Data Science Methodologies: Current Challenges and Future Approaches

Data science has employed great research efforts in developing advanced analytics, improving data models and cultivating new algorithms. However, not many authors have come across the organizational and socio-technical challenges that arise when executing a data science project: lack of vision and c...

Full description

Saved in:
Bibliographic Details
Published inBig data research Vol. 24; p. 100183
Main Authors Martinez, Iñigo, Viles, Elisabeth, G. Olaizola, Igor
Format Journal Article
LanguageEnglish
Published Elsevier Inc 15.05.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Data science has employed great research efforts in developing advanced analytics, improving data models and cultivating new algorithms. However, not many authors have come across the organizational and socio-technical challenges that arise when executing a data science project: lack of vision and clear objectives, a biased emphasis on technical issues, a low level of maturity for ad-hoc projects and the ambiguity of roles in data science are among these challenges. Few methodologies have been proposed on the literature that tackle these type of challenges, some of them date back to the mid-1990, and consequently they are not updated to the current paradigm and the latest developments in big data and machine learning technologies. In addition, fewer methodologies offer a complete guideline across team, project and data & information management. In this article we would like to explore the necessity of developing a more holistic approach for carrying out data science projects. We first review methodologies that have been presented on the literature to work on data science projects and classify them according to the their focus: project, team, data and information management. Finally, we propose a conceptual framework containing general characteristics that a methodology for managing data science projects with a holistic point of view should have. This framework can be used by other researchers as a roadmap for the design of new data science methodologies or the updating of existing ones.
AbstractList Data science has employed great research efforts in developing advanced analytics, improving data models and cultivating new algorithms. However, not many authors have come across the organizational and socio-technical challenges that arise when executing a data science project: lack of vision and clear objectives, a biased emphasis on technical issues, a low level of maturity for ad-hoc projects and the ambiguity of roles in data science are among these challenges. Few methodologies have been proposed on the literature that tackle these type of challenges, some of them date back to the mid-1990, and consequently they are not updated to the current paradigm and the latest developments in big data and machine learning technologies. In addition, fewer methodologies offer a complete guideline across team, project and data & information management. In this article we would like to explore the necessity of developing a more holistic approach for carrying out data science projects. We first review methodologies that have been presented on the literature to work on data science projects and classify them according to the their focus: project, team, data and information management. Finally, we propose a conceptual framework containing general characteristics that a methodology for managing data science projects with a holistic point of view should have. This framework can be used by other researchers as a roadmap for the design of new data science methodologies or the updating of existing ones.
ArticleNumber 100183
Author Viles, Elisabeth
Martinez, Iñigo
G. Olaizola, Igor
Author_xml – sequence: 1
  givenname: Iñigo
  orcidid: 0000-0001-8174-9272
  surname: Martinez
  fullname: Martinez, Iñigo
  email: imartinez@vicomtech.org
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain
– sequence: 2
  givenname: Elisabeth
  orcidid: 0000-0002-5080-482X
  surname: Viles
  fullname: Viles, Elisabeth
  email: eviles@tecnun.es
  organization: TECNUN School of Engineering, University of Navarra, Donostia-San Sebastián 20018, Spain
– sequence: 3
  givenname: Igor
  orcidid: 0000-0002-9965-2038
  surname: G. Olaizola
  fullname: G. Olaizola, Igor
  email: iolaizola@vicomtech.org
  organization: Vicomtech Foundation, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20009, Spain
BookMark eNp9kM9KAzEQh4NUsNY-gLe8wNb82SZZPZWtVaHiQQVvISazbcq6KUkq-PZuWb148DQz8PuGme8cjbrQAUKXlMwooeJqN3t3ccYIO86EKn6CxozRspgr8jb67WUlztA0pR3pM1zNuVJjtFyabPCz9dBZwI-Qt8GFNmw8pGtcH2KELuN6a9oWug0kbDqHV4d8iIAX-30Mxm4hXaDTxrQJpj91gl5Xty_1fbF-unuoF-vCskrmYg6MVZYZQrhktuGMV5USlRX94ZQLyZUkhrGSurIhzgqmWClUQwwtnaCN5BMkh702hpQiNNr6bLIPXY7Gt5oSffShd7r3oY8-9OCjJ-kfch_9h4lf_zI3AwP9S58eok6DJucj2Kxd8P_Q3y_bd-U
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3375764
crossref_primary_10_1080_2573234X_2023_2285483
crossref_primary_10_1007_s00163_024_00442_w
crossref_primary_10_3390_math12050715
crossref_primary_10_1109_ACCESS_2024_3444700
crossref_primary_10_1017_dce_2023_22
crossref_primary_10_55643_fcaptp_2_55_2024_4349
crossref_primary_10_1080_12460125_2022_2043576
crossref_primary_10_1108_BIJ_09_2022_0550
crossref_primary_10_3390_math12172663
crossref_primary_10_1108_BIJ_03_2023_0160
crossref_primary_10_1109_TSE_2023_3291003
crossref_primary_10_1108_K_04_2022_0575
crossref_primary_10_1109_ACCESS_2024_3365586
crossref_primary_10_3390_app142411612
crossref_primary_10_1016_j_rineng_2024_102132
crossref_primary_10_1016_j_cirp_2024_06_003
crossref_primary_10_1038_s42254_024_00743_y
crossref_primary_10_1080_0952813X_2022_2153276
crossref_primary_10_1080_08839514_2022_2151160
crossref_primary_10_2478_amns_2024_2906
crossref_primary_10_1016_j_bdr_2021_100245
crossref_primary_10_1016_j_compind_2022_103833
crossref_primary_10_1007_s13132_023_01545_w
crossref_primary_10_1007_s00287_022_01508_6
crossref_primary_10_1080_16258312_2022_2064721
crossref_primary_10_1097_st9_0000000000000025
crossref_primary_10_1016_j_simpa_2023_100575
crossref_primary_10_7717_peerj_cs_862
crossref_primary_10_1186_s40537_024_00916_7
crossref_primary_10_1109_TEM_2023_3287759
crossref_primary_10_26417_236hbm84v
crossref_primary_10_1016_j_jjimei_2022_100124
crossref_primary_10_1109_MS_2024_3435024
Cites_doi 10.1002/asi.23873
10.1016/S0167-9236(03)00008-3
10.1109/TII.2017.2670505
10.1109/TKDE.2015.2508816
10.1016/j.ins.2014.02.137
10.1093/bib/bbk007
10.1080/17521882.2011.596485
10.1080/13675560902736537
10.1016/j.media.2016.06.032
10.1109/TVT.2009.2027710
10.1016/j.ijpe.2014.12.032
10.1214/ss/1009213726
10.29092/uacm.v4i8.307
10.1016/j.ijinfomgt.2016.04.013
10.1016/j.jbusres.2016.08.001
10.3390/bdcc3010019
10.1016/j.drudis.2014.10.012
10.1016/j.dss.2010.08.006
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.bdr.2020.100183
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2214-580X
ExternalDocumentID 10_1016_j_bdr_2020_100183
S2214579620300514
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
AAYFN
ABBOA
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
FDB
FIRID
FNPLU
FYGXN
GBLVA
KOM
M41
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSV
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EJD
RIG
SSH
ID FETCH-LOGICAL-c297t-5e229c2a00372cf32399869c602013673870a2241d4f0dc6282468f0a14d61f73
IEDL.DBID .~1
ISSN 2214-5796
IngestDate Thu Apr 24 23:11:16 EDT 2025
Tue Jul 01 03:23:50 EDT 2025
Fri Feb 23 02:45:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data science
Big data
Project life-cycle
Knowledge management
Data science methodology
Organizational impacts
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-5e229c2a00372cf32399869c602013673870a2241d4f0dc6282468f0a14d61f73
ORCID 0000-0002-9965-2038
0000-0001-8174-9272
0000-0002-5080-482X
ParticipantIDs crossref_citationtrail_10_1016_j_bdr_2020_100183
crossref_primary_10_1016_j_bdr_2020_100183
elsevier_sciencedirect_doi_10_1016_j_bdr_2020_100183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-15
PublicationDateYYYYMMDD 2021-05-15
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Big data research
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Guo (br0790) 2012
Jennifer Prendki, Lessons in Agile Machine Learning from Walmart, 2017.
Kaggle, Kaggle: Your Machine Learning and Data Science Community.
Kühn, Joppen, Reinhart, Röltgen, von Enzberg, Dumitrescu (br0470) 2018
Sivarajah, Kamal, Irani, Weerakkody (br0600) 2017; 70
Frank Lo, What is Data Science?.
VentureBeat, Why do 87% of data science projects never make it into production? 2019.
P. Warden, Why the term “data science” is flawed but useful - O'Reilly Radar (2011).
de Bruijne (br0270) 2016; 33
Saltz, Shamshurin (br0460) 2016
H. Jung, The Competition Mindset: how Kaggle and real-life Data Science diverge (2020).
Dutta, Bose (br0750) 2015; 165
Kim, Street (br0240) 2004; 37
Spoelstra, Zhang (br0410) 2016
Marbán, Segovia, Menasalvas C (br0810) 2009; 34
G. Piatetsky, Crisp-dm, still the top methodology for analytics, data mining, or data science projects, KDD News.
J.C. Terra, T. Angeloni, Understanding the difference between information management and knowledge management, KM Advantage (2003) 1–9.
Das, Cui, Campbell, Agrawal, Ramnath (br0170) 2015
Bojarski, Testa, Dworakowski, Firner, Flepp, Goyal, Jackel, Monfort, Muller, Zhang, Zhang, Zhao, Zieba (br0360)
Saltz, Armour, Sharda (br0180) 2018; 43
New Vantage, NewVantage Partners 2019 Big Data and AI Executive Survey (2019).
Shearer (br0630) 2000; 5
Wills (br0190) 2012
Saltz, Shamshurin, Connors (br0500) 2017
Lavecchia (br0280) 2015; 20
A. Jones-Farmer, R. Hoerl, How is statistical engineering different from data science?.
A. Ferraris, A. Mazzoleni, A. Devalle, J. Couturier, Big data analytics capabilities and knowledge management: impact on firm performance, Management Decision.
Ngai, Hu, Wong, Chen, Sun (br0210) 2011; 50
Chen, Chen, Huang, Huang, Chen (br0260) 2016
Saltz, Shamshurin, Connors (br0080) 2017; 68
Domino Data Lab, Managing Data Science Teams (2017).
Granville (br0120) 2014
Microsoft Team, Data Science Process Documentation (2017).
Grbovic, Radosavljevic, Djuric, Bhamidipati, Savla, Bhagwan, Sharp (br0330) 2015
Ismail, Othman, Bakar (br0310) 2009
Maguire (br0450) 2017
Min (br0370) 2010; 13
Crowston, Saltz, Rezgui, Hegde, You (br0700) 2019
Fang, Zhan (br0350)
M. Colas, I. Finck, J. Buvat, R. Nambiar, R.R. Singh, Cracking the data conundrum: How successful companies make big data operational, Capgemini Consulting (2014) 1–18.
Vanauer, Böhle, Hellingrath (br0570) 2015
Saunders, Rojon (br0610) 2011; 4
Bhardwaj, Bhattacherjee, Chavan, Deshpande, Elmore, Madden, Parameswaran (br0520)
Kwon, Kim, Kim, Suh, Kim, Kim (br0320)
García Jiménez (br0060) 2008; 4
Byrne (br0530) 2017
J. Thomas, AI Ops — Managing the End-to-End Lifecycle of AI, 2019.
Shi, Wang, Xu, Chu (br0400) 2016
Becker (br0480) 2017
Collier (br0740) 2012
Grady, Payne, Parker (br0760) 2017
Kou, Peng, Wang (br0250) 2014; 275
Jeffrey Saltz, Nicholas J Hotz, CRISP-DM – Data Science Project Management (2019).
E. Colson, Why Data, Science Teams Need Generalists, Not Specialists, Harvard Business Review.
Caraguel (br0440) 2018
Chetan Sharma, Jan Overgoor, Scaling Knowledge at Airbnb (2016).
S. Ransbotham, D. Kiron, P.K. Prentice, Minding the analytics gap, MIT Sloan Management Review, 2015.
S. Brown, Likert scale examples for surveys, ANR Program evaluation, Iowa State University, USA.
Grady (br0640) 2016
Gartner, Taking a First Step to Advanced Analytics.
D. Dietrich, Data analytics lifecycle processes, US Patent 9,262,493 (Feb. 16 2016).
D. Conway, The data science venn diagram, Retrieved December 13 (2010) 2017.
Ellis (br0660) 2008
Loukides (br0140) 2011
Larson, Chang (br0730) 2016; 36
K. Walch, Why Agile Methodologies Miss the Mark for AI & ML Projects (2020).
Saltz, Hotz, Wild, Stirling (br0090) 2018
Park, Chen, Kiliaris, Kuang, Masrur, Phillips, Murphey (br0380) 2009; 58
Benaich, Hogarth (br0010) 2019
Larrañaga, Calvo, Santana, Bielza, Galdiano, Inza, Lozano, Armañanzas, Santafé, Pérez, Robles (br0290) 2006; 7
Nicholas J Hotz, Jeffrey Saltz, Domino Data Science Lifecycle – Data Science Project Management (2018).
Breiman (br0050) 2001; 16
Green (br0390) 2019
Jurney (br0690) 2017
Saltz (br0070) 2015
Espinosa, Armour (br0420) 2016
Moyle, Jorge (br0680) 2001; vol. 64
Zhao, Li, He, Chang, Wen, Li (br0340) 2016; 28
John Rollings, Foundational methodology for data science (2015).
Addo, Guegan, Hassani (br0220)
Wan, Tang, Li, Wang, Liu, Abbas, Vasilakos (br0300) 2017; 13
Jeffrey Saltz, Nicholas J Hotz, Shortcomings of Ad Hoc – Data Science Project Management (2018).
Chamberlain, Cardoso, Liu, Pagliari, Deisenroth (br0230)
Foroughi, Luksch (br0830)
Kaufmann (br0720) 2019; 3
de Bruijne (10.1016/j.bdr.2020.100183_br0270) 2016; 33
Saltz (10.1016/j.bdr.2020.100183_br0180) 2018; 43
Kou (10.1016/j.bdr.2020.100183_br0250) 2014; 275
Caraguel (10.1016/j.bdr.2020.100183_br0440) 2018
Ismail (10.1016/j.bdr.2020.100183_br0310) 2009
10.1016/j.bdr.2020.100183_br0580
10.1016/j.bdr.2020.100183_br0020
10.1016/j.bdr.2020.100183_br0780
10.1016/j.bdr.2020.100183_br0770
10.1016/j.bdr.2020.100183_br0650
Foroughi (10.1016/j.bdr.2020.100183_br0830)
Chen (10.1016/j.bdr.2020.100183_br0260) 2016
Larson (10.1016/j.bdr.2020.100183_br0730) 2016; 36
10.1016/j.bdr.2020.100183_br0850
Saltz (10.1016/j.bdr.2020.100183_br0460) 2016
Kaufmann (10.1016/j.bdr.2020.100183_br0720) 2019; 3
Larrañaga (10.1016/j.bdr.2020.100183_br0290) 2006; 7
Saunders (10.1016/j.bdr.2020.100183_br0610) 2011; 4
Park (10.1016/j.bdr.2020.100183_br0380) 2009; 58
Crowston (10.1016/j.bdr.2020.100183_br0700) 2019
Grbovic (10.1016/j.bdr.2020.100183_br0330) 2015
Kühn (10.1016/j.bdr.2020.100183_br0470) 2018
Becker (10.1016/j.bdr.2020.100183_br0480) 2017
10.1016/j.bdr.2020.100183_br0150
10.1016/j.bdr.2020.100183_br0590
10.1016/j.bdr.2020.100183_br0030
Sivarajah (10.1016/j.bdr.2020.100183_br0600) 2017; 70
Spoelstra (10.1016/j.bdr.2020.100183_br0410) 2016
10.1016/j.bdr.2020.100183_br0670
10.1016/j.bdr.2020.100183_br0100
10.1016/j.bdr.2020.100183_br0540
Grady (10.1016/j.bdr.2020.100183_br0640) 2016
10.1016/j.bdr.2020.100183_br0620
Bhardwaj (10.1016/j.bdr.2020.100183_br0520)
Jurney (10.1016/j.bdr.2020.100183_br0690) 2017
10.1016/j.bdr.2020.100183_br0820
Addo (10.1016/j.bdr.2020.100183_br0220)
Kwon (10.1016/j.bdr.2020.100183_br0320)
Lavecchia (10.1016/j.bdr.2020.100183_br0280) 2015; 20
Byrne (10.1016/j.bdr.2020.100183_br0530) 2017
Saltz (10.1016/j.bdr.2020.100183_br0500) 2017
Granville (10.1016/j.bdr.2020.100183_br0120) 2014
Das (10.1016/j.bdr.2020.100183_br0170) 2015
Zhao (10.1016/j.bdr.2020.100183_br0340) 2016; 28
Shi (10.1016/j.bdr.2020.100183_br0400) 2016
Grady (10.1016/j.bdr.2020.100183_br0760) 2017
10.1016/j.bdr.2020.100183_br0160
10.1016/j.bdr.2020.100183_br0040
Ngai (10.1016/j.bdr.2020.100183_br0210) 2011; 50
10.1016/j.bdr.2020.100183_br0560
10.1016/j.bdr.2020.100183_br0110
10.1016/j.bdr.2020.100183_br0550
10.1016/j.bdr.2020.100183_br0430
Maguire (10.1016/j.bdr.2020.100183_br0450) 2017
Shearer (10.1016/j.bdr.2020.100183_br0630) 2000; 5
Wills (10.1016/j.bdr.2020.100183_br0190) 2012
10.1016/j.bdr.2020.100183_br0510
Kim (10.1016/j.bdr.2020.100183_br0240) 2004; 37
10.1016/j.bdr.2020.100183_br0710
Bojarski (10.1016/j.bdr.2020.100183_br0360)
Collier (10.1016/j.bdr.2020.100183_br0740) 2012
Vanauer (10.1016/j.bdr.2020.100183_br0570) 2015
Fang (10.1016/j.bdr.2020.100183_br0350)
Green (10.1016/j.bdr.2020.100183_br0390) 2019
García Jiménez (10.1016/j.bdr.2020.100183_br0060) 2008; 4
Loukides (10.1016/j.bdr.2020.100183_br0140) 2011
Moyle (10.1016/j.bdr.2020.100183_br0680) 2001; vol. 64
Guo (10.1016/j.bdr.2020.100183_br0790) 2012
Wan (10.1016/j.bdr.2020.100183_br0300) 2017; 13
Ellis (10.1016/j.bdr.2020.100183_br0660) 2008
Dutta (10.1016/j.bdr.2020.100183_br0750) 2015; 165
Benaich (10.1016/j.bdr.2020.100183_br0010) 2019
10.1016/j.bdr.2020.100183_br0490
10.1016/j.bdr.2020.100183_br0130
10.1016/j.bdr.2020.100183_br0200
Marbán (10.1016/j.bdr.2020.100183_br0810) 2009; 34
10.1016/j.bdr.2020.100183_br0840
Saltz (10.1016/j.bdr.2020.100183_br0080) 2017; 68
Chamberlain (10.1016/j.bdr.2020.100183_br0230)
10.1016/j.bdr.2020.100183_br0800
Breiman (10.1016/j.bdr.2020.100183_br0050) 2001; 16
Min (10.1016/j.bdr.2020.100183_br0370) 2010; 13
Saltz (10.1016/j.bdr.2020.100183_br0090) 2018
Espinosa (10.1016/j.bdr.2020.100183_br0420) 2016
Saltz (10.1016/j.bdr.2020.100183_br0070) 2015
References_xml – volume: 13
  start-page: 2039
  year: 2017
  end-page: 2047
  ident: br0300
  article-title: A manufacturing big data solution for active preventive maintenance
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 1809
  year: 2015
  end-page: 1818
  ident: br0330
  article-title: E-commerce in your inbox: product recommendations at scale
  publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– year: 2018
  ident: br0440
  article-title: Stef Caraguel, Data Science Challenges
– start-page: 87
  year: 2016
  end-page: 92
  ident: br0260
  article-title: Financial time-series data analysis using deep convolutional neural networks
  publication-title: 2016 7th International Conference on Cloud Computing and Big Data
– year: 2012
  ident: br0790
  article-title: Software tools to facilitate research programming
– reference: G. Piatetsky, Crisp-dm, still the top methodology for analytics, data mining, or data science projects, KDD News.
– reference: S. Ransbotham, D. Kiron, P.K. Prentice, Minding the analytics gap, MIT Sloan Management Review, 2015.
– volume: 34
  start-page: 87
  year: 2009
  end-page: 107
  ident: br0810
  article-title: Fernández-Baizán, Toward data mining engineering: a software engineering approach
  publication-title: Inf. Sci.
– start-page: 2072
  year: 2015
  end-page: 2081
  ident: br0170
  article-title: Towards methods for systematic research on big data
  publication-title: 2015 IEEE International Conference on Big Data (Big Data)
– volume: 58
  start-page: 4741
  year: 2009
  end-page: 4756
  ident: br0380
  article-title: Intelligent vehicle power control based on machine learning of optimal control parameters and prediction of road type and traffic congestion
  publication-title: IEEE Trans. Veh. Technol.
– year: 2017
  ident: br0450
  article-title: Data & Advanced Analytics: High Stakes, High Rewards
– start-page: 183
  year: 2017
  end-page: 195
  ident: br0500
  article-title: A framework for describing big data projects
  publication-title: Business Information Systems Workshops
– year: 2017
  ident: br0690
  article-title: Agile Data Science 2.0: Building Full-Stack Data Analytics Applications with Spark
– reference: D. Conway, The data science venn diagram, Retrieved December 13 (2010) 2017.
– volume: 4
  start-page: 185
  year: 2008
  end-page: 202
  ident: br0060
  article-title: An epistemological focus on the concept of science: a basic proposal based on Kuhn, Popper, Lakatos and Feyerabend
  publication-title: Andamios
– reference: Jeffrey Saltz, Nicholas J Hotz, Shortcomings of Ad Hoc – Data Science Project Management (2018).
– reference: VentureBeat, Why do 87% of data science projects never make it into production? 2019.
– reference: Frank Lo, What is Data Science?.
– ident: br0360
  article-title: End to end learning for self-driving cars, CoRR
– volume: 7
  start-page: 86
  year: 2006
  end-page: 112
  ident: br0290
  article-title: Machine learning in bioinformatics
  publication-title: Brief. Bioinform.
– reference: D. Dietrich, Data analytics lifecycle processes, US Patent 9,262,493 (Feb. 16 2016).
– volume: 43
  start-page: 33
  year: 2018
  ident: br0180
  article-title: Data science roles and the types of data science programs
  publication-title: Commun. Assoc. Inf. Syst.
– volume: 13
  start-page: 13
  year: 2010
  end-page: 39
  ident: br0370
  article-title: Artificial intelligence in supply chain management: theory and applications
  publication-title: Int. J. Logist.
– year: 2016
  ident: br0410
  article-title: Gopi Kumar, Data Science Doesn't Just Happen, It Takes a Process
– volume: 275
  start-page: 1
  year: 2014
  end-page: 12
  ident: br0250
  article-title: Evaluation of clustering algorithms for financial risk analysis using mcdm methods
  publication-title: Inf. Sci.
– volume: 5
  start-page: 13
  year: 2000
  end-page: 22
  ident: br0630
  article-title: The crisp-dm model: the new blueprint for data mining
  publication-title: J. Data Warehous.
– reference: H. Jung, The Competition Mindset: how Kaggle and real-life Data Science diverge (2020).
– reference: Gartner, Taking a First Step to Advanced Analytics.
– volume: 33
  start-page: 94
  year: 2016
  end-page: 97
  ident: br0270
  article-title: Machine learning approaches in medical image analysis: from detection to diagnosis
  publication-title: 20th anniversary of the Medical Image Analysis journal (MedIA)
– volume: vol. 64
  year: 2001
  ident: br0680
  article-title: Ramsys - a methodology for supporting rapid remote collaborative data mining projects
  publication-title: ECML/PKDD01 Workshop: Integrating Aspects of Data Mining, Decision Support and Meta-learning (IDDM-2001)
– start-page: 2331
  year: 2017
  end-page: 2339
  ident: br0760
  article-title: Agile big data analytics: analyticsops for data science
  publication-title: 2017 IEEE International Conference on Big Data (Big Data)
– reference: John Rollings, Foundational methodology for data science (2015).
– start-page: 1603
  year: 2016
  end-page: 1608
  ident: br0640
  article-title: Kdd meets big data
  publication-title: 2016 IEEE International Conference on Big Data (Big Data)
– year: 2018
  ident: br0090
  article-title: Exploring project management methodologies used within data science teams
  publication-title: AMCIS
– volume: 70
  start-page: 263
  year: 2017
  end-page: 286
  ident: br0600
  article-title: Critical analysis of big data challenges and analytical methods
  publication-title: J. Bus. Res.
– start-page: 1112
  year: 2016
  end-page: 1121
  ident: br0420
  article-title: The big data analytics gold rush: a research framework for coordination and governance
  publication-title: 2016 49th Hawaii International Conference on System Sciences (HICSS)
– reference: Jennifer Prendki, Lessons in Agile Machine Learning from Walmart, 2017.
– reference: K. Walch, Why Agile Methodologies Miss the Mark for AI & ML Projects (2020).
– reference: S. Brown, Likert scale examples for surveys, ANR Program evaluation, Iowa State University, USA.
– volume: 20
  start-page: 318
  year: 2015
  end-page: 331
  ident: br0280
  article-title: Machine-learning approaches in drug discovery: methods and applications
  publication-title: Drug Discov. Today
– start-page: 2320
  year: 2017
  end-page: 2330
  ident: br0480
  article-title: Predicting outcomes for big data projects: big data project dynamics (bdpd): research in progress
  publication-title: 2017 IEEE International Conference on Big Data (Big Data)
– reference: Jeffrey Saltz, Nicholas J Hotz, CRISP-DM – Data Science Project Management (2019).
– volume: 28
  start-page: 1147
  year: 2016
  end-page: 1159
  ident: br0340
  article-title: Connecting social media to e-commerce: cold-start product recommendation using microblogging information
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1
  year: 2019
  end-page: 25
  ident: br0700
  article-title: Socio-technical affordances for stigmergic coordination implemented in midst, a tool for data-science teams
  publication-title: Proceedings of the ACM on Human-Computer Interaction 3 (CSCW)
– reference: Kaggle, Kaggle: Your Machine Learning and Data Science Community.
– start-page: 99
  year: 2016
  end-page: 104
  ident: br0400
  article-title: Benchmarking state-of-the-art deep learning software tools
  publication-title: 2016 7th International Conference on Cloud Computing and Big Data
– reference: New Vantage, NewVantage Partners 2019 Big Data and AI Executive Survey (2019).
– volume: 16
  start-page: 199
  year: 2001
  end-page: 231
  ident: br0050
  article-title: Statistical modeling: the two cultures (with comments and a rejoinder by the author)
  publication-title: Stat. Sci.
– year: 2011
  ident: br0140
  article-title: What Is Data Science?
– reference: Chetan Sharma, Jan Overgoor, Scaling Knowledge at Airbnb (2016).
– volume: 36
  start-page: 700
  year: 2016
  end-page: 710
  ident: br0730
  article-title: A review and future direction of agile, business intelligence, analytics and data science
  publication-title: Int. J. Inf. Manag.
– year: 2014
  ident: br0120
  article-title: Developing Analytic Talent: Becoming a Data Scientist
– start-page: 2872
  year: 2016
  end-page: 2879
  ident: br0460
  article-title: Big data team process methodologies: a literature review and the identification of key factors for a project's success
  publication-title: 2016 IEEE International Conference on Big Data (Big Data)
– reference: P. Warden, Why the term “data science” is flawed but useful - O'Reilly Radar (2011).
– volume: 3
  start-page: 19
  year: 2019
  ident: br0720
  article-title: Big data management canvas: a reference model for value creation from data
  publication-title: Big Data Cogn. Comput.
– volume: 165
  start-page: 293
  year: 2015
  end-page: 306
  ident: br0750
  article-title: Managing a big data project: the case of Ramco Cements Limited
  publication-title: Int. J. Prod. Econ.
– start-page: 2066
  year: 2015
  end-page: 2071
  ident: br0070
  article-title: The need for new processes, methodologies and tools to support big data teams and improve big data project effectiveness
  publication-title: 2015 IEEE International Conference on Big Data (Big Data)
– ident: br0220
  article-title: Credit risk analysis using machine and deep learning models
– year: 2012
  ident: br0740
  article-title: Agile Analytics: A Value-Driven Approach to Business Intelligence and Data Warehousing
– volume: 68
  start-page: 2720
  year: 2017
  end-page: 2728
  ident: br0080
  article-title: Predicting data science sociotechnical execution challenges by categorizing data science projects
  publication-title: J. Assoc. Inf. Sci. Technol.
– reference: J. Thomas, AI Ops — Managing the End-to-End Lifecycle of AI, 2019.
– volume: 37
  start-page: 215
  year: 2004
  end-page: 228
  ident: br0240
  article-title: An intelligent system for customer targeting: a data mining approach
  publication-title: Decis. Support Syst.
– volume: 50
  start-page: 559
  year: 2011
  end-page: 569
  ident: br0210
  article-title: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature
  publication-title: On quantitative methods for detection of financial fraud
– ident: br0320
  article-title: A survey of deep learning-based network anomaly detection
– ident: br0520
  article-title: Datahub: collaborative data science & dataset version management at scale
– reference: A. Jones-Farmer, R. Hoerl, How is statistical engineering different from data science?.
– start-page: 162
  year: 2018
  end-page: 167
  ident: br0470
  article-title: Analytics canvas – a framework for the design and specification of data analytics projects
  publication-title: Procedia CIRP 70
– year: 2017
  ident: br0530
  article-title: Development Workflows for Data Scientists
– year: 2019
  ident: br0010
  article-title: State of AI
– ident: br0350
  article-title: Sentiment analysis using product review data
– year: 2008
  ident: br0660
  article-title: Frameworks, Methodologies and Processes
– reference: Microsoft Team, Data Science Process Documentation (2017).
– start-page: 154
  year: 2009
  end-page: 159
  ident: br0310
  article-title: Data mining in production planning and scheduling: a review
  publication-title: 2009 2nd Conference on Data Mining and Optimization
– reference: M. Colas, I. Finck, J. Buvat, R. Nambiar, R.R. Singh, Cracking the data conundrum: How successful companies make big data operational, Capgemini Consulting (2014) 1–18.
– year: 2019
  ident: br0390
  article-title: Advancements in streaming data storage, real-time analysis and machine learning
– ident: br0830
  article-title: Data science methodology for cybersecurity projects
– ident: br0230
  article-title: Customer life time value prediction using embeddings, CoRR
– start-page: 908
  year: 2015
  end-page: 917
  ident: br0570
  article-title: Guiding the introduction of big data in organizations: a methodology with business- and data-driven ideation and enterprise architecture management-based implementation
  publication-title: 2015 48th Hawaii International Conference on System Sciences
– reference: E. Colson, Why Data, Science Teams Need Generalists, Not Specialists, Harvard Business Review.
– year: 2012
  ident: br0190
  article-title: Data Scientist Definition
– reference: J.C. Terra, T. Angeloni, Understanding the difference between information management and knowledge management, KM Advantage (2003) 1–9.
– reference: Domino Data Lab, Managing Data Science Teams (2017).
– reference: A. Ferraris, A. Mazzoleni, A. Devalle, J. Couturier, Big data analytics capabilities and knowledge management: impact on firm performance, Management Decision.
– volume: 4
  start-page: 156
  year: 2011
  end-page: 162
  ident: br0610
  article-title: On the attributes of a critical literature review
  publication-title: Coach. An. Int. J. Theory Res. Pract.
– reference: Nicholas J Hotz, Jeffrey Saltz, Domino Data Science Lifecycle – Data Science Project Management (2018).
– year: 2014
  ident: 10.1016/j.bdr.2020.100183_br0120
– volume: 68
  start-page: 2720
  issue: 12
  year: 2017
  ident: 10.1016/j.bdr.2020.100183_br0080
  article-title: Predicting data science sociotechnical execution challenges by categorizing data science projects
  publication-title: J. Assoc. Inf. Sci. Technol.
  doi: 10.1002/asi.23873
– start-page: 2320
  year: 2017
  ident: 10.1016/j.bdr.2020.100183_br0480
  article-title: Predicting outcomes for big data projects: big data project dynamics (bdpd): research in progress
– ident: 10.1016/j.bdr.2020.100183_br0650
– volume: 37
  start-page: 215
  issue: 2
  year: 2004
  ident: 10.1016/j.bdr.2020.100183_br0240
  article-title: An intelligent system for customer targeting: a data mining approach
  publication-title: Decis. Support Syst.
  doi: 10.1016/S0167-9236(03)00008-3
– ident: 10.1016/j.bdr.2020.100183_br0490
– start-page: 2072
  year: 2015
  ident: 10.1016/j.bdr.2020.100183_br0170
  article-title: Towards methods for systematic research on big data
– ident: 10.1016/j.bdr.2020.100183_br0130
– start-page: 1112
  year: 2016
  ident: 10.1016/j.bdr.2020.100183_br0420
  article-title: The big data analytics gold rush: a research framework for coordination and governance
– ident: 10.1016/j.bdr.2020.100183_br0560
– ident: 10.1016/j.bdr.2020.100183_br0580
– ident: 10.1016/j.bdr.2020.100183_br0820
– start-page: 2066
  year: 2015
  ident: 10.1016/j.bdr.2020.100183_br0070
  article-title: The need for new processes, methodologies and tools to support big data teams and improve big data project effectiveness
– ident: 10.1016/j.bdr.2020.100183_br0220
– year: 2018
  ident: 10.1016/j.bdr.2020.100183_br0090
  article-title: Exploring project management methodologies used within data science teams
– start-page: 87
  year: 2016
  ident: 10.1016/j.bdr.2020.100183_br0260
  article-title: Financial time-series data analysis using deep convolutional neural networks
– year: 2016
  ident: 10.1016/j.bdr.2020.100183_br0410
– start-page: 1
  year: 2019
  ident: 10.1016/j.bdr.2020.100183_br0700
  article-title: Socio-technical affordances for stigmergic coordination implemented in midst, a tool for data-science teams
– volume: 13
  start-page: 2039
  issue: 4
  year: 2017
  ident: 10.1016/j.bdr.2020.100183_br0300
  article-title: A manufacturing big data solution for active preventive maintenance
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2017.2670505
– year: 2018
  ident: 10.1016/j.bdr.2020.100183_br0440
– start-page: 1809
  year: 2015
  ident: 10.1016/j.bdr.2020.100183_br0330
  article-title: E-commerce in your inbox: product recommendations at scale
– start-page: 154
  year: 2009
  ident: 10.1016/j.bdr.2020.100183_br0310
  article-title: Data mining in production planning and scheduling: a review
– volume: 28
  start-page: 1147
  issue: 5
  year: 2016
  ident: 10.1016/j.bdr.2020.100183_br0340
  article-title: Connecting social media to e-commerce: cold-start product recommendation using microblogging information
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2508816
– ident: 10.1016/j.bdr.2020.100183_br0710
– ident: 10.1016/j.bdr.2020.100183_br0110
– ident: 10.1016/j.bdr.2020.100183_br0230
– start-page: 183
  year: 2017
  ident: 10.1016/j.bdr.2020.100183_br0500
  article-title: A framework for describing big data projects
– year: 2017
  ident: 10.1016/j.bdr.2020.100183_br0690
– year: 2012
  ident: 10.1016/j.bdr.2020.100183_br0190
– year: 2012
  ident: 10.1016/j.bdr.2020.100183_br0740
– volume: 275
  start-page: 1
  year: 2014
  ident: 10.1016/j.bdr.2020.100183_br0250
  article-title: Evaluation of clustering algorithms for financial risk analysis using mcdm methods
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.137
– ident: 10.1016/j.bdr.2020.100183_br0540
– ident: 10.1016/j.bdr.2020.100183_br0670
– start-page: 908
  year: 2015
  ident: 10.1016/j.bdr.2020.100183_br0570
  article-title: Guiding the introduction of big data in organizations: a methodology with business- and data-driven ideation and enterprise architecture management-based implementation
– volume: 7
  start-page: 86
  issue: 1
  year: 2006
  ident: 10.1016/j.bdr.2020.100183_br0290
  article-title: Machine learning in bioinformatics
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbk007
– ident: 10.1016/j.bdr.2020.100183_br0840
– year: 2017
  ident: 10.1016/j.bdr.2020.100183_br0530
– ident: 10.1016/j.bdr.2020.100183_br0350
– year: 2012
  ident: 10.1016/j.bdr.2020.100183_br0790
– ident: 10.1016/j.bdr.2020.100183_br0850
– ident: 10.1016/j.bdr.2020.100183_br0550
– volume: 43
  start-page: 33
  issue: 1
  year: 2018
  ident: 10.1016/j.bdr.2020.100183_br0180
  article-title: Data science roles and the types of data science programs
  publication-title: Commun. Assoc. Inf. Syst.
– volume: 4
  start-page: 156
  issue: 2
  year: 2011
  ident: 10.1016/j.bdr.2020.100183_br0610
  article-title: On the attributes of a critical literature review
  publication-title: Coach. An. Int. J. Theory Res. Pract.
  doi: 10.1080/17521882.2011.596485
– volume: 13
  start-page: 13
  issue: 1
  year: 2010
  ident: 10.1016/j.bdr.2020.100183_br0370
  article-title: Artificial intelligence in supply chain management: theory and applications
  publication-title: Int. J. Logist.
  doi: 10.1080/13675560902736537
– start-page: 1603
  year: 2016
  ident: 10.1016/j.bdr.2020.100183_br0640
  article-title: Kdd meets big data
– volume: 33
  start-page: 94
  year: 2016
  ident: 10.1016/j.bdr.2020.100183_br0270
  article-title: Machine learning approaches in medical image analysis: from detection to diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.06.032
– volume: 58
  start-page: 4741
  issue: 9
  year: 2009
  ident: 10.1016/j.bdr.2020.100183_br0380
  article-title: Intelligent vehicle power control based on machine learning of optimal control parameters and prediction of road type and traffic congestion
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2009.2027710
– volume: 165
  start-page: 293
  year: 2015
  ident: 10.1016/j.bdr.2020.100183_br0750
  article-title: Managing a big data project: the case of Ramco Cements Limited
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2014.12.032
– volume: 34
  start-page: 87
  issue: 1
  year: 2009
  ident: 10.1016/j.bdr.2020.100183_br0810
  article-title: Fernández-Baizán, Toward data mining engineering: a software engineering approach
  publication-title: Inf. Sci.
– ident: 10.1016/j.bdr.2020.100183_br0780
– year: 2017
  ident: 10.1016/j.bdr.2020.100183_br0450
– volume: 16
  start-page: 199
  issue: 3
  year: 2001
  ident: 10.1016/j.bdr.2020.100183_br0050
  article-title: Statistical modeling: the two cultures (with comments and a rejoinder by the author)
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1009213726
– volume: 4
  start-page: 185
  issue: 8
  year: 2008
  ident: 10.1016/j.bdr.2020.100183_br0060
  article-title: An epistemological focus on the concept of science: a basic proposal based on Kuhn, Popper, Lakatos and Feyerabend
  publication-title: Andamios
  doi: 10.29092/uacm.v4i8.307
– ident: 10.1016/j.bdr.2020.100183_br0520
– volume: 36
  start-page: 700
  issue: 5
  year: 2016
  ident: 10.1016/j.bdr.2020.100183_br0730
  article-title: A review and future direction of agile, business intelligence, analytics and data science
  publication-title: Int. J. Inf. Manag.
  doi: 10.1016/j.ijinfomgt.2016.04.013
– ident: 10.1016/j.bdr.2020.100183_br0430
– volume: 70
  start-page: 263
  year: 2017
  ident: 10.1016/j.bdr.2020.100183_br0600
  article-title: Critical analysis of big data challenges and analytical methods
  publication-title: J. Bus. Res.
  doi: 10.1016/j.jbusres.2016.08.001
– ident: 10.1016/j.bdr.2020.100183_br0360
– volume: 3
  start-page: 19
  issue: 1
  year: 2019
  ident: 10.1016/j.bdr.2020.100183_br0720
  article-title: Big data management canvas: a reference model for value creation from data
  publication-title: Big Data Cogn. Comput.
  doi: 10.3390/bdcc3010019
– ident: 10.1016/j.bdr.2020.100183_br0100
– volume: 20
  start-page: 318
  issue: 3
  year: 2015
  ident: 10.1016/j.bdr.2020.100183_br0280
  article-title: Machine-learning approaches in drug discovery: methods and applications
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2014.10.012
– ident: 10.1016/j.bdr.2020.100183_br0620
– year: 2008
  ident: 10.1016/j.bdr.2020.100183_br0660
– year: 2019
  ident: 10.1016/j.bdr.2020.100183_br0390
– start-page: 99
  year: 2016
  ident: 10.1016/j.bdr.2020.100183_br0400
  article-title: Benchmarking state-of-the-art deep learning software tools
– ident: 10.1016/j.bdr.2020.100183_br0320
– start-page: 162
  year: 2018
  ident: 10.1016/j.bdr.2020.100183_br0470
  article-title: Analytics canvas – a framework for the design and specification of data analytics projects
– start-page: 2331
  year: 2017
  ident: 10.1016/j.bdr.2020.100183_br0760
  article-title: Agile big data analytics: analyticsops for data science
– ident: 10.1016/j.bdr.2020.100183_br0200
– year: 2019
  ident: 10.1016/j.bdr.2020.100183_br0010
– year: 2011
  ident: 10.1016/j.bdr.2020.100183_br0140
– ident: 10.1016/j.bdr.2020.100183_br0800
– volume: 50
  start-page: 559
  issue: 3
  year: 2011
  ident: 10.1016/j.bdr.2020.100183_br0210
  article-title: The application of data mining techniques in financial fraud detection: a classification framework and an academic review of literature
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2010.08.006
– ident: 10.1016/j.bdr.2020.100183_br0040
– ident: 10.1016/j.bdr.2020.100183_br0020
– ident: 10.1016/j.bdr.2020.100183_br0830
– volume: 5
  start-page: 13
  issue: 4
  year: 2000
  ident: 10.1016/j.bdr.2020.100183_br0630
  article-title: The crisp-dm model: the new blueprint for data mining
  publication-title: J. Data Warehous.
– ident: 10.1016/j.bdr.2020.100183_br0150
– ident: 10.1016/j.bdr.2020.100183_br0510
– ident: 10.1016/j.bdr.2020.100183_br0770
– start-page: 2872
  year: 2016
  ident: 10.1016/j.bdr.2020.100183_br0460
  article-title: Big data team process methodologies: a literature review and the identification of key factors for a project's success
– ident: 10.1016/j.bdr.2020.100183_br0160
– volume: vol. 64
  year: 2001
  ident: 10.1016/j.bdr.2020.100183_br0680
  article-title: Ramsys - a methodology for supporting rapid remote collaborative data mining projects
– ident: 10.1016/j.bdr.2020.100183_br0590
– ident: 10.1016/j.bdr.2020.100183_br0030
SSID ssj0001385388
Score 2.411701
Snippet Data science has employed great research efforts in developing advanced analytics, improving data models and cultivating new algorithms. However, not many...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100183
SubjectTerms Big data
Data science
Data science methodology
Knowledge management
Organizational impacts
Project life-cycle
Title Data Science Methodologies: Current Challenges and Future Approaches
URI https://dx.doi.org/10.1016/j.bdr.2020.100183
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I8qj8sCEFJr4lZitaqkKVTsAFd0iO3akIhQqGlZ-O7Zj85CAgSVRIp-UfLHvbOfu-wA4KxOqkOY80hnDEdGSR1kmzCFVkhY6JsSl_E-mbDQjN3M6b4F-qIWxaZXe9zc-3Xlrf6fr0ewuF4vuHbIk2ylnKMaOxdtWsJPU9vKLt-RznwWbgOTkJ237yBqEn5suzUsqywqKGjKiDP8cnr6EnOE22PRzRdhrHmcHtHS1C7aCDgP0w3IPDAaiFuESTpwmtPNpenUJPQET7AfVlBUUlYJDxyUCe55SXK_2wWx4dd8fRV4dISoQT-uIaoR4gYRlkEFFiW2RasZ4wczLWB42bEaisAFakTJWBTNrK8KyMhYJUSwpU3wA1qrnSh8CKKTSkhGKJTPLEUa5xCojPBGCcqyQaIM4gJIXnjrcKlg85SFH7DE3OOYWx7zBsQ3OP0yWDW_GX41JQDr_9vFz49d_Nzv6n9kx2EA2McVSsNITsFa_vOpTM7OoZcd1nQ5Y712PR1N7Ht8-jN8BBoPKqg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLVKGWDhjShPD0xIoYntODFbVagKtF1opW6WHTtSESoVDSvfju3YPCRgYImUKEdKTnLvtZPrcwA4L5NUIc1YpHOKI6Ili_JcmE2mZFromBDX8j8c0f6E3E3TaQN0w1oY21bpc3-d01229kfans32YjZrPyArsp0ximLsVLxXwCox4WttDC7fks8PLdhUJOc_aQGRRYS_m67PSyorC4pqNaIc_1yfvtSc3hbY8INF2KmvZxs09HwHbAYjBujjchdcX4tKhF04dKbQLqnp5RX0CkywG2xTllDMFew5MRHY8ZrierkHJr2bcbcfeXuEqEAsq6JUI8QKJKyEDCpKbFep5pQV1NyMFWLDJhSFrdCKlLEqqJlcEZqXsUiIokmZ4X3QnD_P9QGAQiotqWFPUjMfoSmTWOWEJUKkDCskWiAOpPDCa4dbC4snHprEHrnhkVseec1jC1x8QBa1cMZfJ5PANP_29LlJ7L_DDv8HOwNr_fFwwAe3o_sjsI5sl4rVY02PQbN6edUnZphRyVP3Gr0DiU_KlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Science+Methodologies%3A+Current+Challenges+and+Future+Approaches&rft.jtitle=Big+data+research&rft.au=Martinez%2C+I%C3%B1igo&rft.au=Viles%2C+Elisabeth&rft.au=G.+Olaizola%2C+Igor&rft.date=2021-05-15&rft.issn=2214-5796&rft.volume=24&rft.spage=100183&rft_id=info:doi/10.1016%2Fj.bdr.2020.100183&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bdr_2020_100183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5796&client=summon