A three-dimensional Keller–Segel–Navier–Stokes system with logistic source: Global weak solutions and asymptotic stabilization
The Keller–Segel–Navier–Stokes system(⋆){nt+u⋅∇n=Δn−χ∇⋅(n∇c)+ρn−μn2,ct+u⋅∇c=Δc−c+n,ut+(u⋅∇)u=Δu+∇P+n∇ϕ+f(x,t),∇⋅u=0, is considered in a bounded convex domain Ω⊂R3 with smooth boundary, where ϕ∈W1,∞(Ω) and f∈C1(Ω¯×[0,∞)), and where χ>0,ρ∈R and μ>0 are given parameters. It is proved that under t...
Saved in:
Published in | Journal of functional analysis Vol. 276; no. 5; pp. 1339 - 1401 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Keller–Segel–Navier–Stokes system(⋆){nt+u⋅∇n=Δn−χ∇⋅(n∇c)+ρn−μn2,ct+u⋅∇c=Δc−c+n,ut+(u⋅∇)u=Δu+∇P+n∇ϕ+f(x,t),∇⋅u=0, is considered in a bounded convex domain Ω⊂R3 with smooth boundary, where ϕ∈W1,∞(Ω) and f∈C1(Ω¯×[0,∞)), and where χ>0,ρ∈R and μ>0 are given parameters.
It is proved that under the assumption that supt>0∫tt+1‖f(⋅,s)‖L65(Ω)ds be finite, for any sufficiently regular initial data (n0,c0,u0) satisfying n0≥0 and c0≥0, the initial-value problem for (⋆) under no-flux boundary conditions for n and c and homogeneous Dirichlet boundary conditions for u possesses at least one globally defined solution in an appropriate generalized sense, and that this solution is uniformly bounded in with respect to the norm in L1(Ω)×L6(Ω)×L2(Ω;R3).
Moreover, under the explicit hypothesis that μ>χρ+4, these solutions are shown to stabilize toward a spatially homogeneous state in their first two components by satisfying(n(⋅,t),c(⋅,t))→(ρ+μ,ρ+μ)in L1(Ω)×Lp(Ω)for all p∈[1,6)as t→∞. Finally, under an additional condition on temporal decay of f it is shown that also the third solution component equilibrates in that u(⋅,t)→0 in L2(Ω;R3) as t→∞. |
---|---|
AbstractList | The Keller–Segel–Navier–Stokes system(⋆){nt+u⋅∇n=Δn−χ∇⋅(n∇c)+ρn−μn2,ct+u⋅∇c=Δc−c+n,ut+(u⋅∇)u=Δu+∇P+n∇ϕ+f(x,t),∇⋅u=0, is considered in a bounded convex domain Ω⊂R3 with smooth boundary, where ϕ∈W1,∞(Ω) and f∈C1(Ω¯×[0,∞)), and where χ>0,ρ∈R and μ>0 are given parameters.
It is proved that under the assumption that supt>0∫tt+1‖f(⋅,s)‖L65(Ω)ds be finite, for any sufficiently regular initial data (n0,c0,u0) satisfying n0≥0 and c0≥0, the initial-value problem for (⋆) under no-flux boundary conditions for n and c and homogeneous Dirichlet boundary conditions for u possesses at least one globally defined solution in an appropriate generalized sense, and that this solution is uniformly bounded in with respect to the norm in L1(Ω)×L6(Ω)×L2(Ω;R3).
Moreover, under the explicit hypothesis that μ>χρ+4, these solutions are shown to stabilize toward a spatially homogeneous state in their first two components by satisfying(n(⋅,t),c(⋅,t))→(ρ+μ,ρ+μ)in L1(Ω)×Lp(Ω)for all p∈[1,6)as t→∞. Finally, under an additional condition on temporal decay of f it is shown that also the third solution component equilibrates in that u(⋅,t)→0 in L2(Ω;R3) as t→∞. |
Author | Winkler, Michael |
Author_xml | – sequence: 1 givenname: Michael surname: Winkler fullname: Winkler, Michael email: michael.winkler@math.uni-paderborn.de organization: Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany |
BookMark | eNp9kDtOAzEQhi0EEuFxADpfYBePnX1BhRAvgaAAasvrnQ0OzhrZhihUFNyAG3ISHEJFkWpG4_l-jb8dsjm4AQk5AJYDg_Jwmk97lXMGdQ48Z6zZICNgTZmxqhabZMQY5xlwUW6TnRCmjAGU42JEPk9ofPKIWWdmOATjBmXpNVqL_vvj6x4naFO9VW9mNYjuGQMNixBxRucmPlHrJiZEo2lwr17jEb2wrk0hc1TPaWZfYwoNVA0dVWExe4nudzmq1ljzrpave2SrVzbg_l_dJY_nZw-nl9nN3cXV6clNpnlTxazkXBdt1Ylxp6GAum-KOrW6EQ0igkYUHS8a0TfjtlSsHNdV20NbgugFMt2JXVKtcrV3IXjspTbx94LolbESmFzKlFOZZMqlTAlcJpmJhH_kizcz5RdrmeMVg-lLS38yaIODxs541FF2zqyhfwBYE5Xm |
CitedBy_id | crossref_primary_10_1017_prm_2020_38 crossref_primary_10_1093_imrn_rnac286 crossref_primary_10_1007_s00033_020_01410_9 crossref_primary_10_3390_fractalfract7030209 crossref_primary_10_1007_s10440_019_00307_8 crossref_primary_10_3934_dcdsb_2020198 crossref_primary_10_3934_dcdsb_2021045 crossref_primary_10_1007_s00021_019_0469_7 crossref_primary_10_1007_s00028_024_01053_7 crossref_primary_10_1088_1361_6544_ab834e crossref_primary_10_1007_s10440_024_00696_5 crossref_primary_10_1016_j_nonrwa_2020_103160 crossref_primary_10_1016_j_jde_2022_10_035 crossref_primary_10_1016_j_jde_2024_12_045 crossref_primary_10_1016_j_jde_2020_07_027 crossref_primary_10_1016_j_na_2019_06_005 crossref_primary_10_1515_anona_2020_0158 crossref_primary_10_1142_S0218202523500628 crossref_primary_10_1016_j_jde_2023_07_037 crossref_primary_10_1007_s00526_023_02461_2 crossref_primary_10_1016_j_jde_2020_01_008 crossref_primary_10_1016_j_jde_2023_04_042 crossref_primary_10_1016_j_jde_2025_01_071 crossref_primary_10_1007_s00245_023_09988_y crossref_primary_10_1016_j_jmaa_2019_123748 crossref_primary_10_1016_j_bulsci_2023_103274 crossref_primary_10_1002_mma_9100 crossref_primary_10_3390_math12081143 crossref_primary_10_1007_s00033_021_01493_y crossref_primary_10_1016_j_jmaa_2020_124108 crossref_primary_10_1002_zamm_202100191 crossref_primary_10_1016_j_jde_2022_07_016 crossref_primary_10_1016_j_nonrwa_2022_103828 crossref_primary_10_1137_21M140907X crossref_primary_10_1016_j_jde_2020_01_019 crossref_primary_10_1016_j_jmaa_2024_128921 crossref_primary_10_1007_s00033_021_01546_2 crossref_primary_10_1007_s00033_020_01310_y crossref_primary_10_1016_j_jfa_2021_108967 crossref_primary_10_1093_imamat_hxae009 crossref_primary_10_1007_s00033_019_1202_3 crossref_primary_10_1142_S0129167X23500775 crossref_primary_10_3934_cpaa_2025022 crossref_primary_10_1016_j_jmaa_2021_125299 crossref_primary_10_1007_s00033_025_02453_6 crossref_primary_10_3934_dcds_2022047 crossref_primary_10_1142_S0219199724500226 crossref_primary_10_1016_j_nonrwa_2022_103543 crossref_primary_10_1007_s10440_022_00485_y crossref_primary_10_1142_S0218202521500135 crossref_primary_10_3934_dcdsb_2023155 crossref_primary_10_1007_s00526_023_02523_5 crossref_primary_10_1142_S0218202520400102 crossref_primary_10_1007_s00033_021_01572_0 crossref_primary_10_1142_S0218202522500531 crossref_primary_10_1002_zamm_202100402 crossref_primary_10_1063_5_0212819 crossref_primary_10_1007_s00028_023_00900_3 crossref_primary_10_1007_s00526_022_02201_y crossref_primary_10_1016_j_jde_2023_01_004 crossref_primary_10_1007_s00574_020_00202_z crossref_primary_10_1002_mma_7137 crossref_primary_10_1007_s00033_021_01508_8 crossref_primary_10_1186_s13661_022_01622_0 crossref_primary_10_1007_s00526_024_02891_6 crossref_primary_10_1016_j_aml_2021_107417 crossref_primary_10_1016_j_na_2022_113086 crossref_primary_10_1080_00036811_2023_2173183 crossref_primary_10_1007_s10114_022_1093_7 crossref_primary_10_3934_mine_2022041 crossref_primary_10_1016_j_jde_2020_04_008 crossref_primary_10_1142_S0218202523500094 crossref_primary_10_1016_j_jde_2022_01_033 crossref_primary_10_1016_j_jde_2022_06_015 crossref_primary_10_1007_s00033_022_01694_z crossref_primary_10_1007_s00033_025_02430_z crossref_primary_10_1017_S0956792522000067 crossref_primary_10_1007_s10440_020_00374_2 crossref_primary_10_1002_zamm_201900024 crossref_primary_10_1142_S0218202521500238 crossref_primary_10_1007_s00033_020_1276_y crossref_primary_10_1142_S0218202522500166 crossref_primary_10_1007_s00033_019_1185_0 crossref_primary_10_1186_s13661_021_01519_4 crossref_primary_10_1007_s00021_021_00600_3 crossref_primary_10_1007_s00526_022_02313_5 crossref_primary_10_1016_j_jmaa_2025_129426 crossref_primary_10_1080_00036811_2020_1766027 crossref_primary_10_1007_s10440_022_00489_8 crossref_primary_10_1007_s00220_021_04272_y crossref_primary_10_3934_math_2023912 crossref_primary_10_3934_dcds_2022062 crossref_primary_10_1002_mma_6154 crossref_primary_10_1063_5_0040652 crossref_primary_10_1016_j_jmaa_2021_125338 crossref_primary_10_1002_mma_8844 crossref_primary_10_1016_j_nonrwa_2023_103898 crossref_primary_10_1016_j_jde_2023_05_042 crossref_primary_10_1155_2022_8573835 crossref_primary_10_1002_mma_9817 crossref_primary_10_1186_s13661_020_01478_2 crossref_primary_10_1007_s00033_024_02400_x crossref_primary_10_1515_anona_2023_0125 crossref_primary_10_1007_s10440_020_00321_1 crossref_primary_10_1016_j_jde_2020_09_009 crossref_primary_10_3934_dcdsb_2022031 crossref_primary_10_1016_j_aml_2024_109172 crossref_primary_10_1007_s00033_024_02324_6 crossref_primary_10_1063_5_0078000 crossref_primary_10_1016_j_camwa_2023_06_006 crossref_primary_10_1142_S0218202520500244 crossref_primary_10_1016_j_jmaa_2022_126069 crossref_primary_10_1016_j_jmaa_2022_126742 crossref_primary_10_1016_j_jmaa_2020_124880 crossref_primary_10_3934_dcdsb_2022036 crossref_primary_10_1002_mma_9498 crossref_primary_10_1016_j_jmaa_2023_128048 crossref_primary_10_1017_S0956792521000279 crossref_primary_10_1007_s12220_022_01140_6 crossref_primary_10_1142_S0218202524500374 crossref_primary_10_1002_mma_10577 crossref_primary_10_1515_anona_2022_0228 crossref_primary_10_1016_j_nonrwa_2024_104119 crossref_primary_10_1002_mma_7503 crossref_primary_10_1007_s00030_023_00908_1 crossref_primary_10_1007_s00526_021_02164_6 crossref_primary_10_1016_j_jde_2023_05_033 crossref_primary_10_1016_j_jde_2022_01_015 crossref_primary_10_1016_j_nonrwa_2021_103389 crossref_primary_10_1007_s10440_020_00312_2 crossref_primary_10_1063_5_0145255 crossref_primary_10_1016_j_jde_2022_04_042 crossref_primary_10_1016_j_nonrwa_2023_103913 crossref_primary_10_1007_s00033_020_1290_0 crossref_primary_10_1016_j_jde_2020_11_033 crossref_primary_10_3934_math_2022403 crossref_primary_10_1007_s10231_020_00969_4 crossref_primary_10_1016_j_jde_2020_09_029 crossref_primary_10_1007_s00033_024_02234_7 crossref_primary_10_1016_j_nonrwa_2023_103912 crossref_primary_10_1016_j_jde_2019_01_027 crossref_primary_10_1090_proc_16867 crossref_primary_10_1142_S0218202521500469 crossref_primary_10_1007_s00033_024_02401_w crossref_primary_10_1088_1361_6544_ac3c2b crossref_primary_10_1007_s00033_022_01832_7 crossref_primary_10_1016_j_nonrwa_2024_104222 crossref_primary_10_1142_S0218202520500517 |
Cites_doi | 10.1016/j.nonrwa.2014.07.001 10.1007/s10231-007-0057-y 10.1016/j.physd.2010.09.011 10.1016/S0362-546X(01)00815-X 10.1088/0951-7715/27/8/1899 10.1016/0022-1236(91)90136-S 10.1007/BF02551584 10.1080/03605302.2011.591865 10.1103/PhysRevLett.93.098103 10.1007/s00332-014-9205-x 10.1007/s00205-013-0678-9 10.3934/dcds.2010.28.1437 10.1137/140979708 10.1007/BF00276188 10.1007/s00033-016-0732-1 10.4310/CMS.2012.v10.n2.a7 10.1073/pnas.2233626100 10.1016/j.jde.2016.07.010 10.1007/BF02547354 10.1142/S0218202510004507 10.1090/tran/6733 10.1017/jfm.2011.534 10.1016/j.jfa.2015.10.016 10.1016/j.jmaa.2011.05.057 10.3934/dcds.2015.35.3463 10.1007/s00205-016-1017-8 10.1073/pnas.0406724102 10.1016/j.physd.2012.06.009 10.1016/j.jde.2014.04.023 10.3934/dcdsb.2015.20.3235 10.1016/j.jde.2014.10.016 10.1080/03605302.2010.497199 10.3934/dcdsb.2015.20.2751 10.1090/S0002-9947-1992-1046835-6 10.1007/s00285-008-0201-3 10.1016/j.jde.2016.03.030 10.1007/s00205-012-0549-9 10.1016/j.jde.2015.08.027 10.3934/dcds.2013.33.2271 10.2307/1971423 10.1080/03605302.2011.589879 10.1016/j.jmaa.2016.10.028 10.1080/03605300903473426 10.1016/0022-0396(86)90096-3 10.1007/s00526-016-1027-2 10.3934/dcdsb.2015.20.1499 10.1016/j.jde.2015.05.012 10.1080/03605302.2013.852224 10.1016/j.anihpc.2015.05.002 10.1063/1.4742858 10.1007/s00033-015-0541-y 10.1016/j.matpur.2013.01.020 10.1007/BF00249679 10.1007/s00526-015-0922-2 10.1016/j.anihpc.2012.07.002 10.4310/CMS.2014.v12.n3.a8 10.1142/S0218202516400078 10.1016/0022-5193(70)90092-5 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. |
Copyright_xml | – notice: 2018 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jfa.2018.12.009 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1096-0783 |
EndPage | 1401 |
ExternalDocumentID | 10_1016_j_jfa_2018_12_009 S0022123618304622 |
GroupedDBID | --K --M --Z -ET -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADIYS AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSW SSZ T5K TN5 TWZ WH7 YQT ZMT ZU3 ~G- 186 29K 5VS 6TJ AAEDT AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN ADXHL AEIPS AETEA AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BNPGV CAG CITATION COF D-I FGOYB G-2 HZ~ OHT R2- SEW SSH WUQ XOL XPP ZCG ZY4 |
ID | FETCH-LOGICAL-c297t-622c5b7d34dc1518f9584dcc939eee1cee3d2593f94b6a06487bf1b613f3e0cd3 |
IEDL.DBID | IXB |
ISSN | 0022-1236 |
IngestDate | Tue Jul 01 04:36:08 EDT 2025 Thu Apr 24 22:52:50 EDT 2025 Fri Feb 23 02:30:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | secondary Navier–Stokes Generalized solution Chemotaxis Large time behavior primary |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-622c5b7d34dc1518f9584dcc939eee1cee3d2593f94b6a06487bf1b613f3e0cd3 |
PageCount | 63 |
ParticipantIDs | crossref_citationtrail_10_1016_j_jfa_2018_12_009 crossref_primary_10_1016_j_jfa_2018_12_009 elsevier_sciencedirect_doi_10_1016_j_jfa_2018_12_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 2019-03-00 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of functional analysis |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Horstmann (br0220) 2003; 105 Lions (br0370) 1980; 74 Tao, Winkler (br0560) 2015; 66 Lorz (br0420) 2010; 20 Mittal, Budrene, Brenner, van Oudenaarden (br0450) 2003; 100 Chae, Kang, Lee (br0070) 2014; 39 Giga (br0170) 1986; 61 Kuto, Osaki, Sakurai, Tsujikawa (br0320) 2012; 241 Bellomo, Bellouquid, Chouhad (br0010) 2016; 26 Kiselev, Xu (br0300) 2016; 222 Zhang, Li (br0770) 2015; 259 Biler (br0020) 1999; 9 Kiselev, Ryzhik (br0280) 2012; 37 Painter (br0490) 2018 Ladyzenskaja, Solonnikov, Ural'ceva (br0330) 1968; vol. 23 Ishida (br0240) 2015; 35 Giga (br0160) 1981; 2 Duan, Xiang (br0140) 2012; 2012 Jost (br0260) 2002 Kiselev, Ryzhik (br0290) 2012; 53 Liu, Wang (br0390) 2016; 261 DiFrancesco, Lorz, Markowich (br0090) 2010; 28 Luckhaus, Sugiyama, Velázquez (br0440) 2012; 206 Duan, Lorz, Markowich (br0130) 2010; 35 Giga, Sohr (br0180) 1991; 102 Herrero, Velázquez (br0190) 1997; 24 Liu, Wang (br0400) 2017; 447 Zhang, Li (br0760) 2015; 20 Jäger, Luckhaus (br0250) 1992; 329 Winkler (br0670) 2013; 100 Lankeit (br0340) 2015; 20 Cao, Ishida (br0040) 2014; 27 Hillen, Painter (br0210) 2011; 240 Tao, Winkler (br0550) 2013; 30 Wang, Xiang (br0620) 2016; 261 Winkler (br0740) 2017; 369 Cao, Wang (br0050) 2015; 20 Espejo, Suzuki (br0110) 2015; 21 Chertock, Fellner, Kurganov, Lorz, Markowich (br0080) 2012; 694 Perthame (br0500) 2007 Tuval, Cisneros, Dombrowski, Wolgemuth, Kessler, Goldstein (br0590) 2005; 102 Hillen, Painter (br0200) 2009; 58 Winkler (br0680) 2014; 211 Wang, Xiang (br0610) 2015; 259 Di Perna, Lions (br0100) 1989; 130 Liu, Wang (br0410) 2018 Osaki, Tsujikawa, Yagi, Mimura (br0480) 2002; 51 Fujita, Kato (br0150) 1964; 16 Leray (br0360) 1934; 63 Nagai (br0460) 2001; 6 Winkler (br0660) 2012; 37 Keller, Segel (br0270) 1970; 26 Nečas, Růžička, Šverák (br0470) 1996; 176 Chae, Kang, Lee (br0060) 2013; 33 Tao, Winkler (br0570) 2016; 67 Quittner, Souplet (br0520) 2007 Winkler (br0640) 2010; 35 Winkler (br0650) 2011; 384 Winkler (br0730) 2016; 33 Cao, Lankeit (br0030) 2016; 55 Winkler (br0700) 2014; 24 Sohr (br0530) 2001 Petitta (br0510) 2008; 187 Winkler (br0720) 2015; 47 Temam (br0580) 1977; vol. 2 Winkler (br0710) 2015; 54 Wiegner (br0630) 1999; 101 Dombrowski, Cisneros, Chatkaew, Goldstein, Kessler (br0120) 2004; 93 Winkler (br0750) 2017; 22 Vorotnikov (br0600) 2014; 12 Kozono, Miura, Sugiyama (br0310) 2016; 270 Solonnikov (br0540) 2007; vol. 220 Winkler (br0690) 2014; 257 Lankeit (br0350) 2015; 258 Lorz (br0430) 2012; 10 Duan (10.1016/j.jfa.2018.12.009_br0130) 2010; 35 Kiselev (10.1016/j.jfa.2018.12.009_br0290) 2012; 53 Painter (10.1016/j.jfa.2018.12.009_br0490) 2018 Cao (10.1016/j.jfa.2018.12.009_br0040) 2014; 27 Duan (10.1016/j.jfa.2018.12.009_br0140) 2012; 2012 Chae (10.1016/j.jfa.2018.12.009_br0070) 2014; 39 Di Perna (10.1016/j.jfa.2018.12.009_br0100) 1989; 130 Kiselev (10.1016/j.jfa.2018.12.009_br0300) 2016; 222 Winkler (10.1016/j.jfa.2018.12.009_br0680) 2014; 211 Hillen (10.1016/j.jfa.2018.12.009_br0210) 2011; 240 Tao (10.1016/j.jfa.2018.12.009_br0550) 2013; 30 Bellomo (10.1016/j.jfa.2018.12.009_br0010) 2016; 26 Winkler (10.1016/j.jfa.2018.12.009_br0690) 2014; 257 Lankeit (10.1016/j.jfa.2018.12.009_br0350) 2015; 258 Quittner (10.1016/j.jfa.2018.12.009_br0520) 2007 Giga (10.1016/j.jfa.2018.12.009_br0160) 1981; 2 Liu (10.1016/j.jfa.2018.12.009_br0390) 2016; 261 Herrero (10.1016/j.jfa.2018.12.009_br0190) 1997; 24 Cao (10.1016/j.jfa.2018.12.009_br0030) 2016; 55 Tao (10.1016/j.jfa.2018.12.009_br0560) 2015; 66 Leray (10.1016/j.jfa.2018.12.009_br0360) 1934; 63 Winkler (10.1016/j.jfa.2018.12.009_br0700) 2014; 24 Nagai (10.1016/j.jfa.2018.12.009_br0460) 2001; 6 Winkler (10.1016/j.jfa.2018.12.009_br0710) 2015; 54 Winkler (10.1016/j.jfa.2018.12.009_br0640) 2010; 35 Winkler (10.1016/j.jfa.2018.12.009_br0740) 2017; 369 DiFrancesco (10.1016/j.jfa.2018.12.009_br0090) 2010; 28 Kiselev (10.1016/j.jfa.2018.12.009_br0280) 2012; 37 Nečas (10.1016/j.jfa.2018.12.009_br0470) 1996; 176 Perthame (10.1016/j.jfa.2018.12.009_br0500) 2007 Keller (10.1016/j.jfa.2018.12.009_br0270) 1970; 26 Ladyzenskaja (10.1016/j.jfa.2018.12.009_br0330) 1968; vol. 23 Kuto (10.1016/j.jfa.2018.12.009_br0320) 2012; 241 Fujita (10.1016/j.jfa.2018.12.009_br0150) 1964; 16 Kozono (10.1016/j.jfa.2018.12.009_br0310) 2016; 270 Ishida (10.1016/j.jfa.2018.12.009_br0240) 2015; 35 Mittal (10.1016/j.jfa.2018.12.009_br0450) 2003; 100 Chae (10.1016/j.jfa.2018.12.009_br0060) 2013; 33 Tao (10.1016/j.jfa.2018.12.009_br0570) 2016; 67 Luckhaus (10.1016/j.jfa.2018.12.009_br0440) 2012; 206 Lorz (10.1016/j.jfa.2018.12.009_br0420) 2010; 20 Lorz (10.1016/j.jfa.2018.12.009_br0430) 2012; 10 Zhang (10.1016/j.jfa.2018.12.009_br0770) 2015; 259 Horstmann (10.1016/j.jfa.2018.12.009_br0220) 2003; 105 Jäger (10.1016/j.jfa.2018.12.009_br0250) 1992; 329 Giga (10.1016/j.jfa.2018.12.009_br0170) 1986; 61 Lankeit (10.1016/j.jfa.2018.12.009_br0340) 2015; 20 Sohr (10.1016/j.jfa.2018.12.009_br0530) 2001 Vorotnikov (10.1016/j.jfa.2018.12.009_br0600) 2014; 12 Osaki (10.1016/j.jfa.2018.12.009_br0480) 2002; 51 Solonnikov (10.1016/j.jfa.2018.12.009_br0540) 2007; vol. 220 Winkler (10.1016/j.jfa.2018.12.009_br0670) 2013; 100 Jost (10.1016/j.jfa.2018.12.009_br0260) 2002 Winkler (10.1016/j.jfa.2018.12.009_br0650) 2011; 384 Zhang (10.1016/j.jfa.2018.12.009_br0760) 2015; 20 Biler (10.1016/j.jfa.2018.12.009_br0020) 1999; 9 Wang (10.1016/j.jfa.2018.12.009_br0620) 2016; 261 Giga (10.1016/j.jfa.2018.12.009_br0180) 1991; 102 Winkler (10.1016/j.jfa.2018.12.009_br0750) 2017; 22 Tuval (10.1016/j.jfa.2018.12.009_br0590) 2005; 102 Espejo (10.1016/j.jfa.2018.12.009_br0110) 2015; 21 Winkler (10.1016/j.jfa.2018.12.009_br0720) 2015; 47 Winkler (10.1016/j.jfa.2018.12.009_br0660) 2012; 37 Hillen (10.1016/j.jfa.2018.12.009_br0200) 2009; 58 Lions (10.1016/j.jfa.2018.12.009_br0370) 1980; 74 Liu (10.1016/j.jfa.2018.12.009_br0410) 2018 Cao (10.1016/j.jfa.2018.12.009_br0050) 2015; 20 Petitta (10.1016/j.jfa.2018.12.009_br0510) 2008; 187 Dombrowski (10.1016/j.jfa.2018.12.009_br0120) 2004; 93 Wiegner (10.1016/j.jfa.2018.12.009_br0630) 1999; 101 Liu (10.1016/j.jfa.2018.12.009_br0400) 2017; 447 Temam (10.1016/j.jfa.2018.12.009_br0580) 1977; vol. 2 Winkler (10.1016/j.jfa.2018.12.009_br0730) 2016; 33 Wang (10.1016/j.jfa.2018.12.009_br0610) 2015; 259 Chertock (10.1016/j.jfa.2018.12.009_br0080) 2012; 694 |
References_xml | – volume: 24 start-page: 633 year: 1997 end-page: 683 ident: br0190 article-title: A blow-up mechanism for a chemotaxis model publication-title: Ann. Sc. Norm. Super. Pisa – volume: 101 start-page: 1 year: 1999 end-page: 25 ident: br0630 article-title: The Navier–Stokes equations — a neverending challenge? publication-title: Jahresber. Dtsch. Math.-Ver. – volume: 27 start-page: 1899 year: 2014 end-page: 1913 ident: br0040 article-title: Global-in-time bounded weak solutions to a degenerate quasilinear Keller–Segel system with rotation publication-title: Nonlinearity – year: 2002 ident: br0260 article-title: Partial Differential Equations – volume: 211 start-page: 455 year: 2014 end-page: 487 ident: br0680 article-title: Stabilization in a two-dimensional chemotaxis–Navier–Stokes system publication-title: Arch. Ration. Mech. Anal. – volume: 259 start-page: 3730 year: 2015 end-page: 3754 ident: br0770 article-title: Global weak solutions for the three-dimensional chemotaxis–Navier–Stokes system with nonlinear diffusion publication-title: J. Differential Equations – volume: 28 start-page: 1437 year: 2010 end-page: 1453 ident: br0090 article-title: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior publication-title: Discrete Contin. Dyn. Syst. Ser. A – volume: 261 start-page: 967 year: 2016 end-page: 999 ident: br0390 article-title: Boundedness and decay property in a three-dimensional Keller–Segel–Stokes system involving tensor-valued sensitivity with saturation publication-title: J. Differential Equations – volume: vol. 23 year: 1968 ident: br0330 article-title: Linear and Quasi-Linear Equations of Parabolic Type publication-title: Amer. Math. Soc. Transl. – volume: vol. 2 year: 1977 ident: br0580 article-title: Navier–Stokes Equations. Theory and Numerical Analysis publication-title: Stud. Math. Appl. – volume: 222 start-page: 1077 year: 2016 end-page: 1112 ident: br0300 article-title: Suppression of chemotactic explosion by mixing publication-title: Arch. Ration. Mech. Anal. – volume: 206 start-page: 31 year: 2012 end-page: 80 ident: br0440 article-title: Measure valued solutions of the 2D Keller–Segel system publication-title: Arch. Ration. Mech. Anal. – volume: 66 start-page: 2555 year: 2015 end-page: 2573 ident: br0560 article-title: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system publication-title: Z. Angew. Math. Phys. – volume: 54 start-page: 3789 year: 2015 end-page: 3828 ident: br0710 article-title: Boundedness and large time behavior in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion and general sensitivity publication-title: Calc. Var. Partial Differential Equations – volume: 259 start-page: 7578 year: 2015 end-page: 7609 ident: br0610 article-title: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation publication-title: J. Differential Equations – volume: 21 start-page: 110 year: 2015 end-page: 126 ident: br0110 article-title: Reaction terms avoiding aggregation in slow fluids publication-title: Nonlinear Anal. Real World Appl. – volume: 63 start-page: 193 year: 1934 end-page: 248 ident: br0360 article-title: Sur le mouvement d'un liquide visqueus amplissant l'espace publication-title: Acta Math. – volume: 61 start-page: 186 year: 1986 end-page: 212 ident: br0170 article-title: Solutions for semilinear parabolic equations in publication-title: J. Differential Equations – volume: 20 start-page: 2751 year: 2015 end-page: 2759 ident: br0760 article-title: Convergence rates of solutions for a two-dimensional chemotaxis–Navier–Stokes system publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 694 start-page: 155 year: 2012 end-page: 190 ident: br0080 article-title: Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach publication-title: J. Fluid Mech. – volume: 39 start-page: 1205 year: 2014 end-page: 1235 ident: br0070 article-title: Global existence and temporal decay in Keller–Segel models coupled to fluid equations publication-title: Comm. Partial Differential Equations – volume: 270 start-page: 1663 year: 2016 end-page: 1683 ident: br0310 article-title: Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid publication-title: J. Funct. Anal. – volume: 384 start-page: 261 year: 2011 end-page: 272 ident: br0650 article-title: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction publication-title: J. Math. Anal. Appl. – volume: 240 start-page: 363 year: 2011 end-page: 375 ident: br0210 article-title: Spatio-temporal chaos in a chemotaxis model publication-title: Phys. D – volume: 100 start-page: 748 year: 2013 end-page: 767 ident: br0670 article-title: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system publication-title: J. Math. Pures Appl. – volume: 35 start-page: 3463 year: 2015 end-page: 3482 ident: br0240 article-title: Global existence and boundedness for chemotaxis–Navier–Stokes systems with position-dependent sensitivity in 2D bounded domains publication-title: Discrete Contin. Dyn. Syst. – volume: 20 start-page: 3235 year: 2015 end-page: 3254 ident: br0050 article-title: Global classical solutions of a 3D chemotaxis–Stokes system with rotation publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 447 start-page: 499 year: 2017 end-page: 528 ident: br0400 article-title: Global existence and boundedness in a Keller–Segel–(Navier–)Stokes system with signal-dependent sensitivity publication-title: J. Math. Anal. Appl. – volume: 187 start-page: 563 year: 2008 end-page: 604 ident: br0510 article-title: Renormalized solutions of nonlinear parabolic equations with general measure data publication-title: Ann. Mat. Pura Appl. – volume: 30 start-page: 157 year: 2013 end-page: 178 ident: br0550 article-title: Locally bounded global solutions in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire – volume: 329 start-page: 819 year: 1992 end-page: 824 ident: br0250 article-title: On explosions of solutions to a system of partial differential equations modelling chemotaxis publication-title: Trans. Amer. Math. Soc. – volume: 55 year: 2016 ident: br0030 article-title: Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities publication-title: Calc. Var. Partial Differential Equations – volume: 20 start-page: 987 year: 2010 end-page: 1004 ident: br0420 article-title: Coupled chemotaxis fluid model publication-title: Math. Models Methods Appl. Sci. – volume: 102 start-page: 2277 year: 2005 end-page: 2282 ident: br0590 article-title: Bacterial swimming and oxygen transport near contact lines publication-title: Proc. Natl. Acad. Sci. USA – volume: 26 start-page: 2041 year: 2016 end-page: 2069 ident: br0010 article-title: From a multiscale derivation of nonlinear cross diffusion models to Keller–Segel Models in a Navier–Stokes fluid publication-title: Math. Models Methods Appl. Sci. – volume: 130 start-page: 321 year: 1989 end-page: 366 ident: br0100 article-title: On the Cauchy problem for Boltzmann equations: global existence and weak stability publication-title: Ann. of Math. – year: 2018 ident: br0410 article-title: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation publication-title: J. Differential Equations – volume: 93 year: 2004 ident: br0120 article-title: Self-concentration and large-scale coherence in bacterial dynamics publication-title: Phys. Rev. Lett. – volume: 2 start-page: 85 year: 1981 end-page: 89 ident: br0160 article-title: The Stokes operator in publication-title: Proc. Japan Acad. – volume: 261 start-page: 4944 year: 2016 end-page: 4973 ident: br0620 article-title: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case publication-title: J. Differential Equations – year: 2007 ident: br0520 article-title: Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States publication-title: Birkhäuser Adv. Texts. Basl. Lehrb. – volume: 37 start-page: 319 year: 2012 end-page: 351 ident: br0660 article-title: Global large-data solutions in a chemotaxis–(Navier–)Stokes system modeling cellular swimming in fluid drops publication-title: Comm. Partial Differential Equations – volume: 35 start-page: 1635 year: 2010 end-page: 1673 ident: br0130 article-title: Global solutions to the coupled chemotaxis-fluid equations publication-title: Comm. Partial Differential Equations – volume: 241 start-page: 1629 year: 2012 end-page: 1639 ident: br0320 article-title: Spatial pattern formation in a chemotaxis–diffusion–growth model publication-title: Phys. D – year: 2018 ident: br0490 article-title: Mathematical models for chemotaxis and their applications in self-organisation phenomena publication-title: J. Theoret. Biol. – volume: 37 start-page: 298 year: 2012 end-page: 318 ident: br0280 article-title: Biomixing by chemotaxis and enhancement of biological reactions publication-title: Comm. Partial Differential Equations – volume: 22 start-page: 2777 year: 2017 end-page: 2793 ident: br0750 article-title: Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 12 start-page: 545 year: 2014 end-page: 563 ident: br0600 article-title: Weak solutions for a bioconvection model related to Bacillus subtilis publication-title: Commun. Math. Sci. – volume: vol. 220 start-page: 165 year: 2007 end-page: 200 ident: br0540 article-title: Schauder estimates for the evolutionary generalized Stokes problem publication-title: Nonlinear Equations and Spectral Theory – year: 2007 ident: br0500 article-title: Transport Equations in Biology – volume: 53 year: 2012 ident: br0290 article-title: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case publication-title: J. Math. Phys. – volume: 33 start-page: 1329 year: 2016 end-page: 1352 ident: br0730 article-title: Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire – volume: 176 start-page: 283 year: 1996 end-page: 294 ident: br0470 article-title: On Leray's self-similar solutions of the Navier–Stokes equations publication-title: Acta Math. – volume: 24 start-page: 809 year: 2014 end-page: 855 ident: br0700 article-title: How far can chemotactic cross-diffusion enforce exceeding carrying capacities? publication-title: J. Nonlinear Sci. – volume: 58 start-page: 183 year: 2009 end-page: 217 ident: br0200 article-title: A user's guide to PDE models for chemotaxis publication-title: J. Math. Biol. – volume: 51 start-page: 119 year: 2002 end-page: 144 ident: br0480 article-title: Exponential attractor for a chemotaxis-growth system of equations publication-title: Nonlinear Anal. – volume: 9 start-page: 347 year: 1999 end-page: 359 ident: br0020 article-title: Global solutions to some parabolic–elliptic systems of chemotaxis publication-title: Adv. Math. Sci. Appl. – volume: 105 start-page: 103 year: 2003 end-page: 165 ident: br0220 article-title: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I publication-title: Jahresber. Dtsch. Math.-Ver. – volume: 67 year: 2016 ident: br0570 article-title: Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system publication-title: Z. Angew. Math. Phys. – volume: 47 start-page: 3092 year: 2015 end-page: 3115 ident: br0720 article-title: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities publication-title: SIAM J. Math. Anal. – volume: 369 start-page: 3067 year: 2017 end-page: 3125 ident: br0740 article-title: How far do oxytaxis-driven forces influence regularity in the Navier–Stokes system? publication-title: Trans. Amer. Math. Soc. – volume: 16 start-page: 269 year: 1964 end-page: 315 ident: br0150 article-title: On the Navier–Stokes initial value problem I publication-title: Arch. Ration. Mech. Anal. – volume: 26 start-page: 399 year: 1970 end-page: 415 ident: br0270 article-title: Initiation of slime mold aggregation viewed as an instability publication-title: J. Theoret. Biol. – volume: 33 start-page: 2271 year: 2013 end-page: 2297 ident: br0060 article-title: Existence of smooth solutions to coupled chemotaxis-fluid equations publication-title: Discrete Contin. Dyn. Syst. Ser. A – volume: 102 start-page: 72 year: 1991 end-page: 94 ident: br0180 article-title: Abstract publication-title: J. Funct. Anal. – volume: 258 start-page: 1158 year: 2015 end-page: 1191 ident: br0350 article-title: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source publication-title: J. Differential Equations – volume: 100 start-page: 13229 year: 2003 end-page: 13263 ident: br0450 article-title: Motility of Escherichia coli cells in clusters formed by chemotactic aggregation publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 37 year: 2001 end-page: 55 ident: br0460 article-title: Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains publication-title: J. Inequal. Appl. – volume: 10 start-page: 555 year: 2012 end-page: 574 ident: br0430 article-title: Coupled Keller–Segel–Stokes model: global existence for small initial data and blow-up delay publication-title: Commun. Math. Sci. – volume: 74 start-page: 335 year: 1980 end-page: 353 ident: br0370 article-title: Résolution de problèmes elliptiques quasilinéaires publication-title: Arch. Ration. Mech. Anal. – volume: 35 start-page: 1516 year: 2010 end-page: 1537 ident: br0640 article-title: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source publication-title: Comm. Partial Differential Equations – volume: 20 start-page: 1499 year: 2015 end-page: 1527 ident: br0340 article-title: Chemotaxis can prevent thresholds on population density publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 257 start-page: 1056 year: 2014 end-page: 1077 ident: br0690 article-title: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening publication-title: J. Differential Equations – year: 2001 ident: br0530 article-title: The Navier–Stokes Equations. An Elementary Functional Analytic Approach – volume: 2012 year: 2012 ident: br0140 article-title: A note on global existence for the chemotaxis–Stokes model with nonlinear diffusion publication-title: Int. Math. Res. Not. – volume: 21 start-page: 110 year: 2015 ident: 10.1016/j.jfa.2018.12.009_br0110 article-title: Reaction terms avoiding aggregation in slow fluids publication-title: Nonlinear Anal. Real World Appl. doi: 10.1016/j.nonrwa.2014.07.001 – volume: 187 start-page: 563 issue: 4 year: 2008 ident: 10.1016/j.jfa.2018.12.009_br0510 article-title: Renormalized solutions of nonlinear parabolic equations with general measure data publication-title: Ann. Mat. Pura Appl. doi: 10.1007/s10231-007-0057-y – volume: 240 start-page: 363 year: 2011 ident: 10.1016/j.jfa.2018.12.009_br0210 article-title: Spatio-temporal chaos in a chemotaxis model publication-title: Phys. D doi: 10.1016/j.physd.2010.09.011 – volume: 51 start-page: 119 year: 2002 ident: 10.1016/j.jfa.2018.12.009_br0480 article-title: Exponential attractor for a chemotaxis-growth system of equations publication-title: Nonlinear Anal. doi: 10.1016/S0362-546X(01)00815-X – volume: 27 start-page: 1899 year: 2014 ident: 10.1016/j.jfa.2018.12.009_br0040 article-title: Global-in-time bounded weak solutions to a degenerate quasilinear Keller–Segel system with rotation publication-title: Nonlinearity doi: 10.1088/0951-7715/27/8/1899 – volume: 102 start-page: 72 year: 1991 ident: 10.1016/j.jfa.2018.12.009_br0180 article-title: Abstract Lp estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(91)90136-S – volume: 176 start-page: 283 year: 1996 ident: 10.1016/j.jfa.2018.12.009_br0470 article-title: On Leray's self-similar solutions of the Navier–Stokes equations publication-title: Acta Math. doi: 10.1007/BF02551584 – year: 2007 ident: 10.1016/j.jfa.2018.12.009_br0500 – volume: 37 start-page: 319 year: 2012 ident: 10.1016/j.jfa.2018.12.009_br0660 article-title: Global large-data solutions in a chemotaxis–(Navier–)Stokes system modeling cellular swimming in fluid drops publication-title: Comm. Partial Differential Equations doi: 10.1080/03605302.2011.591865 – volume: 93 year: 2004 ident: 10.1016/j.jfa.2018.12.009_br0120 article-title: Self-concentration and large-scale coherence in bacterial dynamics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.098103 – volume: 24 start-page: 809 year: 2014 ident: 10.1016/j.jfa.2018.12.009_br0700 article-title: How far can chemotactic cross-diffusion enforce exceeding carrying capacities? publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-014-9205-x – volume: 211 start-page: 455 issue: 2 year: 2014 ident: 10.1016/j.jfa.2018.12.009_br0680 article-title: Stabilization in a two-dimensional chemotaxis–Navier–Stokes system publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-013-0678-9 – volume: 28 start-page: 1437 year: 2010 ident: 10.1016/j.jfa.2018.12.009_br0090 article-title: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior publication-title: Discrete Contin. Dyn. Syst. Ser. A doi: 10.3934/dcds.2010.28.1437 – volume: 6 start-page: 37 year: 2001 ident: 10.1016/j.jfa.2018.12.009_br0460 article-title: Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains publication-title: J. Inequal. Appl. – volume: 47 start-page: 3092 year: 2015 ident: 10.1016/j.jfa.2018.12.009_br0720 article-title: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities publication-title: SIAM J. Math. Anal. doi: 10.1137/140979708 – volume: 16 start-page: 269 year: 1964 ident: 10.1016/j.jfa.2018.12.009_br0150 article-title: On the Navier–Stokes initial value problem I publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00276188 – volume: 67 year: 2016 ident: 10.1016/j.jfa.2018.12.009_br0570 article-title: Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-016-0732-1 – volume: 10 start-page: 555 year: 2012 ident: 10.1016/j.jfa.2018.12.009_br0430 article-title: Coupled Keller–Segel–Stokes model: global existence for small initial data and blow-up delay publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2012.v10.n2.a7 – volume: 100 start-page: 13229 year: 2003 ident: 10.1016/j.jfa.2018.12.009_br0450 article-title: Motility of Escherichia coli cells in clusters formed by chemotactic aggregation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2233626100 – volume: 261 start-page: 4944 year: 2016 ident: 10.1016/j.jfa.2018.12.009_br0620 article-title: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case publication-title: J. Differential Equations doi: 10.1016/j.jde.2016.07.010 – volume: vol. 23 year: 1968 ident: 10.1016/j.jfa.2018.12.009_br0330 article-title: Linear and Quasi-Linear Equations of Parabolic Type – volume: 63 start-page: 193 year: 1934 ident: 10.1016/j.jfa.2018.12.009_br0360 article-title: Sur le mouvement d'un liquide visqueus amplissant l'espace publication-title: Acta Math. doi: 10.1007/BF02547354 – volume: 20 start-page: 987 year: 2010 ident: 10.1016/j.jfa.2018.12.009_br0420 article-title: Coupled chemotaxis fluid model publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202510004507 – volume: 369 start-page: 3067 year: 2017 ident: 10.1016/j.jfa.2018.12.009_br0740 article-title: How far do oxytaxis-driven forces influence regularity in the Navier–Stokes system? publication-title: Trans. Amer. Math. Soc. doi: 10.1090/tran/6733 – volume: 694 start-page: 155 year: 2012 ident: 10.1016/j.jfa.2018.12.009_br0080 article-title: Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.534 – year: 2007 ident: 10.1016/j.jfa.2018.12.009_br0520 article-title: Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States – volume: 270 start-page: 1663 year: 2016 ident: 10.1016/j.jfa.2018.12.009_br0310 article-title: Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2015.10.016 – volume: 9 start-page: 347 issue: 1 year: 1999 ident: 10.1016/j.jfa.2018.12.009_br0020 article-title: Global solutions to some parabolic–elliptic systems of chemotaxis publication-title: Adv. Math. Sci. Appl. – volume: 384 start-page: 261 year: 2011 ident: 10.1016/j.jfa.2018.12.009_br0650 article-title: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2011.05.057 – volume: 35 start-page: 3463 year: 2015 ident: 10.1016/j.jfa.2018.12.009_br0240 article-title: Global existence and boundedness for chemotaxis–Navier–Stokes systems with position-dependent sensitivity in 2D bounded domains publication-title: Discrete Contin. Dyn. Syst. doi: 10.3934/dcds.2015.35.3463 – volume: 222 start-page: 1077 year: 2016 ident: 10.1016/j.jfa.2018.12.009_br0300 article-title: Suppression of chemotactic explosion by mixing publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-016-1017-8 – volume: 102 start-page: 2277 year: 2005 ident: 10.1016/j.jfa.2018.12.009_br0590 article-title: Bacterial swimming and oxygen transport near contact lines publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0406724102 – volume: 241 start-page: 1629 year: 2012 ident: 10.1016/j.jfa.2018.12.009_br0320 article-title: Spatial pattern formation in a chemotaxis–diffusion–growth model publication-title: Phys. D doi: 10.1016/j.physd.2012.06.009 – year: 2018 ident: 10.1016/j.jfa.2018.12.009_br0410 article-title: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation publication-title: J. Differential Equations – volume: 257 start-page: 1056 year: 2014 ident: 10.1016/j.jfa.2018.12.009_br0690 article-title: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening publication-title: J. Differential Equations doi: 10.1016/j.jde.2014.04.023 – volume: 20 start-page: 3235 year: 2015 ident: 10.1016/j.jfa.2018.12.009_br0050 article-title: Global classical solutions of a 3D chemotaxis–Stokes system with rotation publication-title: Discrete Contin. Dyn. Syst. Ser. B doi: 10.3934/dcdsb.2015.20.3235 – volume: 258 start-page: 1158 year: 2015 ident: 10.1016/j.jfa.2018.12.009_br0350 article-title: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source publication-title: J. Differential Equations doi: 10.1016/j.jde.2014.10.016 – volume: 35 start-page: 1635 year: 2010 ident: 10.1016/j.jfa.2018.12.009_br0130 article-title: Global solutions to the coupled chemotaxis-fluid equations publication-title: Comm. Partial Differential Equations doi: 10.1080/03605302.2010.497199 – volume: 20 start-page: 2751 year: 2015 ident: 10.1016/j.jfa.2018.12.009_br0760 article-title: Convergence rates of solutions for a two-dimensional chemotaxis–Navier–Stokes system publication-title: Discrete Contin. Dyn. Syst. Ser. B doi: 10.3934/dcdsb.2015.20.2751 – volume: 329 start-page: 819 year: 1992 ident: 10.1016/j.jfa.2018.12.009_br0250 article-title: On explosions of solutions to a system of partial differential equations modelling chemotaxis publication-title: Trans. Amer. Math. Soc. doi: 10.1090/S0002-9947-1992-1046835-6 – volume: vol. 2 year: 1977 ident: 10.1016/j.jfa.2018.12.009_br0580 article-title: Navier–Stokes Equations. Theory and Numerical Analysis – volume: 22 start-page: 2777 year: 2017 ident: 10.1016/j.jfa.2018.12.009_br0750 article-title: Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems publication-title: Discrete Contin. Dyn. Syst. Ser. B – volume: 2012 year: 2012 ident: 10.1016/j.jfa.2018.12.009_br0140 article-title: A note on global existence for the chemotaxis–Stokes model with nonlinear diffusion publication-title: Int. Math. Res. Not. – volume: 58 start-page: 183 year: 2009 ident: 10.1016/j.jfa.2018.12.009_br0200 article-title: A user's guide to PDE models for chemotaxis publication-title: J. Math. Biol. doi: 10.1007/s00285-008-0201-3 – volume: 105 start-page: 103 issue: 3 year: 2003 ident: 10.1016/j.jfa.2018.12.009_br0220 article-title: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I publication-title: Jahresber. Dtsch. Math.-Ver. – volume: 261 start-page: 967 year: 2016 ident: 10.1016/j.jfa.2018.12.009_br0390 article-title: Boundedness and decay property in a three-dimensional Keller–Segel–Stokes system involving tensor-valued sensitivity with saturation publication-title: J. Differential Equations doi: 10.1016/j.jde.2016.03.030 – volume: 206 start-page: 31 year: 2012 ident: 10.1016/j.jfa.2018.12.009_br0440 article-title: Measure valued solutions of the 2D Keller–Segel system publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-012-0549-9 – volume: 259 start-page: 7578 year: 2015 ident: 10.1016/j.jfa.2018.12.009_br0610 article-title: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation publication-title: J. Differential Equations doi: 10.1016/j.jde.2015.08.027 – volume: 33 start-page: 2271 issue: 6 year: 2013 ident: 10.1016/j.jfa.2018.12.009_br0060 article-title: Existence of smooth solutions to coupled chemotaxis-fluid equations publication-title: Discrete Contin. Dyn. Syst. Ser. A doi: 10.3934/dcds.2013.33.2271 – year: 2001 ident: 10.1016/j.jfa.2018.12.009_br0530 – volume: vol. 220 start-page: 165 year: 2007 ident: 10.1016/j.jfa.2018.12.009_br0540 article-title: Schauder estimates for the evolutionary generalized Stokes problem – volume: 130 start-page: 321 year: 1989 ident: 10.1016/j.jfa.2018.12.009_br0100 article-title: On the Cauchy problem for Boltzmann equations: global existence and weak stability publication-title: Ann. of Math. doi: 10.2307/1971423 – volume: 2 start-page: 85 year: 1981 ident: 10.1016/j.jfa.2018.12.009_br0160 article-title: The Stokes operator in Lr spaces publication-title: Proc. Japan Acad. – year: 2018 ident: 10.1016/j.jfa.2018.12.009_br0490 article-title: Mathematical models for chemotaxis and their applications in self-organisation phenomena publication-title: J. Theoret. Biol. – volume: 37 start-page: 298 issue: 1–3 year: 2012 ident: 10.1016/j.jfa.2018.12.009_br0280 article-title: Biomixing by chemotaxis and enhancement of biological reactions publication-title: Comm. Partial Differential Equations doi: 10.1080/03605302.2011.589879 – volume: 447 start-page: 499 year: 2017 ident: 10.1016/j.jfa.2018.12.009_br0400 article-title: Global existence and boundedness in a Keller–Segel–(Navier–)Stokes system with signal-dependent sensitivity publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2016.10.028 – volume: 35 start-page: 1516 year: 2010 ident: 10.1016/j.jfa.2018.12.009_br0640 article-title: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source publication-title: Comm. Partial Differential Equations doi: 10.1080/03605300903473426 – volume: 61 start-page: 186 year: 1986 ident: 10.1016/j.jfa.2018.12.009_br0170 article-title: Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier–Stokes system publication-title: J. Differential Equations doi: 10.1016/0022-0396(86)90096-3 – volume: 55 year: 2016 ident: 10.1016/j.jfa.2018.12.009_br0030 article-title: Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities publication-title: Calc. Var. Partial Differential Equations doi: 10.1007/s00526-016-1027-2 – volume: 20 start-page: 1499 issue: 5 year: 2015 ident: 10.1016/j.jfa.2018.12.009_br0340 article-title: Chemotaxis can prevent thresholds on population density publication-title: Discrete Contin. Dyn. Syst. Ser. B doi: 10.3934/dcdsb.2015.20.1499 – volume: 259 start-page: 3730 year: 2015 ident: 10.1016/j.jfa.2018.12.009_br0770 article-title: Global weak solutions for the three-dimensional chemotaxis–Navier–Stokes system with nonlinear diffusion publication-title: J. Differential Equations doi: 10.1016/j.jde.2015.05.012 – volume: 39 start-page: 1205 year: 2014 ident: 10.1016/j.jfa.2018.12.009_br0070 article-title: Global existence and temporal decay in Keller–Segel models coupled to fluid equations publication-title: Comm. Partial Differential Equations doi: 10.1080/03605302.2013.852224 – volume: 33 start-page: 1329 year: 2016 ident: 10.1016/j.jfa.2018.12.009_br0730 article-title: Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.1016/j.anihpc.2015.05.002 – volume: 53 issue: 11 year: 2012 ident: 10.1016/j.jfa.2018.12.009_br0290 article-title: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case publication-title: J. Math. Phys. doi: 10.1063/1.4742858 – year: 2002 ident: 10.1016/j.jfa.2018.12.009_br0260 – volume: 66 start-page: 2555 year: 2015 ident: 10.1016/j.jfa.2018.12.009_br0560 article-title: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-015-0541-y – volume: 100 start-page: 748 year: 2013 ident: 10.1016/j.jfa.2018.12.009_br0670 article-title: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2013.01.020 – volume: 74 start-page: 335 year: 1980 ident: 10.1016/j.jfa.2018.12.009_br0370 article-title: Résolution de problèmes elliptiques quasilinéaires publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00249679 – volume: 54 start-page: 3789 year: 2015 ident: 10.1016/j.jfa.2018.12.009_br0710 article-title: Boundedness and large time behavior in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion and general sensitivity publication-title: Calc. Var. Partial Differential Equations doi: 10.1007/s00526-015-0922-2 – volume: 24 start-page: 633 year: 1997 ident: 10.1016/j.jfa.2018.12.009_br0190 article-title: A blow-up mechanism for a chemotaxis model publication-title: Ann. Sc. Norm. Super. Pisa – volume: 30 start-page: 157 issue: 1 year: 2013 ident: 10.1016/j.jfa.2018.12.009_br0550 article-title: Locally bounded global solutions in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire doi: 10.1016/j.anihpc.2012.07.002 – volume: 12 start-page: 545 year: 2014 ident: 10.1016/j.jfa.2018.12.009_br0600 article-title: Weak solutions for a bioconvection model related to Bacillus subtilis publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2014.v12.n3.a8 – volume: 26 start-page: 2041 year: 2016 ident: 10.1016/j.jfa.2018.12.009_br0010 article-title: From a multiscale derivation of nonlinear cross diffusion models to Keller–Segel Models in a Navier–Stokes fluid publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202516400078 – volume: 26 start-page: 399 year: 1970 ident: 10.1016/j.jfa.2018.12.009_br0270 article-title: Initiation of slime mold aggregation viewed as an instability publication-title: J. Theoret. Biol. doi: 10.1016/0022-5193(70)90092-5 – volume: 101 start-page: 1 year: 1999 ident: 10.1016/j.jfa.2018.12.009_br0630 article-title: The Navier–Stokes equations — a neverending challenge? publication-title: Jahresber. Dtsch. Math.-Ver. |
SSID | ssj0011645 |
Score | 2.5923634 |
Snippet | The Keller–Segel–Navier–Stokes system(⋆){nt+u⋅∇n=Δn−χ∇⋅(n∇c)+ρn−μn2,ct+u⋅∇c=Δc−c+n,ut+(u⋅∇)u=Δu+∇P+n∇ϕ+f(x,t),∇⋅u=0, is considered in a bounded convex domain... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1339 |
SubjectTerms | Chemotaxis Generalized solution Large time behavior Navier–Stokes |
Title | A three-dimensional Keller–Segel–Navier–Stokes system with logistic source: Global weak solutions and asymptotic stabilization |
URI | https://dx.doi.org/10.1016/j.jfa.2018.12.009 |
Volume | 276 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWWBAPEV5VB6YkEKT2GlitlJRFap2gUrdrMQPqQXSqg1CLIiBf8A_5JdwjpMKJGBgihL5rMhn3Xe-x2eETlTAKFFKOToiwqFKRU4sQ-1oqiPwHwT4DKZRuD9odof0ehSMKqhd9sKYssrC9lubnlvr4kujWM3GbDw2Pb6-n3OHRCa75xs7TGiUN_GNLpaZBDgOBCVjuBldZjbzGq-JNtRDXpRHBE1N4k_Y9AVvOptoo3AUccv-yxaqqHQbrfeXLKuLHfTWwhmoQjnSUPRbeg3cM5H4-cfr-43JhsNzEJvpzYdseqcW2HI3YxOAxbb_ZyywjeGfY3sFAH5S8R1e7kocpxLHi-eHWTbNB2c5La9t4NxFw87lbbvrFLcqOMJnYebASokgCSWhUgDcR5qBDyKFYISBzjwATSLhTEQ0o0kzBo8lChPtJQD7mihXSLKHquk0VfsIa_DmWCApFW5CYy8B8GcEBGF-qaQb1pBbricXBeW4ufninpe1ZRMOKuBGBdzzOaighk6XIjPLt_HXYFoqiX_bNBzw4Hexg_-JHaI1eGO2AO0IVbP5ozoGjyRL6mjl7MWro9XWVa87qOcb8BONX-dT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RTl6YEJKWoTO03MViqqlj4WWqmblfghtYW0aoMQGwP_gH_IL-EcJxVIwMAUyfFZkc-6--K7-w6hS-UzSpRSjg6JcKhSoRPJQDua6hDwgwDMYAqFe_1aa0jvRv6ohBpFLYxJq8xtv7XpmbXORyr5blbm47Gp8fW8jDskNNE9D-zwOqCBwPRvaI9uVqEE-B_wC8pwM70IbWZJXhNtuIfcMLsSNEmJPzmnLw6nuYO2c6SI6_ZjdlFJJXtoq7eiWV3uo7c6TkEXypGGo9_ya-COuYpffLy-35twODz7kVneDKSzqVpiS96MzQ0stgVAY4HtJf41tj0A8LOKpnh1LHGUSBwtXx7n6SybnGa8vLaC8wANm7eDRsvJ2yo4wmNB6sBWCT8OJKFSgL8PNQMQIoVghIHSXPCaRMJPEdGMxrUIIEsYxNqNwe9roqpCkkO0lswSdYSwBjjHfEmpqMY0cmPw_oyAIKwvlawGZVQt9pOLnHPctL544EVy2YSDCrhRAXc9Diooo6uVyNwSbvw1mRZK4t9ODQeH8LvY8f_ELtBGa9Dr8m673zlBm_CG2Wy0U7SWLp7UGcCTND7Pjt8nffvn5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+three-dimensional+Keller%E2%80%93Segel%E2%80%93Navier%E2%80%93Stokes+system+with+logistic+source%3A+Global+weak+solutions+and+asymptotic+stabilization&rft.jtitle=Journal+of+functional+analysis&rft.au=Winkler%2C+Michael&rft.date=2019-03-01&rft.issn=0022-1236&rft.volume=276&rft.issue=5&rft.spage=1339&rft.epage=1401&rft_id=info:doi/10.1016%2Fj.jfa.2018.12.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfa_2018_12_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1236&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1236&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1236&client=summon |