A time-varying distance based interval-valued functional principal component analysis method – A case study of consumer price index
Functional principal component analysis (FPCA) is an extension of conventional principal component analysis (PCA) that allows the processing of functional data. Besides the reduction in dimensionality that is inherent to PCA, FPCA relies on fewer assumptions and offers a greater ability to visualize...
Saved in:
Published in | Information sciences Vol. 589; pp. 94 - 116 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0020-0255 1872-6291 |
DOI | 10.1016/j.ins.2021.12.113 |
Cover
Abstract | Functional principal component analysis (FPCA) is an extension of conventional principal component analysis (PCA) that allows the processing of functional data. Besides the reduction in dimensionality that is inherent to PCA, FPCA relies on fewer assumptions and offers a greater ability to visualize the functional data. Thus, FPCA can be used in, for example, social, economic, and medical research. However, the existing FPCA methods are sensitive to outliers, and underperform when extracting features from interval-valued functional data. At the same time, the existing PCA methods for interval-valued functional data suffer from inconsistency in the interpretation of the principal components, and substantial information loss. Therefore, this paper proposes an interval-valued functional principal component analysis (IFPCA) method based on the time-varying distance function. The time-varying distance function containing information on the midpoint and radius is constructed to mitigate information loss. The novel IFPCA method is also able to solve the problem of the inconsistent interpretation of the principal components. The effectiveness of the method is verified by considering the case of the consumer price index. |
---|---|
AbstractList | Functional principal component analysis (FPCA) is an extension of conventional principal component analysis (PCA) that allows the processing of functional data. Besides the reduction in dimensionality that is inherent to PCA, FPCA relies on fewer assumptions and offers a greater ability to visualize the functional data. Thus, FPCA can be used in, for example, social, economic, and medical research. However, the existing FPCA methods are sensitive to outliers, and underperform when extracting features from interval-valued functional data. At the same time, the existing PCA methods for interval-valued functional data suffer from inconsistency in the interpretation of the principal components, and substantial information loss. Therefore, this paper proposes an interval-valued functional principal component analysis (IFPCA) method based on the time-varying distance function. The time-varying distance function containing information on the midpoint and radius is constructed to mitigate information loss. The novel IFPCA method is also able to solve the problem of the inconsistent interpretation of the principal components. The effectiveness of the method is verified by considering the case of the consumer price index. |
Author | Wang, Kaili Zhang, Chonghui Balezentis, Tomas Sun, Lirong Xu, Lini |
Author_xml | – sequence: 1 givenname: Lirong surname: Sun fullname: Sun, Lirong organization: School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China – sequence: 2 givenname: Kaili surname: Wang fullname: Wang, Kaili organization: School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China – sequence: 3 givenname: Lini surname: Xu fullname: Xu, Lini organization: School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China – sequence: 4 givenname: Chonghui surname: Zhang fullname: Zhang, Chonghui organization: School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China – sequence: 5 givenname: Tomas surname: Balezentis fullname: Balezentis, Tomas organization: Lithuanian Centre for Social Sciences, 03220 Vilnius, Lithuania |
BookMark | eNp9kDtOAzEQhi0UJJLAAeh8gV38iHcdUUURLykSDdSWY8-Co11vZDsR6Wg4ATfkJHgVKopUtjXz_Z75Jmjkew8IXVNSUkKrm03pfCwZYbSkrKSUn6ExlTUrKjanIzQmhJGCMCEu0CTGDSFkVlfVGH0tcHIdFHsdDs6_Yeti0t4AXusIFjufIOx1m-vtLr-bnTfJ9V63eBucN26bb6bvtnkan7DOhUN0EXeQ3nuLfz6_8QKbHIVj2tkD7pvc7eOugzAE5H-ct_Bxic4b3Ua4-jun6PX-7mX5WKyeH56Wi1Vh2LxOhZCNqNm6FlRws9bAqLBCcjOTdsYZ5xU3Zgay4QxsoyUIKYHlbioraWpG-BTVx1wT-hgDNMq4pIeFUtCuVZSowabaqGxTDTYVZSrbzCT9R-bxuyztJHN7ZCCvtHcQVDQOslzrApikbO9O0L-DyZK2 |
CitedBy_id | crossref_primary_10_1016_j_ins_2022_05_112 crossref_primary_10_1038_s41514_024_00167_z crossref_primary_10_3390_economies11050143 crossref_primary_10_1016_j_ins_2022_04_029 crossref_primary_10_1080_02664763_2024_2440035 crossref_primary_10_1080_23322039_2024_2381695 crossref_primary_10_1142_S0219477525500087 crossref_primary_10_1016_j_energy_2023_128692 crossref_primary_10_1155_2023_6066817 crossref_primary_10_3390_pr11061791 crossref_primary_10_1016_j_apm_2023_07_018 crossref_primary_10_1142_S0219622024500111 crossref_primary_10_1016_j_commatsci_2022_111820 crossref_primary_10_1016_j_ins_2022_07_146 crossref_primary_10_1016_j_ipm_2022_103229 crossref_primary_10_1016_j_jprocont_2025_103377 crossref_primary_10_3390_su16219163 crossref_primary_10_1016_j_eswa_2023_122277 crossref_primary_10_1016_j_eswa_2024_123385 |
Cites_doi | 10.1111/j.1467-9868.2010.00769.x 10.1109/ACCESS.2020.2968339 10.1007/s11634-013-0158-y 10.1016/j.chemolab.2003.11.005 10.24963/ijcai.2018/390 10.1080/01621459.2015.1016225 10.1080/01621459.2016.1273115 10.1109/TGRS.2018.2876123 10.1109/LGRS.2017.2783879 10.1111/rssc.12376 10.1214/08-AOAS206 10.1080/01621459.2013.788980 10.1002/cem.868 10.1016/j.csda.2007.05.024 10.1016/j.ejor.2021.02.010 10.1111/biom.12236 10.1016/j.csda.2014.04.012 10.1016/j.ins.2007.05.027 10.1002/sam.10118 10.1016/j.ejor.2015.04.038 10.1111/j.1467-9868.2005.00530.x 10.1007/BF02789706 10.1109/TCYB.2015.2389653 10.3233/JIFS-169058 10.1006/jmva.2001.2027 10.1007/s00180-013-0399-4 10.1016/0166-0462(78)90024-8 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ins.2021.12.113 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science |
EISSN | 1872-6291 |
EndPage | 116 |
ExternalDocumentID | 10_1016_j_ins_2021_12_113 S0020025521013347 |
GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-58f572b75153cbae215d583c48d4323363cc4e8f32edfa8e588e27511868c7203 |
IEDL.DBID | AIKHN |
ISSN | 0020-0255 |
IngestDate | Thu Apr 24 22:56:00 EDT 2025 Tue Jul 01 01:26:49 EDT 2025 Fri Feb 23 02:41:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Feature extraction Multivariate statistics Interval-valued functional data Time-varying distance function Functional principal component analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-58f572b75153cbae215d583c48d4323363cc4e8f32edfa8e588e27511868c7203 |
PageCount | 23 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2021_12_113 crossref_primary_10_1016_j_ins_2021_12_113 elsevier_sciencedirect_doi_10_1016_j_ins_2021_12_113 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationTitle | Information sciences |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Shou, Zipunnikov, Crainiceanu, Greven (b0105) 2015; 71 Strohmeier, Liechti (b0115) 1978; 8 Yang, Müller, Stadtmüller (b0135) 2011; 73 Yamanishi, Tanaka (b0130) 2005; 20 Wang, Q., Wang, S., Gong, M., & Wu, Y. (2018, July). Feature Hashing for Network Representation Learning. In Le-Rademacher, Billard (b0075) 2013; 28 Tang, Gong, Jiang, Li, Wu (b0165) 2019 Laurini, Ohashi (b0070) 2015; 246 Staicu, Islam, Dumitru, Heugten (b0110) 2020; 69 (pp. 2812-2818). Zhang, Gong, Mao, Li, Wu (b0155) 2019; 57 Ke, Q. and T. Kanade (2005). Robust l/sub 1/norm factorization in the presence of outliers and missing data by alternative convex programming. Wu, Su, Ma, Liu, Miao (b0160) 2020; 8 Jacques, Preda (b0050) 2014; 8 Wang, Sun, Zhao, Wang (b0125) 2016; 31 Gheorghiu, Spatariu, Trandafir, Caratas, Serban-Comanescu (b0145) 2021; 20 Charpentier, Mussard, Ouraga (b0010) 2021 Happ, Greven (b0040) 2018; 113 Bilodeau, Duchesne (b0005) 2002; 82 D'Urso, Giordani (b0020) 2004; 70 1, 739-746. Ikeda, Komiya, Zheng, Mizuda (b0045) 2010; 23 Kao, Nakano, Shieh, Tien, Wu, Yang, Chen (b0055) 2014; 79 Yao, Lee (b0140) 2006; 68 Verde, Irpino, Balzanella (b0120) 2016; 46 Palumbo, Lauro (b0085) 2003 Chen, Lei (b0015) 2015; 110 Wu, Miao, Ma, Gong, Wang (b0170) 2018; 15 Giordani, Kiers (b0035) 2004; 18 Douzal-Chouakria, Billard, Diday (b0030) 2011; 4 Di, Crainiceanu, Caffo, Punjabi (b0025) 2009; 3 Rice (b0095) 2003; 14 Serneels, Verdonck (b0100) 2008; 52 Li, Wang, Carroll (b0080) 2013; 108 Korenius, Laurikkala, Juhola (b0065) 2007; 177 Staicu (10.1016/j.ins.2021.12.113_b0110) 2020; 69 10.1016/j.ins.2021.12.113_b0060 Di (10.1016/j.ins.2021.12.113_b0025) 2009; 3 Strohmeier (10.1016/j.ins.2021.12.113_b0115) 1978; 8 Yang (10.1016/j.ins.2021.12.113_b0135) 2011; 73 Douzal-Chouakria (10.1016/j.ins.2021.12.113_b0030) 2011; 4 D'Urso (10.1016/j.ins.2021.12.113_b0020) 2004; 70 Jacques (10.1016/j.ins.2021.12.113_b0050) 2014; 8 Wang (10.1016/j.ins.2021.12.113_b0125) 2016; 31 Tang (10.1016/j.ins.2021.12.113_b0165) 2019 Laurini (10.1016/j.ins.2021.12.113_b0070) 2015; 246 Happ (10.1016/j.ins.2021.12.113_b0040) 2018; 113 Charpentier (10.1016/j.ins.2021.12.113_b0010) 2021 Yao (10.1016/j.ins.2021.12.113_b0140) 2006; 68 Wu (10.1016/j.ins.2021.12.113_b0160) 2020; 8 Rice (10.1016/j.ins.2021.12.113_b0095) 2003; 14 Giordani (10.1016/j.ins.2021.12.113_b0035) 2004; 18 Ikeda (10.1016/j.ins.2021.12.113_b0045) 2010; 23 Gheorghiu (10.1016/j.ins.2021.12.113_b0145) 2021; 20 Le-Rademacher (10.1016/j.ins.2021.12.113_b0075) 2013; 28 10.1016/j.ins.2021.12.113_b0150 Shou (10.1016/j.ins.2021.12.113_b0105) 2015; 71 Bilodeau (10.1016/j.ins.2021.12.113_b0005) 2002; 82 Korenius (10.1016/j.ins.2021.12.113_b0065) 2007; 177 Serneels (10.1016/j.ins.2021.12.113_b0100) 2008; 52 Kao (10.1016/j.ins.2021.12.113_b0055) 2014; 79 Verde (10.1016/j.ins.2021.12.113_b0120) 2016; 46 Yamanishi (10.1016/j.ins.2021.12.113_b0130) 2005; 20 Zhang (10.1016/j.ins.2021.12.113_b0155) 2019; 57 Palumbo (10.1016/j.ins.2021.12.113_b0085) 2003 Chen (10.1016/j.ins.2021.12.113_b0015) 2015; 110 Li (10.1016/j.ins.2021.12.113_b0080) 2013; 108 Wu (10.1016/j.ins.2021.12.113_b0170) 2018; 15 |
References_xml | – volume: 46 start-page: 344 year: 2016 end-page: 355 ident: b0120 article-title: Dimension reduction techniques for distributional symbolic data publication-title: IEEE Trans. Cybern. – volume: 8 start-page: 129 year: 1978 end-page: 151 ident: b0115 article-title: The method of principal component analysis based on chi-square distance with regional application publication-title: Reg. Sci. Urban Econ. – volume: 4 start-page: 229 year: 2011 end-page: 246 ident: b0030 article-title: Principal component analysis for interval-valued observations publication-title: Stat. Anal. Data Min. – volume: 18 start-page: 253 year: 2004 end-page: 264 ident: b0035 article-title: Three-way component analysis of interval-valued data publication-title: J. Chemom. – volume: 70 start-page: 179 year: 2004 end-page: 192 ident: b0020 article-title: A least squares approach to principal component analysis for interval valued data publication-title: Chemomet. Intell. Lab. Syst. – volume: 3 start-page: 458 year: 2009 end-page: 488 ident: b0025 article-title: Multilevel functional principal component analysis publication-title: Ann. Appl. Stat. – reference: Wang, Q., Wang, S., Gong, M., & Wu, Y. (2018, July). Feature Hashing for Network Representation Learning. In – volume: 20 start-page: 572 year: 2021 end-page: 593 ident: b0145 article-title: Analysis of the market surveillance activity carried out in romania by the central public authority and the assessment of its impact on romanian consumer protection based on the european consumer conditions index publication-title: Transform. Business Econ. – volume: 108 start-page: 1284 year: 2013 end-page: 1294 ident: b0080 article-title: Selecting the number of principal components in functional data publication-title: J. Am. Stat. Assoc. – year: 2021 ident: b0010 article-title: Principal component analysis: a generalized gini approach publication-title: Eur J Oper Res – volume: 20 start-page: 311 year: 2005 end-page: 326 ident: b0130 article-title: Sensitivity analysis in functional principal component analysis publication-title: Comput. Statistics – volume: 82 start-page: 457 year: 2002 end-page: 470 ident: b0005 article-title: Principal component analysis from the multivariate familial correlation matrix publication-title: J. Multivariate Anal. – volume: 177 start-page: 4893 year: 2007 end-page: 4905 ident: b0065 article-title: On principal component analysis, cosine and euclidean measures in information retrieval publication-title: Inf. Sci. – volume: 71 start-page: 247 year: 2015 end-page: 257 ident: b0105 article-title: Structured functional principal component analysis publication-title: Biometrics – reference: Ke, Q. and T. Kanade (2005). Robust l/sub 1/norm factorization in the presence of outliers and missing data by alternative convex programming. – volume: 246 start-page: 140 year: 2015 end-page: 153 ident: b0070 article-title: A noisy principal component analysis for forward rate curves publication-title: Eur. J. Oper. Res. – volume: 23 start-page: 113 year: 2010 end-page: 123 ident: b0045 article-title: Principal component analysis method for interval value function data publication-title: Appl. Stat. – volume: 8 start-page: 231 year: 2014 end-page: 255 ident: b0050 article-title: Functional data clustering: A survey publication-title: Adv. Data Anal. Classif. – reference: 1, 739-746. – volume: 8 start-page: 39389 year: 2020 end-page: 39402 ident: b0160 article-title: Learning robust feature descriptor for image registration with genetic programming publication-title: IEEE Access – volume: 57 start-page: 2669 year: 2019 end-page: 2688 ident: b0155 article-title: Unsupervised feature extraction in hyperspectral images based on Wasserstein generative adversarial network publication-title: IEEE Trans. Geosci. Remote Sens. – start-page: 1906 year: 2019 end-page: 1913 ident: b0165 article-title: Multipopulation optimization for multitask optimization publication-title: June). 2019 IEEE Congress on Evolutionary Computation (CEC) – volume: 52 start-page: 1712 year: 2008 end-page: 1727 ident: b0100 article-title: Principal component analysis for data containing outliers and missing elements publication-title: Comput. Stat. Data Anal. – volume: 28 start-page: 2117 year: 2013 end-page: 2138 ident: b0075 article-title: Principal component histograms from interval-valued observations publication-title: Comput. Statistics – volume: 110 start-page: 1266 year: 2015 end-page: 1275 ident: b0015 article-title: Localized functional principal component analysis publication-title: J. Am. Stat. Assoc. – volume: 15 start-page: 242 year: 2018 end-page: 246 ident: b0170 article-title: PSOSAC: particle swarm optimization sample consensus algorithm for remote sensing image registration publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 113 start-page: 649 year: 2018 end-page: 659 ident: b0040 article-title: Multivariate functional principal component analysis for data observed on different (dimensional) domains publication-title: J. Am. Stat. Assoc. – volume: 68 start-page: 3 year: 2006 end-page: 25 ident: b0140 article-title: Penalized spline models for functional principal component analysis publication-title: J. Roy. Stat. Soc. B – volume: 79 start-page: 14 year: 2014 end-page: 29 ident: b0055 article-title: Exploratory data analysis of interval-valued symbolic data with matrix visualization publication-title: Comput. Stat. Data Anal. – volume: 31 start-page: 2187 year: 2016 end-page: 2193 ident: b0125 article-title: ARIMA-BP integrated intelligent algorithm for China’s consumer price index forecasting and its applications publication-title: J. Intell. Fuzzy Syst. – year: 2003 ident: b0085 article-title: A PCA For Interval-Valued Data Based On Midpoints And Radii – volume: 14 start-page: 613 year: 2003 end-page: 629 ident: b0095 article-title: Functional and longitudinal data analysis: Perspectives on smoothing publication-title: Stat. Sin. – volume: 73 start-page: 303 year: 2011 end-page: 324 ident: b0135 article-title: Functional singular component analysis publication-title: J. Roy. Stat. Soc. B – reference: (pp. 2812-2818). – volume: 69 start-page: 25 year: 2020 end-page: 46 ident: b0110 article-title: Longitudinal dynamic functional regression publication-title: J. Royal Stat. Soc. Series C – volume: 73 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.ins.2021.12.113_b0135 article-title: Functional singular component analysis publication-title: J. Roy. Stat. Soc. B doi: 10.1111/j.1467-9868.2010.00769.x – volume: 8 start-page: 39389 year: 2020 ident: 10.1016/j.ins.2021.12.113_b0160 article-title: Learning robust feature descriptor for image registration with genetic programming publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968339 – volume: 8 start-page: 231 issue: 3 year: 2014 ident: 10.1016/j.ins.2021.12.113_b0050 article-title: Functional data clustering: A survey publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-013-0158-y – volume: 70 start-page: 179 issue: 2 year: 2004 ident: 10.1016/j.ins.2021.12.113_b0020 article-title: A least squares approach to principal component analysis for interval valued data publication-title: Chemomet. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2003.11.005 – ident: 10.1016/j.ins.2021.12.113_b0150 doi: 10.24963/ijcai.2018/390 – volume: 110 start-page: 1266 issue: 511 year: 2015 ident: 10.1016/j.ins.2021.12.113_b0015 article-title: Localized functional principal component analysis publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2015.1016225 – volume: 113 start-page: 649 issue: 522 year: 2018 ident: 10.1016/j.ins.2021.12.113_b0040 article-title: Multivariate functional principal component analysis for data observed on different (dimensional) domains publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2016.1273115 – volume: 57 start-page: 2669 issue: 5 year: 2019 ident: 10.1016/j.ins.2021.12.113_b0155 article-title: Unsupervised feature extraction in hyperspectral images based on Wasserstein generative adversarial network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2876123 – volume: 20 start-page: 572 issue: 2A year: 2021 ident: 10.1016/j.ins.2021.12.113_b0145 article-title: Analysis of the market surveillance activity carried out in romania by the central public authority and the assessment of its impact on romanian consumer protection based on the european consumer conditions index publication-title: Transform. Business Econ. – volume: 15 start-page: 242 issue: 2 year: 2018 ident: 10.1016/j.ins.2021.12.113_b0170 article-title: PSOSAC: particle swarm optimization sample consensus algorithm for remote sensing image registration publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2783879 – volume: 69 start-page: 25 issue: 1 year: 2020 ident: 10.1016/j.ins.2021.12.113_b0110 article-title: Longitudinal dynamic functional regression publication-title: J. Royal Stat. Soc. Series C doi: 10.1111/rssc.12376 – volume: 3 start-page: 458 issue: 1 year: 2009 ident: 10.1016/j.ins.2021.12.113_b0025 article-title: Multilevel functional principal component analysis publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS206 – ident: 10.1016/j.ins.2021.12.113_b0060 – volume: 108 start-page: 1284 issue: 504 year: 2013 ident: 10.1016/j.ins.2021.12.113_b0080 article-title: Selecting the number of principal components in functional data publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2013.788980 – volume: 18 start-page: 253 issue: 5 year: 2004 ident: 10.1016/j.ins.2021.12.113_b0035 article-title: Three-way component analysis of interval-valued data publication-title: J. Chemom. doi: 10.1002/cem.868 – year: 2003 ident: 10.1016/j.ins.2021.12.113_b0085 – volume: 52 start-page: 1712 issue: 3 year: 2008 ident: 10.1016/j.ins.2021.12.113_b0100 article-title: Principal component analysis for data containing outliers and missing elements publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2007.05.024 – year: 2021 ident: 10.1016/j.ins.2021.12.113_b0010 article-title: Principal component analysis: a generalized gini approach publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2021.02.010 – volume: 14 start-page: 613 issue: 3 year: 2003 ident: 10.1016/j.ins.2021.12.113_b0095 article-title: Functional and longitudinal data analysis: Perspectives on smoothing publication-title: Stat. Sin. – volume: 23 start-page: 113 issue: 2 year: 2010 ident: 10.1016/j.ins.2021.12.113_b0045 article-title: Principal component analysis method for interval value function data publication-title: Appl. Stat. – volume: 71 start-page: 247 issue: 1 year: 2015 ident: 10.1016/j.ins.2021.12.113_b0105 article-title: Structured functional principal component analysis publication-title: Biometrics doi: 10.1111/biom.12236 – volume: 79 start-page: 14 year: 2014 ident: 10.1016/j.ins.2021.12.113_b0055 article-title: Exploratory data analysis of interval-valued symbolic data with matrix visualization publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2014.04.012 – volume: 177 start-page: 4893 issue: 22 year: 2007 ident: 10.1016/j.ins.2021.12.113_b0065 article-title: On principal component analysis, cosine and euclidean measures in information retrieval publication-title: Inf. Sci. doi: 10.1016/j.ins.2007.05.027 – start-page: 1906 year: 2019 ident: 10.1016/j.ins.2021.12.113_b0165 article-title: Multipopulation optimization for multitask optimization – volume: 4 start-page: 229 issue: 2 year: 2011 ident: 10.1016/j.ins.2021.12.113_b0030 article-title: Principal component analysis for interval-valued observations publication-title: Stat. Anal. Data Min. doi: 10.1002/sam.10118 – volume: 246 start-page: 140 issue: 1 year: 2015 ident: 10.1016/j.ins.2021.12.113_b0070 article-title: A noisy principal component analysis for forward rate curves publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2015.04.038 – volume: 68 start-page: 3 issue: 1 year: 2006 ident: 10.1016/j.ins.2021.12.113_b0140 article-title: Penalized spline models for functional principal component analysis publication-title: J. Roy. Stat. Soc. B doi: 10.1111/j.1467-9868.2005.00530.x – volume: 20 start-page: 311 issue: 2 year: 2005 ident: 10.1016/j.ins.2021.12.113_b0130 article-title: Sensitivity analysis in functional principal component analysis publication-title: Comput. Statistics doi: 10.1007/BF02789706 – volume: 46 start-page: 344 issue: 2 year: 2016 ident: 10.1016/j.ins.2021.12.113_b0120 article-title: Dimension reduction techniques for distributional symbolic data publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2389653 – volume: 31 start-page: 2187 issue: 4 year: 2016 ident: 10.1016/j.ins.2021.12.113_b0125 article-title: ARIMA-BP integrated intelligent algorithm for China’s consumer price index forecasting and its applications publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-169058 – volume: 82 start-page: 457 issue: 2 year: 2002 ident: 10.1016/j.ins.2021.12.113_b0005 article-title: Principal component analysis from the multivariate familial correlation matrix publication-title: J. Multivariate Anal. doi: 10.1006/jmva.2001.2027 – volume: 28 start-page: 2117 issue: 5 year: 2013 ident: 10.1016/j.ins.2021.12.113_b0075 article-title: Principal component histograms from interval-valued observations publication-title: Comput. Statistics doi: 10.1007/s00180-013-0399-4 – volume: 8 start-page: 129 issue: 2 year: 1978 ident: 10.1016/j.ins.2021.12.113_b0115 article-title: The method of principal component analysis based on chi-square distance with regional application publication-title: Reg. Sci. Urban Econ. doi: 10.1016/0166-0462(78)90024-8 |
SSID | ssj0004766 |
Score | 2.4743624 |
Snippet | Functional principal component analysis (FPCA) is an extension of conventional principal component analysis (PCA) that allows the processing of functional... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 94 |
SubjectTerms | Feature extraction Functional principal component analysis Interval-valued functional data Multivariate statistics Time-varying distance function |
Title | A time-varying distance based interval-valued functional principal component analysis method – A case study of consumer price index |
URI | https://dx.doi.org/10.1016/j.ins.2021.12.113 |
Volume | 589 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOKbOYgHoWqTtMkeF1FWRU8K3kqaJrAi6yKrR_HiL_Af-kucaVMfoB689ZFJQ5Jm3t8AbAdnytSLnDFDfaJ0cIm1VidK6IqLomTdOnj8_CLvX6nT6-x6Ag7bXBgOq4xnf3Om16d1fLIfZ3N_NBhwjq-oJWJSWkjRUnoSpoTs5lkHpnonZ_2Lz_RI3bgsWVNigta5WYd5DYYM2i1SNgqmqfyZPX1hOcdzMBtlRew1w5mHCT9cgJkvCIILsBnzDnAHY2IRTzTGP3YRXnrI1eOTR2pDBFixuEhvkLlXhYM64tHeJoz5TffM5RrjII4aKzxdcdT53ZCYE9qIYIJN3Wl8e37FHjrqCmuYWrwL1LrJ6eQO6Ds1GuMSXB0fXR72k1h5IXGiq8dJZkKmRalJ2JGutJ7kgioz0ilTKSmkzKVzypsgha-CNT4zxgvNykpuHDt2l6EzpJGtAJZBBJvnyrKLP6tIvUtLl1rqK5QheLsKB-2EFy7CknN1jNuijT-7KWiNCl6jIhWkschV2P0gGTWYHH81Vu0qFt82VkE843eytf-RrcO04PyIOrRnAzrj-we_SVLLuNyCyb2ndCvuzXctG-6D |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOcAe0PISBbrMAXFAiiC2E7vHCoHKAj2B1FvkOLZUhNoKdfe8F34B_3B_yc4kDg9pl8Pe8vA4lu143t8AHAVnytSLnDFDfaJ0cIm1VidK6IqLomT9Onj8dpQP79X3cTZegvM2F4bDKuPZ35zp9Wkdn5zG2TydTyac4ytqiZiUFlK0lF6GFZWRtteBlcHV9XD0lh6pG5cla0pM0Do36zCvyZRBu0XKRsE0lX9nT-9YzuVXWI-yIg6a4WzAkp9uwpd3CIKb0It5B3iMMbGIJxrjH7sFzwPk6vHJT2pDBFixuEhvkLlXhZM64tE-Joz5TffM5RrjIM4bKzxdcdT5bErMCW1EMMGm7jT-_vWCA3TUFdYwtTgL1LrJ6eQO6Ds1GuM23F9e3J0Pk1h5IXGirxdJZkKmRalJ2JGutJ7kgioz0ilTKSmkzKVzypsgha-CNT4zxgvNykpuHDt2d6AzpZHtApZBBJvnyrKLP6tIvUtLl1rqK5QheNuFs3bCCxdhybk6xmPRxp89FLRGBa9RkQrSWGQXTl5J5g0mx2eNVbuKxYeNVRDP-DfZ3v-RHcLq8O72pri5Gl3vw5rgXIk6zOcAOounH75HEsyi_BZ36B_ljPBy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+time-varying+distance+based+interval-valued+functional+principal+component+analysis+method+%E2%80%93+A+case+study+of+consumer+price+index&rft.jtitle=Information+sciences&rft.au=Sun%2C+Lirong&rft.au=Wang%2C+Kaili&rft.au=Xu%2C+Lini&rft.au=Zhang%2C+Chonghui&rft.date=2022-04-01&rft.issn=0020-0255&rft.volume=589&rft.spage=94&rft.epage=116&rft_id=info:doi/10.1016%2Fj.ins.2021.12.113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_12_113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |