Piezoelectric wavy whisker sensor for perceiving underwater vortex from a bluff body
Underwater flow field perception is a crucial technique for obtaining the motion status and trajectory of targets. To perceive the vortex in the flow field environment and obtain the disturbance information of the vortex, we propose a piezoelectric wavy whisker sensor (PWWS) inspired by the mechanis...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 365; p. 114875 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Underwater flow field perception is a crucial technique for obtaining the motion status and trajectory of targets. To perceive the vortex in the flow field environment and obtain the disturbance information of the vortex, we propose a piezoelectric wavy whisker sensor (PWWS) inspired by the mechanism of a seal's whisker to perceive and track prey effectively. The PWWS is designed to imitate the unique biological structure of seal whiskers and incorporates the principles of piezoelectric nanogenerators. Specifically, it consists of a waterproof main body made of polydimethylsiloxane (PDMS), and a piezoelectric perceiving unit made of polyvinylidene difluoride (PVDF) encapsulated at the bottom. In the present study, the vortex is generated through a cylinder bluff body. The relationship between the signal of PWWS (peak voltage and frequency) and perception parameters (diameter of the bluff body, distance between the PWWS and the bluff body, impact angle, and flow velocity) are systematically investigated. Then, a mathematical model between vortex parameters and the signal frequency of the PWWS is proposed, and an APP with real-time perception is realized using MATLAB. Through validation by the experimental data, the APP exhibits reasonable predicted results and can well precept the above perception parameters (the error lower than 10%). Therefore, the PWWS has great potential to obtain the motion status and trajectory of underwater targets.
[Display omitted]
•A piezoelectric wavy-whisker sensor (PWWS) applied in the field of underwater perception has been proposed.•The mathematical relationships between vortex characteristics and PWWS voltage signal characteristics have been studied.•The application prospects of the piezoelectric wavy-whisker sensors in vortex perceiving and underwater environmental perceiving. |
---|---|
AbstractList | Underwater flow field perception is a crucial technique for obtaining the motion status and trajectory of targets. To perceive the vortex in the flow field environment and obtain the disturbance information of the vortex, we propose a piezoelectric wavy whisker sensor (PWWS) inspired by the mechanism of a seal's whisker to perceive and track prey effectively. The PWWS is designed to imitate the unique biological structure of seal whiskers and incorporates the principles of piezoelectric nanogenerators. Specifically, it consists of a waterproof main body made of polydimethylsiloxane (PDMS), and a piezoelectric perceiving unit made of polyvinylidene difluoride (PVDF) encapsulated at the bottom. In the present study, the vortex is generated through a cylinder bluff body. The relationship between the signal of PWWS (peak voltage and frequency) and perception parameters (diameter of the bluff body, distance between the PWWS and the bluff body, impact angle, and flow velocity) are systematically investigated. Then, a mathematical model between vortex parameters and the signal frequency of the PWWS is proposed, and an APP with real-time perception is realized using MATLAB. Through validation by the experimental data, the APP exhibits reasonable predicted results and can well precept the above perception parameters (the error lower than 10%). Therefore, the PWWS has great potential to obtain the motion status and trajectory of underwater targets.
[Display omitted]
•A piezoelectric wavy-whisker sensor (PWWS) applied in the field of underwater perception has been proposed.•The mathematical relationships between vortex characteristics and PWWS voltage signal characteristics have been studied.•The application prospects of the piezoelectric wavy-whisker sensors in vortex perceiving and underwater environmental perceiving. |
ArticleNumber | 114875 |
Author | Xu, Peng Liu, Bo Guan, Tangzhen Liu, Jianhua Du, Taili Wu, Guitao Si, Jicang Xu, Minyi Li, Yuanzheng Guo, Linan Wang, Siyuan Wang, Hao |
Author_xml | – sequence: 1 givenname: Linan surname: Guo fullname: Guo, Linan – sequence: 2 givenname: Jianhua surname: Liu fullname: Liu, Jianhua – sequence: 3 givenname: Guitao surname: Wu fullname: Wu, Guitao – sequence: 4 givenname: Peng surname: Xu fullname: Xu, Peng – sequence: 5 givenname: Siyuan surname: Wang fullname: Wang, Siyuan – sequence: 6 givenname: Bo surname: Liu fullname: Liu, Bo – sequence: 7 givenname: Yuanzheng surname: Li fullname: Li, Yuanzheng – sequence: 8 givenname: Tangzhen surname: Guan fullname: Guan, Tangzhen – sequence: 9 givenname: Hao surname: Wang fullname: Wang, Hao – sequence: 10 givenname: Jicang surname: Si fullname: Si, Jicang email: sjc@dlmu.edu.cn – sequence: 11 givenname: Taili surname: Du fullname: Du, Taili email: dutaili@dlmu.edu.cn – sequence: 12 givenname: Minyi surname: Xu fullname: Xu, Minyi email: xuminyi@dlmu.edu.cn |
BookMark | eNp9kL1OwzAUhS1UJNrCA7D5BVL8k8SxmFDFn1QJhjJbrn0NLqld2WlKeXpSlYmB4egu57vS-SZoFGIAhK4pmVFC65v1LAc9Y4TxGaVlI6ozNKaN4AUntRyhMZGsLEpWigs0yXlNCOFciDFavnr4jtCC6ZI3eK_7A95_-PwJCWcIOSbshmwhGfC9D-94Fyykve6GQh9TB1_YpbjBGq_anXN4Fe3hEp073Wa4-r1T9PZwv5w_FYuXx-f53aIwTIquqCS4mjRlqU3ZUEmtgNoyRo3mFdMVk8a4qq4YOAd1zZmWwzBpLW0a7oS1fIrE6a9JMecEThnf6c7H0CXtW0WJOspRazXIUUc56iRnIOkfcpv8RqfDv8ztiYFhUu8hqWw8BAPWp0GfstH_Q_8AO96AWQ |
CitedBy_id | crossref_primary_10_1002_advs_202408162 crossref_primary_10_1002_admt_202500072 crossref_primary_10_1002_admt_202401053 |
Cites_doi | 10.1155/2016/4732703 10.1117/1.OE.59.8.083102 10.1093/icb/icn029 10.1016/j.ceramint.2015.03.219 10.1089/soro.2021.0166 10.1016/S0925-4005(99)00372-X 10.1109/ACCESS.2019.2917791 10.1098/rsif.2015.0322 10.1089/soro.2016.0069 10.1073/pnas.2119502119 10.1016/j.scib.2019.10.021 10.3390/s19245384 10.1088/1748-3190/ab1a8d 10.1017/jfm.2015.513 10.1038/s41467-019-10433-4 10.1017/jfm.2017.908 10.1371/journal.pone.0241142 10.1242/jeb.02708 10.1242/jeb.043216 10.1088/1748-3182/9/3/036013 10.1016/j.nanoen.2022.107210 10.1016/j.measurement.2020.108866 10.3390/s22072705 10.1016/j.nanoen.2020.105120 10.3390/s22031033 10.1016/j.nanoen.2015.02.034 10.1109/JSEN.2015.2434890 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.sna.2023.114875 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
ExternalDocumentID | 10_1016_j_sna_2023_114875 S0924424723007240 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET SSH WUQ |
ID | FETCH-LOGICAL-c297t-59ef60844ac48191d7e6d221ca352a529ccf5652effe6632a94879dd1883f7dd3 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Tue Jul 01 02:24:57 EDT 2025 Thu Apr 24 23:02:41 EDT 2025 Sat Apr 13 16:38:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Piezoelectric nanogenerators Bionic seal whisker Vortex perception |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-59ef60844ac48191d7e6d221ca352a529ccf5652effe6632a94879dd1883f7dd3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_sna_2023_114875 crossref_primary_10_1016_j_sna_2023_114875 elsevier_sciencedirect_doi_10_1016_j_sna_2023_114875 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 2024-01-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | David, Mathur, Govardhan, Arakeri (bib31) 2018; 839 Zhang, Gao, Wang, Liao, Qiu, Yang (bib37) 2015; 13 Adachi, Naito, Robinson, Costa, Huckstadt, Holser (bib19) 2022; 119 Shan, Song, Liu, Xie (bib33) 2015; 41 Arshad (bib5) 2009; 38 Beem, Hildner, Triantafyllou (bib26) 2012 Wang, Xu, Wang, Zheng, Liu, Liu (bib29) 2022; 97 Balachandran, Magrab (bib34) 2018 Man, Chen, Chen (bib8) 2022; 12 Sayegh, Daraghma, Mekid, Bashmal (bib13) 2022; 22 Zheng, Kamat, Krushynska, Cao, Kottapalli (bib27) 2022; 32 Fish, Howle, Murray (bib20) 2008; 48 Liu, Bao, Tao, Li, Dong, Pan (bib6) 2020; 65 Jin, Ko, Ahn, Hur, Lee, Jeong (bib36) 2021; 17 Gorshkov, Yuksel, Fotiadi, Wuilpart, Korobko, Zhirnov (bib3) 2022; 22 Liu, Wang, Wang, Liu (bib12) 2016; 2016 Liu, Jiang, Wu, Ma, Chen, Zhang (bib25) 2023; 10 Cohen, Kunz (bib35) 2000; 62 Zheng, Kamat, Cao, Kottapalli (bib23) 2023; 10 Li, Rong, Cao, Liu, Chen, He (bib4) 2020; 59 Lyons, Murphy, Franck (bib21) 2020; 15 Zou, Tan, Shi, Ouyang, Jiang, Liu (bib7) 2019; 10 Beem, Triantafyllou (bib22) 2015; 783 Asadnia, Kottapalli, Miao, Warkiani, Triantafyllou (bib10) 2015; 12 Zhang, Shan, Xie, Miao, Du, Song (bib28) 2021; 172 Beem (bib30) 2015 Sendra, Lloret, Jimenez, Parra (bib1) 2016; 16 Jiang, Ma, Zhang (bib15) 2019; 14 Gul, Su, Choi (bib24) 2018; 5 Yan, Gong, Zhang, Li, Teng (bib2) 2019; 7 Hanke, Witte, Miersch, Brede, Oeffner, Michael (bib16) 2010; 213 Jiang, Li, Sun, Huang, Ji, Bi (bib9) 2020; 77 Hans, Miao, Triantafyllou (bib17) 2014; 9 Saffman (bib32) 1993 Schulte-Pelkum, Wieskotten, Hanke, Dehnhardt, Mauck (bib18) 2007; 210 Hu, Jiang, Ma, Xu, Zhang (bib11) 2019; 19 Shizhe (bib14) 2014; 20 Jiang (10.1016/j.sna.2023.114875_bib9) 2020; 77 Liu (10.1016/j.sna.2023.114875_bib6) 2020; 65 Zou (10.1016/j.sna.2023.114875_bib7) 2019; 10 Hu (10.1016/j.sna.2023.114875_bib11) 2019; 19 Saffman (10.1016/j.sna.2023.114875_bib32) 1993 Sendra (10.1016/j.sna.2023.114875_bib1) 2016; 16 Hans (10.1016/j.sna.2023.114875_bib17) 2014; 9 Liu (10.1016/j.sna.2023.114875_bib25) 2023; 10 Man (10.1016/j.sna.2023.114875_bib8) 2022; 12 Yan (10.1016/j.sna.2023.114875_bib2) 2019; 7 Fish (10.1016/j.sna.2023.114875_bib20) 2008; 48 Cohen (10.1016/j.sna.2023.114875_bib35) 2000; 62 Adachi (10.1016/j.sna.2023.114875_bib19) 2022; 119 Gorshkov (10.1016/j.sna.2023.114875_bib3) 2022; 22 Zheng (10.1016/j.sna.2023.114875_bib23) 2023; 10 Li (10.1016/j.sna.2023.114875_bib4) 2020; 59 Shan (10.1016/j.sna.2023.114875_bib33) 2015; 41 Zhang (10.1016/j.sna.2023.114875_bib37) 2015; 13 Zheng (10.1016/j.sna.2023.114875_bib27) 2022; 32 Wang (10.1016/j.sna.2023.114875_bib29) 2022; 97 Balachandran (10.1016/j.sna.2023.114875_bib34) 2018 Sayegh (10.1016/j.sna.2023.114875_bib13) 2022; 22 Shizhe (10.1016/j.sna.2023.114875_bib14) 2014; 20 Arshad (10.1016/j.sna.2023.114875_bib5) 2009; 38 Lyons (10.1016/j.sna.2023.114875_bib21) 2020; 15 Liu (10.1016/j.sna.2023.114875_bib12) 2016; 2016 Beem (10.1016/j.sna.2023.114875_bib26) 2012 Beem (10.1016/j.sna.2023.114875_bib22) 2015; 783 Asadnia (10.1016/j.sna.2023.114875_bib10) 2015; 12 Schulte-Pelkum (10.1016/j.sna.2023.114875_bib18) 2007; 210 Hanke (10.1016/j.sna.2023.114875_bib16) 2010; 213 Zhang (10.1016/j.sna.2023.114875_bib28) 2021; 172 Beem (10.1016/j.sna.2023.114875_bib30) 2015 Jin (10.1016/j.sna.2023.114875_bib36) 2021; 17 Jiang (10.1016/j.sna.2023.114875_bib15) 2019; 14 Gul (10.1016/j.sna.2023.114875_bib24) 2018; 5 David (10.1016/j.sna.2023.114875_bib31) 2018; 839 |
References_xml | – volume: 10 year: 2023 ident: bib23 article-title: Wavy Whiskers in Wakes: Explaining the Trail-Tracking Capabilities of Whisker Arrays on Seal Muzzles publication-title: Adv. Sci. – year: 1993 ident: bib32 article-title: Vortex Dynamics – year: 2015 ident: bib30 publication-title: Passiv. wake Detect. Using Seal. whisker-inspired Sens. – volume: 22 year: 2022 ident: bib13 article-title: Review of Recent Bio-Inspired Design and Manufacturing of Whisker Tactile Sensors publication-title: Sensors – volume: 10 year: 2019 ident: bib7 article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting publication-title: Nat. Commun. – volume: 10 start-page: 97 year: 2023 end-page: 105 ident: bib25 article-title: Artificial Whisker Sensor with Undulated Morphology and Self-Spread Piezoresistors for Diverse Flow Analyses publication-title: Soft Robot. – volume: 12 year: 2015 ident: bib10 article-title: Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena publication-title: J. R. Soc. Interface – volume: 59 year: 2020 ident: bib4 article-title: Underwater image enhancement framework and its application on an autonomous underwater vehicle platform publication-title: Opt. Eng. – volume: 65 start-page: 70 year: 2020 end-page: 88 ident: bib6 article-title: Recent progress in tactile sensors and their applications in intelligent systems publication-title: Sci. Bull. – volume: 9 year: 2014 ident: bib17 article-title: Mechanical characteristics of harbor seal (Phoca vitulina) vibrissae under different circumstances and their implications on its sensing methodology publication-title: Bioinspiration Biomim. – volume: 119 year: 2022 ident: bib19 article-title: Whiskers as hydrodynamic prey sensors in foraging seals publication-title: Proc. Natl. Acad. Sci. USA – volume: 172 year: 2021 ident: bib28 article-title: Harbor seal whisker inspired self-powered piezoelectric sensor for detecting the underwater flow angle of attack and velocity publication-title: Measurement – volume: 7 start-page: 72567 year: 2019 end-page: 72576 ident: bib2 article-title: Autonomous Underwater Vehicle Vision Guided Docking Experiments Based on L-Shaped Light Array publication-title: Ieee Access – volume: 20 start-page: 2123 year: 2014 end-page: 2136 ident: bib14 article-title: Underwater artificial lateral line flow sensors publication-title: Microsyst. Technol. -Micro- Nanosyst. -Inf. Storage Process. Syst. – volume: 62 start-page: 23 year: 2000 end-page: 29 ident: bib35 article-title: Large-area interdigitated array microelectrodes for electrochemical sensing publication-title: Sens. Actuators B-Chem. – volume: 14 year: 2019 ident: bib15 article-title: Flow field perception based on the fish lateral line system publication-title: Bioinspiration Biomim. – volume: 48 start-page: 788 year: 2008 end-page: 800 ident: bib20 article-title: Hydrodynamic flow control in marine mammals publication-title: Integr. Comp. Biol. – volume: 17 year: 2021 ident: bib36 article-title: Polarization- and Electrode-Optimized Polyvinylidene Fluoride Films for Harsh Environmental Piezoelectric Nanogenerator Applications publication-title: Small – volume: 2016 year: 2016 ident: bib12 article-title: A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish publication-title: Appl. Bionics Biomech. – volume: 839 start-page: 489 year: 2018 end-page: 524 ident: bib31 article-title: The kinematic genesis of vortex formation due to finite rotation of a plate in still fluid publication-title: J. Fluid Mech. – volume: 213 start-page: 2665 year: 2010 end-page: 2672 ident: bib16 article-title: Harbor seal vibrissa morphology suppresses vortex-induced vibrations publication-title: J. Exp. Biol. – volume: 15 year: 2020 ident: bib21 article-title: Flow over seal whiskers: Importance of geometric features for force and frequency response publication-title: Plos One – volume: 41 start-page: S763 year: 2015 end-page: S767 ident: bib33 article-title: Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex publication-title: Ceram. Int. – volume: 13 start-page: 298 year: 2015 end-page: 305 ident: bib37 article-title: A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application publication-title: Nano Energy – volume: 77 year: 2020 ident: bib9 article-title: A high-performance bionic pressure memory device based on piezo-OLED and piezo-memristor as luminescence-fish neuromorphic tactile system publication-title: Nano Energy – volume: 5 start-page: 122 year: 2018 end-page: 132 ident: bib24 article-title: Fully 3D Printed Multi-Material Soft Bio-Inspired Whisker Sensor for Underwater-Induced Vortex Detection publication-title: Soft Robot. – year: 2012 ident: bib26 article-title: Ieee, Characterization of a harbor seal whisker-inspired flow sensor – volume: 38 start-page: 267 year: 2009 end-page: 273 ident: bib5 article-title: Recent advancement in sensor technology for underwater applications publication-title: Indian J. Mar. Sci. – volume: 32 year: 2022 ident: bib27 article-title: 3D Printed Graphene Piezoresistive Microelectromechanical System Sensors to Explain the Ultrasensitive Wake Tracking of Wavy Seal Whiskers publication-title: Adv. Funct. Mater. – volume: 97 year: 2022 ident: bib29 article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception publication-title: Nano Energy – volume: 16 start-page: 4063 year: 2016 end-page: 4071 ident: bib1 article-title: Underwater Acoustic Modems publication-title: Ieee Sens. J. – volume: 12 year: 2022 ident: bib8 article-title: Recent Progress of Biomimetic Tactile Sensing Technology Based on Magnetic Sensors publication-title: Biosens. -Basel – volume: 783 start-page: 306 year: 2015 end-page: 322 ident: bib22 article-title: Wake-induced 'slaloming' response explains exquisite sensitivity of seal whisker-like sensors publication-title: J. Fluid Mech. – volume: 19 year: 2019 ident: bib11 article-title: Bio-inspired Flexible Lateral Line Sensor Based on P(VDF-TrFE)/BTO Nanofiber Mat for Hydrodynamic Perception publication-title: Sensors – volume: 22 year: 2022 ident: bib3 article-title: Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective publication-title: Sensors – year: 2018 ident: bib34 publication-title: Vibrations – volume: 210 start-page: 781 year: 2007 end-page: 787 ident: bib18 article-title: Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina) publication-title: J. Exp. Biol. – volume: 2016 year: 2016 ident: 10.1016/j.sna.2023.114875_bib12 article-title: A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish publication-title: Appl. Bionics Biomech. doi: 10.1155/2016/4732703 – volume: 59 year: 2020 ident: 10.1016/j.sna.2023.114875_bib4 article-title: Underwater image enhancement framework and its application on an autonomous underwater vehicle platform publication-title: Opt. Eng. doi: 10.1117/1.OE.59.8.083102 – volume: 48 start-page: 788 year: 2008 ident: 10.1016/j.sna.2023.114875_bib20 article-title: Hydrodynamic flow control in marine mammals publication-title: Integr. Comp. Biol. doi: 10.1093/icb/icn029 – volume: 41 start-page: S763 year: 2015 ident: 10.1016/j.sna.2023.114875_bib33 article-title: Novel energy harvesting: A macro fiber composite piezoelectric energy harvester in the water vortex publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.03.219 – volume: 10 start-page: 97 year: 2023 ident: 10.1016/j.sna.2023.114875_bib25 article-title: Artificial Whisker Sensor with Undulated Morphology and Self-Spread Piezoresistors for Diverse Flow Analyses publication-title: Soft Robot. doi: 10.1089/soro.2021.0166 – volume: 62 start-page: 23 year: 2000 ident: 10.1016/j.sna.2023.114875_bib35 article-title: Large-area interdigitated array microelectrodes for electrochemical sensing publication-title: Sens. Actuators B-Chem. doi: 10.1016/S0925-4005(99)00372-X – volume: 7 start-page: 72567 year: 2019 ident: 10.1016/j.sna.2023.114875_bib2 article-title: Autonomous Underwater Vehicle Vision Guided Docking Experiments Based on L-Shaped Light Array publication-title: Ieee Access doi: 10.1109/ACCESS.2019.2917791 – year: 2012 ident: 10.1016/j.sna.2023.114875_bib26 – volume: 12 year: 2015 ident: 10.1016/j.sna.2023.114875_bib10 article-title: Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2015.0322 – volume: 5 start-page: 122 year: 2018 ident: 10.1016/j.sna.2023.114875_bib24 article-title: Fully 3D Printed Multi-Material Soft Bio-Inspired Whisker Sensor for Underwater-Induced Vortex Detection publication-title: Soft Robot. doi: 10.1089/soro.2016.0069 – volume: 119 year: 2022 ident: 10.1016/j.sna.2023.114875_bib19 article-title: Whiskers as hydrodynamic prey sensors in foraging seals publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2119502119 – year: 2018 ident: 10.1016/j.sna.2023.114875_bib34 – year: 1993 ident: 10.1016/j.sna.2023.114875_bib32 – volume: 65 start-page: 70 year: 2020 ident: 10.1016/j.sna.2023.114875_bib6 article-title: Recent progress in tactile sensors and their applications in intelligent systems publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.10.021 – volume: 19 year: 2019 ident: 10.1016/j.sna.2023.114875_bib11 article-title: Bio-inspired Flexible Lateral Line Sensor Based on P(VDF-TrFE)/BTO Nanofiber Mat for Hydrodynamic Perception publication-title: Sensors doi: 10.3390/s19245384 – volume: 38 start-page: 267 year: 2009 ident: 10.1016/j.sna.2023.114875_bib5 article-title: Recent advancement in sensor technology for underwater applications publication-title: Indian J. Mar. Sci. – volume: 14 year: 2019 ident: 10.1016/j.sna.2023.114875_bib15 article-title: Flow field perception based on the fish lateral line system publication-title: Bioinspiration Biomim. doi: 10.1088/1748-3190/ab1a8d – volume: 783 start-page: 306 year: 2015 ident: 10.1016/j.sna.2023.114875_bib22 article-title: Wake-induced 'slaloming' response explains exquisite sensitivity of seal whisker-like sensors publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.513 – volume: 10 year: 2019 ident: 10.1016/j.sna.2023.114875_bib7 article-title: A bionic stretchable nanogenerator for underwater sensing and energy harvesting publication-title: Nat. Commun. doi: 10.1038/s41467-019-10433-4 – volume: 839 start-page: 489 year: 2018 ident: 10.1016/j.sna.2023.114875_bib31 article-title: The kinematic genesis of vortex formation due to finite rotation of a plate in still fluid publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.908 – volume: 12 year: 2022 ident: 10.1016/j.sna.2023.114875_bib8 article-title: Recent Progress of Biomimetic Tactile Sensing Technology Based on Magnetic Sensors publication-title: Biosens. -Basel – volume: 17 year: 2021 ident: 10.1016/j.sna.2023.114875_bib36 article-title: Polarization- and Electrode-Optimized Polyvinylidene Fluoride Films for Harsh Environmental Piezoelectric Nanogenerator Applications publication-title: Small – volume: 15 year: 2020 ident: 10.1016/j.sna.2023.114875_bib21 article-title: Flow over seal whiskers: Importance of geometric features for force and frequency response publication-title: Plos One doi: 10.1371/journal.pone.0241142 – volume: 210 start-page: 781 year: 2007 ident: 10.1016/j.sna.2023.114875_bib18 article-title: Tracking of biogenic hydrodynamic trails in harbour seals (Phoca vitulina) publication-title: J. Exp. Biol. doi: 10.1242/jeb.02708 – volume: 213 start-page: 2665 year: 2010 ident: 10.1016/j.sna.2023.114875_bib16 article-title: Harbor seal vibrissa morphology suppresses vortex-induced vibrations publication-title: J. Exp. Biol. doi: 10.1242/jeb.043216 – volume: 9 year: 2014 ident: 10.1016/j.sna.2023.114875_bib17 article-title: Mechanical characteristics of harbor seal (Phoca vitulina) vibrissae under different circumstances and their implications on its sensing methodology publication-title: Bioinspiration Biomim. doi: 10.1088/1748-3182/9/3/036013 – volume: 97 year: 2022 ident: 10.1016/j.sna.2023.114875_bib29 article-title: Underwater bionic whisker sensor based on triboelectric nanogenerator for passive vortex perception publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107210 – volume: 172 year: 2021 ident: 10.1016/j.sna.2023.114875_bib28 article-title: Harbor seal whisker inspired self-powered piezoelectric sensor for detecting the underwater flow angle of attack and velocity publication-title: Measurement doi: 10.1016/j.measurement.2020.108866 – volume: 22 year: 2022 ident: 10.1016/j.sna.2023.114875_bib13 article-title: Review of Recent Bio-Inspired Design and Manufacturing of Whisker Tactile Sensors publication-title: Sensors doi: 10.3390/s22072705 – volume: 10 year: 2023 ident: 10.1016/j.sna.2023.114875_bib23 article-title: Wavy Whiskers in Wakes: Explaining the Trail-Tracking Capabilities of Whisker Arrays on Seal Muzzles publication-title: Adv. Sci. – year: 2015 ident: 10.1016/j.sna.2023.114875_bib30 publication-title: Passiv. wake Detect. Using Seal. whisker-inspired Sens. – volume: 77 year: 2020 ident: 10.1016/j.sna.2023.114875_bib9 article-title: A high-performance bionic pressure memory device based on piezo-OLED and piezo-memristor as luminescence-fish neuromorphic tactile system publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105120 – volume: 32 year: 2022 ident: 10.1016/j.sna.2023.114875_bib27 article-title: 3D Printed Graphene Piezoresistive Microelectromechanical System Sensors to Explain the Ultrasensitive Wake Tracking of Wavy Seal Whiskers publication-title: Adv. Funct. Mater. – volume: 20 start-page: 2123 year: 2014 ident: 10.1016/j.sna.2023.114875_bib14 article-title: Underwater artificial lateral line flow sensors publication-title: Microsyst. Technol. -Micro- Nanosyst. -Inf. Storage Process. Syst. – volume: 22 year: 2022 ident: 10.1016/j.sna.2023.114875_bib3 article-title: Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective publication-title: Sensors doi: 10.3390/s22031033 – volume: 13 start-page: 298 year: 2015 ident: 10.1016/j.sna.2023.114875_bib37 article-title: A hybrid fibers based wearable fabric piezoelectric nanogenerator for energy harvesting application publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.02.034 – volume: 16 start-page: 4063 year: 2016 ident: 10.1016/j.sna.2023.114875_bib1 article-title: Underwater Acoustic Modems publication-title: Ieee Sens. J. doi: 10.1109/JSEN.2015.2434890 |
SSID | ssj0003377 |
Score | 2.4466572 |
Snippet | Underwater flow field perception is a crucial technique for obtaining the motion status and trajectory of targets. To perceive the vortex in the flow field... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 114875 |
SubjectTerms | Bionic seal whisker Piezoelectric nanogenerators Vortex perception |
Title | Piezoelectric wavy whisker sensor for perceiving underwater vortex from a bluff body |
URI | https://dx.doi.org/10.1016/j.sna.2023.114875 |
Volume | 365 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXvQgPvFZcvAkrN1u0mZzLMVSFYtgC70t2SSLq6Ut25f14G93Zh9aQT143GUCux9h5pvkmxlCLoy0DePXlCNNyBzOtHWkZq4TMQynQEBs2kj7vtvo9PntoD4okVZRC4Oyytz3Zz499db5m2qOZnUSx9VHF1IH7nEBJNoVEJiwgp0L3OVX718yD8bS6Yto7KB1cbOZarymI2w95DHsmJtKDX-KTWvxpr1DtnOiSJvZt-ySkh3tka219oH7pPcQ27dxNsgm1nSpFiu6fIqnLzahU0hPxwkFSkonqF2J8eCAYsVYsgR6mdAFqmxfKZaXUEXD4TyKaDg2qwPSb1_3Wh0nn5LgaE-KmVOXNmq4PudKc8y-jAD0Pa-mFXArVfek1hGwNg_1IUAvPCXhV6UxNd9nkTCGHZLyaDyyR4QqLYRucKm4wvtOqyLOuBbAKUNX-5F_TNwCn0DnLcRxksUwKLRizwFAGiCkQQbpMbn8XDLJ-mf8ZcwL0INvmyAA__77spP_LTslm_DEs_OUM1KeJXN7DgxjFlbSLVQhG82bu073A2MIz8s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xcNjlsOK1gl0ePsAFKTS13SY-cEA8VJ5Cokjcso7tiABqq7TQLQf-FH-QmTx4SCwHJK5JHDlfrJlv7G9mAFatck0b1rWnbCw8KYzzlBG-lwhyp0hAXF5I-_ik2TqXBxeNizF4rHJhSFZZ2v7CpufWurxSK9Gs9dK0duZj6CC5DJBE-wE6plJZeehGQ4zb-pv7O_iT1zjf221vt7yytYBnuAoGXkO5pOmHUmojKWSxAU6Z87rRSEh0gytjEqQ6nEQV6JO5VkjslbX1MBRJYK3A936DCYnmgtombDy86EqEyNs90uw8ml51lJqLyvodqnXEBZXozbWN7znDVw5ubwp-lsyUbRUfPw1jrjMDk6_qFc5C-zR1992ic05q2FDfjdjwMu1fu4z1MR7uZgw5MOuRWCalnQpGKWrZEPlsxu5I1vuPUT4L0yy-uU0SFnftaA7OvwS7XzDe6XbcPDBtgsA0pdJS0wGr04kU0gRIYmPfhEm4AH6FT2TKmuXUOuMmqsRpVxFCGhGkUQHpAqw_D-kVBTs-elhWoEdvVl2EDuX_w35_btgKfG-1j4-io_2Twz_wA-_IYjNnEcYH2a1bQnoziJfz5cTg71ev3ycbQgsq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+wavy+whisker+sensor+for+perceiving+underwater+vortex+from+a+bluff+body&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Guo%2C+Linan&rft.au=Liu%2C+Jianhua&rft.au=Wu%2C+Guitao&rft.au=Xu%2C+Peng&rft.date=2024-01-01&rft.pub=Elsevier+B.V&rft.issn=0924-4247&rft.eissn=1873-3069&rft.volume=365&rft_id=info:doi/10.1016%2Fj.sna.2023.114875&rft.externalDocID=S0924424723007240 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |