom. Syst. – volume: 12 start-page: 405 year: 2018 end-page: 412 ident: b0080 article-title: Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults publication-title: IET Control Theory Appl. – volume: 6 start-page: 50729 year: 2018 end-page: 50736 ident: b0165 article-title: Anti-disturbance backstepping attitude Control for rigid-flexible coupling spacecraft publication-title: IEEE Access – volume: 66 start-page: 1659 year: 2020 end-page: 1671 ident: b0010 article-title: Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach publication-title: Adv. Space Res. – volume: 53 start-page: 101 year: 2017 end-page: 110 ident: b0250 article-title: Attitude control for flexible spacecraft with disturbance rejection publication-title: IEEE Trans. Aerosp. Electron. Syst. – volume: 66 start-page: 3763 year: 2019 end-page: 3772 ident: b0185 article-title: Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults publication-title: IEEE Trans. Industr. Electron. – volume: 189 start-page: 99 year: 2021 end-page: 118 ident: b0260 article-title: Dual quaternion-based adaptive iterative learning control for flexible spacecraft rendezvous publication-title: Acta Astronaut. – volume: 329 start-page: 153 year: 2019 end-page: 164 ident: b0155 article-title: Time delay Chebyshev functional link artificial neural network publication-title: Neurocomputing – volume: 178 start-page: 824 year: 2021 end-page: 834 ident: b0205 article-title: Observer-based fault-tolerant attitude tracking control for rigid spacecraft with actuator saturation and faults publication-title: Acta Astronaut. – volume: 108 year: 2021 ident: b0120 article-title: A novel active fault-tolerant control for spacecrafts with full state constraints and input saturation publication-title: Aerosp. Sci. Technol. – volume: 41 start-page: 1957 year: 2005 end-page: 1964 ident: b0220 article-title: Continuous finite-time control for robotic manipulators with terminal sliding mode publication-title: Automatica – start-page: 4592 year: 2019 end-page: 4597 ident: b0140 article-title: Active fault tolerant control design for satellite attitude systems with mixed actuator faults publication-title: 2019 Chinese Control And Decision Conference (CCDC) – volume: 130 year: 2022 ident: b0100 article-title: Fault-tolerant spacecraft attitude control: A critical assessment publication-title: Prog. Aerosp. Sci. – volume: 68 start-page: 2713 year: 2021 end-page: 2726 ident: b0030 article-title: Feedback attitude control of spacecraft using two single gimbal control moment gyros publication-title: Adv. Space Res. – volume: 120C year: 2022 ident: b0110 article-title: Vibration suppression and fault-tolerant attitude control for flexible spacecraft with actuator faults and malalignments publication-title: Aerosp. Sci. Technol. – volume: 26 start-page: 1007 year: 2015 end-page: 1018 ident: b0150 article-title: Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 33 start-page: 3380 year: 2020 end-page: 3394 ident: b0055 article-title: Robust fault-tolerant attitude control for satellite with multiple uncertainties and actuator faults publication-title: Chin. J. Aeronaut. – volume: 175 start-page: 570 year: 2020 end-page: 581 ident: b0135 article-title: Adaptive sliding mode attitude tracking control for flexible spacecraft systems based on the Takagi-Sugeno fuzzy modelling method publication-title: Acta Astronaut. – volume: 35 start-page: 1 year: 2021 end-page: 18 ident: b0230 article-title: A review on fault-tolerant cooperative control of multiple unmanned aerial vehicles publication-title: Chin. J. Aeronaut. – volume: 1 start-page: 179 year: 2020 end-page: 187 ident: b0005 article-title: Fault-tolerant attitude control of small spacecraft using robust artificial time-delay approach publication-title: IEEE J. Miniaturizat. Air Space Syst. – volume: 129 start-page: 352 year: 2007 end-page: 356 ident: b0040 article-title: Observer-based fault diagnosis of satellite systems subject to time-varying thruster faults publication-title: J. Dyn. Syst. Meas. Contr. – start-page: 672 year: 2016 end-page: 677 ident: b0020 article-title: Adaptive FTC based on control allocation and fault accommodation for satellite reaction wheels publication-title: 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol) – volume: 141 start-page: 1 year: 2019 end-page: 11 ident: b0170 article-title: Fault-tolerant attitude controller design for deep space probe via adaptive fast terminal sliding mode control publication-title: Trans. ASME J. Dyn. Syst., Measurem. Control – volume: 54 start-page: 108 year: 2016 end-page: 113 ident: b0200 article-title: Attitude control using higher order sliding mode publication-title: Aerosp. Sci. Technol. – volume: 33 start-page: 2014 year: 2020 end-page: 2023 ident: b0145 article-title: Fault-tolerant control and vibration suppression of flexible spacecraft: An interconnected system approach publication-title: Chin. J. Aeronaut. – volume: 67 start-page: 978 year: 2022 end-page: 985 ident: b0045 article-title: Anti-unwinding sliding mode attitude maneuver control for rigid spacecraft publication-title: IEEE Trans. Autom. Control – volume: 21 start-page: 1457 year: 2010 end-page: 1471 ident: b0265 article-title: Quaternion-based adaptive output feedback attitude control of spacecraft using chebyshev neural networks publication-title: IEEE Trans. Neural Networks – volume: 96 start-page: 1909 year: 2019 end-page: 1926 ident: b0245 article-title: Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression publication-title: Nonlinear Dyn. – volume: 10 start-page: 1991 year: 2016 end-page: 1999 ident: b0095 article-title: Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode publication-title: IET Control Theory Appl. – volume: 40 start-page: 1300 year: 2017 end-page: 1309 ident: b0255 article-title: Satellite attitude stabilization control with actuator faults publication-title: J. Guidance, Control, Dyn. – volume: 122C year: 2022 ident: b0105 article-title: Flexible spacecraft’s active fault-tolerant and anti-unwinding attitude control with vibration suppression publication-title: Aerosp. Sci. Technol. – volume: 64 start-page: 195 year: 2009 end-page: 205 ident: b0190 article-title: A study of on-orbit spacecraft failures publication-title: Acta Astronaut. – volume: 57 start-page: 222 year: 2021 end-page: 231 ident: b0090 article-title: Fixed-time control for high-precision attitude stabilization of flexible spacecraft publication-title: Eur. J. Control – volume: 98 year: 2020 ident: b0115 article-title: Active fault-tolerant attitude tracking control with adaptive gain for spacecrafts publication-title: Aerosp. Sci. Technol. – volume: 32 start-page: 5539 year: 2021 end-page: 5553 ident: b0235 article-title: Fractional-order adaptive fault-tolerant synchronization tracking control of networked fixed-wing UAVs against actuator-sensor faults via intelligent learning mechanism publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 18 start-page: 194 year: 1995 end-page: 199 ident: b0025 article-title: Hubble Space Telescope pointing control system design improvement study results publication-title: J. Guidance, Control, Dyn. – volume: 94 start-page: 2712 year: 2021 end-page: 2729 ident: b0065 article-title: Chebyshev neural network-based attitude-tracking control for rigid spacecraft with finite-time convergence publication-title: Int. J. Control – volume: 21 start-page: 2360 year: 2013 end-page: 2366 ident: b0210 article-title: Attitude tracking control of rigid spacecraft with actuator misalignment and fault publication-title: IEEE Trans. Control Syst. Technol. – volume: 129 year: 2021 ident: b0050 article-title: Anti-unwinding sliding mode attitude control via two modified Rodrigues parameter sets for spacecraft publication-title: Automatica – volume: 68 start-page: 3663 year: 2021 end-page: 3676 ident: b0130 article-title: Spacecraft attitude control: Application of fine trajectory linearization control publication-title: Adv. Space Res. – volume: 39 start-page: 747 year: 2003 end-page: 759 ident: b0085 article-title: Output stabilization of flexible spacecraft with active vibration suppression publication-title: IEEE Trans. Aerospace Electronic Syst. – volume: 62 start-page: 7706 year: 2015 end-page: 7716 ident: b0035 article-title: Adaptive neural output feedback control of uncertain nonlinear systems with unknown Hysteresis using disturbance observer publication-title: IEEE Trans. Industr. Electron. – volume: 68 start-page: 2713 year: 2021 ident: 10.1016/j.asr.2022.04.002_b0030 article-title: Feedback attitude control of spacecraft using two single gimbal control moment gyros publication-title: Adv. Space Res. doi: 10.1016/j.asr.2021.05.010 – volume: 32 start-page: 5539 year: 2021 ident: 10.1016/j.asr.2022.04.002_b0235 article-title: Fractional-order adaptive fault-tolerant synchronization tracking control of networked fixed-wing UAVs against actuator-sensor faults via intelligent learning mechanism publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2021.3059933 – volume: 39 start-page: 747 year: 2003 ident: 10.1016/j.asr.2022.04.002_b0085 article-title: Output stabilization of flexible spacecraft with active vibration suppression publication-title: IEEE Trans. Aerospace Electronic Syst. doi: 10.1109/TAES.2003.1238733 – volume: 129 start-page: 352 year: 2007 ident: 10.1016/j.asr.2022.04.002_b0040 article-title: Observer-based fault diagnosis of satellite systems subject to time-varying thruster faults publication-title: J. Dyn. Syst. Meas. Contr. doi: 10.1115/1.2719773 – volume: 94 start-page: 2712 year: 2021 ident: 10.1016/j.asr.2022.04.002_b0065 article-title: Chebyshev neural network-based attitude-tracking control for rigid spacecraft with finite-time convergence publication-title: Int. J. Control doi: 10.1080/00207179.2020.1734235 – volume: 129 year: 2021 ident: 10.1016/j.asr.2022.04.002_b0050 article-title: Anti-unwinding sliding mode attitude control via two modified Rodrigues parameter sets for spacecraft publication-title: Automatica doi: 10.1016/j.automatica.2021.109642 – volume: 175 start-page: 570 year: 2020 ident: 10.1016/j.asr.2022.04.002_b0135 article-title: Adaptive sliding mode attitude tracking control for flexible spacecraft systems based on the Takagi-Sugeno fuzzy modelling method publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.05.041 – volume: 120C year: 2022 ident: 10.1016/j.asr.2022.04.002_b0110 article-title: Vibration suppression and fault-tolerant attitude control for flexible spacecraft with actuator faults and malalignments publication-title: Aerosp. Sci. Technol. – volume: 66 start-page: 3763 year: 2019 ident: 10.1016/j.asr.2022.04.002_b0185 article-title: Active fault-tolerant control system design for spacecraft attitude maneuvers with actuator saturation and faults publication-title: IEEE Trans. Industr. Electron. doi: 10.1109/TIE.2018.2854602 – volume: 1 start-page: 179 year: 2020 ident: 10.1016/j.asr.2022.04.002_b0005 article-title: Fault-tolerant attitude control of small spacecraft using robust artificial time-delay approach publication-title: IEEE J. Miniaturizat. Air Space Syst. doi: 10.1109/JMASS.2020.3022685 – volume: 12 start-page: 405 year: 2018 ident: 10.1016/j.asr.2022.04.002_b0080 article-title: Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2017.0969 – volume: 26 start-page: 1007 year: 2015 ident: 10.1016/j.asr.2022.04.002_b0150 article-title: Adaptive NN controller design for a class of nonlinear MIMO discrete-time systems publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2014.2330336 – volume: 189 start-page: 99 year: 2021 ident: 10.1016/j.asr.2022.04.002_b0260 article-title: Dual quaternion-based adaptive iterative learning control for flexible spacecraft rendezvous publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2021.08.040 – volume: 41 start-page: 1957 year: 2005 ident: 10.1016/j.asr.2022.04.002_b0220 article-title: Continuous finite-time control for robotic manipulators with terminal sliding mode publication-title: Automatica doi: 10.1016/j.automatica.2005.07.001 – volume: 16 start-page: 1794 year: 2018 ident: 10.1016/j.asr.2022.04.002_b0075 article-title: Active fault tolerant control scheme for satellite attitude systems: Multiple actuator faults case publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-016-0667-5 – volume: 96 start-page: 1909 year: 2019 ident: 10.1016/j.asr.2022.04.002_b0245 article-title: Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-04894-x – start-page: 672 year: 2016 ident: 10.1016/j.asr.2022.04.002_b0020 article-title: Adaptive FTC based on control allocation and fault accommodation for satellite reaction wheels – volume: 7 start-page: 2007 year: 2013 ident: 10.1016/j.asr.2022.04.002_b0240 article-title: Finite-time fault tolerant attitude control for over-activated spacecraft subject to actuator misalignment and faults publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2013.0133 – volume: 57 start-page: 222 year: 2021 ident: 10.1016/j.asr.2022.04.002_b0090 article-title: Fixed-time control for high-precision attitude stabilization of flexible spacecraft publication-title: Eur. J. Control doi: 10.1016/j.ejcon.2020.05.006 – volume: 40 start-page: 1293 year: 2017 ident: 10.1016/j.asr.2022.04.002_b0180 article-title: Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints publication-title: J. Guidance, Control, Dyn. doi: 10.2514/1.G002129 – volume: 54 start-page: 108 year: 2016 ident: 10.1016/j.asr.2022.04.002_b0200 article-title: Attitude control using higher order sliding mode publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2016.04.012 – volume: 21 start-page: 1457 year: 2010 ident: 10.1016/j.asr.2022.04.002_b0265 article-title: Quaternion-based adaptive output feedback attitude control of spacecraft using chebyshev neural networks publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2010.2050333 – volume: 33 start-page: 3380 year: 2020 ident: 10.1016/j.asr.2022.04.002_b0055 article-title: Robust fault-tolerant attitude control for satellite with multiple uncertainties and actuator faults publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.06.026 – volume: 98 year: 2020 ident: 10.1016/j.asr.2022.04.002_b0115 article-title: Active fault-tolerant attitude tracking control with adaptive gain for spacecrafts publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.105706 – volume: 64 start-page: 195 year: 2009 ident: 10.1016/j.asr.2022.04.002_b0190 article-title: A study of on-orbit spacecraft failures publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2008.07.019 – volume: 96 year: 2020 ident: 10.1016/j.asr.2022.04.002_b0175 article-title: Synergetic approach in attitude control of very flexible satellites by means of thrusters and PZT devices publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.105541 – volume: 178 start-page: 824 year: 2021 ident: 10.1016/j.asr.2022.04.002_b0205 article-title: Observer-based fault-tolerant attitude tracking control for rigid spacecraft with actuator saturation and faults publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.10.017 – volume: 108 year: 2021 ident: 10.1016/j.asr.2022.04.002_b0120 article-title: A novel active fault-tolerant control for spacecrafts with full state constraints and input saturation publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106368 – volume: 35 start-page: 1 year: 2021 ident: 10.1016/j.asr.2022.04.002_b0230 article-title: A review on fault-tolerant cooperative control of multiple unmanned aerial vehicles publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2021.04.022 – volume: 21 start-page: 2360 year: 2013 ident: 10.1016/j.asr.2022.04.002_b0210 article-title: Attitude tracking control of rigid spacecraft with actuator misalignment and fault publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2012.2237403 – volume: 6 start-page: 50729 year: 2018 ident: 10.1016/j.asr.2022.04.002_b0165 article-title: Anti-disturbance backstepping attitude Control for rigid-flexible coupling spacecraft publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2868074 – volume: 179 start-page: 646 year: 2021 ident: 10.1016/j.asr.2022.04.002_b0195 article-title: Novel finite-time adaptive neural control of flexible spacecraft with actuator constraints and prescribed attitude tracking performance publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2020.10.010 – volume: 130 year: 2022 ident: 10.1016/j.asr.2022.04.002_b0100 article-title: Fault-tolerant spacecraft attitude control: A critical assessment publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2022.100806 – volume: 329 start-page: 153 year: 2019 ident: 10.1016/j.asr.2022.04.002_b0155 article-title: Time delay Chebyshev functional link artificial neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.051 – volume: 10 start-page: 1991 year: 2016 ident: 10.1016/j.asr.2022.04.002_b0095 article-title: Spacecraft fault-tolerant control using adaptive non-singular fast terminal sliding mode publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2016.0044 – start-page: 4592 year: 2019 ident: 10.1016/j.asr.2022.04.002_b0140 article-title: Active fault tolerant control design for satellite attitude systems with mixed actuator faults – volume: 67 start-page: 978 year: 2022 ident: 10.1016/j.asr.2022.04.002_b0045 article-title: Anti-unwinding sliding mode attitude maneuver control for rigid spacecraft publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2021.3079220 – volume: 354 start-page: 8038 year: 2017 ident: 10.1016/j.asr.2022.04.002_b0070 article-title: Active fault tolerant control design approach for the flexible spacecraft with sensor faults publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2017.09.023 – volume: 18 start-page: 194 year: 1995 ident: 10.1016/j.asr.2022.04.002_b0025 article-title: Hubble Space Telescope pointing control system design improvement study results publication-title: J. Guidance, Control, Dyn. doi: 10.2514/3.21369 – volume: 62 start-page: 7706 year: 2015 ident: 10.1016/j.asr.2022.04.002_b0035 article-title: Adaptive neural output feedback control of uncertain nonlinear systems with unknown Hysteresis using disturbance observer publication-title: IEEE Trans. Industr. Electron. doi: 10.1109/TIE.2015.2455053 – volume: 36 start-page: 60 year: 2012 ident: 10.1016/j.asr.2022.04.002_b0125 article-title: Fault-tolerant control systems: A comparative study between active and passive approaches publication-title: Ann. Rev. Control doi: 10.1016/j.arcontrol.2012.03.005 – volume: 66 start-page: 1659 year: 2020 ident: 10.1016/j.asr.2022.04.002_b0010 article-title: Finite-time fault tolerant attitude tracking control of spacecraft using robust nonlinear disturbance observer with anti-unwinding approach publication-title: Adv. Space Res. doi: 10.1016/j.asr.2020.06.019 – volume: 40 start-page: 1300 year: 2017 ident: 10.1016/j.asr.2022.04.002_b0255 article-title: Satellite attitude stabilization control with actuator faults publication-title: J. Guidance, Control, Dyn. doi: 10.2514/1.G001922 – volume: 53 start-page: 101 year: 2017 ident: 10.1016/j.asr.2022.04.002_b0250 article-title: Attitude control for flexible spacecraft with disturbance rejection publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2017.2649259 – volume: 62 start-page: 3906 year: 2015 ident: 10.1016/j.asr.2022.04.002_b0215 article-title: Study of nonsingular fast terminal sliding-mode fault-tolerant control publication-title: IEEE Trans. Industr. Electron. – volume: 30 start-page: 1903 year: 2020 ident: 10.1016/j.asr.2022.04.002_b0060 article-title: Finite-time attitude-tracking control for rigid spacecraft with actuator failures and saturation constraints publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.4863 – volume: 122C year: 2022 ident: 10.1016/j.asr.2022.04.002_b0105 article-title: Flexible spacecraft’s active fault-tolerant and anti-unwinding attitude control with vibration suppression publication-title: Aerosp. Sci. Technol. – volume: 33 start-page: 2014 year: 2020 ident: 10.1016/j.asr.2022.04.002_b0145 article-title: Fault-tolerant control and vibration suppression of flexible spacecraft: An interconnected system approach publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.02.014 – volume: 68 start-page: 3663 year: 2021 ident: 10.1016/j.asr.2022.04.002_b0130 article-title: Spacecraft attitude control: Application of fine trajectory linearization control publication-title: Adv. Space Res. doi: 10.1016/j.asr.2021.08.018 – volume: 102 start-page: 105875 year: 2020 ident: 10.1016/j.asr.2022.04.002_b0015 article-title: Dynamic modeling and vibration control of a coupled rigid-flexible high-order structural system: A comparative study publication-title: Aerospace Sci. Technol. doi: 10.1016/j.ast.2020.105875 – volume: 93 year: 2019 ident: 10.1016/j.asr.2022.04.002_b0160 article-title: Adaptive fast nonsingular terminal sliding mode control for attitude tracking of flexible spacecraft with rotating appendage publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.105312 – volume: 39 start-page: 556 year: 2016 ident: 10.1016/j.asr.2022.04.002_b0225 article-title: Fault-tolerant flight control design with explicit consideration of reconfiguration transients publication-title: J. Guidance, Control, Dyn. doi: 10.2514/1.G001414 – volume: 141 start-page: 1 year: 2019 ident: 10.1016/j.asr.2022.04.002_b0170 article-title: Fault-tolerant attitude controller design for deep space probe via adaptive fast terminal sliding mode control publication-title: Trans. ASME J. Dyn. Syst., Measurem. Control |
SSID | ssj0012770 |
Score | 2.4827883 |
Snippet | In this paper, a finite-time active fault-tolerant control scheme is designed for a flexible spacecraft’s attitude control experiencing inertial parametric... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3644 |
SubjectTerms | Active fault-tolerant control Actuator faults Anti-unwinding Chebyshev neural network Fault detection and identification Finite-time control Flexible spacecraft |
Title | Finite-time active fault-tolerant attitude control for flexible spacecraft with vibration suppression and anti-unwinding |
URI | https://dx.doi.org/10.1016/j.asr.2022.04.002 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fSxwxEB5EEeqD2Kui1koexIdCvL1cLrl9PKTHtaUiqODbkssksHLdO3o5f7z0bzezmxVLqQ9dWFhCAksmzHyZfPkG4ERJLTFGDu572OdSGuS5zA1X6MUwQ9TDunTCjws1uZHfbge3a3De3oUhWmXy_Y1Pr711aumm2ewuyrJ7RUosdOQoiGcwECS7LaWmVX72-4Xm0RNaN3kW3efUuz3ZrDleZkmSoELUaqcps_JXbHoVb8Y7sJ2AIhs1__Ie1lzVgf3RklLX859P7JTV301mYtmBrVfKgh3YvGzaP8DjuCRYyamIPDO1d2PerGaBh_nMxUgVmAnEF0DHEm-dRSDLPCllTmeORZdjI7Y0PjBK2rJ72mCTOdlytUg02oqZCuMbSr6qHsr6pswu3Iy_XJ9PeCq3wK3IdeCKoJ5TGUrnrbRGT3UESxHwYa60N_HBiJ4cUuk7TdKFNp8610M01gs_VP09WK_mldsHJgciU1ai0ujiBlINRV-6XAysQi0znx9A1k50YZMWOZXEmBUt6eyuiLYpyDZFJotomwP4_DJk0QhxvNVZttYr_lhNRQwU_x52-H_DPsI7KkLf0CCPYD38WrlPEaqE6XG9Fo9hY_T1--TiGfrw6mQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED66lLHtYWzZRrufehh7GIi4iizFj6EspGsbBmuhb0LRSeCSOWFR9uO_n86WS8fYHmYwGOEDoxN3n0-fvgN4q6SWmDIHD0c45lJa5JWsLFcYxKRA1JO2dcL5Qs0v5cer8moPjvuzMESrzLG_i-lttM4jozybo01djz6TEgttOQriGZRC3YF9UqcqB7A_PTmdL242E4TWXalFjzkZ9JubLc3LbkkVVIhW8DQXV_5IT7dSzuwRPMxYkU27z3kMe74ZwsF0S9Xr9Zef7B1rn7vixHYID26JCw7h7qdu_An8mNWELDn1kWe2DXAs2N0q8rhe-ZSsIrORKAPoWaaus4RlWSCxzOXKsxR1XIKXNkRGdVv2jf6xyaNsu9tkJm3DbIPpjjXfNd_r9rDMU7icfbg4nvPccYE7UenIFaE9rwqUPjjprF7qhJcS5sNK6WDThQlAeaTud5rUC1219P4I0bogwkSNn8GgWTf-AJgsRaGcRKXRp39INRFj6StROoVaFqE6hKKfaOOyHDl1xViZnnd2bZJvDPnGFNIk3xzC-xuTTafF8a-XZe8989uCMilX_N3s-f-ZvYF784vzM3N2sjh9AfepJ33HinwJg_h1518l5BKXr_PK_AUCk-0V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-time+active+fault-tolerant+attitude+control+for+flexible+spacecraft+with+vibration+suppression+and+anti-unwinding&rft.jtitle=Advances+in+space+research&rft.au=Hasan%2C+Muhammad+Noman&rft.au=Haris%2C+Muhammad&rft.au=Qin%2C+Shiyin&rft.date=2023-05-01&rft.pub=Elsevier+B.V&rft.issn=0273-1177&rft.eissn=1879-1948&rft.volume=71&rft.issue=9&rft.spage=3644&rft.epage=3660&rft_id=info:doi/10.1016%2Fj.asr.2022.04.002&rft.externalDocID=S0273117722002526 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon |