A three-dimensional Keller–Segel–Navier–Stokes system with logistic source: Global weak solutions and asymptotic stabilization

The Keller–Segel–Navier–Stokes system(⋆){nt+u⋅∇n=Δn−χ∇⋅(n∇c)+ρn−μn2,ct+u⋅∇c=Δc−c+n,ut+(u⋅∇)u=Δu+∇P+n∇ϕ+f(x,t),∇⋅u=0, is considered in a bounded convex domain Ω⊂R3 with smooth boundary, where ϕ∈W1,∞(Ω) and f∈C1(Ω¯×[0,∞)), and where χ>0,ρ∈R and μ>0 are given parameters. It is proved that under t...

Full description

Saved in:
Bibliographic Details
Published inJournal of functional analysis Vol. 276; no. 5; pp. 1339 - 1401
Main Author Winkler, Michael
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Keller–Segel–Navier–Stokes system(⋆){nt+u⋅∇n=Δn−χ∇⋅(n∇c)+ρn−μn2,ct+u⋅∇c=Δc−c+n,ut+(u⋅∇)u=Δu+∇P+n∇ϕ+f(x,t),∇⋅u=0, is considered in a bounded convex domain Ω⊂R3 with smooth boundary, where ϕ∈W1,∞(Ω) and f∈C1(Ω¯×[0,∞)), and where χ>0,ρ∈R and μ>0 are given parameters. It is proved that under the assumption that supt>0⁡∫tt+1‖f(⋅,s)‖L65(Ω)ds be finite, for any sufficiently regular initial data (n0,c0,u0) satisfying n0≥0 and c0≥0, the initial-value problem for (⋆) under no-flux boundary conditions for n and c and homogeneous Dirichlet boundary conditions for u possesses at least one globally defined solution in an appropriate generalized sense, and that this solution is uniformly bounded in with respect to the norm in L1(Ω)×L6(Ω)×L2(Ω;R3). Moreover, under the explicit hypothesis that μ>χρ+4, these solutions are shown to stabilize toward a spatially homogeneous state in their first two components by satisfying(n(⋅,t),c(⋅,t))→(ρ+μ,ρ+μ)in L1(Ω)×Lp(Ω)for all p∈[1,6)as t→∞. Finally, under an additional condition on temporal decay of f it is shown that also the third solution component equilibrates in that u(⋅,t)→0 in L2(Ω;R3) as t→∞.
AbstractList The Keller–Segel–Navier–Stokes system(⋆){nt+u⋅∇n=Δn−χ∇⋅(n∇c)+ρn−μn2,ct+u⋅∇c=Δc−c+n,ut+(u⋅∇)u=Δu+∇P+n∇ϕ+f(x,t),∇⋅u=0, is considered in a bounded convex domain Ω⊂R3 with smooth boundary, where ϕ∈W1,∞(Ω) and f∈C1(Ω¯×[0,∞)), and where χ>0,ρ∈R and μ>0 are given parameters. It is proved that under the assumption that supt>0⁡∫tt+1‖f(⋅,s)‖L65(Ω)ds be finite, for any sufficiently regular initial data (n0,c0,u0) satisfying n0≥0 and c0≥0, the initial-value problem for (⋆) under no-flux boundary conditions for n and c and homogeneous Dirichlet boundary conditions for u possesses at least one globally defined solution in an appropriate generalized sense, and that this solution is uniformly bounded in with respect to the norm in L1(Ω)×L6(Ω)×L2(Ω;R3). Moreover, under the explicit hypothesis that μ>χρ+4, these solutions are shown to stabilize toward a spatially homogeneous state in their first two components by satisfying(n(⋅,t),c(⋅,t))→(ρ+μ,ρ+μ)in L1(Ω)×Lp(Ω)for all p∈[1,6)as t→∞. Finally, under an additional condition on temporal decay of f it is shown that also the third solution component equilibrates in that u(⋅,t)→0 in L2(Ω;R3) as t→∞.
Author Winkler, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Winkler
  fullname: Winkler, Michael
  email: michael.winkler@math.uni-paderborn.de
  organization: Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany
BookMark eNp9kDtOAzEQhi0EEuFxADpfYBePnX1BhRAvgaAAasvrnQ0OzhrZhihUFNyAG3ISHEJFkWpG4_l-jb8dsjm4AQk5AJYDg_Jwmk97lXMGdQ48Z6zZICNgTZmxqhabZMQY5xlwUW6TnRCmjAGU42JEPk9ofPKIWWdmOATjBmXpNVqL_vvj6x4naFO9VW9mNYjuGQMNixBxRucmPlHrJiZEo2lwr17jEb2wrk0hc1TPaWZfYwoNVA0dVWExe4nudzmq1ljzrpave2SrVzbg_l_dJY_nZw-nl9nN3cXV6clNpnlTxazkXBdt1Ylxp6GAum-KOrW6EQ0igkYUHS8a0TfjtlSsHNdV20NbgugFMt2JXVKtcrV3IXjspTbx94LolbESmFzKlFOZZMqlTAlcJpmJhH_kizcz5RdrmeMVg-lLS38yaIODxs541FF2zqyhfwBYE5Xm
CitedBy_id crossref_primary_10_1017_prm_2020_38
crossref_primary_10_1093_imrn_rnac286
crossref_primary_10_1007_s00033_020_01410_9
crossref_primary_10_3390_fractalfract7030209
crossref_primary_10_1007_s10440_019_00307_8
crossref_primary_10_3934_dcdsb_2020198
crossref_primary_10_3934_dcdsb_2021045
crossref_primary_10_1007_s00021_019_0469_7
crossref_primary_10_1007_s00028_024_01053_7
crossref_primary_10_1088_1361_6544_ab834e
crossref_primary_10_1007_s10440_024_00696_5
crossref_primary_10_1016_j_nonrwa_2020_103160
crossref_primary_10_1016_j_jde_2022_10_035
crossref_primary_10_1016_j_jde_2024_12_045
crossref_primary_10_1016_j_jde_2020_07_027
crossref_primary_10_1016_j_na_2019_06_005
crossref_primary_10_1515_anona_2020_0158
crossref_primary_10_1142_S0218202523500628
crossref_primary_10_1016_j_jde_2023_07_037
crossref_primary_10_1007_s00526_023_02461_2
crossref_primary_10_1016_j_jde_2020_01_008
crossref_primary_10_1016_j_jde_2023_04_042
crossref_primary_10_1016_j_jde_2025_01_071
crossref_primary_10_1007_s00245_023_09988_y
crossref_primary_10_1016_j_jmaa_2019_123748
crossref_primary_10_1016_j_bulsci_2023_103274
crossref_primary_10_1002_mma_9100
crossref_primary_10_3390_math12081143
crossref_primary_10_1007_s00033_021_01493_y
crossref_primary_10_1016_j_jmaa_2020_124108
crossref_primary_10_1002_zamm_202100191
crossref_primary_10_1016_j_jde_2022_07_016
crossref_primary_10_1016_j_nonrwa_2022_103828
crossref_primary_10_1137_21M140907X
crossref_primary_10_1016_j_jde_2020_01_019
crossref_primary_10_1016_j_jmaa_2024_128921
crossref_primary_10_1007_s00033_021_01546_2
crossref_primary_10_1007_s00033_020_01310_y
crossref_primary_10_1016_j_jfa_2021_108967
crossref_primary_10_1093_imamat_hxae009
crossref_primary_10_1007_s00033_019_1202_3
crossref_primary_10_1142_S0129167X23500775
crossref_primary_10_3934_cpaa_2025022
crossref_primary_10_1016_j_jmaa_2021_125299
crossref_primary_10_1007_s00033_025_02453_6
crossref_primary_10_3934_dcds_2022047
crossref_primary_10_1142_S0219199724500226
crossref_primary_10_1016_j_nonrwa_2022_103543
crossref_primary_10_1007_s10440_022_00485_y
crossref_primary_10_1142_S0218202521500135
crossref_primary_10_3934_dcdsb_2023155
crossref_primary_10_1007_s00526_023_02523_5
crossref_primary_10_1142_S0218202520400102
crossref_primary_10_1007_s00033_021_01572_0
crossref_primary_10_1142_S0218202522500531
crossref_primary_10_1002_zamm_202100402
crossref_primary_10_1063_5_0212819
crossref_primary_10_1007_s00028_023_00900_3
crossref_primary_10_1007_s00526_022_02201_y
crossref_primary_10_1016_j_jde_2023_01_004
crossref_primary_10_1007_s00574_020_00202_z
crossref_primary_10_1002_mma_7137
crossref_primary_10_1007_s00033_021_01508_8
crossref_primary_10_1186_s13661_022_01622_0
crossref_primary_10_1007_s00526_024_02891_6
crossref_primary_10_1016_j_aml_2021_107417
crossref_primary_10_1016_j_na_2022_113086
crossref_primary_10_1080_00036811_2023_2173183
crossref_primary_10_1007_s10114_022_1093_7
crossref_primary_10_3934_mine_2022041
crossref_primary_10_1016_j_jde_2020_04_008
crossref_primary_10_1142_S0218202523500094
crossref_primary_10_1016_j_jde_2022_01_033
crossref_primary_10_1016_j_jde_2022_06_015
crossref_primary_10_1007_s00033_022_01694_z
crossref_primary_10_1007_s00033_025_02430_z
crossref_primary_10_1017_S0956792522000067
crossref_primary_10_1007_s10440_020_00374_2
crossref_primary_10_1002_zamm_201900024
crossref_primary_10_1142_S0218202521500238
crossref_primary_10_1007_s00033_020_1276_y
crossref_primary_10_1142_S0218202522500166
crossref_primary_10_1007_s00033_019_1185_0
crossref_primary_10_1186_s13661_021_01519_4
crossref_primary_10_1007_s00021_021_00600_3
crossref_primary_10_1007_s00526_022_02313_5
crossref_primary_10_1016_j_jmaa_2025_129426
crossref_primary_10_1080_00036811_2020_1766027
crossref_primary_10_1007_s10440_022_00489_8
crossref_primary_10_1007_s00220_021_04272_y
crossref_primary_10_3934_math_2023912
crossref_primary_10_3934_dcds_2022062
crossref_primary_10_1002_mma_6154
crossref_primary_10_1063_5_0040652
crossref_primary_10_1016_j_jmaa_2021_125338
crossref_primary_10_1002_mma_8844
crossref_primary_10_1016_j_nonrwa_2023_103898
crossref_primary_10_1016_j_jde_2023_05_042
crossref_primary_10_1155_2022_8573835
crossref_primary_10_1002_mma_9817
crossref_primary_10_1186_s13661_020_01478_2
crossref_primary_10_1007_s00033_024_02400_x
crossref_primary_10_1515_anona_2023_0125
crossref_primary_10_1007_s10440_020_00321_1
crossref_primary_10_1016_j_jde_2020_09_009
crossref_primary_10_3934_dcdsb_2022031
crossref_primary_10_1016_j_aml_2024_109172
crossref_primary_10_1007_s00033_024_02324_6
crossref_primary_10_1063_5_0078000
crossref_primary_10_1016_j_camwa_2023_06_006
crossref_primary_10_1142_S0218202520500244
crossref_primary_10_1016_j_jmaa_2022_126069
crossref_primary_10_1016_j_jmaa_2022_126742
crossref_primary_10_1016_j_jmaa_2020_124880
crossref_primary_10_3934_dcdsb_2022036
crossref_primary_10_1002_mma_9498
crossref_primary_10_1016_j_jmaa_2023_128048
crossref_primary_10_1017_S0956792521000279
crossref_primary_10_1007_s12220_022_01140_6
crossref_primary_10_1142_S0218202524500374
crossref_primary_10_1002_mma_10577
crossref_primary_10_1515_anona_2022_0228
crossref_primary_10_1016_j_nonrwa_2024_104119
crossref_primary_10_1002_mma_7503
crossref_primary_10_1007_s00030_023_00908_1
crossref_primary_10_1007_s00526_021_02164_6
crossref_primary_10_1016_j_jde_2023_05_033
crossref_primary_10_1016_j_jde_2022_01_015
crossref_primary_10_1016_j_nonrwa_2021_103389
crossref_primary_10_1007_s10440_020_00312_2
crossref_primary_10_1063_5_0145255
crossref_primary_10_1016_j_jde_2022_04_042
crossref_primary_10_1016_j_nonrwa_2023_103913
crossref_primary_10_1007_s00033_020_1290_0
crossref_primary_10_1016_j_jde_2020_11_033
crossref_primary_10_3934_math_2022403
crossref_primary_10_1007_s10231_020_00969_4
crossref_primary_10_1016_j_jde_2020_09_029
crossref_primary_10_1007_s00033_024_02234_7
crossref_primary_10_1016_j_nonrwa_2023_103912
crossref_primary_10_1016_j_jde_2019_01_027
crossref_primary_10_1090_proc_16867
crossref_primary_10_1142_S0218202521500469
crossref_primary_10_1007_s00033_024_02401_w
crossref_primary_10_1088_1361_6544_ac3c2b
crossref_primary_10_1007_s00033_022_01832_7
crossref_primary_10_1016_j_nonrwa_2024_104222
crossref_primary_10_1142_S0218202520500517
Cites_doi 10.1016/j.nonrwa.2014.07.001
10.1007/s10231-007-0057-y
10.1016/j.physd.2010.09.011
10.1016/S0362-546X(01)00815-X
10.1088/0951-7715/27/8/1899
10.1016/0022-1236(91)90136-S
10.1007/BF02551584
10.1080/03605302.2011.591865
10.1103/PhysRevLett.93.098103
10.1007/s00332-014-9205-x
10.1007/s00205-013-0678-9
10.3934/dcds.2010.28.1437
10.1137/140979708
10.1007/BF00276188
10.1007/s00033-016-0732-1
10.4310/CMS.2012.v10.n2.a7
10.1073/pnas.2233626100
10.1016/j.jde.2016.07.010
10.1007/BF02547354
10.1142/S0218202510004507
10.1090/tran/6733
10.1017/jfm.2011.534
10.1016/j.jfa.2015.10.016
10.1016/j.jmaa.2011.05.057
10.3934/dcds.2015.35.3463
10.1007/s00205-016-1017-8
10.1073/pnas.0406724102
10.1016/j.physd.2012.06.009
10.1016/j.jde.2014.04.023
10.3934/dcdsb.2015.20.3235
10.1016/j.jde.2014.10.016
10.1080/03605302.2010.497199
10.3934/dcdsb.2015.20.2751
10.1090/S0002-9947-1992-1046835-6
10.1007/s00285-008-0201-3
10.1016/j.jde.2016.03.030
10.1007/s00205-012-0549-9
10.1016/j.jde.2015.08.027
10.3934/dcds.2013.33.2271
10.2307/1971423
10.1080/03605302.2011.589879
10.1016/j.jmaa.2016.10.028
10.1080/03605300903473426
10.1016/0022-0396(86)90096-3
10.1007/s00526-016-1027-2
10.3934/dcdsb.2015.20.1499
10.1016/j.jde.2015.05.012
10.1080/03605302.2013.852224
10.1016/j.anihpc.2015.05.002
10.1063/1.4742858
10.1007/s00033-015-0541-y
10.1016/j.matpur.2013.01.020
10.1007/BF00249679
10.1007/s00526-015-0922-2
10.1016/j.anihpc.2012.07.002
10.4310/CMS.2014.v12.n3.a8
10.1142/S0218202516400078
10.1016/0022-5193(70)90092-5
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jfa.2018.12.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0783
EndPage 1401
ExternalDocumentID 10_1016_j_jfa_2018_12_009
S0022123618304622
GroupedDBID --K
--M
--Z
-ET
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADIYS
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
YQT
ZMT
ZU3
~G-
186
29K
5VS
6TJ
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BNPGV
CAG
CITATION
COF
D-I
FGOYB
G-2
HZ~
OHT
R2-
SEW
SSH
WUQ
XOL
XPP
ZCG
ZY4
ID FETCH-LOGICAL-c297t-622c5b7d34dc1518f9584dcc939eee1cee3d2593f94b6a06487bf1b613f3e0cd3
IEDL.DBID IXB
ISSN 0022-1236
IngestDate Tue Jul 01 04:36:08 EDT 2025
Thu Apr 24 22:52:50 EDT 2025
Fri Feb 23 02:30:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords secondary
Navier–Stokes
Generalized solution
Chemotaxis
Large time behavior
primary
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-622c5b7d34dc1518f9584dcc939eee1cee3d2593f94b6a06487bf1b613f3e0cd3
PageCount 63
ParticipantIDs crossref_citationtrail_10_1016_j_jfa_2018_12_009
crossref_primary_10_1016_j_jfa_2018_12_009
elsevier_sciencedirect_doi_10_1016_j_jfa_2018_12_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
2019-03-00
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of functional analysis
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Horstmann (br0220) 2003; 105
Lions (br0370) 1980; 74
Tao, Winkler (br0560) 2015; 66
Lorz (br0420) 2010; 20
Mittal, Budrene, Brenner, van Oudenaarden (br0450) 2003; 100
Chae, Kang, Lee (br0070) 2014; 39
Giga (br0170) 1986; 61
Kuto, Osaki, Sakurai, Tsujikawa (br0320) 2012; 241
Bellomo, Bellouquid, Chouhad (br0010) 2016; 26
Kiselev, Xu (br0300) 2016; 222
Zhang, Li (br0770) 2015; 259
Biler (br0020) 1999; 9
Kiselev, Ryzhik (br0280) 2012; 37
Painter (br0490) 2018
Ladyzenskaja, Solonnikov, Ural'ceva (br0330) 1968; vol. 23
Ishida (br0240) 2015; 35
Giga (br0160) 1981; 2
Duan, Xiang (br0140) 2012; 2012
Jost (br0260) 2002
Kiselev, Ryzhik (br0290) 2012; 53
Liu, Wang (br0390) 2016; 261
DiFrancesco, Lorz, Markowich (br0090) 2010; 28
Luckhaus, Sugiyama, Velázquez (br0440) 2012; 206
Duan, Lorz, Markowich (br0130) 2010; 35
Giga, Sohr (br0180) 1991; 102
Herrero, Velázquez (br0190) 1997; 24
Liu, Wang (br0400) 2017; 447
Zhang, Li (br0760) 2015; 20
Jäger, Luckhaus (br0250) 1992; 329
Winkler (br0670) 2013; 100
Lankeit (br0340) 2015; 20
Cao, Ishida (br0040) 2014; 27
Hillen, Painter (br0210) 2011; 240
Tao, Winkler (br0550) 2013; 30
Wang, Xiang (br0620) 2016; 261
Winkler (br0740) 2017; 369
Cao, Wang (br0050) 2015; 20
Espejo, Suzuki (br0110) 2015; 21
Chertock, Fellner, Kurganov, Lorz, Markowich (br0080) 2012; 694
Perthame (br0500) 2007
Tuval, Cisneros, Dombrowski, Wolgemuth, Kessler, Goldstein (br0590) 2005; 102
Hillen, Painter (br0200) 2009; 58
Winkler (br0680) 2014; 211
Wang, Xiang (br0610) 2015; 259
Di Perna, Lions (br0100) 1989; 130
Liu, Wang (br0410) 2018
Osaki, Tsujikawa, Yagi, Mimura (br0480) 2002; 51
Fujita, Kato (br0150) 1964; 16
Leray (br0360) 1934; 63
Nagai (br0460) 2001; 6
Winkler (br0660) 2012; 37
Keller, Segel (br0270) 1970; 26
Nečas, Růžička, Šverák (br0470) 1996; 176
Chae, Kang, Lee (br0060) 2013; 33
Tao, Winkler (br0570) 2016; 67
Quittner, Souplet (br0520) 2007
Winkler (br0640) 2010; 35
Winkler (br0650) 2011; 384
Winkler (br0730) 2016; 33
Cao, Lankeit (br0030) 2016; 55
Winkler (br0700) 2014; 24
Sohr (br0530) 2001
Petitta (br0510) 2008; 187
Winkler (br0720) 2015; 47
Temam (br0580) 1977; vol. 2
Winkler (br0710) 2015; 54
Wiegner (br0630) 1999; 101
Dombrowski, Cisneros, Chatkaew, Goldstein, Kessler (br0120) 2004; 93
Winkler (br0750) 2017; 22
Vorotnikov (br0600) 2014; 12
Kozono, Miura, Sugiyama (br0310) 2016; 270
Solonnikov (br0540) 2007; vol. 220
Winkler (br0690) 2014; 257
Lankeit (br0350) 2015; 258
Lorz (br0430) 2012; 10
Duan (10.1016/j.jfa.2018.12.009_br0130) 2010; 35
Kiselev (10.1016/j.jfa.2018.12.009_br0290) 2012; 53
Painter (10.1016/j.jfa.2018.12.009_br0490) 2018
Cao (10.1016/j.jfa.2018.12.009_br0040) 2014; 27
Duan (10.1016/j.jfa.2018.12.009_br0140) 2012; 2012
Chae (10.1016/j.jfa.2018.12.009_br0070) 2014; 39
Di Perna (10.1016/j.jfa.2018.12.009_br0100) 1989; 130
Kiselev (10.1016/j.jfa.2018.12.009_br0300) 2016; 222
Winkler (10.1016/j.jfa.2018.12.009_br0680) 2014; 211
Hillen (10.1016/j.jfa.2018.12.009_br0210) 2011; 240
Tao (10.1016/j.jfa.2018.12.009_br0550) 2013; 30
Bellomo (10.1016/j.jfa.2018.12.009_br0010) 2016; 26
Winkler (10.1016/j.jfa.2018.12.009_br0690) 2014; 257
Lankeit (10.1016/j.jfa.2018.12.009_br0350) 2015; 258
Quittner (10.1016/j.jfa.2018.12.009_br0520) 2007
Giga (10.1016/j.jfa.2018.12.009_br0160) 1981; 2
Liu (10.1016/j.jfa.2018.12.009_br0390) 2016; 261
Herrero (10.1016/j.jfa.2018.12.009_br0190) 1997; 24
Cao (10.1016/j.jfa.2018.12.009_br0030) 2016; 55
Tao (10.1016/j.jfa.2018.12.009_br0560) 2015; 66
Leray (10.1016/j.jfa.2018.12.009_br0360) 1934; 63
Winkler (10.1016/j.jfa.2018.12.009_br0700) 2014; 24
Nagai (10.1016/j.jfa.2018.12.009_br0460) 2001; 6
Winkler (10.1016/j.jfa.2018.12.009_br0710) 2015; 54
Winkler (10.1016/j.jfa.2018.12.009_br0640) 2010; 35
Winkler (10.1016/j.jfa.2018.12.009_br0740) 2017; 369
DiFrancesco (10.1016/j.jfa.2018.12.009_br0090) 2010; 28
Kiselev (10.1016/j.jfa.2018.12.009_br0280) 2012; 37
Nečas (10.1016/j.jfa.2018.12.009_br0470) 1996; 176
Perthame (10.1016/j.jfa.2018.12.009_br0500) 2007
Keller (10.1016/j.jfa.2018.12.009_br0270) 1970; 26
Ladyzenskaja (10.1016/j.jfa.2018.12.009_br0330) 1968; vol. 23
Kuto (10.1016/j.jfa.2018.12.009_br0320) 2012; 241
Fujita (10.1016/j.jfa.2018.12.009_br0150) 1964; 16
Kozono (10.1016/j.jfa.2018.12.009_br0310) 2016; 270
Ishida (10.1016/j.jfa.2018.12.009_br0240) 2015; 35
Mittal (10.1016/j.jfa.2018.12.009_br0450) 2003; 100
Chae (10.1016/j.jfa.2018.12.009_br0060) 2013; 33
Tao (10.1016/j.jfa.2018.12.009_br0570) 2016; 67
Luckhaus (10.1016/j.jfa.2018.12.009_br0440) 2012; 206
Lorz (10.1016/j.jfa.2018.12.009_br0420) 2010; 20
Lorz (10.1016/j.jfa.2018.12.009_br0430) 2012; 10
Zhang (10.1016/j.jfa.2018.12.009_br0770) 2015; 259
Horstmann (10.1016/j.jfa.2018.12.009_br0220) 2003; 105
Jäger (10.1016/j.jfa.2018.12.009_br0250) 1992; 329
Giga (10.1016/j.jfa.2018.12.009_br0170) 1986; 61
Lankeit (10.1016/j.jfa.2018.12.009_br0340) 2015; 20
Sohr (10.1016/j.jfa.2018.12.009_br0530) 2001
Vorotnikov (10.1016/j.jfa.2018.12.009_br0600) 2014; 12
Osaki (10.1016/j.jfa.2018.12.009_br0480) 2002; 51
Solonnikov (10.1016/j.jfa.2018.12.009_br0540) 2007; vol. 220
Winkler (10.1016/j.jfa.2018.12.009_br0670) 2013; 100
Jost (10.1016/j.jfa.2018.12.009_br0260) 2002
Winkler (10.1016/j.jfa.2018.12.009_br0650) 2011; 384
Zhang (10.1016/j.jfa.2018.12.009_br0760) 2015; 20
Biler (10.1016/j.jfa.2018.12.009_br0020) 1999; 9
Wang (10.1016/j.jfa.2018.12.009_br0620) 2016; 261
Giga (10.1016/j.jfa.2018.12.009_br0180) 1991; 102
Winkler (10.1016/j.jfa.2018.12.009_br0750) 2017; 22
Tuval (10.1016/j.jfa.2018.12.009_br0590) 2005; 102
Espejo (10.1016/j.jfa.2018.12.009_br0110) 2015; 21
Winkler (10.1016/j.jfa.2018.12.009_br0720) 2015; 47
Winkler (10.1016/j.jfa.2018.12.009_br0660) 2012; 37
Hillen (10.1016/j.jfa.2018.12.009_br0200) 2009; 58
Lions (10.1016/j.jfa.2018.12.009_br0370) 1980; 74
Liu (10.1016/j.jfa.2018.12.009_br0410) 2018
Cao (10.1016/j.jfa.2018.12.009_br0050) 2015; 20
Petitta (10.1016/j.jfa.2018.12.009_br0510) 2008; 187
Dombrowski (10.1016/j.jfa.2018.12.009_br0120) 2004; 93
Wiegner (10.1016/j.jfa.2018.12.009_br0630) 1999; 101
Liu (10.1016/j.jfa.2018.12.009_br0400) 2017; 447
Temam (10.1016/j.jfa.2018.12.009_br0580) 1977; vol. 2
Winkler (10.1016/j.jfa.2018.12.009_br0730) 2016; 33
Wang (10.1016/j.jfa.2018.12.009_br0610) 2015; 259
Chertock (10.1016/j.jfa.2018.12.009_br0080) 2012; 694
References_xml – volume: 24
  start-page: 633
  year: 1997
  end-page: 683
  ident: br0190
  article-title: A blow-up mechanism for a chemotaxis model
  publication-title: Ann. Sc. Norm. Super. Pisa
– volume: 101
  start-page: 1
  year: 1999
  end-page: 25
  ident: br0630
  article-title: The Navier–Stokes equations — a neverending challenge?
  publication-title: Jahresber. Dtsch. Math.-Ver.
– volume: 27
  start-page: 1899
  year: 2014
  end-page: 1913
  ident: br0040
  article-title: Global-in-time bounded weak solutions to a degenerate quasilinear Keller–Segel system with rotation
  publication-title: Nonlinearity
– year: 2002
  ident: br0260
  article-title: Partial Differential Equations
– volume: 211
  start-page: 455
  year: 2014
  end-page: 487
  ident: br0680
  article-title: Stabilization in a two-dimensional chemotaxis–Navier–Stokes system
  publication-title: Arch. Ration. Mech. Anal.
– volume: 259
  start-page: 3730
  year: 2015
  end-page: 3754
  ident: br0770
  article-title: Global weak solutions for the three-dimensional chemotaxis–Navier–Stokes system with nonlinear diffusion
  publication-title: J. Differential Equations
– volume: 28
  start-page: 1437
  year: 2010
  end-page: 1453
  ident: br0090
  article-title: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior
  publication-title: Discrete Contin. Dyn. Syst. Ser. A
– volume: 261
  start-page: 967
  year: 2016
  end-page: 999
  ident: br0390
  article-title: Boundedness and decay property in a three-dimensional Keller–Segel–Stokes system involving tensor-valued sensitivity with saturation
  publication-title: J. Differential Equations
– volume: vol. 23
  year: 1968
  ident: br0330
  article-title: Linear and Quasi-Linear Equations of Parabolic Type
  publication-title: Amer. Math. Soc. Transl.
– volume: vol. 2
  year: 1977
  ident: br0580
  article-title: Navier–Stokes Equations. Theory and Numerical Analysis
  publication-title: Stud. Math. Appl.
– volume: 222
  start-page: 1077
  year: 2016
  end-page: 1112
  ident: br0300
  article-title: Suppression of chemotactic explosion by mixing
  publication-title: Arch. Ration. Mech. Anal.
– volume: 206
  start-page: 31
  year: 2012
  end-page: 80
  ident: br0440
  article-title: Measure valued solutions of the 2D Keller–Segel system
  publication-title: Arch. Ration. Mech. Anal.
– volume: 66
  start-page: 2555
  year: 2015
  end-page: 2573
  ident: br0560
  article-title: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system
  publication-title: Z. Angew. Math. Phys.
– volume: 54
  start-page: 3789
  year: 2015
  end-page: 3828
  ident: br0710
  article-title: Boundedness and large time behavior in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion and general sensitivity
  publication-title: Calc. Var. Partial Differential Equations
– volume: 259
  start-page: 7578
  year: 2015
  end-page: 7609
  ident: br0610
  article-title: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation
  publication-title: J. Differential Equations
– volume: 21
  start-page: 110
  year: 2015
  end-page: 126
  ident: br0110
  article-title: Reaction terms avoiding aggregation in slow fluids
  publication-title: Nonlinear Anal. Real World Appl.
– volume: 63
  start-page: 193
  year: 1934
  end-page: 248
  ident: br0360
  article-title: Sur le mouvement d'un liquide visqueus amplissant l'espace
  publication-title: Acta Math.
– volume: 61
  start-page: 186
  year: 1986
  end-page: 212
  ident: br0170
  article-title: Solutions for semilinear parabolic equations in
  publication-title: J. Differential Equations
– volume: 20
  start-page: 2751
  year: 2015
  end-page: 2759
  ident: br0760
  article-title: Convergence rates of solutions for a two-dimensional chemotaxis–Navier–Stokes system
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 694
  start-page: 155
  year: 2012
  end-page: 190
  ident: br0080
  article-title: Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach
  publication-title: J. Fluid Mech.
– volume: 39
  start-page: 1205
  year: 2014
  end-page: 1235
  ident: br0070
  article-title: Global existence and temporal decay in Keller–Segel models coupled to fluid equations
  publication-title: Comm. Partial Differential Equations
– volume: 270
  start-page: 1663
  year: 2016
  end-page: 1683
  ident: br0310
  article-title: Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid
  publication-title: J. Funct. Anal.
– volume: 384
  start-page: 261
  year: 2011
  end-page: 272
  ident: br0650
  article-title: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction
  publication-title: J. Math. Anal. Appl.
– volume: 240
  start-page: 363
  year: 2011
  end-page: 375
  ident: br0210
  article-title: Spatio-temporal chaos in a chemotaxis model
  publication-title: Phys. D
– volume: 100
  start-page: 748
  year: 2013
  end-page: 767
  ident: br0670
  article-title: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system
  publication-title: J. Math. Pures Appl.
– volume: 35
  start-page: 3463
  year: 2015
  end-page: 3482
  ident: br0240
  article-title: Global existence and boundedness for chemotaxis–Navier–Stokes systems with position-dependent sensitivity in 2D bounded domains
  publication-title: Discrete Contin. Dyn. Syst.
– volume: 20
  start-page: 3235
  year: 2015
  end-page: 3254
  ident: br0050
  article-title: Global classical solutions of a 3D chemotaxis–Stokes system with rotation
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 447
  start-page: 499
  year: 2017
  end-page: 528
  ident: br0400
  article-title: Global existence and boundedness in a Keller–Segel–(Navier–)Stokes system with signal-dependent sensitivity
  publication-title: J. Math. Anal. Appl.
– volume: 187
  start-page: 563
  year: 2008
  end-page: 604
  ident: br0510
  article-title: Renormalized solutions of nonlinear parabolic equations with general measure data
  publication-title: Ann. Mat. Pura Appl.
– volume: 30
  start-page: 157
  year: 2013
  end-page: 178
  ident: br0550
  article-title: Locally bounded global solutions in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
– volume: 329
  start-page: 819
  year: 1992
  end-page: 824
  ident: br0250
  article-title: On explosions of solutions to a system of partial differential equations modelling chemotaxis
  publication-title: Trans. Amer. Math. Soc.
– volume: 55
  year: 2016
  ident: br0030
  article-title: Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities
  publication-title: Calc. Var. Partial Differential Equations
– volume: 20
  start-page: 987
  year: 2010
  end-page: 1004
  ident: br0420
  article-title: Coupled chemotaxis fluid model
  publication-title: Math. Models Methods Appl. Sci.
– volume: 102
  start-page: 2277
  year: 2005
  end-page: 2282
  ident: br0590
  article-title: Bacterial swimming and oxygen transport near contact lines
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 2041
  year: 2016
  end-page: 2069
  ident: br0010
  article-title: From a multiscale derivation of nonlinear cross diffusion models to Keller–Segel Models in a Navier–Stokes fluid
  publication-title: Math. Models Methods Appl. Sci.
– volume: 130
  start-page: 321
  year: 1989
  end-page: 366
  ident: br0100
  article-title: On the Cauchy problem for Boltzmann equations: global existence and weak stability
  publication-title: Ann. of Math.
– year: 2018
  ident: br0410
  article-title: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation
  publication-title: J. Differential Equations
– volume: 93
  year: 2004
  ident: br0120
  article-title: Self-concentration and large-scale coherence in bacterial dynamics
  publication-title: Phys. Rev. Lett.
– volume: 2
  start-page: 85
  year: 1981
  end-page: 89
  ident: br0160
  article-title: The Stokes operator in
  publication-title: Proc. Japan Acad.
– volume: 261
  start-page: 4944
  year: 2016
  end-page: 4973
  ident: br0620
  article-title: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case
  publication-title: J. Differential Equations
– year: 2007
  ident: br0520
  article-title: Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States
  publication-title: Birkhäuser Adv. Texts. Basl. Lehrb.
– volume: 37
  start-page: 319
  year: 2012
  end-page: 351
  ident: br0660
  article-title: Global large-data solutions in a chemotaxis–(Navier–)Stokes system modeling cellular swimming in fluid drops
  publication-title: Comm. Partial Differential Equations
– volume: 35
  start-page: 1635
  year: 2010
  end-page: 1673
  ident: br0130
  article-title: Global solutions to the coupled chemotaxis-fluid equations
  publication-title: Comm. Partial Differential Equations
– volume: 241
  start-page: 1629
  year: 2012
  end-page: 1639
  ident: br0320
  article-title: Spatial pattern formation in a chemotaxis–diffusion–growth model
  publication-title: Phys. D
– year: 2018
  ident: br0490
  article-title: Mathematical models for chemotaxis and their applications in self-organisation phenomena
  publication-title: J. Theoret. Biol.
– volume: 37
  start-page: 298
  year: 2012
  end-page: 318
  ident: br0280
  article-title: Biomixing by chemotaxis and enhancement of biological reactions
  publication-title: Comm. Partial Differential Equations
– volume: 22
  start-page: 2777
  year: 2017
  end-page: 2793
  ident: br0750
  article-title: Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 12
  start-page: 545
  year: 2014
  end-page: 563
  ident: br0600
  article-title: Weak solutions for a bioconvection model related to Bacillus subtilis
  publication-title: Commun. Math. Sci.
– volume: vol. 220
  start-page: 165
  year: 2007
  end-page: 200
  ident: br0540
  article-title: Schauder estimates for the evolutionary generalized Stokes problem
  publication-title: Nonlinear Equations and Spectral Theory
– year: 2007
  ident: br0500
  article-title: Transport Equations in Biology
– volume: 53
  year: 2012
  ident: br0290
  article-title: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case
  publication-title: J. Math. Phys.
– volume: 33
  start-page: 1329
  year: 2016
  end-page: 1352
  ident: br0730
  article-title: Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
– volume: 176
  start-page: 283
  year: 1996
  end-page: 294
  ident: br0470
  article-title: On Leray's self-similar solutions of the Navier–Stokes equations
  publication-title: Acta Math.
– volume: 24
  start-page: 809
  year: 2014
  end-page: 855
  ident: br0700
  article-title: How far can chemotactic cross-diffusion enforce exceeding carrying capacities?
  publication-title: J. Nonlinear Sci.
– volume: 58
  start-page: 183
  year: 2009
  end-page: 217
  ident: br0200
  article-title: A user's guide to PDE models for chemotaxis
  publication-title: J. Math. Biol.
– volume: 51
  start-page: 119
  year: 2002
  end-page: 144
  ident: br0480
  article-title: Exponential attractor for a chemotaxis-growth system of equations
  publication-title: Nonlinear Anal.
– volume: 9
  start-page: 347
  year: 1999
  end-page: 359
  ident: br0020
  article-title: Global solutions to some parabolic–elliptic systems of chemotaxis
  publication-title: Adv. Math. Sci. Appl.
– volume: 105
  start-page: 103
  year: 2003
  end-page: 165
  ident: br0220
  article-title: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I
  publication-title: Jahresber. Dtsch. Math.-Ver.
– volume: 67
  year: 2016
  ident: br0570
  article-title: Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system
  publication-title: Z. Angew. Math. Phys.
– volume: 47
  start-page: 3092
  year: 2015
  end-page: 3115
  ident: br0720
  article-title: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities
  publication-title: SIAM J. Math. Anal.
– volume: 369
  start-page: 3067
  year: 2017
  end-page: 3125
  ident: br0740
  article-title: How far do oxytaxis-driven forces influence regularity in the Navier–Stokes system?
  publication-title: Trans. Amer. Math. Soc.
– volume: 16
  start-page: 269
  year: 1964
  end-page: 315
  ident: br0150
  article-title: On the Navier–Stokes initial value problem I
  publication-title: Arch. Ration. Mech. Anal.
– volume: 26
  start-page: 399
  year: 1970
  end-page: 415
  ident: br0270
  article-title: Initiation of slime mold aggregation viewed as an instability
  publication-title: J. Theoret. Biol.
– volume: 33
  start-page: 2271
  year: 2013
  end-page: 2297
  ident: br0060
  article-title: Existence of smooth solutions to coupled chemotaxis-fluid equations
  publication-title: Discrete Contin. Dyn. Syst. Ser. A
– volume: 102
  start-page: 72
  year: 1991
  end-page: 94
  ident: br0180
  article-title: Abstract
  publication-title: J. Funct. Anal.
– volume: 258
  start-page: 1158
  year: 2015
  end-page: 1191
  ident: br0350
  article-title: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source
  publication-title: J. Differential Equations
– volume: 100
  start-page: 13229
  year: 2003
  end-page: 13263
  ident: br0450
  article-title: Motility of Escherichia coli cells in clusters formed by chemotactic aggregation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 37
  year: 2001
  end-page: 55
  ident: br0460
  article-title: Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains
  publication-title: J. Inequal. Appl.
– volume: 10
  start-page: 555
  year: 2012
  end-page: 574
  ident: br0430
  article-title: Coupled Keller–Segel–Stokes model: global existence for small initial data and blow-up delay
  publication-title: Commun. Math. Sci.
– volume: 74
  start-page: 335
  year: 1980
  end-page: 353
  ident: br0370
  article-title: Résolution de problèmes elliptiques quasilinéaires
  publication-title: Arch. Ration. Mech. Anal.
– volume: 35
  start-page: 1516
  year: 2010
  end-page: 1537
  ident: br0640
  article-title: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source
  publication-title: Comm. Partial Differential Equations
– volume: 20
  start-page: 1499
  year: 2015
  end-page: 1527
  ident: br0340
  article-title: Chemotaxis can prevent thresholds on population density
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 257
  start-page: 1056
  year: 2014
  end-page: 1077
  ident: br0690
  article-title: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening
  publication-title: J. Differential Equations
– year: 2001
  ident: br0530
  article-title: The Navier–Stokes Equations. An Elementary Functional Analytic Approach
– volume: 2012
  year: 2012
  ident: br0140
  article-title: A note on global existence for the chemotaxis–Stokes model with nonlinear diffusion
  publication-title: Int. Math. Res. Not.
– volume: 21
  start-page: 110
  year: 2015
  ident: 10.1016/j.jfa.2018.12.009_br0110
  article-title: Reaction terms avoiding aggregation in slow fluids
  publication-title: Nonlinear Anal. Real World Appl.
  doi: 10.1016/j.nonrwa.2014.07.001
– volume: 187
  start-page: 563
  issue: 4
  year: 2008
  ident: 10.1016/j.jfa.2018.12.009_br0510
  article-title: Renormalized solutions of nonlinear parabolic equations with general measure data
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s10231-007-0057-y
– volume: 240
  start-page: 363
  year: 2011
  ident: 10.1016/j.jfa.2018.12.009_br0210
  article-title: Spatio-temporal chaos in a chemotaxis model
  publication-title: Phys. D
  doi: 10.1016/j.physd.2010.09.011
– volume: 51
  start-page: 119
  year: 2002
  ident: 10.1016/j.jfa.2018.12.009_br0480
  article-title: Exponential attractor for a chemotaxis-growth system of equations
  publication-title: Nonlinear Anal.
  doi: 10.1016/S0362-546X(01)00815-X
– volume: 27
  start-page: 1899
  year: 2014
  ident: 10.1016/j.jfa.2018.12.009_br0040
  article-title: Global-in-time bounded weak solutions to a degenerate quasilinear Keller–Segel system with rotation
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/27/8/1899
– volume: 102
  start-page: 72
  year: 1991
  ident: 10.1016/j.jfa.2018.12.009_br0180
  article-title: Abstract Lp estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(91)90136-S
– volume: 176
  start-page: 283
  year: 1996
  ident: 10.1016/j.jfa.2018.12.009_br0470
  article-title: On Leray's self-similar solutions of the Navier–Stokes equations
  publication-title: Acta Math.
  doi: 10.1007/BF02551584
– year: 2007
  ident: 10.1016/j.jfa.2018.12.009_br0500
– volume: 37
  start-page: 319
  year: 2012
  ident: 10.1016/j.jfa.2018.12.009_br0660
  article-title: Global large-data solutions in a chemotaxis–(Navier–)Stokes system modeling cellular swimming in fluid drops
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605302.2011.591865
– volume: 93
  year: 2004
  ident: 10.1016/j.jfa.2018.12.009_br0120
  article-title: Self-concentration and large-scale coherence in bacterial dynamics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.098103
– volume: 24
  start-page: 809
  year: 2014
  ident: 10.1016/j.jfa.2018.12.009_br0700
  article-title: How far can chemotactic cross-diffusion enforce exceeding carrying capacities?
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-014-9205-x
– volume: 211
  start-page: 455
  issue: 2
  year: 2014
  ident: 10.1016/j.jfa.2018.12.009_br0680
  article-title: Stabilization in a two-dimensional chemotaxis–Navier–Stokes system
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-013-0678-9
– volume: 28
  start-page: 1437
  year: 2010
  ident: 10.1016/j.jfa.2018.12.009_br0090
  article-title: Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior
  publication-title: Discrete Contin. Dyn. Syst. Ser. A
  doi: 10.3934/dcds.2010.28.1437
– volume: 6
  start-page: 37
  year: 2001
  ident: 10.1016/j.jfa.2018.12.009_br0460
  article-title: Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains
  publication-title: J. Inequal. Appl.
– volume: 47
  start-page: 3092
  year: 2015
  ident: 10.1016/j.jfa.2018.12.009_br0720
  article-title: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/140979708
– volume: 16
  start-page: 269
  year: 1964
  ident: 10.1016/j.jfa.2018.12.009_br0150
  article-title: On the Navier–Stokes initial value problem I
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00276188
– volume: 67
  year: 2016
  ident: 10.1016/j.jfa.2018.12.009_br0570
  article-title: Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-016-0732-1
– volume: 10
  start-page: 555
  year: 2012
  ident: 10.1016/j.jfa.2018.12.009_br0430
  article-title: Coupled Keller–Segel–Stokes model: global existence for small initial data and blow-up delay
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2012.v10.n2.a7
– volume: 100
  start-page: 13229
  year: 2003
  ident: 10.1016/j.jfa.2018.12.009_br0450
  article-title: Motility of Escherichia coli cells in clusters formed by chemotactic aggregation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2233626100
– volume: 261
  start-page: 4944
  year: 2016
  ident: 10.1016/j.jfa.2018.12.009_br0620
  article-title: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2016.07.010
– volume: vol. 23
  year: 1968
  ident: 10.1016/j.jfa.2018.12.009_br0330
  article-title: Linear and Quasi-Linear Equations of Parabolic Type
– volume: 63
  start-page: 193
  year: 1934
  ident: 10.1016/j.jfa.2018.12.009_br0360
  article-title: Sur le mouvement d'un liquide visqueus amplissant l'espace
  publication-title: Acta Math.
  doi: 10.1007/BF02547354
– volume: 20
  start-page: 987
  year: 2010
  ident: 10.1016/j.jfa.2018.12.009_br0420
  article-title: Coupled chemotaxis fluid model
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202510004507
– volume: 369
  start-page: 3067
  year: 2017
  ident: 10.1016/j.jfa.2018.12.009_br0740
  article-title: How far do oxytaxis-driven forces influence regularity in the Navier–Stokes system?
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/tran/6733
– volume: 694
  start-page: 155
  year: 2012
  ident: 10.1016/j.jfa.2018.12.009_br0080
  article-title: Sinking, merging and stationary plumes in a coupled chemotaxis-fluid model: a high-resolution numerical approach
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.534
– year: 2007
  ident: 10.1016/j.jfa.2018.12.009_br0520
  article-title: Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States
– volume: 270
  start-page: 1663
  year: 2016
  ident: 10.1016/j.jfa.2018.12.009_br0310
  article-title: Existence and uniqueness theorem on mild solutions to the Keller–Segel system coupled with the Navier–Stokes fluid
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2015.10.016
– volume: 9
  start-page: 347
  issue: 1
  year: 1999
  ident: 10.1016/j.jfa.2018.12.009_br0020
  article-title: Global solutions to some parabolic–elliptic systems of chemotaxis
  publication-title: Adv. Math. Sci. Appl.
– volume: 384
  start-page: 261
  year: 2011
  ident: 10.1016/j.jfa.2018.12.009_br0650
  article-title: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.05.057
– volume: 35
  start-page: 3463
  year: 2015
  ident: 10.1016/j.jfa.2018.12.009_br0240
  article-title: Global existence and boundedness for chemotaxis–Navier–Stokes systems with position-dependent sensitivity in 2D bounded domains
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2015.35.3463
– volume: 222
  start-page: 1077
  year: 2016
  ident: 10.1016/j.jfa.2018.12.009_br0300
  article-title: Suppression of chemotactic explosion by mixing
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-016-1017-8
– volume: 102
  start-page: 2277
  year: 2005
  ident: 10.1016/j.jfa.2018.12.009_br0590
  article-title: Bacterial swimming and oxygen transport near contact lines
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0406724102
– volume: 241
  start-page: 1629
  year: 2012
  ident: 10.1016/j.jfa.2018.12.009_br0320
  article-title: Spatial pattern formation in a chemotaxis–diffusion–growth model
  publication-title: Phys. D
  doi: 10.1016/j.physd.2012.06.009
– year: 2018
  ident: 10.1016/j.jfa.2018.12.009_br0410
  article-title: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation
  publication-title: J. Differential Equations
– volume: 257
  start-page: 1056
  year: 2014
  ident: 10.1016/j.jfa.2018.12.009_br0690
  article-title: Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2014.04.023
– volume: 20
  start-page: 3235
  year: 2015
  ident: 10.1016/j.jfa.2018.12.009_br0050
  article-title: Global classical solutions of a 3D chemotaxis–Stokes system with rotation
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2015.20.3235
– volume: 258
  start-page: 1158
  year: 2015
  ident: 10.1016/j.jfa.2018.12.009_br0350
  article-title: Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2014.10.016
– volume: 35
  start-page: 1635
  year: 2010
  ident: 10.1016/j.jfa.2018.12.009_br0130
  article-title: Global solutions to the coupled chemotaxis-fluid equations
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605302.2010.497199
– volume: 20
  start-page: 2751
  year: 2015
  ident: 10.1016/j.jfa.2018.12.009_br0760
  article-title: Convergence rates of solutions for a two-dimensional chemotaxis–Navier–Stokes system
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2015.20.2751
– volume: 329
  start-page: 819
  year: 1992
  ident: 10.1016/j.jfa.2018.12.009_br0250
  article-title: On explosions of solutions to a system of partial differential equations modelling chemotaxis
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-1992-1046835-6
– volume: vol. 2
  year: 1977
  ident: 10.1016/j.jfa.2018.12.009_br0580
  article-title: Navier–Stokes Equations. Theory and Numerical Analysis
– volume: 22
  start-page: 2777
  year: 2017
  ident: 10.1016/j.jfa.2018.12.009_br0750
  article-title: Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
– volume: 2012
  year: 2012
  ident: 10.1016/j.jfa.2018.12.009_br0140
  article-title: A note on global existence for the chemotaxis–Stokes model with nonlinear diffusion
  publication-title: Int. Math. Res. Not.
– volume: 58
  start-page: 183
  year: 2009
  ident: 10.1016/j.jfa.2018.12.009_br0200
  article-title: A user's guide to PDE models for chemotaxis
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-008-0201-3
– volume: 105
  start-page: 103
  issue: 3
  year: 2003
  ident: 10.1016/j.jfa.2018.12.009_br0220
  article-title: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I
  publication-title: Jahresber. Dtsch. Math.-Ver.
– volume: 261
  start-page: 967
  year: 2016
  ident: 10.1016/j.jfa.2018.12.009_br0390
  article-title: Boundedness and decay property in a three-dimensional Keller–Segel–Stokes system involving tensor-valued sensitivity with saturation
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2016.03.030
– volume: 206
  start-page: 31
  year: 2012
  ident: 10.1016/j.jfa.2018.12.009_br0440
  article-title: Measure valued solutions of the 2D Keller–Segel system
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-012-0549-9
– volume: 259
  start-page: 7578
  year: 2015
  ident: 10.1016/j.jfa.2018.12.009_br0610
  article-title: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2015.08.027
– volume: 33
  start-page: 2271
  issue: 6
  year: 2013
  ident: 10.1016/j.jfa.2018.12.009_br0060
  article-title: Existence of smooth solutions to coupled chemotaxis-fluid equations
  publication-title: Discrete Contin. Dyn. Syst. Ser. A
  doi: 10.3934/dcds.2013.33.2271
– year: 2001
  ident: 10.1016/j.jfa.2018.12.009_br0530
– volume: vol. 220
  start-page: 165
  year: 2007
  ident: 10.1016/j.jfa.2018.12.009_br0540
  article-title: Schauder estimates for the evolutionary generalized Stokes problem
– volume: 130
  start-page: 321
  year: 1989
  ident: 10.1016/j.jfa.2018.12.009_br0100
  article-title: On the Cauchy problem for Boltzmann equations: global existence and weak stability
  publication-title: Ann. of Math.
  doi: 10.2307/1971423
– volume: 2
  start-page: 85
  year: 1981
  ident: 10.1016/j.jfa.2018.12.009_br0160
  article-title: The Stokes operator in Lr spaces
  publication-title: Proc. Japan Acad.
– year: 2018
  ident: 10.1016/j.jfa.2018.12.009_br0490
  article-title: Mathematical models for chemotaxis and their applications in self-organisation phenomena
  publication-title: J. Theoret. Biol.
– volume: 37
  start-page: 298
  issue: 1–3
  year: 2012
  ident: 10.1016/j.jfa.2018.12.009_br0280
  article-title: Biomixing by chemotaxis and enhancement of biological reactions
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605302.2011.589879
– volume: 447
  start-page: 499
  year: 2017
  ident: 10.1016/j.jfa.2018.12.009_br0400
  article-title: Global existence and boundedness in a Keller–Segel–(Navier–)Stokes system with signal-dependent sensitivity
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.10.028
– volume: 35
  start-page: 1516
  year: 2010
  ident: 10.1016/j.jfa.2018.12.009_br0640
  article-title: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605300903473426
– volume: 61
  start-page: 186
  year: 1986
  ident: 10.1016/j.jfa.2018.12.009_br0170
  article-title: Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier–Stokes system
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(86)90096-3
– volume: 55
  year: 2016
  ident: 10.1016/j.jfa.2018.12.009_br0030
  article-title: Global classical small-data solutions for a three-dimensional chemotaxis Navier–Stokes system involving matrix-valued sensitivities
  publication-title: Calc. Var. Partial Differential Equations
  doi: 10.1007/s00526-016-1027-2
– volume: 20
  start-page: 1499
  issue: 5
  year: 2015
  ident: 10.1016/j.jfa.2018.12.009_br0340
  article-title: Chemotaxis can prevent thresholds on population density
  publication-title: Discrete Contin. Dyn. Syst. Ser. B
  doi: 10.3934/dcdsb.2015.20.1499
– volume: 259
  start-page: 3730
  year: 2015
  ident: 10.1016/j.jfa.2018.12.009_br0770
  article-title: Global weak solutions for the three-dimensional chemotaxis–Navier–Stokes system with nonlinear diffusion
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2015.05.012
– volume: 39
  start-page: 1205
  year: 2014
  ident: 10.1016/j.jfa.2018.12.009_br0070
  article-title: Global existence and temporal decay in Keller–Segel models coupled to fluid equations
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605302.2013.852224
– volume: 33
  start-page: 1329
  year: 2016
  ident: 10.1016/j.jfa.2018.12.009_br0730
  article-title: Global weak solutions in a three-dimensional chemotaxis–Navier–Stokes system
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2015.05.002
– volume: 53
  issue: 11
  year: 2012
  ident: 10.1016/j.jfa.2018.12.009_br0290
  article-title: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4742858
– year: 2002
  ident: 10.1016/j.jfa.2018.12.009_br0260
– volume: 66
  start-page: 2555
  year: 2015
  ident: 10.1016/j.jfa.2018.12.009_br0560
  article-title: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-015-0541-y
– volume: 100
  start-page: 748
  year: 2013
  ident: 10.1016/j.jfa.2018.12.009_br0670
  article-title: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2013.01.020
– volume: 74
  start-page: 335
  year: 1980
  ident: 10.1016/j.jfa.2018.12.009_br0370
  article-title: Résolution de problèmes elliptiques quasilinéaires
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00249679
– volume: 54
  start-page: 3789
  year: 2015
  ident: 10.1016/j.jfa.2018.12.009_br0710
  article-title: Boundedness and large time behavior in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion and general sensitivity
  publication-title: Calc. Var. Partial Differential Equations
  doi: 10.1007/s00526-015-0922-2
– volume: 24
  start-page: 633
  year: 1997
  ident: 10.1016/j.jfa.2018.12.009_br0190
  article-title: A blow-up mechanism for a chemotaxis model
  publication-title: Ann. Sc. Norm. Super. Pisa
– volume: 30
  start-page: 157
  issue: 1
  year: 2013
  ident: 10.1016/j.jfa.2018.12.009_br0550
  article-title: Locally bounded global solutions in a three-dimensional chemotaxis–Stokes system with nonlinear diffusion
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2012.07.002
– volume: 12
  start-page: 545
  year: 2014
  ident: 10.1016/j.jfa.2018.12.009_br0600
  article-title: Weak solutions for a bioconvection model related to Bacillus subtilis
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2014.v12.n3.a8
– volume: 26
  start-page: 2041
  year: 2016
  ident: 10.1016/j.jfa.2018.12.009_br0010
  article-title: From a multiscale derivation of nonlinear cross diffusion models to Keller–Segel Models in a Navier–Stokes fluid
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202516400078
– volume: 26
  start-page: 399
  year: 1970
  ident: 10.1016/j.jfa.2018.12.009_br0270
  article-title: Initiation of slime mold aggregation viewed as an instability
  publication-title: J. Theoret. Biol.
  doi: 10.1016/0022-5193(70)90092-5
– volume: 101
  start-page: 1
  year: 1999
  ident: 10.1016/j.jfa.2018.12.009_br0630
  article-title: The Navier–Stokes equations — a neverending challenge?
  publication-title: Jahresber. Dtsch. Math.-Ver.
SSID ssj0011645
Score 2.5923634
Snippet The Keller–Segel–Navier–Stokes system(⋆){nt+u⋅∇n=Δn−χ∇⋅(n∇c)+ρn−μn2,ct+u⋅∇c=Δc−c+n,ut+(u⋅∇)u=Δu+∇P+n∇ϕ+f(x,t),∇⋅u=0, is considered in a bounded convex domain...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1339
SubjectTerms Chemotaxis
Generalized solution
Large time behavior
Navier–Stokes
Title A three-dimensional Keller–Segel–Navier–Stokes system with logistic source: Global weak solutions and asymptotic stabilization
URI https://dx.doi.org/10.1016/j.jfa.2018.12.009
Volume 276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWWBAPEV5VB6YkEKT2GlitlJRFap2gUrdrMQPqQXSqg1CLIiBf8A_5JdwjpMKJGBgihL5rMhn3Xe-x2eETlTAKFFKOToiwqFKRU4sQ-1oqiPwHwT4DKZRuD9odof0ehSMKqhd9sKYssrC9lubnlvr4kujWM3GbDw2Pb6-n3OHRCa75xs7TGiUN_GNLpaZBDgOBCVjuBldZjbzGq-JNtRDXpRHBE1N4k_Y9AVvOptoo3AUccv-yxaqqHQbrfeXLKuLHfTWwhmoQjnSUPRbeg3cM5H4-cfr-43JhsNzEJvpzYdseqcW2HI3YxOAxbb_ZyywjeGfY3sFAH5S8R1e7kocpxLHi-eHWTbNB2c5La9t4NxFw87lbbvrFLcqOMJnYebASokgCSWhUgDcR5qBDyKFYISBzjwATSLhTEQ0o0kzBo8lChPtJQD7mihXSLKHquk0VfsIa_DmWCApFW5CYy8B8GcEBGF-qaQb1pBbricXBeW4ufninpe1ZRMOKuBGBdzzOaighk6XIjPLt_HXYFoqiX_bNBzw4Hexg_-JHaI1eGO2AO0IVbP5ozoGjyRL6mjl7MWro9XWVa87qOcb8BONX-dT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGIAB8RTl6YEJKWoTO03MViqqlj4WWqmblfghtYW0aoMQGwP_gH_IL-EcJxVIwMAUyfFZkc-6--K7-w6hS-UzSpRSjg6JcKhSoRPJQDua6hDwgwDMYAqFe_1aa0jvRv6ohBpFLYxJq8xtv7XpmbXORyr5blbm47Gp8fW8jDskNNE9D-zwOqCBwPRvaI9uVqEE-B_wC8pwM70IbWZJXhNtuIfcMLsSNEmJPzmnLw6nuYO2c6SI6_ZjdlFJJXtoq7eiWV3uo7c6TkEXypGGo9_ya-COuYpffLy-35twODz7kVneDKSzqVpiS96MzQ0stgVAY4HtJf41tj0A8LOKpnh1LHGUSBwtXx7n6SybnGa8vLaC8wANm7eDRsvJ2yo4wmNB6sBWCT8OJKFSgL8PNQMQIoVghIHSXPCaRMJPEdGMxrUIIEsYxNqNwe9roqpCkkO0lswSdYSwBjjHfEmpqMY0cmPw_oyAIKwvlawGZVQt9pOLnHPctL544EVy2YSDCrhRAXc9Diooo6uVyNwSbvw1mRZK4t9ODQeH8LvY8f_ELtBGa9Dr8m673zlBm_CG2Wy0U7SWLp7UGcCTND7Pjt8nffvn5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+three-dimensional+Keller%E2%80%93Segel%E2%80%93Navier%E2%80%93Stokes+system+with+logistic+source%3A+Global+weak+solutions+and+asymptotic+stabilization&rft.jtitle=Journal+of+functional+analysis&rft.au=Winkler%2C+Michael&rft.date=2019-03-01&rft.issn=0022-1236&rft.volume=276&rft.issue=5&rft.spage=1339&rft.epage=1401&rft_id=info:doi/10.1016%2Fj.jfa.2018.12.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jfa_2018_12_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1236&client=summon