Jordan chains of elliptic partial differential operators and Dirichlet-to-Neumann maps
Let \Omega \subset \mathbb{R}^d be a bounded open set with Lipschitz boundary \Gamma . It will be shown that the Jordan chains of m-sectorial second-order elliptic partial differential operators with measurable coefficients and (local or non-local) Robin boundary conditions in L_2(\Omega) can be cha...
Saved in:
Published in | Journal of spectral theory Vol. 11; no. 3; pp. 1081 - 1105 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
European Mathematical Society Publishing House
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-039X 1664-0403 |
DOI | 10.4171/jst/366 |
Cover
Abstract | Let \Omega \subset \mathbb{R}^d be a bounded open set with Lipschitz boundary \Gamma . It will be shown that the Jordan chains of m-sectorial second-order elliptic partial differential operators with measurable coefficients and (local or non-local) Robin boundary conditions in L_2(\Omega) can be characterized with the help of Jordan chains of the Dirichlet-to-Neumann map and the boundary operator from H^{1/2}(\Gamma) into H^{-1/2}(\Gamma) . This result extends the Birman–Schwinger principle in the framework of elliptic operators for the characterization of eigenvalues, eigenfunctions and geometric eigenspaces to the complete set of all generalized eigenfunctions and algebraic eigenspaces. |
---|---|
AbstractList | Let \Omega \subset \mathbb{R}^d be a bounded open set with Lipschitz boundary \Gamma . It will be shown that the Jordan chains of m-sectorial second-order elliptic partial differential operators with measurable coefficients and (local or non-local) Robin boundary conditions in L_2(\Omega) can be characterized with the help of Jordan chains of the Dirichlet-to-Neumann map and the boundary operator from H^{1/2}(\Gamma) into H^{-1/2}(\Gamma) . This result extends the Birman–Schwinger principle in the framework of elliptic operators for the characterization of eigenvalues, eigenfunctions and geometric eigenspaces to the complete set of all generalized eigenfunctions and algebraic eigenspaces. Let [OMEGA] [subset] [R.sup.D] be a bounded open set with Lipschitz boundary [GAMMA]. It will be shown that the Jordan chains of m-sectorial second-order elliptic partial differential operators with measurable coefficients and (local or non-local) Robin boundary conditions in [L.sub.2]([OMEGA]) can be characterized with the help of Jordan chains of the Dirichlet-to-Neumann map and the boundary operator from [H.sup.1/2]([GAMMA]) into [H.sup.-1/2]([GAMMA]). This result extends the Birman-Schwinger principle in the framework of elliptic operators for the characterization of eigenvalues, eigenfunctions and geometric eigenspaces to the complete set of all generalized eigenfunctions and algebraic eigenspaces. Mathematics Subject Classification (2020). 35J57, 35P05, 47A75, 47F05. Keywords. Jordan chain, eigenvector, generalized eigenvector, Robin boundary condition, Dirichlet-to-Neumann operator. |
Audience | Academic |
Author | ter Elst, A. F. M. Behrndt, Jussi |
Author_xml | – sequence: 1 givenname: Jussi surname: Behrndt fullname: Behrndt, Jussi – sequence: 2 givenname: A. F. M. surname: ter Elst fullname: ter Elst, A. F. M. |
BookMark | eNplkD9PwzAQxS1UJEqp-AremNLasRPHY1X-q4KlQmyRcc7UVWJHthn49rgUFtANd_fuvRt-52jivAOELilZcCroch_TktX1CZrSuuYF4YRNfmcmX8_QPMY9ISQrIt-m6OXRh045rHfKuoi9wdD3dkxW41GFZFWPO2sMBHDfix8hqORDxMp1-NoGq3c9pCL54gk-BuUcHtQYL9CpUX2E-U-foe3tzXZ9X2ye7x7Wq02hSylSUUFTCi4kqyuiJG9owwgRANpIrWptSq2p4EyQipmKa8Flw0vgpSRQvVHJZmhxfPuuemitMz4FpXN1MFid0Rib9VXdEMko4YdAcQzo4GMMYFptk0rWuxy0fUtJe-DYZo5t5pj9V3_8Y7CDCp__nF955HS9 |
CitedBy_id | crossref_primary_10_1007_s00208_023_02696_6 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 European Mathematical Society Publishing House |
Copyright_xml | – notice: COPYRIGHT 2021 European Mathematical Society Publishing House |
DBID | AAYXX CITATION |
DOI | 10.4171/jst/366 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1664-0403 |
EndPage | 1105 |
ExternalDocumentID | A680931049 10_4171_jst_366 |
GeographicLocations | Austria |
GeographicLocations_xml | – name: Austria |
GroupedDBID | AAFWJ AAYXX AENEX AFPKN AKZPS ALMA_UNASSIGNED_HOLDINGS AUREJ CITATION FEDTE GROUPED_DOAJ H13 HVGLF IAO IGS ITC J9A OK1 REW VH7 |
ID | FETCH-LOGICAL-c297t-5e8274793650a948183007eecf9ca6cf2cc17437053f54c749842e4290e5b193 |
ISSN | 1664-039X |
IngestDate | Sat Mar 08 18:36:36 EST 2025 Wed Aug 06 19:30:03 EDT 2025 Thu Apr 24 23:00:19 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c297t-5e8274793650a948183007eecf9ca6cf2cc17437053f54c749842e4290e5b193 |
OpenAccessLink | https://ems.press/content/serial-article-files/12506 |
PageCount | 25 |
ParticipantIDs | gale_infotracacademiconefile_A680931049 crossref_citationtrail_10_4171_jst_366 crossref_primary_10_4171_jst_366 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of spectral theory |
PublicationYear | 2021 |
Publisher | European Mathematical Society Publishing House |
Publisher_xml | – name: European Mathematical Society Publishing House |
SSID | ssj0001667403 |
Score | 2.1807852 |
Snippet | Let \Omega \subset \mathbb{R}^d be a bounded open set with Lipschitz boundary \Gamma . It will be shown that the Jordan chains of m-sectorial second-order... Let [OMEGA] [subset] [R.sup.D] be a bounded open set with Lipschitz boundary [GAMMA]. It will be shown that the Jordan chains of m-sectorial second-order... |
SourceID | gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1081 |
SubjectTerms | Differential equations, Partial Eigenvectors Mathematical research |
Title | Jordan chains of elliptic partial differential operators and Dirichlet-to-Neumann maps |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVgufRCC6WC0iIfED2gLEnsxMkRVaAV0va0IG5RYmwtCJJoN3vh1zNjOx9aQIJeol3LsqJ5zmjG4_eGkGOfFam4k9rjQkOCArmbl2rNvEhKiBeKoggNUXj6L55c86vb6LbvtmnYJU0xls9v8kr-B1UYA1yRJfsJZLtFYQB-A77wBITh-SGMryBzhO9TzvN7e5sN1TVrlGCtcbapv9j-J-ZPVStTVLeyzODs7uUcYPOaCjU6nvKyPH3K6-U78arhZCKdv2np_I7gM1-Ud7aisYIPrB1H8cWLR8soOR9fjqfD84UwWDtf6IoC005GFmVK3JXSwVnZpFq5cpL1pHHMPZ-ZPrm9qw0GW4oN_Gbg28Yt6w6dBwIdOjgpeLJ4TTTb6vbGiZ9CkMrTTbIVCmGL9S6xNidtcSy4aZHdvZNlT-PiZ7D0GTMamX1YMmovRrowY_aNbDt703ML9g7ZUOUu-epyBeo88fI7ubHYU4s9rTRtsacOezrEnnbYU8CevoU9Rez3yOzyYvZ34rkeGZ4MU9F4kUrwXCFlEGnnqLyTMIj6lJI6lXksdSgl5pwCfK2OuBQ8TXioIAjxVVRA8P6DjMqqVPuEKpVozk0LcojqkN8DVs3DINesEEL7B-SktVAmnX48tjF5zCCPRFNmD8smA1MeENpNrK1kyuspf9DEGUINa8jccUHgTVCOLOsx_fnhmYfkS799f5FRs1ip3xAwNsWR2Q8vlpBwmw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jordan+chains+of+elliptic+partial+differential+operators+and+Dirichlet-to-Neumann+maps&rft.jtitle=Journal+of+spectral+theory&rft.au=Behrndt%2C+Jussi&rft.au=ter+Elst%2C+A.F.M&rft.date=2021-01-01&rft.pub=European+Mathematical+Society+Publishing+House&rft.issn=1664-039X&rft.volume=11&rft.issue=3&rft.spage=1081&rft_id=info:doi/10.4171%2FJST%2F366&rft.externalDocID=A680931049 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-039X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-039X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-039X&client=summon |