Data Science Methodologies: Current Challenges and Future Approaches
Data science has employed great research efforts in developing advanced analytics, improving data models and cultivating new algorithms. However, not many authors have come across the organizational and socio-technical challenges that arise when executing a data science project: lack of vision and c...
Saved in:
Published in | Big data research Vol. 24; p. 100183 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
15.05.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Data science has employed great research efforts in developing advanced analytics, improving data models and cultivating new algorithms. However, not many authors have come across the organizational and socio-technical challenges that arise when executing a data science project: lack of vision and clear objectives, a biased emphasis on technical issues, a low level of maturity for ad-hoc projects and the ambiguity of roles in data science are among these challenges. Few methodologies have been proposed on the literature that tackle these type of challenges, some of them date back to the mid-1990, and consequently they are not updated to the current paradigm and the latest developments in big data and machine learning technologies. In addition, fewer methodologies offer a complete guideline across team, project and data & information management. In this article we would like to explore the necessity of developing a more holistic approach for carrying out data science projects. We first review methodologies that have been presented on the literature to work on data science projects and classify them according to the their focus: project, team, data and information management. Finally, we propose a conceptual framework containing general characteristics that a methodology for managing data science projects with a holistic point of view should have. This framework can be used by other researchers as a roadmap for the design of new data science methodologies or the updating of existing ones. |
---|---|
AbstractList | Data science has employed great research efforts in developing advanced analytics, improving data models and cultivating new algorithms. However, not many authors have come across the organizational and socio-technical challenges that arise when executing a data science project: lack of vision and clear objectives, a biased emphasis on technical issues, a low level of maturity for ad-hoc projects and the ambiguity of roles in data science are among these challenges. Few methodologies have been proposed on the literature that tackle these type of challenges, some of them date back to the mid-1990, and consequently they are not updated to the current paradigm and the latest developments in big data and machine learning technologies. In addition, fewer methodologies offer a complete guideline across team, project and data & information management. In this article we would like to explore the necessity of developing a more holistic approach for carrying out data science projects. We first review methodologies that have been presented on the literature to work on data science projects and classify them according to the their focus: project, team, data and information management. Finally, we propose a conceptual framework containing general characteristics that a methodology for managing data science projects with a holistic point of view should have. This framework can be used by other researchers as a roadmap for the design of new data science methodologies or the updating of existing ones. |
ArticleNumber | 100183 |
Author | Viles, Elisabeth Martinez, Iñigo G. Olaizola, Igor |
Author_xml | – sequence: 1 givenname: Iñigo orcidid: 0000-0001-8174-9272 surname: Martinez fullname: Martinez, Iñigo email: imartinez@vicomtech.org organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain – sequence: 2 givenname: Elisabeth orcidid: 0000-0002-5080-482X surname: Viles fullname: Viles, Elisabeth email: eviles@tecnun.es organization: TECNUN School of Engineering, University of Navarra, Donostia-San Sebastián 20018, Spain – sequence: 3 givenname: Igor orcidid: 0000-0002-9965-2038 surname: G. Olaizola fullname: G. Olaizola, Igor email: iolaizola@vicomtech.org organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain |
BookMark | eNp9kM9KAzEQh4NUsNY-gLe8wNb82SZZPZWtVaHiQQVvISazbcq6KUkq-PZuWb148DQz8PuGme8cjbrQAUKXlMwooeJqN3t3ccYIO86EKn6CxozRspgr8jb67WUlztA0pR3pM1zNuVJjtFyabPCz9dBZwI-Qt8GFNmw8pGtcH2KELuN6a9oWug0kbDqHV4d8iIAX-30Mxm4hXaDTxrQJpj91gl5Xty_1fbF-unuoF-vCskrmYg6MVZYZQrhktuGMV5USlRX94ZQLyZUkhrGSurIhzgqmWClUQwwtnaCN5BMkh702hpQiNNr6bLIPXY7Gt5oSffShd7r3oY8-9OCjJ-kfch_9h4lf_zI3AwP9S58eok6DJucj2Kxd8P_Q3y_bd-U |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3375764 crossref_primary_10_1080_2573234X_2023_2285483 crossref_primary_10_1007_s00163_024_00442_w crossref_primary_10_3390_math12050715 crossref_primary_10_1109_ACCESS_2024_3444700 crossref_primary_10_1017_dce_2023_22 crossref_primary_10_55643_fcaptp_2_55_2024_4349 crossref_primary_10_1080_12460125_2022_2043576 crossref_primary_10_1108_BIJ_09_2022_0550 crossref_primary_10_3390_math12172663 crossref_primary_10_1108_BIJ_03_2023_0160 crossref_primary_10_1109_TSE_2023_3291003 crossref_primary_10_1108_K_04_2022_0575 crossref_primary_10_1109_ACCESS_2024_3365586 crossref_primary_10_3390_app142411612 crossref_primary_10_1016_j_rineng_2024_102132 crossref_primary_10_1016_j_cirp_2024_06_003 crossref_primary_10_1038_s42254_024_00743_y crossref_primary_10_1080_0952813X_2022_2153276 crossref_primary_10_1080_08839514_2022_2151160 crossref_primary_10_2478_amns_2024_2906 crossref_primary_10_1016_j_bdr_2021_100245 crossref_primary_10_1016_j_compind_2022_103833 crossref_primary_10_1007_s13132_023_01545_w crossref_primary_10_1007_s00287_022_01508_6 crossref_primary_10_1080_16258312_2022_2064721 crossref_primary_10_1097_st9_0000000000000025 crossref_primary_10_1016_j_simpa_2023_100575 crossref_primary_10_7717_peerj_cs_862 crossref_primary_10_1186_s40537_024_00916_7 crossref_primary_10_1109_TEM_2023_3287759 crossref_primary_10_26417_236hbm84v crossref_primary_10_1016_j_jjimei_2022_100124 crossref_primary_10_1109_MS_2024_3435024 |
Cites_doi | 10.1002/asi.23873 10.1016/S0167-9236(03)00008-3 10.1109/TII.2017.2670505 10.1109/TKDE.2015.2508816 10.1016/j.ins.2014.02.137 10.1093/bib/bbk007 10.1080/17521882.2011.596485 10.1080/13675560902736537 10.1016/j.media.2016.06.032 10.1109/TVT.2009.2027710 10.1016/j.ijpe.2014.12.032 10.1214/ss/1009213726 10.29092/uacm.v4i8.307 10.1016/j.ijinfomgt.2016.04.013 10.1016/j.jbusres.2016.08.001 10.3390/bdcc3010019 10.1016/j.drudis.2014.10.012 10.1016/j.dss.2010.08.006 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.bdr.2020.100183 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2214-580X |
ExternalDocumentID | 10_1016_j_bdr_2020_100183 S2214579620300514 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO AAYFN ABBOA ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC EBS EFJIC EFLBG FDB FIRID FNPLU FYGXN GBLVA KOM M41 O9- OAUVE P-8 P-9 PC. ROL SPC SPCBC SSV SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ABXDB ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EJD RIG SSH |
ID | FETCH-LOGICAL-c297t-5e229c2a00372cf32399869c602013673870a2241d4f0dc6282468f0a14d61f73 |
IEDL.DBID | .~1 |
ISSN | 2214-5796 |
IngestDate | Thu Apr 24 23:11:16 EDT 2025 Tue Jul 01 03:23:50 EDT 2025 Fri Feb 23 02:45:13 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Data science Big data Project life-cycle Knowledge management Data science methodology Organizational impacts |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-5e229c2a00372cf32399869c602013673870a2241d4f0dc6282468f0a14d61f73 |
ORCID | 0000-0002-9965-2038 0000-0001-8174-9272 0000-0002-5080-482X |
ParticipantIDs | crossref_citationtrail_10_1016_j_bdr_2020_100183 crossref_primary_10_1016_j_bdr_2020_100183 elsevier_sciencedirect_doi_10_1016_j_bdr_2020_100183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-15 |
PublicationDateYYYYMMDD | 2021-05-15 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Big data research |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Guo (br0790) 2012 Jennifer Prendki, Lessons in Agile Machine Learning from Walmart, 2017. Kaggle, Kaggle: Your Machine Learning and Data Science Community. Kühn, Joppen, Reinhart, Röltgen, von Enzberg, Dumitrescu (br0470) 2018 Sivarajah, Kamal, Irani, Weerakkody (br0600) 2017; 70 Frank Lo, What is Data Science?. VentureBeat, Why do 87% of data science projects never make it into production? 2019. P. Warden, Why the term “data science” is flawed but useful - O'Reilly Radar (2011). de Bruijne (br0270) 2016; 33 Saltz, Shamshurin (br0460) 2016 H. Jung, The Competition Mindset: how Kaggle and real-life Data Science diverge (2020). Dutta, Bose (br0750) 2015; 165 Kim, Street (br0240) 2004; 37 Spoelstra, Zhang (br0410) 2016 Marbán, Segovia, Menasalvas C (br0810) 2009; 34 G. Piatetsky, Crisp-dm, still the top methodology for analytics, data mining, or data science projects, KDD News. J.C. Terra, T. Angeloni, Understanding the difference between information management and knowledge management, KM Advantage (2003) 1–9. Das, Cui, Campbell, Agrawal, Ramnath (br0170) 2015 Bojarski, Testa, Dworakowski, Firner, Flepp, Goyal, Jackel, Monfort, Muller, Zhang, Zhang, Zhao, Zieba (br0360) Saltz, Armour, Sharda (br0180) 2018; 43 New Vantage, NewVantage Partners 2019 Big Data and AI Executive Survey (2019). Shearer (br0630) 2000; 5 Wills (br0190) 2012 Saltz, Shamshurin, Connors (br0500) 2017 Lavecchia (br0280) 2015; 20 A. Jones-Farmer, R. Hoerl, How is statistical engineering different from data science?. A. Ferraris, A. Mazzoleni, A. Devalle, J. Couturier, Big data analytics capabilities and knowledge management: impact on firm performance, Management Decision. Ngai, Hu, Wong, Chen, Sun (br0210) 2011; 50 Chen, Chen, Huang, Huang, Chen (br0260) 2016 Saltz, Shamshurin, Connors (br0080) 2017; 68 Domino Data Lab, Managing Data Science Teams (2017). Granville (br0120) 2014 Microsoft Team, Data Science Process Documentation (2017). Grbovic, Radosavljevic, Djuric, Bhamidipati, Savla, Bhagwan, Sharp (br0330) 2015 Ismail, Othman, Bakar (br0310) 2009 Maguire (br0450) 2017 Min (br0370) 2010; 13 Crowston, Saltz, Rezgui, Hegde, You (br0700) 2019 Fang, Zhan (br0350) M. Colas, I. Finck, J. Buvat, R. Nambiar, R.R. Singh, Cracking the data conundrum: How successful companies make big data operational, Capgemini Consulting (2014) 1–18. Vanauer, Böhle, Hellingrath (br0570) 2015 Saunders, Rojon (br0610) 2011; 4 Bhardwaj, Bhattacherjee, Chavan, Deshpande, Elmore, Madden, Parameswaran (br0520) Kwon, Kim, Kim, Suh, Kim, Kim (br0320) García Jiménez (br0060) 2008; 4 Byrne (br0530) 2017 J. Thomas, AI Ops — Managing the End-to-End Lifecycle of AI, 2019. Shi, Wang, Xu, Chu (br0400) 2016 Becker (br0480) 2017 Collier (br0740) 2012 Grady, Payne, Parker (br0760) 2017 Kou, Peng, Wang (br0250) 2014; 275 Jeffrey Saltz, Nicholas J Hotz, CRISP-DM – Data Science Project Management (2019). E. Colson, Why Data, Science Teams Need Generalists, Not Specialists, Harvard Business Review. Caraguel (br0440) 2018 Chetan Sharma, Jan Overgoor, Scaling Knowledge at Airbnb (2016). S. Ransbotham, D. Kiron, P.K. Prentice, Minding the analytics gap, MIT Sloan Management Review, 2015. S. Brown, Likert scale examples for surveys, ANR Program evaluation, Iowa State University, USA. Grady (br0640) 2016 Gartner, Taking a First Step to Advanced Analytics. D. Dietrich, Data analytics lifecycle processes, US Patent 9,262,493 (Feb. 16 2016). D. Conway, The data science venn diagram, Retrieved December 13 (2010) 2017. Ellis (br0660) 2008 Loukides (br0140) 2011 Larson, Chang (br0730) 2016; 36 K. Walch, Why Agile Methodologies Miss the Mark for AI & ML Projects (2020). Saltz, Hotz, Wild, Stirling (br0090) 2018 Park, Chen, Kiliaris, Kuang, Masrur, Phillips, Murphey (br0380) 2009; 58 Benaich, Hogarth (br0010) 2019 Larrañaga, Calvo, Santana, Bielza, Galdiano, Inza, Lozano, Armañanzas, Santafé, Pérez, Robles (br0290) 2006; 7 Nicholas J Hotz, Jeffrey Saltz, Domino Data Science Lifecycle – Data Science Project Management (2018). Breiman (br0050) 2001; 16 Green (br0390) 2019 Jurney (br0690) 2017 Saltz (br0070) 2015 Espinosa, Armour (br0420) 2016 Moyle, Jorge (br0680) 2001; vol. 64 Zhao, Li, He, Chang, Wen, Li (br0340) 2016; 28 John Rollings, Foundational methodology for data science (2015). Addo, Guegan, Hassani (br0220) Wan, Tang, Li, Wang, Liu, Abbas, Vasilakos (br0300) 2017; 13 Jeffrey Saltz, Nicholas J Hotz, Shortcomings of Ad Hoc – Data Science Project Management (2018). Chamberlain, Cardoso, Liu, Pagliari, Deisenroth (br0230) Foroughi, Luksch (br0830) Kaufmann (br0720) 2019; 3 de Bruijne (10.1016/j.bdr.2020.100183_br0270) 2016; 33 Saltz (10.1016/j.bdr.2020.100183_br0180) 2018; 43 Kou (10.1016/j.bdr.2020.100183_br0250) 2014; 275 Caraguel (10.1016/j.bdr.2020.100183_br0440) 2018 Ismail (10.1016/j.bdr.2020.100183_br0310) 2009 10.1016/j.bdr.2020.100183_br0580 10.1016/j.bdr.2020.100183_br0020 10.1016/j.bdr.2020.100183_br0780 10.1016/j.bdr.2020.100183_br0770 10.1016/j.bdr.2020.100183_br0650 Foroughi (10.1016/j.bdr.2020.100183_br0830) Chen (10.1016/j.bdr.2020.100183_br0260) 2016 Larson (10.1016/j.bdr.2020.100183_br0730) 2016; 36 10.1016/j.bdr.2020.100183_br0850 Saltz (10.1016/j.bdr.2020.100183_br0460) 2016 Kaufmann (10.1016/j.bdr.2020.100183_br0720) 2019; 3 Larrañaga (10.1016/j.bdr.2020.100183_br0290) 2006; 7 Saunders (10.1016/j.bdr.2020.100183_br0610) 2011; 4 Park (10.1016/j.bdr.2020.100183_br0380) 2009; 58 Crowston (10.1016/j.bdr.2020.100183_br0700) 2019 Grbovic (10.1016/j.bdr.2020.100183_br0330) 2015 Kühn (10.1016/j.bdr.2020.100183_br0470) 2018 Becker (10.1016/j.bdr.2020.100183_br0480) 2017 10.1016/j.bdr.2020.100183_br0150 10.1016/j.bdr.2020.100183_br0590 10.1016/j.bdr.2020.100183_br0030 Sivarajah (10.1016/j.bdr.2020.100183_br0600) 2017; 70 Spoelstra (10.1016/j.bdr.2020.100183_br0410) 2016 10.1016/j.bdr.2020.100183_br0670 10.1016/j.bdr.2020.100183_br0100 10.1016/j.bdr.2020.100183_br0540 Grady (10.1016/j.bdr.2020.100183_br0640) 2016 10.1016/j.bdr.2020.100183_br0620 Bhardwaj (10.1016/j.bdr.2020.100183_br0520) Jurney (10.1016/j.bdr.2020.100183_br0690) 2017 10.1016/j.bdr.2020.100183_br0820 Addo (10.1016/j.bdr.2020.100183_br0220) Kwon (10.1016/j.bdr.2020.100183_br0320) Lavecchia (10.1016/j.bdr.2020.100183_br0280) 2015; 20 Byrne (10.1016/j.bdr.2020.100183_br0530) 2017 Saltz (10.1016/j.bdr.2020.100183_br0500) 2017 Granville (10.1016/j.bdr.2020.100183_br0120) 2014 Das (10.1016/j.bdr.2020.100183_br0170) 2015 Zhao (10.1016/j.bdr.2020.100183_br0340) 2016; 28 Shi (10.1016/j.bdr.2020.100183_br0400) 2016 Grady (10.1016/j.bdr.2020.100183_br0760) 2017 10.1016/j.bdr.2020.100183_br0160 10.1016/j.bdr.2020.100183_br0040 Ngai (10.1016/j.bdr.2020.100183_br0210) 2011; 50 10.1016/j.bdr.2020.100183_br0560 10.1016/j.bdr.2020.100183_br0110 10.1016/j.bdr.2020.100183_br0550 10.1016/j.bdr.2020.100183_br0430 Maguire (10.1016/j.bdr.2020.100183_br0450) 2017 Shearer (10.1016/j.bdr.2020.100183_br0630) 2000; 5 Wills (10.1016/j.bdr.2020.100183_br0190) 2012 10.1016/j.bdr.2020.100183_br0510 Kim (10.1016/j.bdr.2020.100183_br0240) 2004; 37 10.1016/j.bdr.2020.100183_br0710 Bojarski (10.1016/j.bdr.2020.100183_br0360) Collier (10.1016/j.bdr.2020.100183_br0740) 2012 Vanauer (10.1016/j.bdr.2020.100183_br0570) 2015 Fang (10.1016/j.bdr.2020.100183_br0350) Green (10.1016/j.bdr.2020.100183_br0390) 2019 García Jiménez (10.1016/j.bdr.2020.100183_br0060) 2008; 4 Loukides (10.1016/j.bdr.2020.100183_br0140) 2011 Moyle (10.1016/j.bdr.2020.100183_br0680) 2001; vol. 64 Guo (10.1016/j.bdr.2020.100183_br0790) 2012 Wan (10.1016/j.bdr.2020.100183_br0300) 2017; 13 Ellis (10.1016/j.bdr.2020.100183_br0660) 2008 Dutta (10.1016/j.bdr.2020.100183_br0750) 2015; 165 Benaich (10.1016/j.bdr.2020.100183_br0010) 2019 10.1016/j.bdr.2020.100183_br0490 10.1016/j.bdr.2020.100183_br0130 10.1016/j.bdr.2020.100183_br0200 Marbán (10.1016/j.bdr.2020.100183_br0810) 2009; 34 10.1016/j.bdr.2020.100183_br0840 Saltz (10.1016/j.bdr.2020.100183_br0080) 2017; 68 Chamberlain (10.1016/j.bdr.2020.100183_br0230) 10.1016/j.bdr.2020.100183_br0800 Breiman (10.1016/j.bdr.2020.100183_br0050) 2001; 16 Min (10.1016/j.bdr.2020.100183_br0370) 2010; 13 Saltz (10.1016/j.bdr.2020.100183_br0090) 2018 Espinosa (10.1016/j.bdr.2020.100183_br0420) 2016 Saltz (10.1016/j.bdr.2020.100183_br0070) 2015 |
References_xml | – volume: 13 start-page: 2039 year: 2017 end-page: 2047 ident: br0300 article-title: A manufacturing big data solution for active preventive maintenance publication-title: IEEE Trans. Ind. Inform. – start-page: 1809 year: 2015 end-page: 1818 ident: br0330 article-title: E-commerce in your inbox: product recommendations at scale publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – year: 2018 ident: br0440 article-title: Stef Caraguel, Data Science Challenges – start-page: 87 year: 2016 end-page: 92 ident: br0260 article-title: Financial time-series data analysis using deep convolutional neural networks publication-title: 2016 7th International Conference on Cloud Computing and Big Data – year: 2012 ident: br0790 article-title: Software tools to facilitate research programming – reference: G. Piatetsky, Crisp-dm, still the top methodology for analytics, data mining, or data science projects, KDD News. – reference: S. Ransbotham, D. Kiron, P.K. Prentice, Minding the analytics gap, MIT Sloan Management Review, 2015. – volume: 34 start-page: 87 year: 2009 end-page: 107 ident: br0810 article-title: Fernández-Baizán, Toward data mining engineering: a software engineering approach publication-title: Inf. Sci. – start-page: 2072 year: 2015 end-page: 2081 ident: br0170 article-title: Towards methods for systematic research on big data publication-title: 2015 IEEE International Conference on Big Data (Big Data) – volume: 58 start-page: 4741 year: 2009 end-page: 4756 ident: br0380 article-title: Intelligent vehicle power control based on machine learning of optimal control parameters and prediction of road type and traffic congestion publication-title: IEEE Trans. Veh. Technol. – year: 2017 ident: br0450 article-title: Data & Advanced Analytics: High Stakes, High Rewards – start-page: 183 year: 2017 end-page: 195 ident: br0500 article-title: A framework for describing big data projects publication-title: Business Information Systems Workshops – year: 2017 ident: br0690 article-title: Agile Data Science 2.0: Building Full-Stack Data Analytics Applications with Spark – reference: D. Conway, The data science venn diagram, Retrieved December 13 (2010) 2017. – volume: 4 start-page: 185 year: 2008 end-page: 202 ident: br0060 article-title: An epistemological focus on the concept of science: a basic proposal based on Kuhn, Popper, Lakatos and Feyerabend publication-title: Andamios – reference: Jeffrey Saltz, Nicholas J Hotz, Shortcomings of Ad Hoc – Data Science Project Management (2018). – reference: VentureBeat, Why do 87% of data science projects never make it into production? 2019. – reference: Frank Lo, What is Data Science?. – ident: br0360 article-title: End to end learning for self-driving cars, CoRR – volume: 7 start-page: 86 year: 2006 end-page: 112 ident: br0290 article-title: Machine learning in bioinformatics publication-title: Brief. Bioinform. – reference: D. Dietrich, Data analytics lifecycle processes, US Patent 9,262,493 (Feb. 16 2016). – volume: 43 start-page: 33 year: 2018 ident: br0180 article-title: Data science roles and the types of data science programs publication-title: Commun. Assoc. Inf. Syst. – volume: 13 start-page: 13 year: 2010 end-page: 39 ident: br0370 article-title: Artificial intelligence in supply chain management: theory and applications publication-title: Int. J. Logist. – year: 2016 ident: br0410 article-title: Gopi Kumar, Data Science Doesn't Just Happen, It Takes a Process – volume: 275 start-page: 1 year: 2014 end-page: 12 ident: br0250 article-title: Evaluation of clustering algorithms for financial risk analysis using mcdm methods publication-title: Inf. Sci. – volume: 5 start-page: 13 year: 2000 end-page: 22 ident: br0630 article-title: The crisp-dm model: the new blueprint for data mining publication-title: J. Data Warehous. – reference: H. Jung, The Competition Mindset: how Kaggle and real-life Data Science diverge (2020). – reference: Gartner, Taking a First Step to Advanced Analytics. – volume: 33 start-page: 94 year: 2016 end-page: 97 ident: br0270 article-title: Machine learning approaches in medical image analysis: from detection to diagnosis publication-title: 20th anniversary of the Medical Image Analysis journal (MedIA) – volume: vol. 64 year: 2001 ident: br0680 article-title: Ramsys - a methodology for supporting rapid remote collaborative data mining projects publication-title: ECML/PKDD01 Workshop: Integrating Aspects of Data Mining, Decision Support and Meta-learning (IDDM-2001) – start-page: 2331 year: 2017 end-page: 2339 ident: br0760 article-title: Agile big data analytics: analyticsops for data science publication-title: 2017 IEEE International Conference on Big Data (Big Data) – reference: John Rollings, Foundational methodology for data science (2015). – start-page: 1603 year: 2016 end-page: 1608 ident: br0640 article-title: Kdd meets big data publication-title: 2016 IEEE International Conference on Big Data (Big Data) – year: 2018 ident: br0090 article-title: Exploring project management methodologies used within data science teams publication-title: AMCIS – volume: 70 start-page: 263 year: 2017 end-page: 286 ident: br0600 article-title: Critical analysis of big data challenges and analytical methods publication-title: J. Bus. Res. – start-page: 1112 year: 2016 end-page: 1121 ident: br0420 article-title: The big data analytics gold rush: a research framework for coordination and governance publication-title: 2016 49th Hawaii International Conference on System Sciences (HICSS) – reference: Jennifer Prendki, Lessons in Agile Machine Learning from Walmart, 2017. – reference: K. Walch, Why Agile Methodologies Miss the Mark for AI & ML Projects (2020). – reference: S. Brown, Likert scale examples for surveys, ANR Program evaluation, Iowa State University, USA. – volume: 20 start-page: 318 year: 2015 end-page: 331 ident: br0280 article-title: Machine-learning approaches in drug discovery: methods and applications publication-title: Drug Discov. Today – start-page: 2320 year: 2017 end-page: 2330 ident: br0480 article-title: Predicting outcomes for big data projects: big data project dynamics (bdpd): research in progress publication-title: 2017 IEEE International Conference on Big Data (Big Data) – reference: Jeffrey Saltz, Nicholas J Hotz, CRISP-DM – Data Science Project Management (2019). – volume: 28 start-page: 1147 year: 2016 end-page: 1159 ident: br0340 article-title: Connecting social media to e-commerce: cold-start product recommendation using microblogging information publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 1 year: 2019 end-page: 25 ident: br0700 article-title: Socio-technical affordances for stigmergic coordination implemented in midst, a tool for data-science teams publication-title: Proceedings of the ACM on Human-Computer Interaction 3 (CSCW) – reference: Kaggle, Kaggle: Your Machine Learning and Data Science Community. – start-page: 99 year: 2016 end-page: 104 ident: br0400 article-title: Benchmarking state-of-the-art deep learning software tools publication-title: 2016 7th International Conference on Cloud Computing and Big Data – reference: New Vantage, NewVantage Partners 2019 Big Data and AI Executive Survey (2019). – volume: 16 start-page: 199 year: 2001 end-page: 231 ident: br0050 article-title: Statistical modeling: the two cultures (with comments and a rejoinder by the author) publication-title: Stat. Sci. – year: 2011 ident: br0140 article-title: What Is Data Science? – reference: Chetan Sharma, Jan Overgoor, Scaling Knowledge at Airbnb (2016). – volume: 36 start-page: 700 year: 2016 end-page: 710 ident: br0730 article-title: A review and future direction of agile, business intelligence, analytics and data science publication-title: Int. J. Inf. Manag. – year: 2014 ident: br0120 article-title: Developing Analytic Talent: Becoming a Data Scientist – start-page: 2872 year: 2016 end-page: 2879 ident: br0460 article-title: Big data team process methodologies: a literature review and the identification of key factors for a project's success publication-title: 2016 IEEE International Conference on Big Data (Big Data) – reference: P. Warden, Why the term “data science” is flawed but useful - O'Reilly Radar (2011). – volume: 3 start-page: 19 year: 2019 ident: br0720 article-title: Big data management canvas: a reference model for value creation from data publication-title: Big Data Cogn. Comput. – volume: 165 start-page: 293 year: 2015 end-page: 306 ident: br0750 article-title: Managing a big data project: the case of Ramco Cements Limited publication-title: Int. J. Prod. Econ. – start-page: 2066 year: 2015 end-page: 2071 ident: br0070 article-title: The need for new processes, methodologies and tools to support big data teams and improve big data project effectiveness publication-title: 2015 IEEE International Conference on Big Data (Big Data) – ident: br0220 article-title: Credit risk analysis using machine and deep learning models – year: 2012 ident: br0740 article-title: Agile Analytics: A Value-Driven Approach to Business Intelligence and Data Warehousing – volume: 68 start-page: 2720 year: 2017 end-page: 2728 ident: br0080 article-title: Predicting data science sociotechnical execution challenges by categorizing data science projects publication-title: J. Assoc. Inf. Sci. Technol. – reference: J. Thomas, AI Ops — Managing the End-to-End Lifecycle of AI, 2019. – volume: 37 start-page: 215 year: 2004 end-page: 228 ident: br0240 article-title: An intelligent system for customer targeting: a data mining approach publication-title: Decis. Support Syst. – volume: 50 start-page: 559 year: 2011 end-page: 569 ident: br0210 article-title: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature publication-title: On quantitative methods for detection of financial fraud – ident: br0320 article-title: A survey of deep learning-based network anomaly detection – ident: br0520 article-title: Datahub: collaborative data science & dataset version management at scale – reference: A. Jones-Farmer, R. Hoerl, How is statistical engineering different from data science?. – start-page: 162 year: 2018 end-page: 167 ident: br0470 article-title: Analytics canvas – a framework for the design and specification of data analytics projects publication-title: Procedia CIRP 70 – year: 2017 ident: br0530 article-title: Development Workflows for Data Scientists – year: 2019 ident: br0010 article-title: State of AI – ident: br0350 article-title: Sentiment analysis using product review data – year: 2008 ident: br0660 article-title: Frameworks, Methodologies and Processes – reference: Microsoft Team, Data Science Process Documentation (2017). – start-page: 154 year: 2009 end-page: 159 ident: br0310 article-title: Data mining in production planning and scheduling: a review publication-title: 2009 2nd Conference on Data Mining and Optimization – reference: M. Colas, I. Finck, J. Buvat, R. Nambiar, R.R. Singh, Cracking the data conundrum: How successful companies make big data operational, Capgemini Consulting (2014) 1–18. – year: 2019 ident: br0390 article-title: Advancements in streaming data storage, real-time analysis and machine learning – ident: br0830 article-title: Data science methodology for cybersecurity projects – ident: br0230 article-title: Customer life time value prediction using embeddings, CoRR – start-page: 908 year: 2015 end-page: 917 ident: br0570 article-title: Guiding the introduction of big data in organizations: a methodology with business- and data-driven ideation and enterprise architecture management-based implementation publication-title: 2015 48th Hawaii International Conference on System Sciences – reference: E. Colson, Why Data, Science Teams Need Generalists, Not Specialists, Harvard Business Review. – year: 2012 ident: br0190 article-title: Data Scientist Definition – reference: J.C. Terra, T. Angeloni, Understanding the difference between information management and knowledge management, KM Advantage (2003) 1–9. – reference: Domino Data Lab, Managing Data Science Teams (2017). – reference: A. Ferraris, A. Mazzoleni, A. Devalle, J. Couturier, Big data analytics capabilities and knowledge management: impact on firm performance, Management Decision. – volume: 4 start-page: 156 year: 2011 end-page: 162 ident: br0610 article-title: On the attributes of a critical literature review publication-title: Coach. An. Int. J. Theory Res. Pract. – reference: Nicholas J Hotz, Jeffrey Saltz, Domino Data Science Lifecycle – Data Science Project Management (2018). – year: 2014 ident: 10.1016/j.bdr.2020.100183_br0120 – volume: 68 start-page: 2720 issue: 12 year: 2017 ident: 10.1016/j.bdr.2020.100183_br0080 article-title: Predicting data science sociotechnical execution challenges by categorizing data science projects publication-title: J. Assoc. Inf. Sci. Technol. doi: 10.1002/asi.23873 – start-page: 2320 year: 2017 ident: 10.1016/j.bdr.2020.100183_br0480 article-title: Predicting outcomes for big data projects: big data project dynamics (bdpd): research in progress – ident: 10.1016/j.bdr.2020.100183_br0650 – volume: 37 start-page: 215 issue: 2 year: 2004 ident: 10.1016/j.bdr.2020.100183_br0240 article-title: An intelligent system for customer targeting: a data mining approach publication-title: Decis. Support Syst. doi: 10.1016/S0167-9236(03)00008-3 – ident: 10.1016/j.bdr.2020.100183_br0490 – start-page: 2072 year: 2015 ident: 10.1016/j.bdr.2020.100183_br0170 article-title: Towards methods for systematic research on big data – ident: 10.1016/j.bdr.2020.100183_br0130 – start-page: 1112 year: 2016 ident: 10.1016/j.bdr.2020.100183_br0420 article-title: The big data analytics gold rush: a research framework for coordination and governance – ident: 10.1016/j.bdr.2020.100183_br0560 – ident: 10.1016/j.bdr.2020.100183_br0580 – ident: 10.1016/j.bdr.2020.100183_br0820 – start-page: 2066 year: 2015 ident: 10.1016/j.bdr.2020.100183_br0070 article-title: The need for new processes, methodologies and tools to support big data teams and improve big data project effectiveness – ident: 10.1016/j.bdr.2020.100183_br0220 – year: 2018 ident: 10.1016/j.bdr.2020.100183_br0090 article-title: Exploring project management methodologies used within data science teams – start-page: 87 year: 2016 ident: 10.1016/j.bdr.2020.100183_br0260 article-title: Financial time-series data analysis using deep convolutional neural networks – year: 2016 ident: 10.1016/j.bdr.2020.100183_br0410 – start-page: 1 year: 2019 ident: 10.1016/j.bdr.2020.100183_br0700 article-title: Socio-technical affordances for stigmergic coordination implemented in midst, a tool for data-science teams – volume: 13 start-page: 2039 issue: 4 year: 2017 ident: 10.1016/j.bdr.2020.100183_br0300 article-title: A manufacturing big data solution for active preventive maintenance publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2017.2670505 – year: 2018 ident: 10.1016/j.bdr.2020.100183_br0440 – start-page: 1809 year: 2015 ident: 10.1016/j.bdr.2020.100183_br0330 article-title: E-commerce in your inbox: product recommendations at scale – start-page: 154 year: 2009 ident: 10.1016/j.bdr.2020.100183_br0310 article-title: Data mining in production planning and scheduling: a review – volume: 28 start-page: 1147 issue: 5 year: 2016 ident: 10.1016/j.bdr.2020.100183_br0340 article-title: Connecting social media to e-commerce: cold-start product recommendation using microblogging information publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2015.2508816 – ident: 10.1016/j.bdr.2020.100183_br0710 – ident: 10.1016/j.bdr.2020.100183_br0110 – ident: 10.1016/j.bdr.2020.100183_br0230 – start-page: 183 year: 2017 ident: 10.1016/j.bdr.2020.100183_br0500 article-title: A framework for describing big data projects – year: 2017 ident: 10.1016/j.bdr.2020.100183_br0690 – year: 2012 ident: 10.1016/j.bdr.2020.100183_br0190 – year: 2012 ident: 10.1016/j.bdr.2020.100183_br0740 – volume: 275 start-page: 1 year: 2014 ident: 10.1016/j.bdr.2020.100183_br0250 article-title: Evaluation of clustering algorithms for financial risk analysis using mcdm methods publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.02.137 – ident: 10.1016/j.bdr.2020.100183_br0540 – ident: 10.1016/j.bdr.2020.100183_br0670 – start-page: 908 year: 2015 ident: 10.1016/j.bdr.2020.100183_br0570 article-title: Guiding the introduction of big data in organizations: a methodology with business- and data-driven ideation and enterprise architecture management-based implementation – volume: 7 start-page: 86 issue: 1 year: 2006 ident: 10.1016/j.bdr.2020.100183_br0290 article-title: Machine learning in bioinformatics publication-title: Brief. Bioinform. doi: 10.1093/bib/bbk007 – ident: 10.1016/j.bdr.2020.100183_br0840 – year: 2017 ident: 10.1016/j.bdr.2020.100183_br0530 – ident: 10.1016/j.bdr.2020.100183_br0350 – year: 2012 ident: 10.1016/j.bdr.2020.100183_br0790 – ident: 10.1016/j.bdr.2020.100183_br0850 – ident: 10.1016/j.bdr.2020.100183_br0550 – volume: 43 start-page: 33 issue: 1 year: 2018 ident: 10.1016/j.bdr.2020.100183_br0180 article-title: Data science roles and the types of data science programs publication-title: Commun. Assoc. Inf. Syst. – volume: 4 start-page: 156 issue: 2 year: 2011 ident: 10.1016/j.bdr.2020.100183_br0610 article-title: On the attributes of a critical literature review publication-title: Coach. An. Int. J. Theory Res. Pract. doi: 10.1080/17521882.2011.596485 – volume: 13 start-page: 13 issue: 1 year: 2010 ident: 10.1016/j.bdr.2020.100183_br0370 article-title: Artificial intelligence in supply chain management: theory and applications publication-title: Int. J. Logist. doi: 10.1080/13675560902736537 – start-page: 1603 year: 2016 ident: 10.1016/j.bdr.2020.100183_br0640 article-title: Kdd meets big data – volume: 33 start-page: 94 year: 2016 ident: 10.1016/j.bdr.2020.100183_br0270 article-title: Machine learning approaches in medical image analysis: from detection to diagnosis publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.06.032 – volume: 58 start-page: 4741 issue: 9 year: 2009 ident: 10.1016/j.bdr.2020.100183_br0380 article-title: Intelligent vehicle power control based on machine learning of optimal control parameters and prediction of road type and traffic congestion publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2009.2027710 – volume: 165 start-page: 293 year: 2015 ident: 10.1016/j.bdr.2020.100183_br0750 article-title: Managing a big data project: the case of Ramco Cements Limited publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2014.12.032 – volume: 34 start-page: 87 issue: 1 year: 2009 ident: 10.1016/j.bdr.2020.100183_br0810 article-title: Fernández-Baizán, Toward data mining engineering: a software engineering approach publication-title: Inf. Sci. – ident: 10.1016/j.bdr.2020.100183_br0780 – year: 2017 ident: 10.1016/j.bdr.2020.100183_br0450 – volume: 16 start-page: 199 issue: 3 year: 2001 ident: 10.1016/j.bdr.2020.100183_br0050 article-title: Statistical modeling: the two cultures (with comments and a rejoinder by the author) publication-title: Stat. Sci. doi: 10.1214/ss/1009213726 – volume: 4 start-page: 185 issue: 8 year: 2008 ident: 10.1016/j.bdr.2020.100183_br0060 article-title: An epistemological focus on the concept of science: a basic proposal based on Kuhn, Popper, Lakatos and Feyerabend publication-title: Andamios doi: 10.29092/uacm.v4i8.307 – ident: 10.1016/j.bdr.2020.100183_br0520 – volume: 36 start-page: 700 issue: 5 year: 2016 ident: 10.1016/j.bdr.2020.100183_br0730 article-title: A review and future direction of agile, business intelligence, analytics and data science publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2016.04.013 – ident: 10.1016/j.bdr.2020.100183_br0430 – volume: 70 start-page: 263 year: 2017 ident: 10.1016/j.bdr.2020.100183_br0600 article-title: Critical analysis of big data challenges and analytical methods publication-title: J. Bus. Res. doi: 10.1016/j.jbusres.2016.08.001 – ident: 10.1016/j.bdr.2020.100183_br0360 – volume: 3 start-page: 19 issue: 1 year: 2019 ident: 10.1016/j.bdr.2020.100183_br0720 article-title: Big data management canvas: a reference model for value creation from data publication-title: Big Data Cogn. Comput. doi: 10.3390/bdcc3010019 – ident: 10.1016/j.bdr.2020.100183_br0100 – volume: 20 start-page: 318 issue: 3 year: 2015 ident: 10.1016/j.bdr.2020.100183_br0280 article-title: Machine-learning approaches in drug discovery: methods and applications publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2014.10.012 – ident: 10.1016/j.bdr.2020.100183_br0620 – year: 2008 ident: 10.1016/j.bdr.2020.100183_br0660 – year: 2019 ident: 10.1016/j.bdr.2020.100183_br0390 – start-page: 99 year: 2016 ident: 10.1016/j.bdr.2020.100183_br0400 article-title: Benchmarking state-of-the-art deep learning software tools – ident: 10.1016/j.bdr.2020.100183_br0320 – start-page: 162 year: 2018 ident: 10.1016/j.bdr.2020.100183_br0470 article-title: Analytics canvas – a framework for the design and specification of data analytics projects – start-page: 2331 year: 2017 ident: 10.1016/j.bdr.2020.100183_br0760 article-title: Agile big data analytics: analyticsops for data science – ident: 10.1016/j.bdr.2020.100183_br0200 – year: 2019 ident: 10.1016/j.bdr.2020.100183_br0010 – year: 2011 ident: 10.1016/j.bdr.2020.100183_br0140 – ident: 10.1016/j.bdr.2020.100183_br0800 – volume: 50 start-page: 559 issue: 3 year: 2011 ident: 10.1016/j.bdr.2020.100183_br0210 article-title: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2010.08.006 – ident: 10.1016/j.bdr.2020.100183_br0040 – ident: 10.1016/j.bdr.2020.100183_br0020 – ident: 10.1016/j.bdr.2020.100183_br0830 – volume: 5 start-page: 13 issue: 4 year: 2000 ident: 10.1016/j.bdr.2020.100183_br0630 article-title: The crisp-dm model: the new blueprint for data mining publication-title: J. Data Warehous. – ident: 10.1016/j.bdr.2020.100183_br0150 – ident: 10.1016/j.bdr.2020.100183_br0510 – ident: 10.1016/j.bdr.2020.100183_br0770 – start-page: 2872 year: 2016 ident: 10.1016/j.bdr.2020.100183_br0460 article-title: Big data team process methodologies: a literature review and the identification of key factors for a project's success – ident: 10.1016/j.bdr.2020.100183_br0160 – volume: vol. 64 year: 2001 ident: 10.1016/j.bdr.2020.100183_br0680 article-title: Ramsys - a methodology for supporting rapid remote collaborative data mining projects – ident: 10.1016/j.bdr.2020.100183_br0590 – ident: 10.1016/j.bdr.2020.100183_br0030 |
SSID | ssj0001385388 |
Score | 2.411701 |
Snippet | Data science has employed great research efforts in developing advanced analytics, improving data models and cultivating new algorithms. However, not many... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 100183 |
SubjectTerms | Big data Data science Data science methodology Knowledge management Organizational impacts Project life-cycle |
Title | Data Science Methodologies: Current Challenges and Future Approaches |
URI | https://dx.doi.org/10.1016/j.bdr.2020.100183 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I8qj8sCEFJr4lZitaqkKVTsAFd0iO3akIhQqGlZ-O7Zj85CAgSVRIp-UfLHvbOfu-wA4KxOqkOY80hnDEdGSR1kmzCFVkhY6JsSl_E-mbDQjN3M6b4F-qIWxaZXe9zc-3Xlrf6fr0ewuF4vuHbIk2ylnKMaOxdtWsJPU9vKLt-RznwWbgOTkJ237yBqEn5suzUsqywqKGjKiDP8cnr6EnOE22PRzRdhrHmcHtHS1C7aCDgP0w3IPDAaiFuESTpwmtPNpenUJPQET7AfVlBUUlYJDxyUCe55SXK_2wWx4dd8fRV4dISoQT-uIaoR4gYRlkEFFiW2RasZ4wczLWB42bEaisAFakTJWBTNrK8KyMhYJUSwpU3wA1qrnSh8CKKTSkhGKJTPLEUa5xCojPBGCcqyQaIM4gJIXnjrcKlg85SFH7DE3OOYWx7zBsQ3OP0yWDW_GX41JQDr_9vFz49d_Nzv6n9kx2EA2McVSsNITsFa_vOpTM7OoZcd1nQ5Y712PR1N7Ht8-jN8BBoPKqg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGWDhjShPD0xIoYntODFbVagKtF1opW6WHTtSESoVDSvfju3YPCRgYImUKEdKTnLvtZPrcwA4L5NUIc1YpHOKI6Ili_JcmE2mZFromBDX8j8c0f6E3E3TaQN0w1oY21bpc3-d01229kfans32YjZrPyArsp0ximLsVLxXwCox4WttDC7fks8PLdhUJOc_aQGRRYS_m67PSyorC4pqNaIc_1yfvtSc3hbY8INF2KmvZxs09HwHbAYjBujjchdcX4tKhF04dKbQLqnp5RX0CkywG2xTllDMFew5MRHY8ZrierkHJr2bcbcfeXuEqEAsq6JUI8QKJKyEDCpKbFep5pQV1NyMFWLDJhSFrdCKlLEqqJlcEZqXsUiIokmZ4X3QnD_P9QGAQiotqWFPUjMfoSmTWOWEJUKkDCskWiAOpPDCa4dbC4snHprEHrnhkVseec1jC1x8QBa1cMZfJ5PANP_29LlJ7L_DDv8HOwNr_fFwwAe3o_sjsI5sl4rVY02PQbN6edUnZphRyVP3Gr0DiU_KlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Science+Methodologies%3A+Current+Challenges+and+Future+Approaches&rft.jtitle=Big+data+research&rft.au=Martinez%2C+I%C3%B1igo&rft.au=Viles%2C+Elisabeth&rft.au=G.+Olaizola%2C+Igor&rft.date=2021-05-15&rft.issn=2214-5796&rft.volume=24&rft.spage=100183&rft_id=info:doi/10.1016%2Fj.bdr.2020.100183&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bdr_2020_100183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5796&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5796&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5796&client=summon |