MoS4-LDH: A dual centre Fe-based layered double hydroxide catalyst for efficient atrazine removal and peroxymonsulfate activation
[Display omitted] •The sluggish regeneration of Fe3+ ions limits the Fe-based materials from widespread AOP application.•The electron-rich MoS42– centre feed electrons to accelerate the regeneration of Fe3+ ions.•The fast regeneration of Fe3+ ions at LDH backbone influences both the stability and ef...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 456; p. 141161 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1385-8947 1873-3212 |
DOI | 10.1016/j.cej.2022.141161 |
Cover
Loading…
Abstract | [Display omitted]
•The sluggish regeneration of Fe3+ ions limits the Fe-based materials from widespread AOP application.•The electron-rich MoS42– centre feed electrons to accelerate the regeneration of Fe3+ ions.•The fast regeneration of Fe3+ ions at LDH backbone influences both the stability and efficiency of the MoS4-LDH/PMS system.
The Fe-based materials were considered very attractive for the treatment of wastewater using peroxymonosulfate (PMS) activation. However, the difficulties to restore the active Fe2+ oxidation state restrict them to attained sustainable efficiency. In this work, a new strategy was introduced to accelerate the regeneration of Fe2+ state through constructing an electron-rich MoS42− centre in the inter-layers of FeMgAl layered double hydroxide (MoS4-LDH) catalyst. The dual centre MoS4-LDH catalyst was found more efficient as clear from the observed atrazine (ATZ) degradation rate of 0.117 min−1, 100 times higher than the Fe3+/PMS or 25–50 times higher than the Fe based single centre NO3-LDH/PMS, CO3-LDH/PMS or S2O4-LDH/PMS systems, respectively. This boosted efficiency was related to the electron-rich MoS42− centre which allows the constant electron transfer to reduce the electron-deficient Fe3+ center at MoS4-LDH surface and thereby accelerating the Fe2+/Fe3+ redox cycle during reaction. Furthermore, the MoS4-LDH/PMS system exhibited a broader effective pH (3.0–9.0), good stability and minimum influence of background electrolyte or organic matter. The degradation pathway of ATZ based on free radical (SO4– and OH), involving the redox cycles of Fe3+/Fe2+ and Mo6+/Mo4+ was proposed for the activation of PMS. This work highlighted the essential role of MoS42− moiety, to accelerate the Fe3+ reduction at the surface of the LDH catalyst through the continuous feeding of electrons. |
---|---|
AbstractList | [Display omitted]
•The sluggish regeneration of Fe3+ ions limits the Fe-based materials from widespread AOP application.•The electron-rich MoS42– centre feed electrons to accelerate the regeneration of Fe3+ ions.•The fast regeneration of Fe3+ ions at LDH backbone influences both the stability and efficiency of the MoS4-LDH/PMS system.
The Fe-based materials were considered very attractive for the treatment of wastewater using peroxymonosulfate (PMS) activation. However, the difficulties to restore the active Fe2+ oxidation state restrict them to attained sustainable efficiency. In this work, a new strategy was introduced to accelerate the regeneration of Fe2+ state through constructing an electron-rich MoS42− centre in the inter-layers of FeMgAl layered double hydroxide (MoS4-LDH) catalyst. The dual centre MoS4-LDH catalyst was found more efficient as clear from the observed atrazine (ATZ) degradation rate of 0.117 min−1, 100 times higher than the Fe3+/PMS or 25–50 times higher than the Fe based single centre NO3-LDH/PMS, CO3-LDH/PMS or S2O4-LDH/PMS systems, respectively. This boosted efficiency was related to the electron-rich MoS42− centre which allows the constant electron transfer to reduce the electron-deficient Fe3+ center at MoS4-LDH surface and thereby accelerating the Fe2+/Fe3+ redox cycle during reaction. Furthermore, the MoS4-LDH/PMS system exhibited a broader effective pH (3.0–9.0), good stability and minimum influence of background electrolyte or organic matter. The degradation pathway of ATZ based on free radical (SO4– and OH), involving the redox cycles of Fe3+/Fe2+ and Mo6+/Mo4+ was proposed for the activation of PMS. This work highlighted the essential role of MoS42− moiety, to accelerate the Fe3+ reduction at the surface of the LDH catalyst through the continuous feeding of electrons. |
ArticleNumber | 141161 |
Author | Yanan, Chen Li, Dan Ifthikar, Jerosha Lei, Xie Asif, Muhammed Chen, Zhuqi Shahzad, Ajmal Wang, Songlin Ali, Jawad Wajid Ullah, Muhammad |
Author_xml | – sequence: 1 givenname: Jawad surname: Ali fullname: Ali, Jawad organization: School of Environment and Biological Engineering, Wuhan Technology and Business University, Hongshan District, Wuhan 430065, China – sequence: 2 givenname: Dan surname: Li fullname: Li, Dan organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 3 givenname: Ajmal surname: Shahzad fullname: Shahzad, Ajmal organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 4 givenname: Muhammad surname: Wajid Ullah fullname: Wajid Ullah, Muhammad organization: Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, China – sequence: 5 givenname: Jerosha surname: Ifthikar fullname: Ifthikar, Jerosha organization: School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 6 givenname: Muhammed surname: Asif fullname: Asif, Muhammed organization: School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 7 givenname: Chen surname: Yanan fullname: Yanan, Chen email: chenyanan@wtbu.edu.cn organization: School of Environment and Biological Engineering, Wuhan Technology and Business University, Hongshan District, Wuhan 430065, China – sequence: 8 givenname: Xie surname: Lei fullname: Lei, Xie organization: School of Environment and Biological Engineering, Wuhan Technology and Business University, Hongshan District, Wuhan 430065, China – sequence: 9 givenname: Zhuqi surname: Chen fullname: Chen, Zhuqi email: zqchen@hust.edu.cn organization: School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 10 givenname: Songlin surname: Wang fullname: Wang, Songlin organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
BookMark | eNp9kLtOAzEQRS0EEuHxAXT-gQ0ee7MPqBCvIAVRALXltcfC0WaNbCdi6fhzHEJFQXWnOVdzzxHZH_yAhJwBmwKD6nw51biccsb5FEqACvbIBJpaFIID38-3aGZF05b1ITmKcckYq1poJ-Tr0T-XxeJmfkGvqFmrnmocUkB6h0WnIhraqxFDTuPXXY_0bTTBfziDVKuk-jEman2gaK3TLqNUpaA-3YA04MpvcqEaDH3HDI0rP8R1b1VCqnRyG5WcH07IgVV9xNPfPCavd7cv1_Ni8XT_cH21KDRv61TMasWbmptG1IaJqrQz1tmq5WgaxkHMtLVVnqQr03LWQaMYCGgF71ipO9CtOCaw69XBxxjQyvfgViqMEpjcOpRLmR3KrUO5c5iZ-g-jXfr5Oo90_b_k5Y7EPGnjMMi41aPRuIA6SePdP_Q34AuOvA |
CitedBy_id | crossref_primary_10_1016_j_ccr_2024_215765 crossref_primary_10_1016_j_jece_2023_110380 crossref_primary_10_1016_j_jece_2025_115324 crossref_primary_10_1039_D3TA03247G crossref_primary_10_3390_molecules28237792 crossref_primary_10_1016_j_dwt_2024_100097 crossref_primary_10_3390_catal15030230 crossref_primary_10_1016_j_seppur_2024_126388 crossref_primary_10_1016_j_seppur_2023_125210 crossref_primary_10_1016_j_cherd_2023_12_028 crossref_primary_10_1016_j_jece_2024_115020 crossref_primary_10_1002_advs_202401966 crossref_primary_10_1016_j_jallcom_2025_179612 crossref_primary_10_1016_j_colsurfa_2024_134705 |
Cites_doi | 10.1016/j.cej.2021.128713 10.1016/j.cej.2017.03.036 10.1016/j.cej.2018.08.216 10.1016/j.apsusc.2020.145982 10.1016/j.chemosphere.2020.127294 10.1016/j.cej.2020.124345 10.1016/j.watres.2017.02.016 10.1021/cm5036997 10.1016/j.cej.2018.12.114 10.1039/C8NJ01062E 10.1016/j.cej.2019.121989 10.1016/j.apcatb.2014.02.012 10.1016/j.chemosphere.2021.130482 10.1016/j.jhazmat.2022.128899 10.1016/j.cej.2021.131233 10.1021/acsaem.1c03740 10.1016/j.cej.2021.131995 10.1016/j.biortech.2015.08.129 10.1016/j.chemosphere.2021.132351 10.1021/acsami.7b07208 10.1016/j.apcatb.2019.118056 10.1021/es204519d 10.1016/j.apcatb.2018.11.086 10.1016/j.chemosphere.2014.12.053 10.1016/j.cej.2020.124179 10.1016/j.cej.2020.127242 10.1021/jacs.6b00110 10.1016/j.cej.2022.134933 10.1021/es990457c 10.1016/j.cej.2013.12.102 10.1016/j.jhazmat.2019.05.029 10.1021/es400262n 10.1016/j.cej.2015.08.120 10.1016/j.apcatb.2021.119900 10.1021/es5061512 10.1016/j.cej.2016.09.104 10.1016/j.chemosphere.2019.124431 10.1016/j.scitotenv.2017.07.151 10.1016/j.jhazmat.2021.127612 10.1021/acsanm.1c02741 10.1021/es8019462 10.1016/j.clay.2017.04.002 10.1016/j.cej.2021.130679 10.1016/j.apcata.2005.02.034 10.1016/j.cej.2019.123057 10.1016/j.molliq.2019.111532 10.1016/j.cclet.2021.01.019 10.1039/C9MH01494B 10.1016/j.cej.2017.10.097 10.1016/j.jhazmat.2021.125050 10.1016/j.apcatb.2019.118250 10.1016/j.jhazmat.2019.121877 10.1021/es4019145 10.1016/j.cej.2013.07.053 10.1016/j.jhazmat.2014.05.068 10.1016/j.jhazmat.2022.129723 10.1039/C5RA22457H 10.1016/j.chemosphere.2013.08.090 10.1021/acs.est.9b04696 10.1016/j.watres.2017.04.070 10.1016/j.cej.2020.124758 10.1016/j.cej.2021.129868 10.1016/j.cej.2017.10.020 10.1016/j.watres.2020.115862 10.1021/es0263792 10.1016/S1872-2067(15)61100-7 |
ContentType | Journal Article |
Copyright | 2022 |
Copyright_xml | – notice: 2022 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2022.141161 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2022_141161 S1385894722066426 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-57a2872d837d0364f50bf692ed802135cff6691c6d920b18a0131932b04cb1c93 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Thu Apr 24 23:00:01 EDT 2025 Tue Jul 01 01:50:30 EDT 2025 Fri Feb 23 02:39:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wastewater LDH catalyst Fenton's, peroxymonosulfate Atrazine |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-57a2872d837d0364f50bf692ed802135cff6691c6d920b18a0131932b04cb1c93 |
ParticipantIDs | crossref_primary_10_1016_j_cej_2022_141161 crossref_citationtrail_10_1016_j_cej_2022_141161 elsevier_sciencedirect_doi_10_1016_j_cej_2022_141161 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-15 |
PublicationDateYYYYMMDD | 2023-01-15 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhang, Tran, Du, Hussain, Huang, Zhou, Wen (b0235) 2017; 308 Chi, He, Zhang, Ma (b0320) 2019; 237 Sheng, Yang, Wang, Wang, Li, Guo, Lou, Liu (b0325) 2019; 375 Cheng, Guo, Zhang, Wu, Liu (b0070) 2017; 113 Huang, Lai, Huang, Zhou, Li, Liu, Lai, Li (b0265) 2022; 435 Zhang, Chen, Zhu (b0110) 2016; 6 Bao, Wang, Xie, Xu, Lei, Guan, Huang, Zhao, Xia, Li (b0175) 2018; 5 Sun, Kwan, Suvorova, Ang, Tadé, Wang (b0060) 2014; 154–155 Ma, Wang, Islam, Liu, Ma, Kanatzidis (b0210) 2016; 138 Qin, Su, Jiang, Ji, Qin (b0230) 2014; 242 Ali, Wenli, Shahzad, Ifthikar, Aregay, Shahib, Elkhlifi, Chen, Chen (b0155) 2020; 181 Tan, Dong, Fu, Gao, Ma, Liu (b0075) 2018; 334 Sun, Wu, Zhang, Ng, Wang (b0240) 2018; 42 Fang, Liu, Gao, Dionysiou, Zhou (b0055) 2015; 49 Ma, Islam, Shim, Gu, Wang, Li, Sun, Yang, Kanatzidis (b0215) 2014; 26 Fu, Yi, Liu, Zhou (b0100) 2020; 257 Zou, Ma, Chen, Li, Guan, Xie, Pan (b0120) 2013; 47 Spojakina, Kraleva, Jiratova, Petrov (b0245) 2005; 288 Guo, Liu, You, Cheng, Li, Zhou (b0305) 2021; 279 Chen, Huang (b0045) 2015; 125 Huang, Wang, Yang, Guo, Yu (b0090) 2017; 51 Sang, Li, Huang, Wu, Li, Mei, Cui (b0330) 2020; 383 Xie, Zhou, He, Pan, Yao, Lai (b0200) 2021; 414 Anipsitakis, Dionysiou (b0050) 2003; 37 Mady, Baynosa, Tuma, Shim (b0270) 2019; 244 Jaafarzadeh, Ghanbari, Ahmadi (b0295) 2017; 320 Guo, Yang, You, Li, Chen, Zhou (b0065) 2020; 393 Ali, Shahzad, Wang, Ifthikar, Lei, Aregay, Chen, Chen (b0150) 2021; 408 Zhou, Luo, Sheng, Chen, Wang, Chen, Zhou (b0335) 2021; 411 Aregay, Jawad, Du, Shahzad, Chen (b0190) 2019 Li, Ali, Shahzad, Abdelnasser Gendy, Nie, Jiang, Xiao, Chen, Wang (b0005) 2022; 436 Liu, Charrua, Weng, Yuan, Ding (b0020) 2015; 198 Xu, Lin, Li, Zhang (b0115) 2017; 609 ElMetwally, Goodarzi, Meier, Zahran, Rayat, Kegnæs, Knecht, Bachas (b0255) 2021; 4 Hu, Cheng, Hu (b0010) 2012; 46 Jawad, Lang, Liao, Khan, Ifthikar, Lv, Long, Chen, Chen (b0205) 2018; 335 Ge, Shao, Liang, Huang, Liu, He, Wu, Luo, Pan, Zhao, Huang, Hu (b0195) 2022; 424 Sheng, Zhou, Shi, Wang, Guo, Lou, Liu (b0340) 2020; 386 Laipan, Yu, Zhu, Zhu, Smith, He, O'Hare, Sun (b0160) 2020; 7 Zheng, Bao, Huang, Xiang, Faheem, Ren, Du, Nadagouda (b0260) 2019; 259 Guo, Wang, Yang, Fida, You, Zhou (b0300) 2020; 262 Ji, Li, Wei, Yu (b0080) 2013; 231 Wang, Liu, Feng, Fu, Wang, Wang, Liu, Wang (b0250) 2022; 440 Zubair, Daud, McKay, Shehzad, Al-Harthi (b0185) 2017; 143 Liu, Zhang, Zhou, Fang, Shao (b0035) 2013; 93 Fang, Gao, Dionysiou, Liu, Zhou (b0280) 2013; 47 Jawad, Chen, Yin (b0145) 2016; 37 Wang, Cai, Wang, Zhou, Ding, Ali, Zheng, Wang, Yang, Xi, Wang, Chen (b0025) 2022; 428 Zhang, Jiang, Jiang, Li, Zhang, Qu, Zhang, Han (b0130) 2021; 420 Feng, Lee, Wu, Shih (b0285) 2017; 120 Jawad, Zhan, Wang, Shahzad, Zeng, Wang, Zhou, Ullah, Chen, Chen (b0225) 2020; 54 Lindsey, Tarr (b0290) 2000; 34 Ali, Jiang, Shahzad, Ifthikar, Yang, Wu, Oyekunle, Jia, Chen, Zheng, Chen (b0030) 2021; 425 Wei, Gao, Li, Deng, Zhou, Li (b0125) 2016; 285 Chu, Meng, Yang, Zhang, Qin, Wang, Molin, Jasinski, Zheng (b0170) 2022; 5 Xu, Chen, Zong, Ren, Liu (b0135) 2019; 377 Zhou, Zhang, He, Huang, Zhou, Yao, Lai (b0140) 2021; 286 Li, Ma, Gao, Liu, Wei, Liang (b0015) 2022; 427 Zhang, Shi, Korfiatis, Christodoulatos, Wang, Meng (b0220) 2020; 387 Tan, Gao, Deng, Deng, Zhou, Li, Xin (b0085) 2014; 276 Chi, He, Zhang, Wang, Zhai, Ma (b0315) 2019; 361 Hafeez, Hong, Jeon, Lee, Singh, Hyatt, Walling, Heo, Um (b0095) 2022; 287 Chen, Wang, Xu, Wen (b0275) 2020; 389 Johnson, Tratnyek, Johnson (b0040) 2008; 42 Wang, Jiang, Chen, Xie, Jiang, Wang (b0165) 2020; 515 Jawad, Liao, Zhou, Khan, Wang, Ifthikar, Shahzad, Chen, Chen (b0180) 2017; 9 Du, Zhang, Si, Yao, Du, Hussain, Kim, Huang, Lin, Hayat (b0105) 2019; 356 Guo, Tang, You, Zhang, Li, Zhou (b0310) 2021; 32 Tan (10.1016/j.cej.2022.141161_b0085) 2014; 276 Johnson (10.1016/j.cej.2022.141161_b0040) 2008; 42 Jawad (10.1016/j.cej.2022.141161_b0225) 2020; 54 Aregay (10.1016/j.cej.2022.141161_b0190) 2019 Xie (10.1016/j.cej.2022.141161_b0200) 2021; 414 Guo (10.1016/j.cej.2022.141161_b0310) 2021; 32 Chi (10.1016/j.cej.2022.141161_b0320) 2019; 237 Feng (10.1016/j.cej.2022.141161_b0285) 2017; 120 Cheng (10.1016/j.cej.2022.141161_b0070) 2017; 113 Ji (10.1016/j.cej.2022.141161_b0080) 2013; 231 Ge (10.1016/j.cej.2022.141161_b0195) 2022; 424 Zhang (10.1016/j.cej.2022.141161_b0220) 2020; 387 Chi (10.1016/j.cej.2022.141161_b0315) 2019; 361 Guo (10.1016/j.cej.2022.141161_b0065) 2020; 393 Zhang (10.1016/j.cej.2022.141161_b0235) 2017; 308 Spojakina (10.1016/j.cej.2022.141161_b0245) 2005; 288 Sang (10.1016/j.cej.2022.141161_b0330) 2020; 383 Jawad (10.1016/j.cej.2022.141161_b0145) 2016; 37 Hu (10.1016/j.cej.2022.141161_b0010) 2012; 46 Huang (10.1016/j.cej.2022.141161_b0265) 2022; 435 Wang (10.1016/j.cej.2022.141161_b0165) 2020; 515 Huang (10.1016/j.cej.2022.141161_b0090) 2017; 51 Li (10.1016/j.cej.2022.141161_b0015) 2022; 427 Zhou (10.1016/j.cej.2022.141161_b0140) 2021; 286 Zhou (10.1016/j.cej.2022.141161_b0335) 2021; 411 Liu (10.1016/j.cej.2022.141161_b0035) 2013; 93 Fu (10.1016/j.cej.2022.141161_b0100) 2020; 257 Chen (10.1016/j.cej.2022.141161_b0045) 2015; 125 Fang (10.1016/j.cej.2022.141161_b0280) 2013; 47 Jawad (10.1016/j.cej.2022.141161_b0180) 2017; 9 Sheng (10.1016/j.cej.2022.141161_b0340) 2020; 386 Zheng (10.1016/j.cej.2022.141161_b0260) 2019; 259 Li (10.1016/j.cej.2022.141161_b0005) 2022; 436 Fang (10.1016/j.cej.2022.141161_b0055) 2015; 49 Anipsitakis (10.1016/j.cej.2022.141161_b0050) 2003; 37 Ali (10.1016/j.cej.2022.141161_b0150) 2021; 408 Xu (10.1016/j.cej.2022.141161_b0115) 2017; 609 Du (10.1016/j.cej.2022.141161_b0105) 2019; 356 Zhang (10.1016/j.cej.2022.141161_b0110) 2016; 6 Zou (10.1016/j.cej.2022.141161_b0120) 2013; 47 Sheng (10.1016/j.cej.2022.141161_b0325) 2019; 375 Zubair (10.1016/j.cej.2022.141161_b0185) 2017; 143 Guo (10.1016/j.cej.2022.141161_b0305) 2021; 279 Sun (10.1016/j.cej.2022.141161_b0240) 2018; 42 Laipan (10.1016/j.cej.2022.141161_b0160) 2020; 7 Liu (10.1016/j.cej.2022.141161_b0020) 2015; 198 Qin (10.1016/j.cej.2022.141161_b0230) 2014; 242 Lindsey (10.1016/j.cej.2022.141161_b0290) 2000; 34 Jaafarzadeh (10.1016/j.cej.2022.141161_b0295) 2017; 320 Ali (10.1016/j.cej.2022.141161_b0155) 2020; 181 Wang (10.1016/j.cej.2022.141161_b0025) 2022; 428 Xu (10.1016/j.cej.2022.141161_b0135) 2019; 377 Chu (10.1016/j.cej.2022.141161_b0170) 2022; 5 Guo (10.1016/j.cej.2022.141161_b0300) 2020; 262 Jawad (10.1016/j.cej.2022.141161_b0205) 2018; 335 Zhang (10.1016/j.cej.2022.141161_b0130) 2021; 420 Bao (10.1016/j.cej.2022.141161_b0175) 2018; 5 ElMetwally (10.1016/j.cej.2022.141161_b0255) 2021; 4 Mady (10.1016/j.cej.2022.141161_b0270) 2019; 244 Wei (10.1016/j.cej.2022.141161_b0125) 2016; 285 Wang (10.1016/j.cej.2022.141161_b0250) 2022; 440 Sun (10.1016/j.cej.2022.141161_b0060) 2014; 154–155 Chen (10.1016/j.cej.2022.141161_b0275) 2020; 389 Tan (10.1016/j.cej.2022.141161_b0075) 2018; 334 Hafeez (10.1016/j.cej.2022.141161_b0095) 2022; 287 Ma (10.1016/j.cej.2022.141161_b0215) 2014; 26 Ali (10.1016/j.cej.2022.141161_b0030) 2021; 425 Ma (10.1016/j.cej.2022.141161_b0210) 2016; 138 |
References_xml | – volume: 259 year: 2019 ident: b0260 article-title: Efficient degradation of atrazine with porous sulfurized Fe2O3 as catalyst for peroxymonosulfate activation publication-title: Appl Catal B – volume: 408 year: 2021 ident: b0150 article-title: Modulating the redox cycles of homogenous Fe(III)/PMS system through constructing electron rich thiomolybdate centres in confined layered double hydroxides publication-title: Chem. Eng. J. – volume: 420 year: 2021 ident: b0130 article-title: One-step synthesis of biochar supported nZVI composites for highly efficient activating persulfate to oxidatively degrade atrazine publication-title: Chem. Eng. J. – volume: 5 start-page: 2964 year: 2018 end-page: 2970 ident: b0175 article-title: The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting, Inorganic Chemistry publication-title: Frontiers – volume: 242 start-page: 414 year: 2014 end-page: 421 ident: b0230 article-title: Preparation of W-modified FeMo catalyst and its applications in the selective oxidization of p-xylene to terephthalaldehyde publication-title: Chem. Eng. J. – volume: 113 start-page: 80 year: 2017 end-page: 88 ident: b0070 article-title: Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes publication-title: Water Res. – volume: 361 start-page: 764 year: 2019 end-page: 772 ident: b0315 article-title: Hydroxylamine enhanced degradation of naproxen in Cu2+ activated peroxymonosulfate system at acidic condition: Efficiency, mechanisms and pathway publication-title: Chem. Eng. J. – volume: 257 year: 2020 ident: b0100 article-title: Cu2+ activated persulfate for sulfamethazine degradation publication-title: Chemosphere – volume: 237 year: 2019 ident: b0320 article-title: Efficient degradation of refractory organic contaminants by zero-valent copper/hydroxylamine/peroxymonosulfate process publication-title: Chemosphere – volume: 244 start-page: 946 year: 2019 end-page: 956 ident: b0270 article-title: Heterogeneous activation of peroxymonosulfate by a novel magnetic 3D γ-MnO2@ZnFe2O4/rGO nanohybrid as a robust catalyst for phenol degradation publication-title: Appl Catal B – volume: 414 year: 2021 ident: b0200 article-title: Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review publication-title: Chem. Eng. J. – volume: 425 year: 2021 ident: b0030 article-title: Isolated copper ions and surface hydroxyl groups as a function of non-redox metals to modulate the reactivity and persulfate activation mechanism of spinel oxides publication-title: Chem. Eng. J. – volume: 143 start-page: 279 year: 2017 end-page: 292 ident: b0185 article-title: Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation publication-title: Appl. Clay Sci. – volume: 383 year: 2020 ident: b0330 article-title: Enhanced transition metal oxide based peroxymonosulfate activation by hydroxylamine for the degradation of sulfamethoxazole publication-title: Chem. Eng. J. – volume: 125 start-page: 175 year: 2015 end-page: 181 ident: b0045 article-title: Mineralization of aniline in aqueous solution by electrochemical activation of persulfate publication-title: Chemosphere – volume: 393 year: 2020 ident: b0065 article-title: Simultaneous reduction of Cr(VI) and degradation of tetracycline hydrochloride by a novel iron-modified rectorite composite through heterogeneous photo-Fenton processes publication-title: Chem. Eng. J. – volume: 93 start-page: 2717 year: 2013 end-page: 2724 ident: b0035 article-title: Degradation of atenolol by UV/peroxymonosulfate: kinetics, effect of operational parameters and mechanism publication-title: Chemosphere – volume: 609 start-page: 644 year: 2017 end-page: 654 ident: b0115 article-title: The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis publication-title: Sci. Total Environ. – volume: 427 year: 2022 ident: b0015 article-title: Enhanced atrazine degradation in the Fe(III)/peroxymonosulfate system via accelerating Fe(II) regeneration by benzoquinone publication-title: Chem. Eng. J. – volume: 288 start-page: 10 year: 2005 end-page: 17 ident: b0245 article-title: TiO2-supported iron–molybdenum hydrodesulfurization catalysts publication-title: Appl. Catal. A – volume: 26 start-page: 7114 year: 2014 end-page: 7123 ident: b0215 article-title: Highly Efficient Iodine Capture by Layered Double Hydroxides Intercalated with Polysulfides publication-title: Chem. Mater. – volume: 138 start-page: 2858 year: 2016 end-page: 2866 ident: b0210 article-title: Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS4(2-) Ion publication-title: J Am Chem Soc – volume: 49 start-page: 5645 year: 2015 end-page: 5653 ident: b0055 article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation publication-title: Environ. Sci. Technol. – volume: 428 year: 2022 ident: b0025 article-title: Biochar-based activation of peroxide: multivariate-controlled performance, modulatory surface reactive sites and tunable oxidative species publication-title: Chem. Eng. J. – volume: 334 start-page: 1006 year: 2018 end-page: 1015 ident: b0075 article-title: Chloramphenicol removal by zero valent iron activated peroxymonosulfate system: Kinetics and mechanism of radical generation publication-title: Chem. Eng. J. – volume: 424 year: 2022 ident: b0195 article-title: Layered double hydroxide based materials applied in persulfate based advanced oxidation processes: Property, mechanism, application and perspectives publication-title: J. Hazard. Mater. – volume: 287 year: 2022 ident: b0095 article-title: Co2+/PMS based sulfate-radical treatment for effective mineralization of spent ion exchange resin publication-title: Chemosphere – volume: 198 start-page: 55 year: 2015 end-page: 62 ident: b0020 article-title: Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: a comparative study publication-title: Bioresour. Technol. – volume: 6 start-page: 758 year: 2016 end-page: 768 ident: b0110 article-title: Activation of persulfate by Co3O4 nanoparticles for orange G degradation publication-title: RSC Adv. – volume: 37 start-page: 4790 year: 2003 end-page: 4797 ident: b0050 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. – volume: 356 start-page: 178 year: 2019 end-page: 189 ident: b0105 article-title: Persulfate non-radical activation by nano-CuO for efficient removal of chlorinated organic compounds: Reduced graphene oxide-assisted and CuO (0 0 1) facet-dependent publication-title: Chem. Eng. J. – volume: 440 year: 2022 ident: b0250 article-title: High-efficient peroxymonosulfate activation for rapid atrazine degradation by FeSx@MoS2 derived from MIL-88A(Fe) publication-title: J. Hazard. Mater. – volume: 32 start-page: 2828 year: 2021 end-page: 2832 ident: b0310 article-title: Combustion synthesis of mesoporous CoAl2O4 for peroxymonosulfate activation to degrade organic pollutants publication-title: Chin. Chem. Lett. – volume: 286 year: 2021 ident: b0140 article-title: Critical review of reductant-enhanced peroxide activation processes: Trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions publication-title: Appl Catal B – volume: 231 start-page: 434 year: 2013 end-page: 440 ident: b0080 article-title: Efficient performance of porous Fe2O3 in heterogeneous activation of peroxymonosulfate for decolorization of Rhodamine B publication-title: Chem. Eng. J. – volume: 389 year: 2020 ident: b0275 article-title: Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A publication-title: Chem. Eng. J. – volume: 37 start-page: 810 year: 2016 end-page: 825 ident: b0145 article-title: Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment publication-title: Chin. J. Catal. – volume: 308 start-page: 1112 year: 2017 end-page: 1119 ident: b0235 article-title: Efficient pyrite activating persulfate process for degradation of p-chloroaniline in aqueous systems: A mechanistic study publication-title: Chem. Eng. J. – volume: 154–155 start-page: 134 year: 2014 end-page: 141 ident: b0060 article-title: Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals publication-title: Appl. Catal. B: Environ. – volume: 34 start-page: 444 year: 2000 end-page: 449 ident: b0290 article-title: Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter publication-title: Environ. Sci. Tech. – volume: 42 start-page: 9006 year: 2018 end-page: 9015 ident: b0240 article-title: Structure-enhanced removal of Cr(vi) in aqueous solutions using MoS2 ultrathin nanosheets publication-title: New J. Chem. – volume: 181 year: 2020 ident: b0155 article-title: Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: A new strategy to achieve maximum persulfate utilization efficiency publication-title: Water Res. – volume: 285 start-page: 660 year: 2016 end-page: 670 ident: b0125 article-title: Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water publication-title: Chem. Eng. J. – volume: 335 start-page: 548 year: 2018 end-page: 559 ident: b0205 article-title: Activation of persulfate by CuOx@Co-LDH: A novel heterogeneous system for contaminant degradation with broad pH window and controlled leaching publication-title: Chem. Eng. J. – volume: 47 start-page: 4605 year: 2013 end-page: 4611 ident: b0280 article-title: Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs publication-title: Environ. Sci. Tech. – volume: 120 start-page: 12 year: 2017 end-page: 21 ident: b0285 article-title: Surface-bound sulfate radical-dominated degradation of 1,4-dioxane by alumina-supported palladium (Pd/Al2O3) catalyzed peroxymonosulfate publication-title: Water Res. – volume: 377 start-page: 62 year: 2019 end-page: 69 ident: b0135 article-title: Atrazine degradation using Fe3O4-sepiolite catalyzed persulfate: Reactivity, mechanism and stability publication-title: J. Hazard. Mater. – volume: 47 start-page: 11685 year: 2013 end-page: 11691 ident: b0120 article-title: Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine publication-title: Environ Sci Technol – volume: 276 start-page: 452 year: 2014 end-page: 460 ident: b0085 article-title: Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate publication-title: J. Hazard. Mater. – volume: 279 year: 2021 ident: b0305 article-title: Oxygen vacancy induced peroxymonosulfate activation by Mg-doped Fe2O3 composites for advanced oxidation of organic pollutants publication-title: Chemosphere – volume: 5 start-page: 2192 year: 2022 end-page: 2201 ident: b0170 article-title: Cu-Doped Layered Double Hydroxide Constructs the Performance-Enhanced Supercapacitor Via Band Gap Reduction and Defect Triggering publication-title: ACS Applied Energy Materials – volume: 320 start-page: 436 year: 2017 end-page: 447 ident: b0295 article-title: Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: A novel combination of advanced oxidation processes publication-title: Chem. Eng. J. – volume: 515 year: 2020 ident: b0165 article-title: A sandwich-like nano-micro LDH-MXene-LDH for high-performance supercapacitors publication-title: Appl. Surf. Sci. – volume: 54 start-page: 2476 year: 2020 end-page: 2488 ident: b0225 article-title: Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide publication-title: Environ. Sci. Tech. – volume: 42 start-page: 9350 year: 2008 end-page: 9356 ident: b0040 article-title: Persulfate persistence under thermal activation conditions publication-title: Environ. Sci. Technol. – volume: 375 year: 2019 ident: b0325 article-title: Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS publication-title: Chem. Eng. J. – volume: 411 year: 2021 ident: b0335 article-title: Cu2+/Cu+ cycle promoted PMS decomposition with the assistance of Mo for the degradation of organic pollutant publication-title: J. Hazard. Mater. – volume: 51 start-page: 12611 year: 2017 end-page: 12618 ident: b0090 publication-title: Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with Mn1.8Fe1.2O4 Nanospheres: Synergism between Mn and Fe – volume: 9 start-page: 28451 year: 2017 end-page: 28463 ident: b0180 article-title: Fe-MoS(4): An Effective and Stable LDH-Based Adsorbent for Selective Removal of Heavy Metals publication-title: ACS Appl Mater Interfaces – volume: 7 start-page: 715 year: 2020 end-page: 745 ident: b0160 article-title: Functionalized layered double hydroxides for innovative applications publication-title: Mater. Horiz. – volume: 46 start-page: 5067 year: 2012 end-page: 5076 ident: b0010 article-title: Microwave-Induced degradation of atrazine sorbed in mineral micropores publication-title: Environ. Sci. Tech. – volume: 387 year: 2020 ident: b0220 article-title: Chromate removal by electrospun PVA/PEI nanofibers: Adsorption, reduction, and effects of co-existing ions publication-title: Chem. Eng. J. – volume: 435 year: 2022 ident: b0265 article-title: Effective peroxymonosulfate activation by natural molybdenite for enhanced atrazine degradation: Role of sulfur vacancy, degradation pathways and mechanism publication-title: J. Hazard. Mater. – volume: 262 year: 2020 ident: b0300 article-title: Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation publication-title: Appl Catal B – volume: 386 year: 2020 ident: b0340 article-title: Is addition of reductive metals (Mo, W) a panacea for accelerating transition metals-mediated peroxymonosulfate activation? publication-title: J. Hazard. Mater. – volume: 436 year: 2022 ident: b0005 article-title: Persulfate coupled with Cu2+/LDH-MoS4: a novel process for the efficient atrazine abatement, mechanism and degradation pathway publication-title: Chem. Eng. J. – year: 2019 ident: b0190 article-title: Efficient and selective removal of chromium (VI) by sulfide assembled hydrotalcite compounds through concurrent reduction and adsorption processes publication-title: J. Mol. Liq. – volume: 4 start-page: 12222 year: 2021 end-page: 12234 ident: b0255 article-title: Cu2S@Bi2S3 Double-Shelled Hollow Cages as a Nanocatalyst with Substantial Activity in Peroxymonosulfate Activation for Atrazine Degradation publication-title: ACS Applied Nano Materials – volume: 5 start-page: 2964 year: 2018 ident: 10.1016/j.cej.2022.141161_b0175 article-title: The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting, Inorganic Chemistry publication-title: Frontiers – volume: 414 year: 2021 ident: 10.1016/j.cej.2022.141161_b0200 article-title: Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128713 – volume: 320 start-page: 436 year: 2017 ident: 10.1016/j.cej.2022.141161_b0295 article-title: Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: A novel combination of advanced oxidation processes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.036 – volume: 356 start-page: 178 year: 2019 ident: 10.1016/j.cej.2022.141161_b0105 article-title: Persulfate non-radical activation by nano-CuO for efficient removal of chlorinated organic compounds: Reduced graphene oxide-assisted and CuO (0 0 1) facet-dependent publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.216 – volume: 515 year: 2020 ident: 10.1016/j.cej.2022.141161_b0165 article-title: A sandwich-like nano-micro LDH-MXene-LDH for high-performance supercapacitors publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145982 – volume: 257 year: 2020 ident: 10.1016/j.cej.2022.141161_b0100 article-title: Cu2+ activated persulfate for sulfamethazine degradation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.127294 – volume: 51 start-page: 12611 year: 2017 ident: 10.1016/j.cej.2022.141161_b0090 publication-title: Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with Mn1.8Fe1.2O4 Nanospheres: Synergism between Mn and Fe – volume: 389 year: 2020 ident: 10.1016/j.cej.2022.141161_b0275 article-title: Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124345 – volume: 113 start-page: 80 year: 2017 ident: 10.1016/j.cej.2022.141161_b0070 article-title: Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes publication-title: Water Res. doi: 10.1016/j.watres.2017.02.016 – volume: 26 start-page: 7114 year: 2014 ident: 10.1016/j.cej.2022.141161_b0215 article-title: Highly Efficient Iodine Capture by Layered Double Hydroxides Intercalated with Polysulfides publication-title: Chem. Mater. doi: 10.1021/cm5036997 – volume: 361 start-page: 764 year: 2019 ident: 10.1016/j.cej.2022.141161_b0315 article-title: Hydroxylamine enhanced degradation of naproxen in Cu2+ activated peroxymonosulfate system at acidic condition: Efficiency, mechanisms and pathway publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.12.114 – volume: 42 start-page: 9006 year: 2018 ident: 10.1016/j.cej.2022.141161_b0240 article-title: Structure-enhanced removal of Cr(vi) in aqueous solutions using MoS2 ultrathin nanosheets publication-title: New J. Chem. doi: 10.1039/C8NJ01062E – volume: 375 year: 2019 ident: 10.1016/j.cej.2022.141161_b0325 article-title: Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121989 – volume: 154–155 start-page: 134 year: 2014 ident: 10.1016/j.cej.2022.141161_b0060 article-title: Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2014.02.012 – volume: 279 year: 2021 ident: 10.1016/j.cej.2022.141161_b0305 article-title: Oxygen vacancy induced peroxymonosulfate activation by Mg-doped Fe2O3 composites for advanced oxidation of organic pollutants publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130482 – volume: 435 year: 2022 ident: 10.1016/j.cej.2022.141161_b0265 article-title: Effective peroxymonosulfate activation by natural molybdenite for enhanced atrazine degradation: Role of sulfur vacancy, degradation pathways and mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.128899 – volume: 428 year: 2022 ident: 10.1016/j.cej.2022.141161_b0025 article-title: Biochar-based activation of peroxide: multivariate-controlled performance, modulatory surface reactive sites and tunable oxidative species publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131233 – volume: 5 start-page: 2192 year: 2022 ident: 10.1016/j.cej.2022.141161_b0170 article-title: Cu-Doped Layered Double Hydroxide Constructs the Performance-Enhanced Supercapacitor Via Band Gap Reduction and Defect Triggering publication-title: ACS Applied Energy Materials doi: 10.1021/acsaem.1c03740 – volume: 427 year: 2022 ident: 10.1016/j.cej.2022.141161_b0015 article-title: Enhanced atrazine degradation in the Fe(III)/peroxymonosulfate system via accelerating Fe(II) regeneration by benzoquinone publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131995 – volume: 198 start-page: 55 year: 2015 ident: 10.1016/j.cej.2022.141161_b0020 article-title: Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: a comparative study publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.129 – volume: 287 year: 2022 ident: 10.1016/j.cej.2022.141161_b0095 article-title: Co2+/PMS based sulfate-radical treatment for effective mineralization of spent ion exchange resin publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132351 – volume: 9 start-page: 28451 year: 2017 ident: 10.1016/j.cej.2022.141161_b0180 article-title: Fe-MoS(4): An Effective and Stable LDH-Based Adsorbent for Selective Removal of Heavy Metals publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b07208 – volume: 259 year: 2019 ident: 10.1016/j.cej.2022.141161_b0260 article-title: Efficient degradation of atrazine with porous sulfurized Fe2O3 as catalyst for peroxymonosulfate activation publication-title: Appl Catal B doi: 10.1016/j.apcatb.2019.118056 – volume: 46 start-page: 5067 year: 2012 ident: 10.1016/j.cej.2022.141161_b0010 article-title: Microwave-Induced degradation of atrazine sorbed in mineral micropores publication-title: Environ. Sci. Tech. doi: 10.1021/es204519d – volume: 244 start-page: 946 year: 2019 ident: 10.1016/j.cej.2022.141161_b0270 article-title: Heterogeneous activation of peroxymonosulfate by a novel magnetic 3D γ-MnO2@ZnFe2O4/rGO nanohybrid as a robust catalyst for phenol degradation publication-title: Appl Catal B doi: 10.1016/j.apcatb.2018.11.086 – volume: 125 start-page: 175 year: 2015 ident: 10.1016/j.cej.2022.141161_b0045 article-title: Mineralization of aniline in aqueous solution by electrochemical activation of persulfate publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.12.053 – volume: 387 year: 2020 ident: 10.1016/j.cej.2022.141161_b0220 article-title: Chromate removal by electrospun PVA/PEI nanofibers: Adsorption, reduction, and effects of co-existing ions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124179 – volume: 408 year: 2021 ident: 10.1016/j.cej.2022.141161_b0150 article-title: Modulating the redox cycles of homogenous Fe(III)/PMS system through constructing electron rich thiomolybdate centres in confined layered double hydroxides publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127242 – volume: 138 start-page: 2858 year: 2016 ident: 10.1016/j.cej.2022.141161_b0210 article-title: Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS4(2-) Ion publication-title: J Am Chem Soc doi: 10.1021/jacs.6b00110 – volume: 436 year: 2022 ident: 10.1016/j.cej.2022.141161_b0005 article-title: Persulfate coupled with Cu2+/LDH-MoS4: a novel process for the efficient atrazine abatement, mechanism and degradation pathway publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.134933 – volume: 34 start-page: 444 year: 2000 ident: 10.1016/j.cej.2022.141161_b0290 article-title: Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter publication-title: Environ. Sci. Tech. doi: 10.1021/es990457c – volume: 242 start-page: 414 year: 2014 ident: 10.1016/j.cej.2022.141161_b0230 article-title: Preparation of W-modified FeMo catalyst and its applications in the selective oxidization of p-xylene to terephthalaldehyde publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.12.102 – volume: 377 start-page: 62 year: 2019 ident: 10.1016/j.cej.2022.141161_b0135 article-title: Atrazine degradation using Fe3O4-sepiolite catalyzed persulfate: Reactivity, mechanism and stability publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.05.029 – volume: 47 start-page: 4605 year: 2013 ident: 10.1016/j.cej.2022.141161_b0280 article-title: Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs publication-title: Environ. Sci. Tech. doi: 10.1021/es400262n – volume: 285 start-page: 660 year: 2016 ident: 10.1016/j.cej.2022.141161_b0125 article-title: Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.08.120 – volume: 286 year: 2021 ident: 10.1016/j.cej.2022.141161_b0140 article-title: Critical review of reductant-enhanced peroxide activation processes: Trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions publication-title: Appl Catal B doi: 10.1016/j.apcatb.2021.119900 – volume: 49 start-page: 5645 year: 2015 ident: 10.1016/j.cej.2022.141161_b0055 article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es5061512 – volume: 308 start-page: 1112 year: 2017 ident: 10.1016/j.cej.2022.141161_b0235 article-title: Efficient pyrite activating persulfate process for degradation of p-chloroaniline in aqueous systems: A mechanistic study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.09.104 – volume: 237 year: 2019 ident: 10.1016/j.cej.2022.141161_b0320 article-title: Efficient degradation of refractory organic contaminants by zero-valent copper/hydroxylamine/peroxymonosulfate process publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.124431 – volume: 609 start-page: 644 year: 2017 ident: 10.1016/j.cej.2022.141161_b0115 article-title: The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.07.151 – volume: 424 year: 2022 ident: 10.1016/j.cej.2022.141161_b0195 article-title: Layered double hydroxide based materials applied in persulfate based advanced oxidation processes: Property, mechanism, application and perspectives publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127612 – volume: 4 start-page: 12222 year: 2021 ident: 10.1016/j.cej.2022.141161_b0255 article-title: Cu2S@Bi2S3 Double-Shelled Hollow Cages as a Nanocatalyst with Substantial Activity in Peroxymonosulfate Activation for Atrazine Degradation publication-title: ACS Applied Nano Materials doi: 10.1021/acsanm.1c02741 – volume: 42 start-page: 9350 year: 2008 ident: 10.1016/j.cej.2022.141161_b0040 article-title: Persulfate persistence under thermal activation conditions publication-title: Environ. Sci. Technol. doi: 10.1021/es8019462 – volume: 143 start-page: 279 year: 2017 ident: 10.1016/j.cej.2022.141161_b0185 article-title: Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2017.04.002 – volume: 425 year: 2021 ident: 10.1016/j.cej.2022.141161_b0030 article-title: Isolated copper ions and surface hydroxyl groups as a function of non-redox metals to modulate the reactivity and persulfate activation mechanism of spinel oxides publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130679 – volume: 288 start-page: 10 year: 2005 ident: 10.1016/j.cej.2022.141161_b0245 article-title: TiO2-supported iron–molybdenum hydrodesulfurization catalysts publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2005.02.034 – volume: 383 year: 2020 ident: 10.1016/j.cej.2022.141161_b0330 article-title: Enhanced transition metal oxide based peroxymonosulfate activation by hydroxylamine for the degradation of sulfamethoxazole publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123057 – year: 2019 ident: 10.1016/j.cej.2022.141161_b0190 article-title: Efficient and selective removal of chromium (VI) by sulfide assembled hydrotalcite compounds through concurrent reduction and adsorption processes publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.111532 – volume: 32 start-page: 2828 year: 2021 ident: 10.1016/j.cej.2022.141161_b0310 article-title: Combustion synthesis of mesoporous CoAl2O4 for peroxymonosulfate activation to degrade organic pollutants publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.01.019 – volume: 7 start-page: 715 year: 2020 ident: 10.1016/j.cej.2022.141161_b0160 article-title: Functionalized layered double hydroxides for innovative applications publication-title: Mater. Horiz. doi: 10.1039/C9MH01494B – volume: 335 start-page: 548 year: 2018 ident: 10.1016/j.cej.2022.141161_b0205 article-title: Activation of persulfate by CuOx@Co-LDH: A novel heterogeneous system for contaminant degradation with broad pH window and controlled leaching publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.097 – volume: 411 year: 2021 ident: 10.1016/j.cej.2022.141161_b0335 article-title: Cu2+/Cu+ cycle promoted PMS decomposition with the assistance of Mo for the degradation of organic pollutant publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125050 – volume: 262 year: 2020 ident: 10.1016/j.cej.2022.141161_b0300 article-title: Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation publication-title: Appl Catal B doi: 10.1016/j.apcatb.2019.118250 – volume: 386 year: 2020 ident: 10.1016/j.cej.2022.141161_b0340 article-title: Is addition of reductive metals (Mo, W) a panacea for accelerating transition metals-mediated peroxymonosulfate activation? publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121877 – volume: 47 start-page: 11685 year: 2013 ident: 10.1016/j.cej.2022.141161_b0120 article-title: Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine publication-title: Environ Sci Technol doi: 10.1021/es4019145 – volume: 231 start-page: 434 year: 2013 ident: 10.1016/j.cej.2022.141161_b0080 article-title: Efficient performance of porous Fe2O3 in heterogeneous activation of peroxymonosulfate for decolorization of Rhodamine B publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.07.053 – volume: 276 start-page: 452 year: 2014 ident: 10.1016/j.cej.2022.141161_b0085 article-title: Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.05.068 – volume: 440 year: 2022 ident: 10.1016/j.cej.2022.141161_b0250 article-title: High-efficient peroxymonosulfate activation for rapid atrazine degradation by FeSx@MoS2 derived from MIL-88A(Fe) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.129723 – volume: 6 start-page: 758 year: 2016 ident: 10.1016/j.cej.2022.141161_b0110 article-title: Activation of persulfate by Co3O4 nanoparticles for orange G degradation publication-title: RSC Adv. doi: 10.1039/C5RA22457H – volume: 93 start-page: 2717 year: 2013 ident: 10.1016/j.cej.2022.141161_b0035 article-title: Degradation of atenolol by UV/peroxymonosulfate: kinetics, effect of operational parameters and mechanism publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.08.090 – volume: 54 start-page: 2476 year: 2020 ident: 10.1016/j.cej.2022.141161_b0225 article-title: Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide publication-title: Environ. Sci. Tech. doi: 10.1021/acs.est.9b04696 – volume: 120 start-page: 12 year: 2017 ident: 10.1016/j.cej.2022.141161_b0285 article-title: Surface-bound sulfate radical-dominated degradation of 1,4-dioxane by alumina-supported palladium (Pd/Al2O3) catalyzed peroxymonosulfate publication-title: Water Res. doi: 10.1016/j.watres.2017.04.070 – volume: 393 year: 2020 ident: 10.1016/j.cej.2022.141161_b0065 article-title: Simultaneous reduction of Cr(VI) and degradation of tetracycline hydrochloride by a novel iron-modified rectorite composite through heterogeneous photo-Fenton processes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124758 – volume: 420 year: 2021 ident: 10.1016/j.cej.2022.141161_b0130 article-title: One-step synthesis of biochar supported nZVI composites for highly efficient activating persulfate to oxidatively degrade atrazine publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129868 – volume: 334 start-page: 1006 year: 2018 ident: 10.1016/j.cej.2022.141161_b0075 article-title: Chloramphenicol removal by zero valent iron activated peroxymonosulfate system: Kinetics and mechanism of radical generation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.020 – volume: 181 year: 2020 ident: 10.1016/j.cej.2022.141161_b0155 article-title: Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: A new strategy to achieve maximum persulfate utilization efficiency publication-title: Water Res. doi: 10.1016/j.watres.2020.115862 – volume: 37 start-page: 4790 year: 2003 ident: 10.1016/j.cej.2022.141161_b0050 article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt publication-title: Environ. Sci. Technol. doi: 10.1021/es0263792 – volume: 37 start-page: 810 year: 2016 ident: 10.1016/j.cej.2022.141161_b0145 article-title: Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(15)61100-7 |
SSID | ssj0006919 |
Score | 2.48362 |
Snippet | [Display omitted]
•The sluggish regeneration of Fe3+ ions limits the Fe-based materials from widespread AOP application.•The electron-rich MoS42– centre feed... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 141161 |
SubjectTerms | Atrazine Fenton's, peroxymonosulfate LDH catalyst Wastewater |
Title | MoS4-LDH: A dual centre Fe-based layered double hydroxide catalyst for efficient atrazine removal and peroxymonsulfate activation |
URI | https://dx.doi.org/10.1016/j.cej.2022.141161 |
Volume | 456 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4huJRDBbRVeWoOnCpt4zW765hbFIgCaXIojZqbZe9DDQoxCkZKLkj8c2b8ACqVHjhZsmcka3Y138zuzDeMHXsnNOKw5YGNFZcm9rztleFSGUyZhTDSU-_wcKT7Y3k5UZM11m16Yaissvb9lU8vvXX9plVbs3U7nbauBN1pxUR2iLCJQEMd7DKisr7vDy9lHjouh3uQMCfp5mazrPEy7hpTxDBEfyGEFv_Gpld409tiH-tAETrVv2yzNTffYZuv6AM_scdhfiX5j7P-KXSAeqqgLLV00HOc0MnCLF3RLE6w-X02c_BnZRf5cmodlKc2q7sCMGYFV9JIoCqkxaKkm4aFu8lxD0I6t0BU4svVDfVqzjyGpkC9ENVJ7mc27p3_6vZ5PVKBmzCOCq6iFFOk0GJaaukG0qsg8zoOnW0j2J8o471Gixlt4zDIRDslOh4M8bJAmkyY-OQLW5_nc_eVgUglfdMixQxRZJg3pdL5ULd1ZIxS0S4LGmMmpuYbp7EXs6QpLLtO0P4J2T-p7L_Lvj2r3FZkG_8Tls0KJX_tmATB4G21vfep7bMPNGieDl-EOmDrxeLeHWI4UmRH5X47Yhudi0F_RM_Bz9-DJ-Ax30s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9tQDLdYOWwcpm1sAjaGDztNempeeO-12a1iVAHaXgCJW5S8D62oNKgEiR75z2fnA4G07bBr8ixFjuWf7Wf_DPAteGkIh52IXKKFskkQw6CtUNpSyiylVYFnh6czk16q0yt9tQFH3SwMt1W2vr_x6bW3bp_0W232b-fz_rnkO62EyQ4JNgloXsEms1OpHmyOTs7S2ZNDNkm934PPCxboLjfrNi_rrylLjGNyGVIa-Wd4egY543fwto0VcdR8znvY8MsPsPWMQXAbHqfluRKTn-kPHCGPVWHdbelx7AUDlMNFvuZ1nOjK-2Lh8dfarcqHufNYF27WdxVS2Iq-ZpIgUcyrVc04jSt_U5IZYr50yGziD-sbHtdcBIpOkcchmmLuR7gcH18cpaLdqiBsnAwqoQc5ZUmxo8zU8SVk0FERTBJ7NyS8P9Q2BEMas8YlcVTIYc6MPBTlFZGyhbTJ4SfoLcul3wGUueJ3RuaUJMqCUqdc-RCboRlYq_VgF6JOmZltKcd588Ui63rLrjPSf8b6zxr978L3J5Hbhm_jX4dV94eyF0aTER78XWzv_8QO4HV6MZ1kk5PZ2Wd4w3vnuRYj9RfoVat7v0_RSVV8ba3vN5QO4Fk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MoS4-LDH%3A+A+dual+centre+Fe-based+layered+double+hydroxide+catalyst+for+efficient+atrazine+removal+and+peroxymonsulfate+activation&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Ali%2C+Jawad&rft.au=Li%2C+Dan&rft.au=Shahzad%2C+Ajmal&rft.au=Wajid+Ullah%2C+Muhammad&rft.date=2023-01-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=456&rft_id=info:doi/10.1016%2Fj.cej.2022.141161&rft.externalDocID=S1385894722066426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |