A time-varying distance based interval-valued functional principal component analysis method – A case study of consumer price index

Functional principal component analysis (FPCA) is an extension of conventional principal component analysis (PCA) that allows the processing of functional data. Besides the reduction in dimensionality that is inherent to PCA, FPCA relies on fewer assumptions and offers a greater ability to visualize...

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 589; pp. 94 - 116
Main Authors Sun, Lirong, Wang, Kaili, Xu, Lini, Zhang, Chonghui, Balezentis, Tomas
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.04.2022
Subjects
Online AccessGet full text
ISSN0020-0255
1872-6291
DOI10.1016/j.ins.2021.12.113

Cover

Abstract Functional principal component analysis (FPCA) is an extension of conventional principal component analysis (PCA) that allows the processing of functional data. Besides the reduction in dimensionality that is inherent to PCA, FPCA relies on fewer assumptions and offers a greater ability to visualize the functional data. Thus, FPCA can be used in, for example, social, economic, and medical research. However, the existing FPCA methods are sensitive to outliers, and underperform when extracting features from interval-valued functional data. At the same time, the existing PCA methods for interval-valued functional data suffer from inconsistency in the interpretation of the principal components, and substantial information loss. Therefore, this paper proposes an interval-valued functional principal component analysis (IFPCA) method based on the time-varying distance function. The time-varying distance function containing information on the midpoint and radius is constructed to mitigate information loss. The novel IFPCA method is also able to solve the problem of the inconsistent interpretation of the principal components. The effectiveness of the method is verified by considering the case of the consumer price index.
AbstractList Functional principal component analysis (FPCA) is an extension of conventional principal component analysis (PCA) that allows the processing of functional data. Besides the reduction in dimensionality that is inherent to PCA, FPCA relies on fewer assumptions and offers a greater ability to visualize the functional data. Thus, FPCA can be used in, for example, social, economic, and medical research. However, the existing FPCA methods are sensitive to outliers, and underperform when extracting features from interval-valued functional data. At the same time, the existing PCA methods for interval-valued functional data suffer from inconsistency in the interpretation of the principal components, and substantial information loss. Therefore, this paper proposes an interval-valued functional principal component analysis (IFPCA) method based on the time-varying distance function. The time-varying distance function containing information on the midpoint and radius is constructed to mitigate information loss. The novel IFPCA method is also able to solve the problem of the inconsistent interpretation of the principal components. The effectiveness of the method is verified by considering the case of the consumer price index.
Author Wang, Kaili
Zhang, Chonghui
Balezentis, Tomas
Sun, Lirong
Xu, Lini
Author_xml – sequence: 1
  givenname: Lirong
  surname: Sun
  fullname: Sun, Lirong
  organization: School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
– sequence: 2
  givenname: Kaili
  surname: Wang
  fullname: Wang, Kaili
  organization: School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
– sequence: 3
  givenname: Lini
  surname: Xu
  fullname: Xu, Lini
  organization: School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
– sequence: 4
  givenname: Chonghui
  surname: Zhang
  fullname: Zhang, Chonghui
  organization: School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
– sequence: 5
  givenname: Tomas
  surname: Balezentis
  fullname: Balezentis, Tomas
  organization: Lithuanian Centre for Social Sciences, 03220 Vilnius, Lithuania
BookMark eNp9kDtOAzEQhi0UJJLAAeh8gV38iHcdUUURLykSDdSWY8-Co11vZDsR6Wg4ATfkJHgVKopUtjXz_Z75Jmjkew8IXVNSUkKrm03pfCwZYbSkrKSUn6ExlTUrKjanIzQmhJGCMCEu0CTGDSFkVlfVGH0tcHIdFHsdDs6_Yeti0t4AXusIFjufIOx1m-vtLr-bnTfJ9V63eBucN26bb6bvtnkan7DOhUN0EXeQ3nuLfz6_8QKbHIVj2tkD7pvc7eOugzAE5H-ct_Bxic4b3Ua4-jun6PX-7mX5WKyeH56Wi1Vh2LxOhZCNqNm6FlRws9bAqLBCcjOTdsYZ5xU3Zgay4QxsoyUIKYHlbioraWpG-BTVx1wT-hgDNMq4pIeFUtCuVZSowabaqGxTDTYVZSrbzCT9R-bxuyztJHN7ZCCvtHcQVDQOslzrApikbO9O0L-DyZK2
CitedBy_id crossref_primary_10_1016_j_ins_2022_05_112
crossref_primary_10_1038_s41514_024_00167_z
crossref_primary_10_3390_economies11050143
crossref_primary_10_1016_j_ins_2022_04_029
crossref_primary_10_1080_02664763_2024_2440035
crossref_primary_10_1080_23322039_2024_2381695
crossref_primary_10_1142_S0219477525500087
crossref_primary_10_1016_j_energy_2023_128692
crossref_primary_10_1155_2023_6066817
crossref_primary_10_3390_pr11061791
crossref_primary_10_1016_j_apm_2023_07_018
crossref_primary_10_1142_S0219622024500111
crossref_primary_10_1016_j_commatsci_2022_111820
crossref_primary_10_1016_j_ins_2022_07_146
crossref_primary_10_1016_j_ipm_2022_103229
crossref_primary_10_1016_j_jprocont_2025_103377
crossref_primary_10_3390_su16219163
crossref_primary_10_1016_j_eswa_2023_122277
crossref_primary_10_1016_j_eswa_2024_123385
Cites_doi 10.1111/j.1467-9868.2010.00769.x
10.1109/ACCESS.2020.2968339
10.1007/s11634-013-0158-y
10.1016/j.chemolab.2003.11.005
10.24963/ijcai.2018/390
10.1080/01621459.2015.1016225
10.1080/01621459.2016.1273115
10.1109/TGRS.2018.2876123
10.1109/LGRS.2017.2783879
10.1111/rssc.12376
10.1214/08-AOAS206
10.1080/01621459.2013.788980
10.1002/cem.868
10.1016/j.csda.2007.05.024
10.1016/j.ejor.2021.02.010
10.1111/biom.12236
10.1016/j.csda.2014.04.012
10.1016/j.ins.2007.05.027
10.1002/sam.10118
10.1016/j.ejor.2015.04.038
10.1111/j.1467-9868.2005.00530.x
10.1007/BF02789706
10.1109/TCYB.2015.2389653
10.3233/JIFS-169058
10.1006/jmva.2001.2027
10.1007/s00180-013-0399-4
10.1016/0166-0462(78)90024-8
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2021.12.113
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 116
ExternalDocumentID 10_1016_j_ins_2021_12_113
S0020025521013347
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-58f572b75153cbae215d583c48d4323363cc4e8f32edfa8e588e27511868c7203
IEDL.DBID AIKHN
ISSN 0020-0255
IngestDate Thu Apr 24 22:56:00 EDT 2025
Tue Jul 01 01:26:49 EDT 2025
Fri Feb 23 02:41:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature extraction
Multivariate statistics
Interval-valued functional data
Time-varying distance function
Functional principal component analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-58f572b75153cbae215d583c48d4323363cc4e8f32edfa8e588e27511868c7203
PageCount 23
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2021_12_113
crossref_primary_10_1016_j_ins_2021_12_113
elsevier_sciencedirect_doi_10_1016_j_ins_2021_12_113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Shou, Zipunnikov, Crainiceanu, Greven (b0105) 2015; 71
Strohmeier, Liechti (b0115) 1978; 8
Yang, Müller, Stadtmüller (b0135) 2011; 73
Yamanishi, Tanaka (b0130) 2005; 20
Wang, Q., Wang, S., Gong, M., & Wu, Y. (2018, July). Feature Hashing for Network Representation Learning. In
Le-Rademacher, Billard (b0075) 2013; 28
Tang, Gong, Jiang, Li, Wu (b0165) 2019
Laurini, Ohashi (b0070) 2015; 246
Staicu, Islam, Dumitru, Heugten (b0110) 2020; 69
(pp. 2812-2818).
Zhang, Gong, Mao, Li, Wu (b0155) 2019; 57
Ke, Q. and T. Kanade (2005). Robust l/sub 1/norm factorization in the presence of outliers and missing data by alternative convex programming.
Wu, Su, Ma, Liu, Miao (b0160) 2020; 8
Jacques, Preda (b0050) 2014; 8
Wang, Sun, Zhao, Wang (b0125) 2016; 31
Gheorghiu, Spatariu, Trandafir, Caratas, Serban-Comanescu (b0145) 2021; 20
Charpentier, Mussard, Ouraga (b0010) 2021
Happ, Greven (b0040) 2018; 113
Bilodeau, Duchesne (b0005) 2002; 82
D'Urso, Giordani (b0020) 2004; 70
1, 739-746.
Ikeda, Komiya, Zheng, Mizuda (b0045) 2010; 23
Kao, Nakano, Shieh, Tien, Wu, Yang, Chen (b0055) 2014; 79
Yao, Lee (b0140) 2006; 68
Verde, Irpino, Balzanella (b0120) 2016; 46
Palumbo, Lauro (b0085) 2003
Chen, Lei (b0015) 2015; 110
Wu, Miao, Ma, Gong, Wang (b0170) 2018; 15
Giordani, Kiers (b0035) 2004; 18
Douzal-Chouakria, Billard, Diday (b0030) 2011; 4
Di, Crainiceanu, Caffo, Punjabi (b0025) 2009; 3
Rice (b0095) 2003; 14
Serneels, Verdonck (b0100) 2008; 52
Li, Wang, Carroll (b0080) 2013; 108
Korenius, Laurikkala, Juhola (b0065) 2007; 177
Staicu (10.1016/j.ins.2021.12.113_b0110) 2020; 69
10.1016/j.ins.2021.12.113_b0060
Di (10.1016/j.ins.2021.12.113_b0025) 2009; 3
Strohmeier (10.1016/j.ins.2021.12.113_b0115) 1978; 8
Yang (10.1016/j.ins.2021.12.113_b0135) 2011; 73
Douzal-Chouakria (10.1016/j.ins.2021.12.113_b0030) 2011; 4
D'Urso (10.1016/j.ins.2021.12.113_b0020) 2004; 70
Jacques (10.1016/j.ins.2021.12.113_b0050) 2014; 8
Wang (10.1016/j.ins.2021.12.113_b0125) 2016; 31
Tang (10.1016/j.ins.2021.12.113_b0165) 2019
Laurini (10.1016/j.ins.2021.12.113_b0070) 2015; 246
Happ (10.1016/j.ins.2021.12.113_b0040) 2018; 113
Charpentier (10.1016/j.ins.2021.12.113_b0010) 2021
Yao (10.1016/j.ins.2021.12.113_b0140) 2006; 68
Wu (10.1016/j.ins.2021.12.113_b0160) 2020; 8
Rice (10.1016/j.ins.2021.12.113_b0095) 2003; 14
Giordani (10.1016/j.ins.2021.12.113_b0035) 2004; 18
Ikeda (10.1016/j.ins.2021.12.113_b0045) 2010; 23
Gheorghiu (10.1016/j.ins.2021.12.113_b0145) 2021; 20
Le-Rademacher (10.1016/j.ins.2021.12.113_b0075) 2013; 28
10.1016/j.ins.2021.12.113_b0150
Shou (10.1016/j.ins.2021.12.113_b0105) 2015; 71
Bilodeau (10.1016/j.ins.2021.12.113_b0005) 2002; 82
Korenius (10.1016/j.ins.2021.12.113_b0065) 2007; 177
Serneels (10.1016/j.ins.2021.12.113_b0100) 2008; 52
Kao (10.1016/j.ins.2021.12.113_b0055) 2014; 79
Verde (10.1016/j.ins.2021.12.113_b0120) 2016; 46
Yamanishi (10.1016/j.ins.2021.12.113_b0130) 2005; 20
Zhang (10.1016/j.ins.2021.12.113_b0155) 2019; 57
Palumbo (10.1016/j.ins.2021.12.113_b0085) 2003
Chen (10.1016/j.ins.2021.12.113_b0015) 2015; 110
Li (10.1016/j.ins.2021.12.113_b0080) 2013; 108
Wu (10.1016/j.ins.2021.12.113_b0170) 2018; 15
References_xml – volume: 46
  start-page: 344
  year: 2016
  end-page: 355
  ident: b0120
  article-title: Dimension reduction techniques for distributional symbolic data
  publication-title: IEEE Trans. Cybern.
– volume: 8
  start-page: 129
  year: 1978
  end-page: 151
  ident: b0115
  article-title: The method of principal component analysis based on chi-square distance with regional application
  publication-title: Reg. Sci. Urban Econ.
– volume: 4
  start-page: 229
  year: 2011
  end-page: 246
  ident: b0030
  article-title: Principal component analysis for interval-valued observations
  publication-title: Stat. Anal. Data Min.
– volume: 18
  start-page: 253
  year: 2004
  end-page: 264
  ident: b0035
  article-title: Three-way component analysis of interval-valued data
  publication-title: J. Chemom.
– volume: 70
  start-page: 179
  year: 2004
  end-page: 192
  ident: b0020
  article-title: A least squares approach to principal component analysis for interval valued data
  publication-title: Chemomet. Intell. Lab. Syst.
– volume: 3
  start-page: 458
  year: 2009
  end-page: 488
  ident: b0025
  article-title: Multilevel functional principal component analysis
  publication-title: Ann. Appl. Stat.
– reference: Wang, Q., Wang, S., Gong, M., & Wu, Y. (2018, July). Feature Hashing for Network Representation Learning. In
– volume: 20
  start-page: 572
  year: 2021
  end-page: 593
  ident: b0145
  article-title: Analysis of the market surveillance activity carried out in romania by the central public authority and the assessment of its impact on romanian consumer protection based on the european consumer conditions index
  publication-title: Transform. Business Econ.
– volume: 108
  start-page: 1284
  year: 2013
  end-page: 1294
  ident: b0080
  article-title: Selecting the number of principal components in functional data
  publication-title: J. Am. Stat. Assoc.
– year: 2021
  ident: b0010
  article-title: Principal component analysis: a generalized gini approach
  publication-title: Eur J Oper Res
– volume: 20
  start-page: 311
  year: 2005
  end-page: 326
  ident: b0130
  article-title: Sensitivity analysis in functional principal component analysis
  publication-title: Comput. Statistics
– volume: 82
  start-page: 457
  year: 2002
  end-page: 470
  ident: b0005
  article-title: Principal component analysis from the multivariate familial correlation matrix
  publication-title: J. Multivariate Anal.
– volume: 177
  start-page: 4893
  year: 2007
  end-page: 4905
  ident: b0065
  article-title: On principal component analysis, cosine and euclidean measures in information retrieval
  publication-title: Inf. Sci.
– volume: 71
  start-page: 247
  year: 2015
  end-page: 257
  ident: b0105
  article-title: Structured functional principal component analysis
  publication-title: Biometrics
– reference: Ke, Q. and T. Kanade (2005). Robust l/sub 1/norm factorization in the presence of outliers and missing data by alternative convex programming.
– volume: 246
  start-page: 140
  year: 2015
  end-page: 153
  ident: b0070
  article-title: A noisy principal component analysis for forward rate curves
  publication-title: Eur. J. Oper. Res.
– volume: 23
  start-page: 113
  year: 2010
  end-page: 123
  ident: b0045
  article-title: Principal component analysis method for interval value function data
  publication-title: Appl. Stat.
– volume: 8
  start-page: 231
  year: 2014
  end-page: 255
  ident: b0050
  article-title: Functional data clustering: A survey
  publication-title: Adv. Data Anal. Classif.
– reference: 1, 739-746.
– volume: 8
  start-page: 39389
  year: 2020
  end-page: 39402
  ident: b0160
  article-title: Learning robust feature descriptor for image registration with genetic programming
  publication-title: IEEE Access
– volume: 57
  start-page: 2669
  year: 2019
  end-page: 2688
  ident: b0155
  article-title: Unsupervised feature extraction in hyperspectral images based on Wasserstein generative adversarial network
  publication-title: IEEE Trans. Geosci. Remote Sens.
– start-page: 1906
  year: 2019
  end-page: 1913
  ident: b0165
  article-title: Multipopulation optimization for multitask optimization
  publication-title: June). 2019 IEEE Congress on Evolutionary Computation (CEC)
– volume: 52
  start-page: 1712
  year: 2008
  end-page: 1727
  ident: b0100
  article-title: Principal component analysis for data containing outliers and missing elements
  publication-title: Comput. Stat. Data Anal.
– volume: 28
  start-page: 2117
  year: 2013
  end-page: 2138
  ident: b0075
  article-title: Principal component histograms from interval-valued observations
  publication-title: Comput. Statistics
– volume: 110
  start-page: 1266
  year: 2015
  end-page: 1275
  ident: b0015
  article-title: Localized functional principal component analysis
  publication-title: J. Am. Stat. Assoc.
– volume: 15
  start-page: 242
  year: 2018
  end-page: 246
  ident: b0170
  article-title: PSOSAC: particle swarm optimization sample consensus algorithm for remote sensing image registration
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 113
  start-page: 649
  year: 2018
  end-page: 659
  ident: b0040
  article-title: Multivariate functional principal component analysis for data observed on different (dimensional) domains
  publication-title: J. Am. Stat. Assoc.
– volume: 68
  start-page: 3
  year: 2006
  end-page: 25
  ident: b0140
  article-title: Penalized spline models for functional principal component analysis
  publication-title: J. Roy. Stat. Soc. B
– volume: 79
  start-page: 14
  year: 2014
  end-page: 29
  ident: b0055
  article-title: Exploratory data analysis of interval-valued symbolic data with matrix visualization
  publication-title: Comput. Stat. Data Anal.
– volume: 31
  start-page: 2187
  year: 2016
  end-page: 2193
  ident: b0125
  article-title: ARIMA-BP integrated intelligent algorithm for China’s consumer price index forecasting and its applications
  publication-title: J. Intell. Fuzzy Syst.
– year: 2003
  ident: b0085
  article-title: A PCA For Interval-Valued Data Based On Midpoints And Radii
– volume: 14
  start-page: 613
  year: 2003
  end-page: 629
  ident: b0095
  article-title: Functional and longitudinal data analysis: Perspectives on smoothing
  publication-title: Stat. Sin.
– volume: 73
  start-page: 303
  year: 2011
  end-page: 324
  ident: b0135
  article-title: Functional singular component analysis
  publication-title: J. Roy. Stat. Soc. B
– reference: (pp. 2812-2818).
– volume: 69
  start-page: 25
  year: 2020
  end-page: 46
  ident: b0110
  article-title: Longitudinal dynamic functional regression
  publication-title: J. Royal Stat. Soc. Series C
– volume: 73
  start-page: 303
  issue: 3
  year: 2011
  ident: 10.1016/j.ins.2021.12.113_b0135
  article-title: Functional singular component analysis
  publication-title: J. Roy. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2010.00769.x
– volume: 8
  start-page: 39389
  year: 2020
  ident: 10.1016/j.ins.2021.12.113_b0160
  article-title: Learning robust feature descriptor for image registration with genetic programming
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968339
– volume: 8
  start-page: 231
  issue: 3
  year: 2014
  ident: 10.1016/j.ins.2021.12.113_b0050
  article-title: Functional data clustering: A survey
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-013-0158-y
– volume: 70
  start-page: 179
  issue: 2
  year: 2004
  ident: 10.1016/j.ins.2021.12.113_b0020
  article-title: A least squares approach to principal component analysis for interval valued data
  publication-title: Chemomet. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2003.11.005
– ident: 10.1016/j.ins.2021.12.113_b0150
  doi: 10.24963/ijcai.2018/390
– volume: 110
  start-page: 1266
  issue: 511
  year: 2015
  ident: 10.1016/j.ins.2021.12.113_b0015
  article-title: Localized functional principal component analysis
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2015.1016225
– volume: 113
  start-page: 649
  issue: 522
  year: 2018
  ident: 10.1016/j.ins.2021.12.113_b0040
  article-title: Multivariate functional principal component analysis for data observed on different (dimensional) domains
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2016.1273115
– volume: 57
  start-page: 2669
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2021.12.113_b0155
  article-title: Unsupervised feature extraction in hyperspectral images based on Wasserstein generative adversarial network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2876123
– volume: 20
  start-page: 572
  issue: 2A
  year: 2021
  ident: 10.1016/j.ins.2021.12.113_b0145
  article-title: Analysis of the market surveillance activity carried out in romania by the central public authority and the assessment of its impact on romanian consumer protection based on the european consumer conditions index
  publication-title: Transform. Business Econ.
– volume: 15
  start-page: 242
  issue: 2
  year: 2018
  ident: 10.1016/j.ins.2021.12.113_b0170
  article-title: PSOSAC: particle swarm optimization sample consensus algorithm for remote sensing image registration
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2783879
– volume: 69
  start-page: 25
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2021.12.113_b0110
  article-title: Longitudinal dynamic functional regression
  publication-title: J. Royal Stat. Soc. Series C
  doi: 10.1111/rssc.12376
– volume: 3
  start-page: 458
  issue: 1
  year: 2009
  ident: 10.1016/j.ins.2021.12.113_b0025
  article-title: Multilevel functional principal component analysis
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS206
– ident: 10.1016/j.ins.2021.12.113_b0060
– volume: 108
  start-page: 1284
  issue: 504
  year: 2013
  ident: 10.1016/j.ins.2021.12.113_b0080
  article-title: Selecting the number of principal components in functional data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2013.788980
– volume: 18
  start-page: 253
  issue: 5
  year: 2004
  ident: 10.1016/j.ins.2021.12.113_b0035
  article-title: Three-way component analysis of interval-valued data
  publication-title: J. Chemom.
  doi: 10.1002/cem.868
– year: 2003
  ident: 10.1016/j.ins.2021.12.113_b0085
– volume: 52
  start-page: 1712
  issue: 3
  year: 2008
  ident: 10.1016/j.ins.2021.12.113_b0100
  article-title: Principal component analysis for data containing outliers and missing elements
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2007.05.024
– year: 2021
  ident: 10.1016/j.ins.2021.12.113_b0010
  article-title: Principal component analysis: a generalized gini approach
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2021.02.010
– volume: 14
  start-page: 613
  issue: 3
  year: 2003
  ident: 10.1016/j.ins.2021.12.113_b0095
  article-title: Functional and longitudinal data analysis: Perspectives on smoothing
  publication-title: Stat. Sin.
– volume: 23
  start-page: 113
  issue: 2
  year: 2010
  ident: 10.1016/j.ins.2021.12.113_b0045
  article-title: Principal component analysis method for interval value function data
  publication-title: Appl. Stat.
– volume: 71
  start-page: 247
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2021.12.113_b0105
  article-title: Structured functional principal component analysis
  publication-title: Biometrics
  doi: 10.1111/biom.12236
– volume: 79
  start-page: 14
  year: 2014
  ident: 10.1016/j.ins.2021.12.113_b0055
  article-title: Exploratory data analysis of interval-valued symbolic data with matrix visualization
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2014.04.012
– volume: 177
  start-page: 4893
  issue: 22
  year: 2007
  ident: 10.1016/j.ins.2021.12.113_b0065
  article-title: On principal component analysis, cosine and euclidean measures in information retrieval
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2007.05.027
– start-page: 1906
  year: 2019
  ident: 10.1016/j.ins.2021.12.113_b0165
  article-title: Multipopulation optimization for multitask optimization
– volume: 4
  start-page: 229
  issue: 2
  year: 2011
  ident: 10.1016/j.ins.2021.12.113_b0030
  article-title: Principal component analysis for interval-valued observations
  publication-title: Stat. Anal. Data Min.
  doi: 10.1002/sam.10118
– volume: 246
  start-page: 140
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2021.12.113_b0070
  article-title: A noisy principal component analysis for forward rate curves
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2015.04.038
– volume: 68
  start-page: 3
  issue: 1
  year: 2006
  ident: 10.1016/j.ins.2021.12.113_b0140
  article-title: Penalized spline models for functional principal component analysis
  publication-title: J. Roy. Stat. Soc. B
  doi: 10.1111/j.1467-9868.2005.00530.x
– volume: 20
  start-page: 311
  issue: 2
  year: 2005
  ident: 10.1016/j.ins.2021.12.113_b0130
  article-title: Sensitivity analysis in functional principal component analysis
  publication-title: Comput. Statistics
  doi: 10.1007/BF02789706
– volume: 46
  start-page: 344
  issue: 2
  year: 2016
  ident: 10.1016/j.ins.2021.12.113_b0120
  article-title: Dimension reduction techniques for distributional symbolic data
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2389653
– volume: 31
  start-page: 2187
  issue: 4
  year: 2016
  ident: 10.1016/j.ins.2021.12.113_b0125
  article-title: ARIMA-BP integrated intelligent algorithm for China’s consumer price index forecasting and its applications
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169058
– volume: 82
  start-page: 457
  issue: 2
  year: 2002
  ident: 10.1016/j.ins.2021.12.113_b0005
  article-title: Principal component analysis from the multivariate familial correlation matrix
  publication-title: J. Multivariate Anal.
  doi: 10.1006/jmva.2001.2027
– volume: 28
  start-page: 2117
  issue: 5
  year: 2013
  ident: 10.1016/j.ins.2021.12.113_b0075
  article-title: Principal component histograms from interval-valued observations
  publication-title: Comput. Statistics
  doi: 10.1007/s00180-013-0399-4
– volume: 8
  start-page: 129
  issue: 2
  year: 1978
  ident: 10.1016/j.ins.2021.12.113_b0115
  article-title: The method of principal component analysis based on chi-square distance with regional application
  publication-title: Reg. Sci. Urban Econ.
  doi: 10.1016/0166-0462(78)90024-8
SSID ssj0004766
Score 2.4743624
Snippet Functional principal component analysis (FPCA) is an extension of conventional principal component analysis (PCA) that allows the processing of functional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 94
SubjectTerms Feature extraction
Functional principal component analysis
Interval-valued functional data
Multivariate statistics
Time-varying distance function
Title A time-varying distance based interval-valued functional principal component analysis method – A case study of consumer price index
URI https://dx.doi.org/10.1016/j.ins.2021.12.113
Volume 589
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50vehBfOKbOYgHoWqTtMkeF1FWRU8K3kqaJrAi6yKrR_HiL_Af-kucaVMfoB689ZFJQ5Jm3t8AbAdnytSLnDFDfaJ0cIm1VidK6IqLomTdOnj8_CLvX6nT6-x6Ag7bXBgOq4xnf3Om16d1fLIfZ3N_NBhwjq-oJWJSWkjRUnoSpoTs5lkHpnonZ_2Lz_RI3bgsWVNigta5WYd5DYYM2i1SNgqmqfyZPX1hOcdzMBtlRew1w5mHCT9cgJkvCIILsBnzDnAHY2IRTzTGP3YRXnrI1eOTR2pDBFixuEhvkLlXhYM64tHeJoz5TffM5RrjII4aKzxdcdT53ZCYE9qIYIJN3Wl8e37FHjrqCmuYWrwL1LrJ6eQO6Ds1GuMSXB0fXR72k1h5IXGiq8dJZkKmRalJ2JGutJ7kgioz0ilTKSmkzKVzypsgha-CNT4zxgvNykpuHDt2l6EzpJGtAJZBBJvnyrKLP6tIvUtLl1rqK5QheLsKB-2EFy7CknN1jNuijT-7KWiNCl6jIhWkschV2P0gGTWYHH81Vu0qFt82VkE843eytf-RrcO04PyIOrRnAzrj-we_SVLLuNyCyb2ndCvuzXctG-6D
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOcAe0PISBbrMAXFAiiC2E7vHCoHKAj2B1FvkOLZUhNoKdfe8F34B_3B_yc4kDg9pl8Pe8vA4lu143t8AHAVnytSLnDFDfaJ0cIm1VidK6IqLomT9Onj8dpQP79X3cTZegvM2F4bDKuPZ35zp9Wkdn5zG2TydTyac4ytqiZiUFlK0lF6GFZWRtteBlcHV9XD0lh6pG5cla0pM0Do36zCvyZRBu0XKRsE0lX9nT-9YzuVXWI-yIg6a4WzAkp9uwpd3CIKb0It5B3iMMbGIJxrjH7sFzwPk6vHJT2pDBFixuEhvkLlXhZM64tE-Joz5TffM5RrjIM4bKzxdcdT5bErMCW1EMMGm7jT-_vWCA3TUFdYwtTgL1LrJ6eQO6Ds1GuM23F9e3J0Pk1h5IXGirxdJZkKmRalJ2JGutJ7kgioz0ilTKSmkzKVzypsgha-CNT4zxgvNykpuHDt2d6AzpZHtApZBBJvnyrKLP6tIvUtLl1rqK5QheNuFs3bCCxdhybk6xmPRxp89FLRGBa9RkQrSWGQXTl5J5g0mx2eNVbuKxYeNVRDP-DfZ3v-RHcLq8O72pri5Gl3vw5rgXIk6zOcAOounH75HEsyi_BZ36B_ljPBy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+time-varying+distance+based+interval-valued+functional+principal+component+analysis+method+%E2%80%93+A+case+study+of+consumer+price+index&rft.jtitle=Information+sciences&rft.au=Sun%2C+Lirong&rft.au=Wang%2C+Kaili&rft.au=Xu%2C+Lini&rft.au=Zhang%2C+Chonghui&rft.date=2022-04-01&rft.issn=0020-0255&rft.volume=589&rft.spage=94&rft.epage=116&rft_id=info:doi/10.1016%2Fj.ins.2021.12.113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_12_113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon