Jordan chains of elliptic partial differential operators and Dirichlet-to-Neumann maps

Let \Omega \subset \mathbb{R}^d be a bounded open set with Lipschitz boundary \Gamma . It will be shown that the Jordan chains of m-sectorial second-order elliptic partial differential operators with measurable coefficients and (local or non-local) Robin boundary conditions in L_2(\Omega) can be cha...

Full description

Saved in:
Bibliographic Details
Published inJournal of spectral theory Vol. 11; no. 3; pp. 1081 - 1105
Main Authors Behrndt, Jussi, ter Elst, A. F. M.
Format Journal Article
LanguageEnglish
Published European Mathematical Society Publishing House 01.01.2021
Subjects
Online AccessGet full text
ISSN1664-039X
1664-0403
DOI10.4171/jst/366

Cover

Abstract Let \Omega \subset \mathbb{R}^d be a bounded open set with Lipschitz boundary \Gamma . It will be shown that the Jordan chains of m-sectorial second-order elliptic partial differential operators with measurable coefficients and (local or non-local) Robin boundary conditions in L_2(\Omega) can be characterized with the help of Jordan chains of the Dirichlet-to-Neumann map and the boundary operator from H^{1/2}(\Gamma) into H^{-1/2}(\Gamma) . This result extends the Birman–Schwinger principle in the framework of elliptic operators for the characterization of eigenvalues, eigenfunctions and geometric eigenspaces to the complete set of all generalized eigenfunctions and algebraic eigenspaces.
AbstractList Let \Omega \subset \mathbb{R}^d be a bounded open set with Lipschitz boundary \Gamma . It will be shown that the Jordan chains of m-sectorial second-order elliptic partial differential operators with measurable coefficients and (local or non-local) Robin boundary conditions in L_2(\Omega) can be characterized with the help of Jordan chains of the Dirichlet-to-Neumann map and the boundary operator from H^{1/2}(\Gamma) into H^{-1/2}(\Gamma) . This result extends the Birman–Schwinger principle in the framework of elliptic operators for the characterization of eigenvalues, eigenfunctions and geometric eigenspaces to the complete set of all generalized eigenfunctions and algebraic eigenspaces.
Let [OMEGA] [subset] [R.sup.D] be a bounded open set with Lipschitz boundary [GAMMA]. It will be shown that the Jordan chains of m-sectorial second-order elliptic partial differential operators with measurable coefficients and (local or non-local) Robin boundary conditions in [L.sub.2]([OMEGA]) can be characterized with the help of Jordan chains of the Dirichlet-to-Neumann map and the boundary operator from [H.sup.1/2]([GAMMA]) into [H.sup.-1/2]([GAMMA]). This result extends the Birman-Schwinger principle in the framework of elliptic operators for the characterization of eigenvalues, eigenfunctions and geometric eigenspaces to the complete set of all generalized eigenfunctions and algebraic eigenspaces. Mathematics Subject Classification (2020). 35J57, 35P05, 47A75, 47F05. Keywords. Jordan chain, eigenvector, generalized eigenvector, Robin boundary condition, Dirichlet-to-Neumann operator.
Audience Academic
Author ter Elst, A. F. M.
Behrndt, Jussi
Author_xml – sequence: 1
  givenname: Jussi
  surname: Behrndt
  fullname: Behrndt, Jussi
– sequence: 2
  givenname: A. F. M.
  surname: ter Elst
  fullname: ter Elst, A. F. M.
BookMark eNplkD9PwzAQxS1UJEqp-AremNLasRPHY1X-q4KlQmyRcc7UVWJHthn49rgUFtANd_fuvRt-52jivAOELilZcCroch_TktX1CZrSuuYF4YRNfmcmX8_QPMY9ISQrIt-m6OXRh045rHfKuoi9wdD3dkxW41GFZFWPO2sMBHDfix8hqORDxMp1-NoGq3c9pCL54gk-BuUcHtQYL9CpUX2E-U-foe3tzXZ9X2ye7x7Wq02hSylSUUFTCi4kqyuiJG9owwgRANpIrWptSq2p4EyQipmKa8Flw0vgpSRQvVHJZmhxfPuuemitMz4FpXN1MFid0Rib9VXdEMko4YdAcQzo4GMMYFptk0rWuxy0fUtJe-DYZo5t5pj9V3_8Y7CDCp__nF955HS9
CitedBy_id crossref_primary_10_1007_s00208_023_02696_6
ContentType Journal Article
Copyright COPYRIGHT 2021 European Mathematical Society Publishing House
Copyright_xml – notice: COPYRIGHT 2021 European Mathematical Society Publishing House
DBID AAYXX
CITATION
DOI 10.4171/jst/366
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1664-0403
EndPage 1105
ExternalDocumentID A680931049
10_4171_jst_366
GeographicLocations Austria
GeographicLocations_xml – name: Austria
GroupedDBID AAFWJ
AAYXX
AENEX
AFPKN
AKZPS
ALMA_UNASSIGNED_HOLDINGS
AUREJ
CITATION
FEDTE
GROUPED_DOAJ
H13
HVGLF
IAO
IGS
ITC
J9A
OK1
REW
VH7
ID FETCH-LOGICAL-c297t-5e8274793650a948183007eecf9ca6cf2cc17437053f54c749842e4290e5b193
ISSN 1664-039X
IngestDate Sat Mar 08 18:36:36 EST 2025
Wed Aug 06 19:30:03 EDT 2025
Thu Apr 24 23:00:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-5e8274793650a948183007eecf9ca6cf2cc17437053f54c749842e4290e5b193
OpenAccessLink https://ems.press/content/serial-article-files/12506
PageCount 25
ParticipantIDs gale_infotracacademiconefile_A680931049
crossref_citationtrail_10_4171_jst_366
crossref_primary_10_4171_jst_366
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of spectral theory
PublicationYear 2021
Publisher European Mathematical Society Publishing House
Publisher_xml – name: European Mathematical Society Publishing House
SSID ssj0001667403
Score 2.1807852
Snippet Let \Omega \subset \mathbb{R}^d be a bounded open set with Lipschitz boundary \Gamma . It will be shown that the Jordan chains of m-sectorial second-order...
Let [OMEGA] [subset] [R.sup.D] be a bounded open set with Lipschitz boundary [GAMMA]. It will be shown that the Jordan chains of m-sectorial second-order...
SourceID gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1081
SubjectTerms Differential equations, Partial
Eigenvectors
Mathematical research
Title Jordan chains of elliptic partial differential operators and Dirichlet-to-Neumann maps
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVgufRCC6WC0iIfED2gLEnsxMkRVaAV0va0IG5RYmwtCJJoN3vh1zNjOx9aQIJeol3LsqJ5zmjG4_eGkGOfFam4k9rjQkOCArmbl2rNvEhKiBeKoggNUXj6L55c86vb6LbvtmnYJU0xls9v8kr-B1UYA1yRJfsJZLtFYQB-A77wBITh-SGMryBzhO9TzvN7e5sN1TVrlGCtcbapv9j-J-ZPVStTVLeyzODs7uUcYPOaCjU6nvKyPH3K6-U78arhZCKdv2np_I7gM1-Ud7aisYIPrB1H8cWLR8soOR9fjqfD84UwWDtf6IoC005GFmVK3JXSwVnZpFq5cpL1pHHMPZ-ZPrm9qw0GW4oN_Gbg28Yt6w6dBwIdOjgpeLJ4TTTb6vbGiZ9CkMrTTbIVCmGL9S6xNidtcSy4aZHdvZNlT-PiZ7D0GTMamX1YMmovRrowY_aNbDt703ML9g7ZUOUu-epyBeo88fI7ubHYU4s9rTRtsacOezrEnnbYU8CevoU9Rez3yOzyYvZ34rkeGZ4MU9F4kUrwXCFlEGnnqLyTMIj6lJI6lXksdSgl5pwCfK2OuBQ8TXioIAjxVVRA8P6DjMqqVPuEKpVozk0LcojqkN8DVs3DINesEEL7B-SktVAmnX48tjF5zCCPRFNmD8smA1MeENpNrK1kyuspf9DEGUINa8jccUHgTVCOLOsx_fnhmYfkS799f5FRs1ip3xAwNsWR2Q8vlpBwmw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jordan+chains+of+elliptic+partial+differential+operators+and+Dirichlet-to-Neumann+maps&rft.jtitle=Journal+of+spectral+theory&rft.au=Behrndt%2C+Jussi&rft.au=ter+Elst%2C+A.F.M&rft.date=2021-01-01&rft.pub=European+Mathematical+Society+Publishing+House&rft.issn=1664-039X&rft.volume=11&rft.issue=3&rft.spage=1081&rft_id=info:doi/10.4171%2FJST%2F366&rft.externalDocID=A680931049
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-039X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-039X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-039X&client=summon