Piezoelectric wavy whisker sensor for perceiving underwater vortex from a bluff body

Underwater flow field perception is a crucial technique for obtaining the motion status and trajectory of targets. To perceive the vortex in the flow field environment and obtain the disturbance information of the vortex, we propose a piezoelectric wavy whisker sensor (PWWS) inspired by the mechanis...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 365; p. 114875
Main Authors Guo, Linan, Liu, Jianhua, Wu, Guitao, Xu, Peng, Wang, Siyuan, Liu, Bo, Li, Yuanzheng, Guan, Tangzhen, Wang, Hao, Si, Jicang, Du, Taili, Xu, Minyi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Underwater flow field perception is a crucial technique for obtaining the motion status and trajectory of targets. To perceive the vortex in the flow field environment and obtain the disturbance information of the vortex, we propose a piezoelectric wavy whisker sensor (PWWS) inspired by the mechanism of a seal's whisker to perceive and track prey effectively. The PWWS is designed to imitate the unique biological structure of seal whiskers and incorporates the principles of piezoelectric nanogenerators. Specifically, it consists of a waterproof main body made of polydimethylsiloxane (PDMS), and a piezoelectric perceiving unit made of polyvinylidene difluoride (PVDF) encapsulated at the bottom. In the present study, the vortex is generated through a cylinder bluff body. The relationship between the signal of PWWS (peak voltage and frequency) and perception parameters (diameter of the bluff body, distance between the PWWS and the bluff body, impact angle, and flow velocity) are systematically investigated. Then, a mathematical model between vortex parameters and the signal frequency of the PWWS is proposed, and an APP with real-time perception is realized using MATLAB. Through validation by the experimental data, the APP exhibits reasonable predicted results and can well precept the above perception parameters (the error lower than 10%). Therefore, the PWWS has great potential to obtain the motion status and trajectory of underwater targets. [Display omitted] •A piezoelectric wavy-whisker sensor (PWWS) applied in the field of underwater perception has been proposed.•The mathematical relationships between vortex characteristics and PWWS voltage signal characteristics have been studied.•The application prospects of the piezoelectric wavy-whisker sensors in vortex perceiving and underwater environmental perceiving.
AbstractList Underwater flow field perception is a crucial technique for obtaining the motion status and trajectory of targets. To perceive the vortex in the flow field environment and obtain the disturbance information of the vortex, we propose a piezoelectric wavy whisker sensor (PWWS) inspired by the mechanism of a seal's whisker to perceive and track prey effectively. The PWWS is designed to imitate the unique biological structure of seal whiskers and incorporates the principles of piezoelectric nanogenerators. Specifically, it consists of a waterproof main body made of polydimethylsiloxane (PDMS), and a piezoelectric perceiving unit made of polyvinylidene difluoride (PVDF) encapsulated at the bottom. In the present study, the vortex is generated through a cylinder bluff body. The relationship between the signal of PWWS (peak voltage and frequency) and perception parameters (diameter of the bluff body, distance between the PWWS and the bluff body, impact angle, and flow velocity) are systematically investigated. Then, a mathematical model between vortex parameters and the signal frequency of the PWWS is proposed, and an APP with real-time perception is realized using MATLAB. Through validation by the experimental data, the APP exhibits reasonable predicted results and can well precept the above perception parameters (the error lower than 10%). Therefore, the PWWS has great potential to obtain the motion status and trajectory of underwater targets. [Display omitted] •A piezoelectric wavy-whisker sensor (PWWS) applied in the field of underwater perception has been proposed.•The mathematical relationships between vortex characteristics and PWWS voltage signal characteristics have been studied.•The application prospects of the piezoelectric wavy-whisker sensors in vortex perceiving and underwater environmental perceiving.
ArticleNumber 114875
Author Xu, Peng
Liu, Bo
Guan, Tangzhen
Liu, Jianhua
Du, Taili
Wu, Guitao
Si, Jicang
Xu, Minyi
Li, Yuanzheng
Guo, Linan
Wang, Siyuan
Wang, Hao
Author_xml – sequence: 1
  givenname: Linan
  surname: Guo
  fullname: Guo, Linan
– sequence: 2
  givenname: Jianhua
  surname: Liu
  fullname: Liu, Jianhua
– sequence: 3
  givenname: Guitao
  surname: Wu
  fullname: Wu, Guitao
– sequence: 4
  givenname: Peng
  surname: Xu
  fullname: Xu, Peng
– sequence: 5
  givenname: Siyuan
  surname: Wang
  fullname: Wang, Siyuan
– sequence: 6
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
– sequence: 7
  givenname: Yuanzheng
  surname: Li
  fullname: Li, Yuanzheng
– sequence: 8
  givenname: Tangzhen
  surname: Guan
  fullname: Guan, Tangzhen
– sequence: 9
  givenname: Hao
  surname: Wang
  fullname: Wang, Hao
– sequence: 10
  givenname: Jicang
  surname: Si
  fullname: Si, Jicang
  email: sjc@dlmu.edu.cn
– sequence: 11
  givenname: Taili
  surname: Du
  fullname: Du, Taili
  email: dutaili@dlmu.edu.cn
– sequence: 12
  givenname: Minyi
  surname: Xu
  fullname: Xu, Minyi
  email: xuminyi@dlmu.edu.cn
BookMark eNp9kL1OwzAUhS1UJNrCA7D5BVL8k8SxmFDFn1QJhjJbrn0NLqld2WlKeXpSlYmB4egu57vS-SZoFGIAhK4pmVFC65v1LAc9Y4TxGaVlI6ozNKaN4AUntRyhMZGsLEpWigs0yXlNCOFciDFavnr4jtCC6ZI3eK_7A95_-PwJCWcIOSbshmwhGfC9D-94Fyykve6GQh9TB1_YpbjBGq_anXN4Fe3hEp073Wa4-r1T9PZwv5w_FYuXx-f53aIwTIquqCS4mjRlqU3ZUEmtgNoyRo3mFdMVk8a4qq4YOAd1zZmWwzBpLW0a7oS1fIrE6a9JMecEThnf6c7H0CXtW0WJOspRazXIUUc56iRnIOkfcpv8RqfDv8ztiYFhUu8hqWw8BAPWp0GfstH_Q_8AO96AWQ
CitedBy_id crossref_primary_10_1002_advs_202408162
crossref_primary_10_1002_admt_202500072
crossref_primary_10_1002_admt_202401053
Cites_doi 10.1155/2016/4732703
10.1117/1.OE.59.8.083102
10.1093/icb/icn029
10.1016/j.ceramint.2015.03.219
10.1089/soro.2021.0166
10.1016/S0925-4005(99)00372-X
10.1109/ACCESS.2019.2917791
10.1098/rsif.2015.0322
10.1089/soro.2016.0069
10.1073/pnas.2119502119
10.1016/j.scib.2019.10.021
10.3390/s19245384
10.1088/1748-3190/ab1a8d
10.1017/jfm.2015.513
10.1038/s41467-019-10433-4
10.1017/jfm.2017.908
10.1371/journal.pone.0241142
10.1242/jeb.02708
10.1242/jeb.043216
10.1088/1748-3182/9/3/036013
10.1016/j.nanoen.2022.107210
10.1016/j.measurement.2020.108866
10.3390/s22072705
10.1016/j.nanoen.2020.105120
10.3390/s22031033
10.1016/j.nanoen.2015.02.034
10.1109/JSEN.2015.2434890
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sna.2023.114875
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
ExternalDocumentID 10_1016_j_sna_2023_114875
S0924424723007240
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
SSH
WUQ
ID FETCH-LOGICAL-c297t-59ef60844ac48191d7e6d221ca352a529ccf5652effe6632a94879dd1883f7dd3
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Tue Jul 01 02:24:57 EDT 2025
Thu Apr 24 23:02:41 EDT 2025
Sat Apr 13 16:38:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Piezoelectric nanogenerators
Bionic seal whisker
Vortex perception
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-59ef60844ac48191d7e6d221ca352a529ccf5652effe6632a94879dd1883f7dd3
ParticipantIDs crossref_citationtrail_10_1016_j_sna_2023_114875
crossref_primary_10_1016_j_sna_2023_114875
elsevier_sciencedirect_doi_10_1016_j_sna_2023_114875
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References David, Mathur, Govardhan, Arakeri (bib31) 2018; 839
Zhang, Gao, Wang, Liao, Qiu, Yang (bib37) 2015; 13
Adachi, Naito, Robinson, Costa, Huckstadt, Holser (bib19) 2022; 119
Shan, Song, Liu, Xie (bib33) 2015; 41
Arshad (bib5) 2009; 38
Beem, Hildner, Triantafyllou (bib26) 2012
Wang, Xu, Wang, Zheng, Liu, Liu (bib29) 2022; 97
Balachandran, Magrab (bib34) 2018
Man, Chen, Chen (bib8) 2022; 12
Sayegh, Daraghma, Mekid, Bashmal (bib13) 2022; 22
Zheng, Kamat, Krushynska, Cao, Kottapalli (bib27) 2022; 32
Fish, Howle, Murray (bib20) 2008; 48
Liu, Bao, Tao, Li, Dong, Pan (bib6) 2020; 65
Jin, Ko, Ahn, Hur, Lee, Jeong (bib36) 2021; 17
Gorshkov, Yuksel, Fotiadi, Wuilpart, Korobko, Zhirnov (bib3) 2022; 22
Liu, Wang, Wang, Liu (bib12) 2016; 2016
Liu, Jiang, Wu, Ma, Chen, Zhang (bib25) 2023; 10
Cohen, Kunz (bib35) 2000; 62
Zheng, Kamat, Cao, Kottapalli (bib23) 2023; 10
Li, Rong, Cao, Liu, Chen, He (bib4) 2020; 59
Lyons, Murphy, Franck (bib21) 2020; 15
Zou, Tan, Shi, Ouyang, Jiang, Liu (bib7) 2019; 10
Beem, Triantafyllou (bib22) 2015; 783
Asadnia, Kottapalli, Miao, Warkiani, Triantafyllou (bib10) 2015; 12
Zhang, Shan, Xie, Miao, Du, Song (bib28) 2021; 172
Beem (bib30) 2015
Sendra, Lloret, Jimenez, Parra (bib1) 2016; 16
Jiang, Ma, Zhang (bib15) 2019; 14
Gul, Su, Choi (bib24) 2018; 5
Yan, Gong, Zhang, Li, Teng (bib2) 2019; 7
Hanke, Witte, Miersch, Brede, Oeffner, Michael (bib16) 2010; 213
Jiang, Li, Sun, Huang, Ji, Bi (bib9) 2020; 77
Hans, Miao, Triantafyllou (bib17) 2014; 9
Saffman (bib32) 1993
Schulte-Pelkum, Wieskotten, Hanke, Dehnhardt, Mauck (bib18) 2007; 210
Hu, Jiang, Ma, Xu, Zhang (bib11) 2019; 19
Shizhe (bib14) 2014; 20
Jiang (10.1016/j.sna.2023.114875_bib9) 2020; 77
Liu (10.1016/j.sna.2023.114875_bib6) 2020; 65
Zou (10.1016/j.sna.2023.114875_bib7) 2019; 10
Hu (10.1016/j.sna.2023.114875_bib11) 2019; 19
Saffman (10.1016/j.sna.2023.114875_bib32) 1993
Sendra (10.1016/j.sna.2023.114875_bib1) 2016; 16
Hans (10.1016/j.sna.2023.114875_bib17) 2014; 9
Liu (10.1016/j.sna.2023.114875_bib25) 2023; 10
Man (10.1016/j.sna.2023.114875_bib8) 2022; 12
Yan (10.1016/j.sna.2023.114875_bib2) 2019; 7
Fish (10.1016/j.sna.2023.114875_bib20) 2008; 48
Cohen (10.1016/j.sna.2023.114875_bib35) 2000; 62
Adachi (10.1016/j.sna.2023.114875_bib19) 2022; 119
Gorshkov (10.1016/j.sna.2023.114875_bib3) 2022; 22
Zheng (10.1016/j.sna.2023.114875_bib23) 2023; 10
Li (10.1016/j.sna.2023.114875_bib4) 2020; 59
Shan (10.1016/j.sna.2023.114875_bib33) 2015; 41
Zhang (10.1016/j.sna.2023.114875_bib37) 2015; 13
Zheng (10.1016/j.sna.2023.114875_bib27) 2022; 32
Wang (10.1016/j.sna.2023.114875_bib29) 2022; 97
Balachandran (10.1016/j.sna.2023.114875_bib34) 2018
Sayegh (10.1016/j.sna.2023.114875_bib13) 2022; 22
Shizhe (10.1016/j.sna.2023.114875_bib14) 2014; 20
Arshad (10.1016/j.sna.2023.114875_bib5) 2009; 38
Lyons (10.1016/j.sna.2023.114875_bib21) 2020; 15
Liu (10.1016/j.sna.2023.114875_bib12) 2016; 2016
Beem (10.1016/j.sna.2023.114875_bib26) 2012
Beem (10.1016/j.sna.2023.114875_bib22) 2015; 783
Asadnia (10.1016/j.sna.2023.114875_bib10) 2015; 12
Schulte-Pelkum (10.1016/j.sna.2023.114875_bib18) 2007; 210
Hanke (10.1016/j.sna.2023.114875_bib16) 2010; 213
Zhang (10.1016/j.sna.2023.114875_bib28) 2021; 172
Beem (10.1016/j.sna.2023.114875_bib30) 2015
Jin (10.1016/j.sna.2023.114875_bib36) 2021; 17
Jiang (10.1016/j.sna.2023.114875_bib15) 2019; 14
Gul (10.1016/j.sna.2023.114875_bib24) 2018; 5
David (10.1016/j.sna.2023.114875_bib31) 2018; 839
References_xml – volume: 10
  year: 2023
  ident: bib23
  article-title: Wavy Whiskers in Wakes: Explaining the Trail-Tracking Capabilities of Whisker Arrays on Seal Muzzles
  publication-title: Adv. Sci.
– year: 1993
  ident: bib32
  article-title: Vortex Dynamics
– year: 2015
  ident: bib30
  publication-title: Passiv. wake Detect. Using Seal. whisker-inspired Sens.
– volume: 22
  year: 2022
  ident: bib13
  article-title: Review of Recent Bio-Inspired Design and Manufacturing of Whisker Tactile Sensors
  publication-title: Sensors
– volume: 10
  year: 2019
  ident: bib7
  article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting
  publication-title: Nat. Commun.
– volume: 10
  start-page: 97
  year: 2023
  end-page: 105
  ident: bib25
  article-title: Artificial Whisker Sensor with Undulated Morphology and Self-Spread Piezoresistors for Diverse Flow Analyses
  publication-title: Soft Robot.
– volume: 12
  year: 2015
  ident: bib10
  article-title: Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena
  publication-title: J. R. Soc. Interface
– volume: 59
  year: 2020
  ident: bib4
  article-title: Underwater image enhancement framework and its application on an autonomous underwater vehicle platform
  publication-title: Opt. Eng.
– volume: 65
  start-page: 70
  year: 2020
  end-page: 88
  ident: bib6
  article-title: Recent progress in tactile sensors and their applications in intelligent systems
  publication-title: Sci. Bull.
– volume: 9
  year: 2014
  ident: bib17
  article-title: Mechanical characteristics of harbor seal (Phoca vitulina) vibrissae under different circumstances and their implications on its sensing methodology
  publication-title: Bioinspiration Biomim.
– volume: 119
  year: 2022
  ident: bib19
  article-title: Whiskers as hydrodynamic prey sensors in foraging seals
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 172
  year: 2021
  ident: bib28
  article-title: Harbor seal whisker inspired self-powered piezoelectric sensor for detecting the underwater flow angle of attack and velocity
  publication-title: Measurement
– volume: 7
  start-page: 72567
  year: 2019
  end-page: 72576
  ident: bib2
  article-title: Autonomous Underwater Vehicle Vision Guided Docking Experiments Based on L-Shaped Light Array
  publication-title: Ieee Access
– volume: 20
  start-page: 2123
  year: 2014
  end-page: 2136
  ident: bib14
  article-title: Underwater artificial lateral line flow sensors
  publication-title: Microsyst. Technol. -Micro- Nanosyst. -Inf. Storage Process. Syst.
– volume: 62
  start-page: 23
  year: 2000
  end-page: 29
  ident: bib35
  article-title: Large-area interdigitated array microelectrodes for electrochemical sensing
  publication-title: Sens. Actuators B-Chem.
– volume: 14
  year: 2019
  ident: bib15
  article-title: Flow field perception based on the fish lateral line system
  publication-title: Bioinspiration Biomim.
– volume: 48
  start-page: 788
  year: 2008
  end-page: 800
  ident: bib20
  article-title: Hydrodynamic flow control in marine mammals
  publication-title: Integr. Comp. Biol.
– volume: 17
  year: 2021
  ident: bib36
  article-title: Polarization- and Electrode-Optimized Polyvinylidene Fluoride Films for Harsh Environmental Piezoelectric Nanogenerator Applications
  publication-title: Small
– volume: 2016
  year: 2016
  ident: bib12
  article-title: A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish
  publication-title: Appl. Bionics Biomech.
– volume: 839
  start-page: 489
  year: 2018
  end-page: 524
  ident: bib31
  article-title: The kinematic genesis of vortex formation due to finite rotation of a plate in still fluid
  publication-title: J. Fluid Mech.
– volume: 213
  start-page: 2665
  year: 2010
  end-page: 2672
  ident: bib16
  article-title: Harbor seal vibrissa morphology suppresses vortex-induced vibrations
  publication-title: J. Exp. Biol.
– volume: 15
  year: 2020
  ident: bib21
  article-title: Flow over seal whiskers: Importance of geometric features for force and frequency response
  publication-title: Plos One
– volume: 41
  start-page: S763
  year: 2015
  end-page: S767
  ident: bib33
  article-title: Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex
  publication-title: Ceram. Int.
– volume: 13
  start-page: 298
  year: 2015
  end-page: 305
  ident: bib37
  article-title: A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application
  publication-title: Nano Energy
– volume: 77
  year: 2020
  ident: bib9
  article-title: A high-performance bionic pressure memory device based on piezo-OLED and piezo-memristor as luminescence-fish neuromorphic tactile system
  publication-title: Nano Energy
– volume: 5
  start-page: 122
  year: 2018
  end-page: 132
  ident: bib24
  article-title: Fully 3D Printed Multi-Material Soft Bio-Inspired Whisker Sensor for Underwater-Induced Vortex Detection
  publication-title: Soft Robot.
– year: 2012
  ident: bib26
  article-title: Ieee, Characterization of a harbor seal whisker-inspired flow sensor
– volume: 38
  start-page: 267
  year: 2009
  end-page: 273
  ident: bib5
  article-title: Recent advancement in sensor technology for underwater applications
  publication-title: Indian J. Mar. Sci.
– volume: 32
  year: 2022
  ident: bib27
  article-title: 3D Printed Graphene Piezoresistive Microelectromechanical System Sensors to Explain the Ultrasensitive Wake Tracking of Wavy Seal Whiskers
  publication-title: Adv. Funct. Mater.
– volume: 97
  year: 2022
  ident: bib29
  article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception
  publication-title: Nano Energy
– volume: 16
  start-page: 4063
  year: 2016
  end-page: 4071
  ident: bib1
  article-title: Underwater Acoustic Modems
  publication-title: Ieee Sens. J.
– volume: 12
  year: 2022
  ident: bib8
  article-title: Recent Progress of Biomimetic Tactile Sensing Technology Based on Magnetic Sensors
  publication-title: Biosens. -Basel
– volume: 783
  start-page: 306
  year: 2015
  end-page: 322
  ident: bib22
  article-title: Wake-induced 'slaloming' response explains exquisite sensitivity of seal whisker-like sensors
  publication-title: J. Fluid Mech.
– volume: 19
  year: 2019
  ident: bib11
  article-title: Bio-inspired Flexible Lateral Line Sensor Based on P(VDF-TrFE)/BTO Nanofiber Mat for Hydrodynamic Perception
  publication-title: Sensors
– volume: 22
  year: 2022
  ident: bib3
  article-title: Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective
  publication-title: Sensors
– year: 2018
  ident: bib34
  publication-title: Vibrations
– volume: 210
  start-page: 781
  year: 2007
  end-page: 787
  ident: bib18
  article-title: Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina)
  publication-title: J. Exp. Biol.
– volume: 2016
  year: 2016
  ident: 10.1016/j.sna.2023.114875_bib12
  article-title: A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish
  publication-title: Appl. Bionics Biomech.
  doi: 10.1155/2016/4732703
– volume: 59
  year: 2020
  ident: 10.1016/j.sna.2023.114875_bib4
  article-title: Underwater image enhancement framework and its application on an autonomous underwater vehicle platform
  publication-title: Opt. Eng.
  doi: 10.1117/1.OE.59.8.083102
– volume: 48
  start-page: 788
  year: 2008
  ident: 10.1016/j.sna.2023.114875_bib20
  article-title: Hydrodynamic flow control in marine mammals
  publication-title: Integr. Comp. Biol.
  doi: 10.1093/icb/icn029
– volume: 41
  start-page: S763
  year: 2015
  ident: 10.1016/j.sna.2023.114875_bib33
  article-title: Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.03.219
– volume: 10
  start-page: 97
  year: 2023
  ident: 10.1016/j.sna.2023.114875_bib25
  article-title: Artificial Whisker Sensor with Undulated Morphology and Self-Spread Piezoresistors for Diverse Flow Analyses
  publication-title: Soft Robot.
  doi: 10.1089/soro.2021.0166
– volume: 62
  start-page: 23
  year: 2000
  ident: 10.1016/j.sna.2023.114875_bib35
  article-title: Large-area interdigitated array microelectrodes for electrochemical sensing
  publication-title: Sens. Actuators B-Chem.
  doi: 10.1016/S0925-4005(99)00372-X
– volume: 7
  start-page: 72567
  year: 2019
  ident: 10.1016/j.sna.2023.114875_bib2
  article-title: Autonomous Underwater Vehicle Vision Guided Docking Experiments Based on L-Shaped Light Array
  publication-title: Ieee Access
  doi: 10.1109/ACCESS.2019.2917791
– year: 2012
  ident: 10.1016/j.sna.2023.114875_bib26
– volume: 12
  year: 2015
  ident: 10.1016/j.sna.2023.114875_bib10
  article-title: Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2015.0322
– volume: 5
  start-page: 122
  year: 2018
  ident: 10.1016/j.sna.2023.114875_bib24
  article-title: Fully 3D Printed Multi-Material Soft Bio-Inspired Whisker Sensor for Underwater-Induced Vortex Detection
  publication-title: Soft Robot.
  doi: 10.1089/soro.2016.0069
– volume: 119
  year: 2022
  ident: 10.1016/j.sna.2023.114875_bib19
  article-title: Whiskers as hydrodynamic prey sensors in foraging seals
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2119502119
– year: 2018
  ident: 10.1016/j.sna.2023.114875_bib34
– year: 1993
  ident: 10.1016/j.sna.2023.114875_bib32
– volume: 65
  start-page: 70
  year: 2020
  ident: 10.1016/j.sna.2023.114875_bib6
  article-title: Recent progress in tactile sensors and their applications in intelligent systems
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.10.021
– volume: 19
  year: 2019
  ident: 10.1016/j.sna.2023.114875_bib11
  article-title: Bio-inspired Flexible Lateral Line Sensor Based on P(VDF-TrFE)/BTO Nanofiber Mat for Hydrodynamic Perception
  publication-title: Sensors
  doi: 10.3390/s19245384
– volume: 38
  start-page: 267
  year: 2009
  ident: 10.1016/j.sna.2023.114875_bib5
  article-title: Recent advancement in sensor technology for underwater applications
  publication-title: Indian J. Mar. Sci.
– volume: 14
  year: 2019
  ident: 10.1016/j.sna.2023.114875_bib15
  article-title: Flow field perception based on the fish lateral line system
  publication-title: Bioinspiration Biomim.
  doi: 10.1088/1748-3190/ab1a8d
– volume: 783
  start-page: 306
  year: 2015
  ident: 10.1016/j.sna.2023.114875_bib22
  article-title: Wake-induced 'slaloming' response explains exquisite sensitivity of seal whisker-like sensors
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.513
– volume: 10
  year: 2019
  ident: 10.1016/j.sna.2023.114875_bib7
  article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10433-4
– volume: 839
  start-page: 489
  year: 2018
  ident: 10.1016/j.sna.2023.114875_bib31
  article-title: The kinematic genesis of vortex formation due to finite rotation of a plate in still fluid
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2017.908
– volume: 12
  year: 2022
  ident: 10.1016/j.sna.2023.114875_bib8
  article-title: Recent Progress of Biomimetic Tactile Sensing Technology Based on Magnetic Sensors
  publication-title: Biosens. -Basel
– volume: 17
  year: 2021
  ident: 10.1016/j.sna.2023.114875_bib36
  article-title: Polarization- and Electrode-Optimized Polyvinylidene Fluoride Films for Harsh Environmental Piezoelectric Nanogenerator Applications
  publication-title: Small
– volume: 15
  year: 2020
  ident: 10.1016/j.sna.2023.114875_bib21
  article-title: Flow over seal whiskers: Importance of geometric features for force and frequency response
  publication-title: Plos One
  doi: 10.1371/journal.pone.0241142
– volume: 210
  start-page: 781
  year: 2007
  ident: 10.1016/j.sna.2023.114875_bib18
  article-title: Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina)
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.02708
– volume: 213
  start-page: 2665
  year: 2010
  ident: 10.1016/j.sna.2023.114875_bib16
  article-title: Harbor seal vibrissa morphology suppresses vortex-induced vibrations
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.043216
– volume: 9
  year: 2014
  ident: 10.1016/j.sna.2023.114875_bib17
  article-title: Mechanical characteristics of harbor seal (Phoca vitulina) vibrissae under different circumstances and their implications on its sensing methodology
  publication-title: Bioinspiration Biomim.
  doi: 10.1088/1748-3182/9/3/036013
– volume: 97
  year: 2022
  ident: 10.1016/j.sna.2023.114875_bib29
  article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107210
– volume: 172
  year: 2021
  ident: 10.1016/j.sna.2023.114875_bib28
  article-title: Harbor seal whisker inspired self-powered piezoelectric sensor for detecting the underwater flow angle of attack and velocity
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108866
– volume: 22
  year: 2022
  ident: 10.1016/j.sna.2023.114875_bib13
  article-title: Review of Recent Bio-Inspired Design and Manufacturing of Whisker Tactile Sensors
  publication-title: Sensors
  doi: 10.3390/s22072705
– volume: 10
  year: 2023
  ident: 10.1016/j.sna.2023.114875_bib23
  article-title: Wavy Whiskers in Wakes: Explaining the Trail-Tracking Capabilities of Whisker Arrays on Seal Muzzles
  publication-title: Adv. Sci.
– year: 2015
  ident: 10.1016/j.sna.2023.114875_bib30
  publication-title: Passiv. wake Detect. Using Seal. whisker-inspired Sens.
– volume: 77
  year: 2020
  ident: 10.1016/j.sna.2023.114875_bib9
  article-title: A high-performance bionic pressure memory device based on piezo-OLED and piezo-memristor as luminescence-fish neuromorphic tactile system
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105120
– volume: 32
  year: 2022
  ident: 10.1016/j.sna.2023.114875_bib27
  article-title: 3D Printed Graphene Piezoresistive Microelectromechanical System Sensors to Explain the Ultrasensitive Wake Tracking of Wavy Seal Whiskers
  publication-title: Adv. Funct. Mater.
– volume: 20
  start-page: 2123
  year: 2014
  ident: 10.1016/j.sna.2023.114875_bib14
  article-title: Underwater artificial lateral line flow sensors
  publication-title: Microsyst. Technol. -Micro- Nanosyst. -Inf. Storage Process. Syst.
– volume: 22
  year: 2022
  ident: 10.1016/j.sna.2023.114875_bib3
  article-title: Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective
  publication-title: Sensors
  doi: 10.3390/s22031033
– volume: 13
  start-page: 298
  year: 2015
  ident: 10.1016/j.sna.2023.114875_bib37
  article-title: A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.02.034
– volume: 16
  start-page: 4063
  year: 2016
  ident: 10.1016/j.sna.2023.114875_bib1
  article-title: Underwater Acoustic Modems
  publication-title: Ieee Sens. J.
  doi: 10.1109/JSEN.2015.2434890
SSID ssj0003377
Score 2.4466572
Snippet Underwater flow field perception is a crucial technique for obtaining the motion status and trajectory of targets. To perceive the vortex in the flow field...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114875
SubjectTerms Bionic seal whisker
Piezoelectric nanogenerators
Vortex perception
Title Piezoelectric wavy whisker sensor for perceiving underwater vortex from a bluff body
URI https://dx.doi.org/10.1016/j.sna.2023.114875
Volume 365
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPvFZcvAkrN1u0mZzLMVSFYtgC70t2SSLq6Ut25f14G93Zh9aQT143GUCux9h5pvkmxlCLoy0DePXlCNNyBzOtHWkZq4TMQynQEBs2kj7vtvo9PntoD4okVZRC4Oyytz3Zz499db5m2qOZnUSx9VHF1IH7nEBJNoVEJiwgp0L3OVX718yD8bS6Yto7KB1cbOZarymI2w95DHsmJtKDX-KTWvxpr1DtnOiSJvZt-ySkh3tka219oH7pPcQ27dxNsgm1nSpFiu6fIqnLzahU0hPxwkFSkonqF2J8eCAYsVYsgR6mdAFqmxfKZaXUEXD4TyKaDg2qwPSb1_3Wh0nn5LgaE-KmVOXNmq4PudKc8y-jAD0Pa-mFXArVfek1hGwNg_1IUAvPCXhV6UxNd9nkTCGHZLyaDyyR4QqLYRucKm4wvtOqyLOuBbAKUNX-5F_TNwCn0DnLcRxksUwKLRizwFAGiCkQQbpMbn8XDLJ-mf8ZcwL0INvmyAA__77spP_LTslm_DEs_OUM1KeJXN7DgxjFlbSLVQhG82bu073A2MIz8s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xcNjlsOK1gl0ePsAFKTS13SY-cEA8VJ5Cokjcso7tiABqq7TQLQf-FH-QmTx4SCwHJK5JHDlfrJlv7G9mAFatck0b1rWnbCw8KYzzlBG-lwhyp0hAXF5I-_ik2TqXBxeNizF4rHJhSFZZ2v7CpufWurxSK9Gs9dK0duZj6CC5DJBE-wE6plJZeehGQ4zb-pv7O_iT1zjf221vt7yytYBnuAoGXkO5pOmHUmojKWSxAU6Z87rRSEh0gytjEqQ6nEQV6JO5VkjslbX1MBRJYK3A936DCYnmgtombDy86EqEyNs90uw8ml51lJqLyvodqnXEBZXozbWN7znDVw5ubwp-lsyUbRUfPw1jrjMDk6_qFc5C-zR1992ic05q2FDfjdjwMu1fu4z1MR7uZgw5MOuRWCalnQpGKWrZEPlsxu5I1vuPUT4L0yy-uU0SFnftaA7OvwS7XzDe6XbcPDBtgsA0pdJS0wGr04kU0gRIYmPfhEm4AH6FT2TKmuXUOuMmqsRpVxFCGhGkUQHpAqw_D-kVBTs-elhWoEdvVl2EDuX_w35_btgKfG-1j4-io_2Twz_wA-_IYjNnEcYH2a1bQnoziJfz5cTg71ev3ycbQgsq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+wavy+whisker+sensor+for+perceiving+underwater+vortex+from+a+bluff+body&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Guo%2C+Linan&rft.au=Liu%2C+Jianhua&rft.au=Wu%2C+Guitao&rft.au=Xu%2C+Peng&rft.date=2024-01-01&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=365&rft_id=info:doi/10.1016%2Fj.sna.2023.114875&rft.externalDocID=S0924424723007240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon