MoS4-LDH: A dual centre Fe-based layered double hydroxide catalyst for efficient atrazine removal and peroxymonsulfate activation

[Display omitted] •The sluggish regeneration of Fe3+ ions limits the Fe-based materials from widespread AOP application.•The electron-rich MoS42– centre feed electrons to accelerate the regeneration of Fe3+ ions.•The fast regeneration of Fe3+ ions at LDH backbone influences both the stability and ef...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 456; p. 141161
Main Authors Ali, Jawad, Li, Dan, Shahzad, Ajmal, Wajid Ullah, Muhammad, Ifthikar, Jerosha, Asif, Muhammed, Yanan, Chen, Lei, Xie, Chen, Zhuqi, Wang, Songlin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2023
Subjects
Online AccessGet full text
ISSN1385-8947
1873-3212
DOI10.1016/j.cej.2022.141161

Cover

Loading…
Abstract [Display omitted] •The sluggish regeneration of Fe3+ ions limits the Fe-based materials from widespread AOP application.•The electron-rich MoS42– centre feed electrons to accelerate the regeneration of Fe3+ ions.•The fast regeneration of Fe3+ ions at LDH backbone influences both the stability and efficiency of the MoS4-LDH/PMS system. The Fe-based materials were considered very attractive for the treatment of wastewater using peroxymonosulfate (PMS) activation. However, the difficulties to restore the active Fe2+ oxidation state restrict them to attained sustainable efficiency. In this work, a new strategy was introduced to accelerate the regeneration of Fe2+ state through constructing an electron-rich MoS42− centre in the inter-layers of FeMgAl layered double hydroxide (MoS4-LDH) catalyst. The dual centre MoS4-LDH catalyst was found more efficient as clear from the observed atrazine (ATZ) degradation rate of 0.117 min−1, 100 times higher than the Fe3+/PMS or 25–50 times higher than the Fe based single centre NO3-LDH/PMS, CO3-LDH/PMS or S2O4-LDH/PMS systems, respectively. This boosted efficiency was related to the electron-rich MoS42− centre which allows the constant electron transfer to reduce the electron-deficient Fe3+ center at MoS4-LDH surface and thereby accelerating the Fe2+/Fe3+ redox cycle during reaction. Furthermore, the MoS4-LDH/PMS system exhibited a broader effective pH (3.0–9.0), good stability and minimum influence of background electrolyte or organic matter. The degradation pathway of ATZ based on free radical (SO4– and OH), involving the redox cycles of Fe3+/Fe2+ and Mo6+/Mo4+ was proposed for the activation of PMS. This work highlighted the essential role of MoS42− moiety, to accelerate the Fe3+ reduction at the surface of the LDH catalyst through the continuous feeding of electrons.
AbstractList [Display omitted] •The sluggish regeneration of Fe3+ ions limits the Fe-based materials from widespread AOP application.•The electron-rich MoS42– centre feed electrons to accelerate the regeneration of Fe3+ ions.•The fast regeneration of Fe3+ ions at LDH backbone influences both the stability and efficiency of the MoS4-LDH/PMS system. The Fe-based materials were considered very attractive for the treatment of wastewater using peroxymonosulfate (PMS) activation. However, the difficulties to restore the active Fe2+ oxidation state restrict them to attained sustainable efficiency. In this work, a new strategy was introduced to accelerate the regeneration of Fe2+ state through constructing an electron-rich MoS42− centre in the inter-layers of FeMgAl layered double hydroxide (MoS4-LDH) catalyst. The dual centre MoS4-LDH catalyst was found more efficient as clear from the observed atrazine (ATZ) degradation rate of 0.117 min−1, 100 times higher than the Fe3+/PMS or 25–50 times higher than the Fe based single centre NO3-LDH/PMS, CO3-LDH/PMS or S2O4-LDH/PMS systems, respectively. This boosted efficiency was related to the electron-rich MoS42− centre which allows the constant electron transfer to reduce the electron-deficient Fe3+ center at MoS4-LDH surface and thereby accelerating the Fe2+/Fe3+ redox cycle during reaction. Furthermore, the MoS4-LDH/PMS system exhibited a broader effective pH (3.0–9.0), good stability and minimum influence of background electrolyte or organic matter. The degradation pathway of ATZ based on free radical (SO4– and OH), involving the redox cycles of Fe3+/Fe2+ and Mo6+/Mo4+ was proposed for the activation of PMS. This work highlighted the essential role of MoS42− moiety, to accelerate the Fe3+ reduction at the surface of the LDH catalyst through the continuous feeding of electrons.
ArticleNumber 141161
Author Yanan, Chen
Li, Dan
Ifthikar, Jerosha
Lei, Xie
Asif, Muhammed
Chen, Zhuqi
Shahzad, Ajmal
Wang, Songlin
Ali, Jawad
Wajid Ullah, Muhammad
Author_xml – sequence: 1
  givenname: Jawad
  surname: Ali
  fullname: Ali, Jawad
  organization: School of Environment and Biological Engineering, Wuhan Technology and Business University, Hongshan District, Wuhan 430065, China
– sequence: 2
  givenname: Dan
  surname: Li
  fullname: Li, Dan
  organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Ajmal
  surname: Shahzad
  fullname: Shahzad, Ajmal
  organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 4
  givenname: Muhammad
  surname: Wajid Ullah
  fullname: Wajid Ullah, Muhammad
  organization: Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, China
– sequence: 5
  givenname: Jerosha
  surname: Ifthikar
  fullname: Ifthikar, Jerosha
  organization: School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 6
  givenname: Muhammed
  surname: Asif
  fullname: Asif, Muhammed
  organization: School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 7
  givenname: Chen
  surname: Yanan
  fullname: Yanan, Chen
  email: chenyanan@wtbu.edu.cn
  organization: School of Environment and Biological Engineering, Wuhan Technology and Business University, Hongshan District, Wuhan 430065, China
– sequence: 8
  givenname: Xie
  surname: Lei
  fullname: Lei, Xie
  organization: School of Environment and Biological Engineering, Wuhan Technology and Business University, Hongshan District, Wuhan 430065, China
– sequence: 9
  givenname: Zhuqi
  surname: Chen
  fullname: Chen, Zhuqi
  email: zqchen@hust.edu.cn
  organization: School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 10
  givenname: Songlin
  surname: Wang
  fullname: Wang, Songlin
  organization: School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNp9kLtOAzEQRS0EEuHxAXT-gQ0ee7MPqBCvIAVRALXltcfC0WaNbCdi6fhzHEJFQXWnOVdzzxHZH_yAhJwBmwKD6nw51biccsb5FEqACvbIBJpaFIID38-3aGZF05b1ITmKcckYq1poJ-Tr0T-XxeJmfkGvqFmrnmocUkB6h0WnIhraqxFDTuPXXY_0bTTBfziDVKuk-jEman2gaK3TLqNUpaA-3YA04MpvcqEaDH3HDI0rP8R1b1VCqnRyG5WcH07IgVV9xNPfPCavd7cv1_Ni8XT_cH21KDRv61TMasWbmptG1IaJqrQz1tmq5WgaxkHMtLVVnqQr03LWQaMYCGgF71ipO9CtOCaw69XBxxjQyvfgViqMEpjcOpRLmR3KrUO5c5iZ-g-jXfr5Oo90_b_k5Y7EPGnjMMi41aPRuIA6SePdP_Q34AuOvA
CitedBy_id crossref_primary_10_1016_j_ccr_2024_215765
crossref_primary_10_1016_j_jece_2023_110380
crossref_primary_10_1016_j_jece_2025_115324
crossref_primary_10_1039_D3TA03247G
crossref_primary_10_3390_molecules28237792
crossref_primary_10_1016_j_dwt_2024_100097
crossref_primary_10_3390_catal15030230
crossref_primary_10_1016_j_seppur_2024_126388
crossref_primary_10_1016_j_seppur_2023_125210
crossref_primary_10_1016_j_cherd_2023_12_028
crossref_primary_10_1016_j_jece_2024_115020
crossref_primary_10_1002_advs_202401966
crossref_primary_10_1016_j_jallcom_2025_179612
crossref_primary_10_1016_j_colsurfa_2024_134705
Cites_doi 10.1016/j.cej.2021.128713
10.1016/j.cej.2017.03.036
10.1016/j.cej.2018.08.216
10.1016/j.apsusc.2020.145982
10.1016/j.chemosphere.2020.127294
10.1016/j.cej.2020.124345
10.1016/j.watres.2017.02.016
10.1021/cm5036997
10.1016/j.cej.2018.12.114
10.1039/C8NJ01062E
10.1016/j.cej.2019.121989
10.1016/j.apcatb.2014.02.012
10.1016/j.chemosphere.2021.130482
10.1016/j.jhazmat.2022.128899
10.1016/j.cej.2021.131233
10.1021/acsaem.1c03740
10.1016/j.cej.2021.131995
10.1016/j.biortech.2015.08.129
10.1016/j.chemosphere.2021.132351
10.1021/acsami.7b07208
10.1016/j.apcatb.2019.118056
10.1021/es204519d
10.1016/j.apcatb.2018.11.086
10.1016/j.chemosphere.2014.12.053
10.1016/j.cej.2020.124179
10.1016/j.cej.2020.127242
10.1021/jacs.6b00110
10.1016/j.cej.2022.134933
10.1021/es990457c
10.1016/j.cej.2013.12.102
10.1016/j.jhazmat.2019.05.029
10.1021/es400262n
10.1016/j.cej.2015.08.120
10.1016/j.apcatb.2021.119900
10.1021/es5061512
10.1016/j.cej.2016.09.104
10.1016/j.chemosphere.2019.124431
10.1016/j.scitotenv.2017.07.151
10.1016/j.jhazmat.2021.127612
10.1021/acsanm.1c02741
10.1021/es8019462
10.1016/j.clay.2017.04.002
10.1016/j.cej.2021.130679
10.1016/j.apcata.2005.02.034
10.1016/j.cej.2019.123057
10.1016/j.molliq.2019.111532
10.1016/j.cclet.2021.01.019
10.1039/C9MH01494B
10.1016/j.cej.2017.10.097
10.1016/j.jhazmat.2021.125050
10.1016/j.apcatb.2019.118250
10.1016/j.jhazmat.2019.121877
10.1021/es4019145
10.1016/j.cej.2013.07.053
10.1016/j.jhazmat.2014.05.068
10.1016/j.jhazmat.2022.129723
10.1039/C5RA22457H
10.1016/j.chemosphere.2013.08.090
10.1021/acs.est.9b04696
10.1016/j.watres.2017.04.070
10.1016/j.cej.2020.124758
10.1016/j.cej.2021.129868
10.1016/j.cej.2017.10.020
10.1016/j.watres.2020.115862
10.1021/es0263792
10.1016/S1872-2067(15)61100-7
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2022.141161
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2022_141161
S1385894722066426
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c297t-57a2872d837d0364f50bf692ed802135cff6691c6d920b18a0131932b04cb1c93
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Thu Apr 24 23:00:01 EDT 2025
Tue Jul 01 01:50:30 EDT 2025
Fri Feb 23 02:39:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wastewater
LDH catalyst
Fenton's, peroxymonosulfate
Atrazine
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-57a2872d837d0364f50bf692ed802135cff6691c6d920b18a0131932b04cb1c93
ParticipantIDs crossref_primary_10_1016_j_cej_2022_141161
crossref_citationtrail_10_1016_j_cej_2022_141161
elsevier_sciencedirect_doi_10_1016_j_cej_2022_141161
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-15
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Tran, Du, Hussain, Huang, Zhou, Wen (b0235) 2017; 308
Chi, He, Zhang, Ma (b0320) 2019; 237
Sheng, Yang, Wang, Wang, Li, Guo, Lou, Liu (b0325) 2019; 375
Cheng, Guo, Zhang, Wu, Liu (b0070) 2017; 113
Huang, Lai, Huang, Zhou, Li, Liu, Lai, Li (b0265) 2022; 435
Zhang, Chen, Zhu (b0110) 2016; 6
Bao, Wang, Xie, Xu, Lei, Guan, Huang, Zhao, Xia, Li (b0175) 2018; 5
Sun, Kwan, Suvorova, Ang, Tadé, Wang (b0060) 2014; 154–155
Ma, Wang, Islam, Liu, Ma, Kanatzidis (b0210) 2016; 138
Qin, Su, Jiang, Ji, Qin (b0230) 2014; 242
Ali, Wenli, Shahzad, Ifthikar, Aregay, Shahib, Elkhlifi, Chen, Chen (b0155) 2020; 181
Tan, Dong, Fu, Gao, Ma, Liu (b0075) 2018; 334
Sun, Wu, Zhang, Ng, Wang (b0240) 2018; 42
Fang, Liu, Gao, Dionysiou, Zhou (b0055) 2015; 49
Ma, Islam, Shim, Gu, Wang, Li, Sun, Yang, Kanatzidis (b0215) 2014; 26
Fu, Yi, Liu, Zhou (b0100) 2020; 257
Zou, Ma, Chen, Li, Guan, Xie, Pan (b0120) 2013; 47
Spojakina, Kraleva, Jiratova, Petrov (b0245) 2005; 288
Guo, Liu, You, Cheng, Li, Zhou (b0305) 2021; 279
Chen, Huang (b0045) 2015; 125
Huang, Wang, Yang, Guo, Yu (b0090) 2017; 51
Sang, Li, Huang, Wu, Li, Mei, Cui (b0330) 2020; 383
Xie, Zhou, He, Pan, Yao, Lai (b0200) 2021; 414
Anipsitakis, Dionysiou (b0050) 2003; 37
Mady, Baynosa, Tuma, Shim (b0270) 2019; 244
Jaafarzadeh, Ghanbari, Ahmadi (b0295) 2017; 320
Guo, Yang, You, Li, Chen, Zhou (b0065) 2020; 393
Ali, Shahzad, Wang, Ifthikar, Lei, Aregay, Chen, Chen (b0150) 2021; 408
Zhou, Luo, Sheng, Chen, Wang, Chen, Zhou (b0335) 2021; 411
Aregay, Jawad, Du, Shahzad, Chen (b0190) 2019
Li, Ali, Shahzad, Abdelnasser Gendy, Nie, Jiang, Xiao, Chen, Wang (b0005) 2022; 436
Liu, Charrua, Weng, Yuan, Ding (b0020) 2015; 198
Xu, Lin, Li, Zhang (b0115) 2017; 609
ElMetwally, Goodarzi, Meier, Zahran, Rayat, Kegnæs, Knecht, Bachas (b0255) 2021; 4
Hu, Cheng, Hu (b0010) 2012; 46
Jawad, Lang, Liao, Khan, Ifthikar, Lv, Long, Chen, Chen (b0205) 2018; 335
Ge, Shao, Liang, Huang, Liu, He, Wu, Luo, Pan, Zhao, Huang, Hu (b0195) 2022; 424
Sheng, Zhou, Shi, Wang, Guo, Lou, Liu (b0340) 2020; 386
Laipan, Yu, Zhu, Zhu, Smith, He, O'Hare, Sun (b0160) 2020; 7
Zheng, Bao, Huang, Xiang, Faheem, Ren, Du, Nadagouda (b0260) 2019; 259
Guo, Wang, Yang, Fida, You, Zhou (b0300) 2020; 262
Ji, Li, Wei, Yu (b0080) 2013; 231
Wang, Liu, Feng, Fu, Wang, Wang, Liu, Wang (b0250) 2022; 440
Zubair, Daud, McKay, Shehzad, Al-Harthi (b0185) 2017; 143
Liu, Zhang, Zhou, Fang, Shao (b0035) 2013; 93
Fang, Gao, Dionysiou, Liu, Zhou (b0280) 2013; 47
Jawad, Chen, Yin (b0145) 2016; 37
Wang, Cai, Wang, Zhou, Ding, Ali, Zheng, Wang, Yang, Xi, Wang, Chen (b0025) 2022; 428
Zhang, Jiang, Jiang, Li, Zhang, Qu, Zhang, Han (b0130) 2021; 420
Feng, Lee, Wu, Shih (b0285) 2017; 120
Jawad, Zhan, Wang, Shahzad, Zeng, Wang, Zhou, Ullah, Chen, Chen (b0225) 2020; 54
Lindsey, Tarr (b0290) 2000; 34
Ali, Jiang, Shahzad, Ifthikar, Yang, Wu, Oyekunle, Jia, Chen, Zheng, Chen (b0030) 2021; 425
Wei, Gao, Li, Deng, Zhou, Li (b0125) 2016; 285
Chu, Meng, Yang, Zhang, Qin, Wang, Molin, Jasinski, Zheng (b0170) 2022; 5
Xu, Chen, Zong, Ren, Liu (b0135) 2019; 377
Zhou, Zhang, He, Huang, Zhou, Yao, Lai (b0140) 2021; 286
Li, Ma, Gao, Liu, Wei, Liang (b0015) 2022; 427
Zhang, Shi, Korfiatis, Christodoulatos, Wang, Meng (b0220) 2020; 387
Tan, Gao, Deng, Deng, Zhou, Li, Xin (b0085) 2014; 276
Chi, He, Zhang, Wang, Zhai, Ma (b0315) 2019; 361
Hafeez, Hong, Jeon, Lee, Singh, Hyatt, Walling, Heo, Um (b0095) 2022; 287
Chen, Wang, Xu, Wen (b0275) 2020; 389
Johnson, Tratnyek, Johnson (b0040) 2008; 42
Wang, Jiang, Chen, Xie, Jiang, Wang (b0165) 2020; 515
Jawad, Liao, Zhou, Khan, Wang, Ifthikar, Shahzad, Chen, Chen (b0180) 2017; 9
Du, Zhang, Si, Yao, Du, Hussain, Kim, Huang, Lin, Hayat (b0105) 2019; 356
Guo, Tang, You, Zhang, Li, Zhou (b0310) 2021; 32
Tan (10.1016/j.cej.2022.141161_b0085) 2014; 276
Johnson (10.1016/j.cej.2022.141161_b0040) 2008; 42
Jawad (10.1016/j.cej.2022.141161_b0225) 2020; 54
Aregay (10.1016/j.cej.2022.141161_b0190) 2019
Xie (10.1016/j.cej.2022.141161_b0200) 2021; 414
Guo (10.1016/j.cej.2022.141161_b0310) 2021; 32
Chi (10.1016/j.cej.2022.141161_b0320) 2019; 237
Feng (10.1016/j.cej.2022.141161_b0285) 2017; 120
Cheng (10.1016/j.cej.2022.141161_b0070) 2017; 113
Ji (10.1016/j.cej.2022.141161_b0080) 2013; 231
Ge (10.1016/j.cej.2022.141161_b0195) 2022; 424
Zhang (10.1016/j.cej.2022.141161_b0220) 2020; 387
Chi (10.1016/j.cej.2022.141161_b0315) 2019; 361
Guo (10.1016/j.cej.2022.141161_b0065) 2020; 393
Zhang (10.1016/j.cej.2022.141161_b0235) 2017; 308
Spojakina (10.1016/j.cej.2022.141161_b0245) 2005; 288
Sang (10.1016/j.cej.2022.141161_b0330) 2020; 383
Jawad (10.1016/j.cej.2022.141161_b0145) 2016; 37
Hu (10.1016/j.cej.2022.141161_b0010) 2012; 46
Huang (10.1016/j.cej.2022.141161_b0265) 2022; 435
Wang (10.1016/j.cej.2022.141161_b0165) 2020; 515
Huang (10.1016/j.cej.2022.141161_b0090) 2017; 51
Li (10.1016/j.cej.2022.141161_b0015) 2022; 427
Zhou (10.1016/j.cej.2022.141161_b0140) 2021; 286
Zhou (10.1016/j.cej.2022.141161_b0335) 2021; 411
Liu (10.1016/j.cej.2022.141161_b0035) 2013; 93
Fu (10.1016/j.cej.2022.141161_b0100) 2020; 257
Chen (10.1016/j.cej.2022.141161_b0045) 2015; 125
Fang (10.1016/j.cej.2022.141161_b0280) 2013; 47
Jawad (10.1016/j.cej.2022.141161_b0180) 2017; 9
Sheng (10.1016/j.cej.2022.141161_b0340) 2020; 386
Zheng (10.1016/j.cej.2022.141161_b0260) 2019; 259
Li (10.1016/j.cej.2022.141161_b0005) 2022; 436
Fang (10.1016/j.cej.2022.141161_b0055) 2015; 49
Anipsitakis (10.1016/j.cej.2022.141161_b0050) 2003; 37
Ali (10.1016/j.cej.2022.141161_b0150) 2021; 408
Xu (10.1016/j.cej.2022.141161_b0115) 2017; 609
Du (10.1016/j.cej.2022.141161_b0105) 2019; 356
Zhang (10.1016/j.cej.2022.141161_b0110) 2016; 6
Zou (10.1016/j.cej.2022.141161_b0120) 2013; 47
Sheng (10.1016/j.cej.2022.141161_b0325) 2019; 375
Zubair (10.1016/j.cej.2022.141161_b0185) 2017; 143
Guo (10.1016/j.cej.2022.141161_b0305) 2021; 279
Sun (10.1016/j.cej.2022.141161_b0240) 2018; 42
Laipan (10.1016/j.cej.2022.141161_b0160) 2020; 7
Liu (10.1016/j.cej.2022.141161_b0020) 2015; 198
Qin (10.1016/j.cej.2022.141161_b0230) 2014; 242
Lindsey (10.1016/j.cej.2022.141161_b0290) 2000; 34
Jaafarzadeh (10.1016/j.cej.2022.141161_b0295) 2017; 320
Ali (10.1016/j.cej.2022.141161_b0155) 2020; 181
Wang (10.1016/j.cej.2022.141161_b0025) 2022; 428
Xu (10.1016/j.cej.2022.141161_b0135) 2019; 377
Chu (10.1016/j.cej.2022.141161_b0170) 2022; 5
Guo (10.1016/j.cej.2022.141161_b0300) 2020; 262
Jawad (10.1016/j.cej.2022.141161_b0205) 2018; 335
Zhang (10.1016/j.cej.2022.141161_b0130) 2021; 420
Bao (10.1016/j.cej.2022.141161_b0175) 2018; 5
ElMetwally (10.1016/j.cej.2022.141161_b0255) 2021; 4
Mady (10.1016/j.cej.2022.141161_b0270) 2019; 244
Wei (10.1016/j.cej.2022.141161_b0125) 2016; 285
Wang (10.1016/j.cej.2022.141161_b0250) 2022; 440
Sun (10.1016/j.cej.2022.141161_b0060) 2014; 154–155
Chen (10.1016/j.cej.2022.141161_b0275) 2020; 389
Tan (10.1016/j.cej.2022.141161_b0075) 2018; 334
Hafeez (10.1016/j.cej.2022.141161_b0095) 2022; 287
Ma (10.1016/j.cej.2022.141161_b0215) 2014; 26
Ali (10.1016/j.cej.2022.141161_b0030) 2021; 425
Ma (10.1016/j.cej.2022.141161_b0210) 2016; 138
References_xml – volume: 259
  year: 2019
  ident: b0260
  article-title: Efficient degradation of atrazine with porous sulfurized Fe2O3 as catalyst for peroxymonosulfate activation
  publication-title: Appl Catal B
– volume: 408
  year: 2021
  ident: b0150
  article-title: Modulating the redox cycles of homogenous Fe(III)/PMS system through constructing electron rich thiomolybdate centres in confined layered double hydroxides
  publication-title: Chem. Eng. J.
– volume: 420
  year: 2021
  ident: b0130
  article-title: One-step synthesis of biochar supported nZVI composites for highly efficient activating persulfate to oxidatively degrade atrazine
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 2964
  year: 2018
  end-page: 2970
  ident: b0175
  article-title: The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting, Inorganic Chemistry
  publication-title: Frontiers
– volume: 242
  start-page: 414
  year: 2014
  end-page: 421
  ident: b0230
  article-title: Preparation of W-modified FeMo catalyst and its applications in the selective oxidization of p-xylene to terephthalaldehyde
  publication-title: Chem. Eng. J.
– volume: 113
  start-page: 80
  year: 2017
  end-page: 88
  ident: b0070
  article-title: Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes
  publication-title: Water Res.
– volume: 361
  start-page: 764
  year: 2019
  end-page: 772
  ident: b0315
  article-title: Hydroxylamine enhanced degradation of naproxen in Cu2+ activated peroxymonosulfate system at acidic condition: Efficiency, mechanisms and pathway
  publication-title: Chem. Eng. J.
– volume: 257
  year: 2020
  ident: b0100
  article-title: Cu2+ activated persulfate for sulfamethazine degradation
  publication-title: Chemosphere
– volume: 237
  year: 2019
  ident: b0320
  article-title: Efficient degradation of refractory organic contaminants by zero-valent copper/hydroxylamine/peroxymonosulfate process
  publication-title: Chemosphere
– volume: 244
  start-page: 946
  year: 2019
  end-page: 956
  ident: b0270
  article-title: Heterogeneous activation of peroxymonosulfate by a novel magnetic 3D γ-MnO2@ZnFe2O4/rGO nanohybrid as a robust catalyst for phenol degradation
  publication-title: Appl Catal B
– volume: 414
  year: 2021
  ident: b0200
  article-title: Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review
  publication-title: Chem. Eng. J.
– volume: 425
  year: 2021
  ident: b0030
  article-title: Isolated copper ions and surface hydroxyl groups as a function of non-redox metals to modulate the reactivity and persulfate activation mechanism of spinel oxides
  publication-title: Chem. Eng. J.
– volume: 143
  start-page: 279
  year: 2017
  end-page: 292
  ident: b0185
  article-title: Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation
  publication-title: Appl. Clay Sci.
– volume: 383
  year: 2020
  ident: b0330
  article-title: Enhanced transition metal oxide based peroxymonosulfate activation by hydroxylamine for the degradation of sulfamethoxazole
  publication-title: Chem. Eng. J.
– volume: 125
  start-page: 175
  year: 2015
  end-page: 181
  ident: b0045
  article-title: Mineralization of aniline in aqueous solution by electrochemical activation of persulfate
  publication-title: Chemosphere
– volume: 393
  year: 2020
  ident: b0065
  article-title: Simultaneous reduction of Cr(VI) and degradation of tetracycline hydrochloride by a novel iron-modified rectorite composite through heterogeneous photo-Fenton processes
  publication-title: Chem. Eng. J.
– volume: 93
  start-page: 2717
  year: 2013
  end-page: 2724
  ident: b0035
  article-title: Degradation of atenolol by UV/peroxymonosulfate: kinetics, effect of operational parameters and mechanism
  publication-title: Chemosphere
– volume: 609
  start-page: 644
  year: 2017
  end-page: 654
  ident: b0115
  article-title: The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis
  publication-title: Sci. Total Environ.
– volume: 427
  year: 2022
  ident: b0015
  article-title: Enhanced atrazine degradation in the Fe(III)/peroxymonosulfate system via accelerating Fe(II) regeneration by benzoquinone
  publication-title: Chem. Eng. J.
– volume: 288
  start-page: 10
  year: 2005
  end-page: 17
  ident: b0245
  article-title: TiO2-supported iron–molybdenum hydrodesulfurization catalysts
  publication-title: Appl. Catal. A
– volume: 26
  start-page: 7114
  year: 2014
  end-page: 7123
  ident: b0215
  article-title: Highly Efficient Iodine Capture by Layered Double Hydroxides Intercalated with Polysulfides
  publication-title: Chem. Mater.
– volume: 138
  start-page: 2858
  year: 2016
  end-page: 2866
  ident: b0210
  article-title: Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS4(2-) Ion
  publication-title: J Am Chem Soc
– volume: 49
  start-page: 5645
  year: 2015
  end-page: 5653
  ident: b0055
  article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation
  publication-title: Environ. Sci. Technol.
– volume: 428
  year: 2022
  ident: b0025
  article-title: Biochar-based activation of peroxide: multivariate-controlled performance, modulatory surface reactive sites and tunable oxidative species
  publication-title: Chem. Eng. J.
– volume: 334
  start-page: 1006
  year: 2018
  end-page: 1015
  ident: b0075
  article-title: Chloramphenicol removal by zero valent iron activated peroxymonosulfate system: Kinetics and mechanism of radical generation
  publication-title: Chem. Eng. J.
– volume: 424
  year: 2022
  ident: b0195
  article-title: Layered double hydroxide based materials applied in persulfate based advanced oxidation processes: Property, mechanism, application and perspectives
  publication-title: J. Hazard. Mater.
– volume: 287
  year: 2022
  ident: b0095
  article-title: Co2+/PMS based sulfate-radical treatment for effective mineralization of spent ion exchange resin
  publication-title: Chemosphere
– volume: 198
  start-page: 55
  year: 2015
  end-page: 62
  ident: b0020
  article-title: Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: a comparative study
  publication-title: Bioresour. Technol.
– volume: 6
  start-page: 758
  year: 2016
  end-page: 768
  ident: b0110
  article-title: Activation of persulfate by Co3O4 nanoparticles for orange G degradation
  publication-title: RSC Adv.
– volume: 37
  start-page: 4790
  year: 2003
  end-page: 4797
  ident: b0050
  article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt
  publication-title: Environ. Sci. Technol.
– volume: 356
  start-page: 178
  year: 2019
  end-page: 189
  ident: b0105
  article-title: Persulfate non-radical activation by nano-CuO for efficient removal of chlorinated organic compounds: Reduced graphene oxide-assisted and CuO (0 0 1) facet-dependent
  publication-title: Chem. Eng. J.
– volume: 440
  year: 2022
  ident: b0250
  article-title: High-efficient peroxymonosulfate activation for rapid atrazine degradation by FeSx@MoS2 derived from MIL-88A(Fe)
  publication-title: J. Hazard. Mater.
– volume: 32
  start-page: 2828
  year: 2021
  end-page: 2832
  ident: b0310
  article-title: Combustion synthesis of mesoporous CoAl2O4 for peroxymonosulfate activation to degrade organic pollutants
  publication-title: Chin. Chem. Lett.
– volume: 286
  year: 2021
  ident: b0140
  article-title: Critical review of reductant-enhanced peroxide activation processes: Trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions
  publication-title: Appl Catal B
– volume: 231
  start-page: 434
  year: 2013
  end-page: 440
  ident: b0080
  article-title: Efficient performance of porous Fe2O3 in heterogeneous activation of peroxymonosulfate for decolorization of Rhodamine B
  publication-title: Chem. Eng. J.
– volume: 389
  year: 2020
  ident: b0275
  article-title: Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A
  publication-title: Chem. Eng. J.
– volume: 37
  start-page: 810
  year: 2016
  end-page: 825
  ident: b0145
  article-title: Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment
  publication-title: Chin. J. Catal.
– volume: 308
  start-page: 1112
  year: 2017
  end-page: 1119
  ident: b0235
  article-title: Efficient pyrite activating persulfate process for degradation of p-chloroaniline in aqueous systems: A mechanistic study
  publication-title: Chem. Eng. J.
– volume: 154–155
  start-page: 134
  year: 2014
  end-page: 141
  ident: b0060
  article-title: Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals
  publication-title: Appl. Catal. B: Environ.
– volume: 34
  start-page: 444
  year: 2000
  end-page: 449
  ident: b0290
  article-title: Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter
  publication-title: Environ. Sci. Tech.
– volume: 42
  start-page: 9006
  year: 2018
  end-page: 9015
  ident: b0240
  article-title: Structure-enhanced removal of Cr(vi) in aqueous solutions using MoS2 ultrathin nanosheets
  publication-title: New J. Chem.
– volume: 181
  year: 2020
  ident: b0155
  article-title: Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: A new strategy to achieve maximum persulfate utilization efficiency
  publication-title: Water Res.
– volume: 285
  start-page: 660
  year: 2016
  end-page: 670
  ident: b0125
  article-title: Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water
  publication-title: Chem. Eng. J.
– volume: 335
  start-page: 548
  year: 2018
  end-page: 559
  ident: b0205
  article-title: Activation of persulfate by CuOx@Co-LDH: A novel heterogeneous system for contaminant degradation with broad pH window and controlled leaching
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 4605
  year: 2013
  end-page: 4611
  ident: b0280
  article-title: Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs
  publication-title: Environ. Sci. Tech.
– volume: 120
  start-page: 12
  year: 2017
  end-page: 21
  ident: b0285
  article-title: Surface-bound sulfate radical-dominated degradation of 1,4-dioxane by alumina-supported palladium (Pd/Al2O3) catalyzed peroxymonosulfate
  publication-title: Water Res.
– volume: 377
  start-page: 62
  year: 2019
  end-page: 69
  ident: b0135
  article-title: Atrazine degradation using Fe3O4-sepiolite catalyzed persulfate: Reactivity, mechanism and stability
  publication-title: J. Hazard. Mater.
– volume: 47
  start-page: 11685
  year: 2013
  end-page: 11691
  ident: b0120
  article-title: Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine
  publication-title: Environ Sci Technol
– volume: 276
  start-page: 452
  year: 2014
  end-page: 460
  ident: b0085
  article-title: Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate
  publication-title: J. Hazard. Mater.
– volume: 279
  year: 2021
  ident: b0305
  article-title: Oxygen vacancy induced peroxymonosulfate activation by Mg-doped Fe2O3 composites for advanced oxidation of organic pollutants
  publication-title: Chemosphere
– volume: 5
  start-page: 2192
  year: 2022
  end-page: 2201
  ident: b0170
  article-title: Cu-Doped Layered Double Hydroxide Constructs the Performance-Enhanced Supercapacitor Via Band Gap Reduction and Defect Triggering
  publication-title: ACS Applied Energy Materials
– volume: 320
  start-page: 436
  year: 2017
  end-page: 447
  ident: b0295
  article-title: Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: A novel combination of advanced oxidation processes
  publication-title: Chem. Eng. J.
– volume: 515
  year: 2020
  ident: b0165
  article-title: A sandwich-like nano-micro LDH-MXene-LDH for high-performance supercapacitors
  publication-title: Appl. Surf. Sci.
– volume: 54
  start-page: 2476
  year: 2020
  end-page: 2488
  ident: b0225
  article-title: Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide
  publication-title: Environ. Sci. Tech.
– volume: 42
  start-page: 9350
  year: 2008
  end-page: 9356
  ident: b0040
  article-title: Persulfate persistence under thermal activation conditions
  publication-title: Environ. Sci. Technol.
– volume: 375
  year: 2019
  ident: b0325
  article-title: Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS
  publication-title: Chem. Eng. J.
– volume: 411
  year: 2021
  ident: b0335
  article-title: Cu2+/Cu+ cycle promoted PMS decomposition with the assistance of Mo for the degradation of organic pollutant
  publication-title: J. Hazard. Mater.
– volume: 51
  start-page: 12611
  year: 2017
  end-page: 12618
  ident: b0090
  publication-title: Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with Mn1.8Fe1.2O4 Nanospheres: Synergism between Mn and Fe
– volume: 9
  start-page: 28451
  year: 2017
  end-page: 28463
  ident: b0180
  article-title: Fe-MoS(4): An Effective and Stable LDH-Based Adsorbent for Selective Removal of Heavy Metals
  publication-title: ACS Appl Mater Interfaces
– volume: 7
  start-page: 715
  year: 2020
  end-page: 745
  ident: b0160
  article-title: Functionalized layered double hydroxides for innovative applications
  publication-title: Mater. Horiz.
– volume: 46
  start-page: 5067
  year: 2012
  end-page: 5076
  ident: b0010
  article-title: Microwave-Induced degradation of atrazine sorbed in mineral micropores
  publication-title: Environ. Sci. Tech.
– volume: 387
  year: 2020
  ident: b0220
  article-title: Chromate removal by electrospun PVA/PEI nanofibers: Adsorption, reduction, and effects of co-existing ions
  publication-title: Chem. Eng. J.
– volume: 435
  year: 2022
  ident: b0265
  article-title: Effective peroxymonosulfate activation by natural molybdenite for enhanced atrazine degradation: Role of sulfur vacancy, degradation pathways and mechanism
  publication-title: J. Hazard. Mater.
– volume: 262
  year: 2020
  ident: b0300
  article-title: Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation
  publication-title: Appl Catal B
– volume: 386
  year: 2020
  ident: b0340
  article-title: Is addition of reductive metals (Mo, W) a panacea for accelerating transition metals-mediated peroxymonosulfate activation?
  publication-title: J. Hazard. Mater.
– volume: 436
  year: 2022
  ident: b0005
  article-title: Persulfate coupled with Cu2+/LDH-MoS4: a novel process for the efficient atrazine abatement, mechanism and degradation pathway
  publication-title: Chem. Eng. J.
– year: 2019
  ident: b0190
  article-title: Efficient and selective removal of chromium (VI) by sulfide assembled hydrotalcite compounds through concurrent reduction and adsorption processes
  publication-title: J. Mol. Liq.
– volume: 4
  start-page: 12222
  year: 2021
  end-page: 12234
  ident: b0255
  article-title: Cu2S@Bi2S3 Double-Shelled Hollow Cages as a Nanocatalyst with Substantial Activity in Peroxymonosulfate Activation for Atrazine Degradation
  publication-title: ACS Applied Nano Materials
– volume: 5
  start-page: 2964
  year: 2018
  ident: 10.1016/j.cej.2022.141161_b0175
  article-title: The CoMo-LDH ultrathin nanosheet as a highly active and bifunctional electrocatalyst for overall water splitting, Inorganic Chemistry
  publication-title: Frontiers
– volume: 414
  year: 2021
  ident: 10.1016/j.cej.2022.141161_b0200
  article-title: Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128713
– volume: 320
  start-page: 436
  year: 2017
  ident: 10.1016/j.cej.2022.141161_b0295
  article-title: Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: A novel combination of advanced oxidation processes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.036
– volume: 356
  start-page: 178
  year: 2019
  ident: 10.1016/j.cej.2022.141161_b0105
  article-title: Persulfate non-radical activation by nano-CuO for efficient removal of chlorinated organic compounds: Reduced graphene oxide-assisted and CuO (0 0 1) facet-dependent
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.216
– volume: 515
  year: 2020
  ident: 10.1016/j.cej.2022.141161_b0165
  article-title: A sandwich-like nano-micro LDH-MXene-LDH for high-performance supercapacitors
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145982
– volume: 257
  year: 2020
  ident: 10.1016/j.cej.2022.141161_b0100
  article-title: Cu2+ activated persulfate for sulfamethazine degradation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.127294
– volume: 51
  start-page: 12611
  year: 2017
  ident: 10.1016/j.cej.2022.141161_b0090
  publication-title: Degradation of Bisphenol A by Peroxymonosulfate Catalytically Activated with Mn1.8Fe1.2O4 Nanospheres: Synergism between Mn and Fe
– volume: 389
  year: 2020
  ident: 10.1016/j.cej.2022.141161_b0275
  article-title: Efficient heterogeneous activation of peroxymonosulfate by modified CuFe2O4 for degradation of tetrabromobisphenol A
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124345
– volume: 113
  start-page: 80
  year: 2017
  ident: 10.1016/j.cej.2022.141161_b0070
  article-title: Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.02.016
– volume: 26
  start-page: 7114
  year: 2014
  ident: 10.1016/j.cej.2022.141161_b0215
  article-title: Highly Efficient Iodine Capture by Layered Double Hydroxides Intercalated with Polysulfides
  publication-title: Chem. Mater.
  doi: 10.1021/cm5036997
– volume: 361
  start-page: 764
  year: 2019
  ident: 10.1016/j.cej.2022.141161_b0315
  article-title: Hydroxylamine enhanced degradation of naproxen in Cu2+ activated peroxymonosulfate system at acidic condition: Efficiency, mechanisms and pathway
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.12.114
– volume: 42
  start-page: 9006
  year: 2018
  ident: 10.1016/j.cej.2022.141161_b0240
  article-title: Structure-enhanced removal of Cr(vi) in aqueous solutions using MoS2 ultrathin nanosheets
  publication-title: New J. Chem.
  doi: 10.1039/C8NJ01062E
– volume: 375
  year: 2019
  ident: 10.1016/j.cej.2022.141161_b0325
  article-title: Pivotal roles of MoS2 in boosting catalytic degradation of aqueous organic pollutants by Fe(II)/PMS
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121989
– volume: 154–155
  start-page: 134
  year: 2014
  ident: 10.1016/j.cej.2022.141161_b0060
  article-title: Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2014.02.012
– volume: 279
  year: 2021
  ident: 10.1016/j.cej.2022.141161_b0305
  article-title: Oxygen vacancy induced peroxymonosulfate activation by Mg-doped Fe2O3 composites for advanced oxidation of organic pollutants
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130482
– volume: 435
  year: 2022
  ident: 10.1016/j.cej.2022.141161_b0265
  article-title: Effective peroxymonosulfate activation by natural molybdenite for enhanced atrazine degradation: Role of sulfur vacancy, degradation pathways and mechanism
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.128899
– volume: 428
  year: 2022
  ident: 10.1016/j.cej.2022.141161_b0025
  article-title: Biochar-based activation of peroxide: multivariate-controlled performance, modulatory surface reactive sites and tunable oxidative species
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131233
– volume: 5
  start-page: 2192
  year: 2022
  ident: 10.1016/j.cej.2022.141161_b0170
  article-title: Cu-Doped Layered Double Hydroxide Constructs the Performance-Enhanced Supercapacitor Via Band Gap Reduction and Defect Triggering
  publication-title: ACS Applied Energy Materials
  doi: 10.1021/acsaem.1c03740
– volume: 427
  year: 2022
  ident: 10.1016/j.cej.2022.141161_b0015
  article-title: Enhanced atrazine degradation in the Fe(III)/peroxymonosulfate system via accelerating Fe(II) regeneration by benzoquinone
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131995
– volume: 198
  start-page: 55
  year: 2015
  ident: 10.1016/j.cej.2022.141161_b0020
  article-title: Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: a comparative study
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.129
– volume: 287
  year: 2022
  ident: 10.1016/j.cej.2022.141161_b0095
  article-title: Co2+/PMS based sulfate-radical treatment for effective mineralization of spent ion exchange resin
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132351
– volume: 9
  start-page: 28451
  year: 2017
  ident: 10.1016/j.cej.2022.141161_b0180
  article-title: Fe-MoS(4): An Effective and Stable LDH-Based Adsorbent for Selective Removal of Heavy Metals
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b07208
– volume: 259
  year: 2019
  ident: 10.1016/j.cej.2022.141161_b0260
  article-title: Efficient degradation of atrazine with porous sulfurized Fe2O3 as catalyst for peroxymonosulfate activation
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2019.118056
– volume: 46
  start-page: 5067
  year: 2012
  ident: 10.1016/j.cej.2022.141161_b0010
  article-title: Microwave-Induced degradation of atrazine sorbed in mineral micropores
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/es204519d
– volume: 244
  start-page: 946
  year: 2019
  ident: 10.1016/j.cej.2022.141161_b0270
  article-title: Heterogeneous activation of peroxymonosulfate by a novel magnetic 3D γ-MnO2@ZnFe2O4/rGO nanohybrid as a robust catalyst for phenol degradation
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2018.11.086
– volume: 125
  start-page: 175
  year: 2015
  ident: 10.1016/j.cej.2022.141161_b0045
  article-title: Mineralization of aniline in aqueous solution by electrochemical activation of persulfate
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.12.053
– volume: 387
  year: 2020
  ident: 10.1016/j.cej.2022.141161_b0220
  article-title: Chromate removal by electrospun PVA/PEI nanofibers: Adsorption, reduction, and effects of co-existing ions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124179
– volume: 408
  year: 2021
  ident: 10.1016/j.cej.2022.141161_b0150
  article-title: Modulating the redox cycles of homogenous Fe(III)/PMS system through constructing electron rich thiomolybdate centres in confined layered double hydroxides
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127242
– volume: 138
  start-page: 2858
  year: 2016
  ident: 10.1016/j.cej.2022.141161_b0210
  article-title: Highly Selective and Efficient Removal of Heavy Metals by Layered Double Hydroxide Intercalated with the MoS4(2-) Ion
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b00110
– volume: 436
  year: 2022
  ident: 10.1016/j.cej.2022.141161_b0005
  article-title: Persulfate coupled with Cu2+/LDH-MoS4: a novel process for the efficient atrazine abatement, mechanism and degradation pathway
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.134933
– volume: 34
  start-page: 444
  year: 2000
  ident: 10.1016/j.cej.2022.141161_b0290
  article-title: Inhibition of hydroxyl radical reaction with aromatics by dissolved natural organic matter
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/es990457c
– volume: 242
  start-page: 414
  year: 2014
  ident: 10.1016/j.cej.2022.141161_b0230
  article-title: Preparation of W-modified FeMo catalyst and its applications in the selective oxidization of p-xylene to terephthalaldehyde
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.12.102
– volume: 377
  start-page: 62
  year: 2019
  ident: 10.1016/j.cej.2022.141161_b0135
  article-title: Atrazine degradation using Fe3O4-sepiolite catalyzed persulfate: Reactivity, mechanism and stability
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.05.029
– volume: 47
  start-page: 4605
  year: 2013
  ident: 10.1016/j.cej.2022.141161_b0280
  article-title: Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/es400262n
– volume: 285
  start-page: 660
  year: 2016
  ident: 10.1016/j.cej.2022.141161_b0125
  article-title: Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.08.120
– volume: 286
  year: 2021
  ident: 10.1016/j.cej.2022.141161_b0140
  article-title: Critical review of reductant-enhanced peroxide activation processes: Trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2021.119900
– volume: 49
  start-page: 5645
  year: 2015
  ident: 10.1016/j.cej.2022.141161_b0055
  article-title: Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5061512
– volume: 308
  start-page: 1112
  year: 2017
  ident: 10.1016/j.cej.2022.141161_b0235
  article-title: Efficient pyrite activating persulfate process for degradation of p-chloroaniline in aqueous systems: A mechanistic study
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.09.104
– volume: 237
  year: 2019
  ident: 10.1016/j.cej.2022.141161_b0320
  article-title: Efficient degradation of refractory organic contaminants by zero-valent copper/hydroxylamine/peroxymonosulfate process
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.124431
– volume: 609
  start-page: 644
  year: 2017
  ident: 10.1016/j.cej.2022.141161_b0115
  article-title: The mechanism and efficiency of MnO2 activated persulfate process coupled with electrolysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.07.151
– volume: 424
  year: 2022
  ident: 10.1016/j.cej.2022.141161_b0195
  article-title: Layered double hydroxide based materials applied in persulfate based advanced oxidation processes: Property, mechanism, application and perspectives
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127612
– volume: 4
  start-page: 12222
  year: 2021
  ident: 10.1016/j.cej.2022.141161_b0255
  article-title: Cu2S@Bi2S3 Double-Shelled Hollow Cages as a Nanocatalyst with Substantial Activity in Peroxymonosulfate Activation for Atrazine Degradation
  publication-title: ACS Applied Nano Materials
  doi: 10.1021/acsanm.1c02741
– volume: 42
  start-page: 9350
  year: 2008
  ident: 10.1016/j.cej.2022.141161_b0040
  article-title: Persulfate persistence under thermal activation conditions
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8019462
– volume: 143
  start-page: 279
  year: 2017
  ident: 10.1016/j.cej.2022.141161_b0185
  article-title: Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2017.04.002
– volume: 425
  year: 2021
  ident: 10.1016/j.cej.2022.141161_b0030
  article-title: Isolated copper ions and surface hydroxyl groups as a function of non-redox metals to modulate the reactivity and persulfate activation mechanism of spinel oxides
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130679
– volume: 288
  start-page: 10
  year: 2005
  ident: 10.1016/j.cej.2022.141161_b0245
  article-title: TiO2-supported iron–molybdenum hydrodesulfurization catalysts
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2005.02.034
– volume: 383
  year: 2020
  ident: 10.1016/j.cej.2022.141161_b0330
  article-title: Enhanced transition metal oxide based peroxymonosulfate activation by hydroxylamine for the degradation of sulfamethoxazole
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123057
– year: 2019
  ident: 10.1016/j.cej.2022.141161_b0190
  article-title: Efficient and selective removal of chromium (VI) by sulfide assembled hydrotalcite compounds through concurrent reduction and adsorption processes
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.111532
– volume: 32
  start-page: 2828
  year: 2021
  ident: 10.1016/j.cej.2022.141161_b0310
  article-title: Combustion synthesis of mesoporous CoAl2O4 for peroxymonosulfate activation to degrade organic pollutants
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.01.019
– volume: 7
  start-page: 715
  year: 2020
  ident: 10.1016/j.cej.2022.141161_b0160
  article-title: Functionalized layered double hydroxides for innovative applications
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01494B
– volume: 335
  start-page: 548
  year: 2018
  ident: 10.1016/j.cej.2022.141161_b0205
  article-title: Activation of persulfate by CuOx@Co-LDH: A novel heterogeneous system for contaminant degradation with broad pH window and controlled leaching
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.097
– volume: 411
  year: 2021
  ident: 10.1016/j.cej.2022.141161_b0335
  article-title: Cu2+/Cu+ cycle promoted PMS decomposition with the assistance of Mo for the degradation of organic pollutant
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125050
– volume: 262
  year: 2020
  ident: 10.1016/j.cej.2022.141161_b0300
  article-title: Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2019.118250
– volume: 386
  year: 2020
  ident: 10.1016/j.cej.2022.141161_b0340
  article-title: Is addition of reductive metals (Mo, W) a panacea for accelerating transition metals-mediated peroxymonosulfate activation?
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121877
– volume: 47
  start-page: 11685
  year: 2013
  ident: 10.1016/j.cej.2022.141161_b0120
  article-title: Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine
  publication-title: Environ Sci Technol
  doi: 10.1021/es4019145
– volume: 231
  start-page: 434
  year: 2013
  ident: 10.1016/j.cej.2022.141161_b0080
  article-title: Efficient performance of porous Fe2O3 in heterogeneous activation of peroxymonosulfate for decolorization of Rhodamine B
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.07.053
– volume: 276
  start-page: 452
  year: 2014
  ident: 10.1016/j.cej.2022.141161_b0085
  article-title: Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2014.05.068
– volume: 440
  year: 2022
  ident: 10.1016/j.cej.2022.141161_b0250
  article-title: High-efficient peroxymonosulfate activation for rapid atrazine degradation by FeSx@MoS2 derived from MIL-88A(Fe)
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.129723
– volume: 6
  start-page: 758
  year: 2016
  ident: 10.1016/j.cej.2022.141161_b0110
  article-title: Activation of persulfate by Co3O4 nanoparticles for orange G degradation
  publication-title: RSC Adv.
  doi: 10.1039/C5RA22457H
– volume: 93
  start-page: 2717
  year: 2013
  ident: 10.1016/j.cej.2022.141161_b0035
  article-title: Degradation of atenolol by UV/peroxymonosulfate: kinetics, effect of operational parameters and mechanism
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.08.090
– volume: 54
  start-page: 2476
  year: 2020
  ident: 10.1016/j.cej.2022.141161_b0225
  article-title: Tuning of Persulfate Activation from a Free Radical to a Nonradical Pathway through the Incorporation of Non-Redox Magnesium Oxide
  publication-title: Environ. Sci. Tech.
  doi: 10.1021/acs.est.9b04696
– volume: 120
  start-page: 12
  year: 2017
  ident: 10.1016/j.cej.2022.141161_b0285
  article-title: Surface-bound sulfate radical-dominated degradation of 1,4-dioxane by alumina-supported palladium (Pd/Al2O3) catalyzed peroxymonosulfate
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.04.070
– volume: 393
  year: 2020
  ident: 10.1016/j.cej.2022.141161_b0065
  article-title: Simultaneous reduction of Cr(VI) and degradation of tetracycline hydrochloride by a novel iron-modified rectorite composite through heterogeneous photo-Fenton processes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124758
– volume: 420
  year: 2021
  ident: 10.1016/j.cej.2022.141161_b0130
  article-title: One-step synthesis of biochar supported nZVI composites for highly efficient activating persulfate to oxidatively degrade atrazine
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129868
– volume: 334
  start-page: 1006
  year: 2018
  ident: 10.1016/j.cej.2022.141161_b0075
  article-title: Chloramphenicol removal by zero valent iron activated peroxymonosulfate system: Kinetics and mechanism of radical generation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.020
– volume: 181
  year: 2020
  ident: 10.1016/j.cej.2022.141161_b0155
  article-title: Regulating the redox centers of Fe through the enrichment of Mo moiety for persulfate activation: A new strategy to achieve maximum persulfate utilization efficiency
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115862
– volume: 37
  start-page: 4790
  year: 2003
  ident: 10.1016/j.cej.2022.141161_b0050
  article-title: Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0263792
– volume: 37
  start-page: 810
  year: 2016
  ident: 10.1016/j.cej.2022.141161_b0145
  article-title: Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(15)61100-7
SSID ssj0006919
Score 2.48362
Snippet [Display omitted] •The sluggish regeneration of Fe3+ ions limits the Fe-based materials from widespread AOP application.•The electron-rich MoS42– centre feed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 141161
SubjectTerms Atrazine
Fenton's, peroxymonosulfate
LDH catalyst
Wastewater
Title MoS4-LDH: A dual centre Fe-based layered double hydroxide catalyst for efficient atrazine removal and peroxymonsulfate activation
URI https://dx.doi.org/10.1016/j.cej.2022.141161
Volume 456
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4huJRDBbRVeWoOnCpt4zW765hbFIgCaXIojZqbZe9DDQoxCkZKLkj8c2b8ACqVHjhZsmcka3Y138zuzDeMHXsnNOKw5YGNFZcm9rztleFSGUyZhTDSU-_wcKT7Y3k5UZM11m16Yaissvb9lU8vvXX9plVbs3U7nbauBN1pxUR2iLCJQEMd7DKisr7vDy9lHjouh3uQMCfp5mazrPEy7hpTxDBEfyGEFv_Gpld409tiH-tAETrVv2yzNTffYZuv6AM_scdhfiX5j7P-KXSAeqqgLLV00HOc0MnCLF3RLE6w-X02c_BnZRf5cmodlKc2q7sCMGYFV9JIoCqkxaKkm4aFu8lxD0I6t0BU4svVDfVqzjyGpkC9ENVJ7mc27p3_6vZ5PVKBmzCOCq6iFFOk0GJaaukG0qsg8zoOnW0j2J8o471Gixlt4zDIRDslOh4M8bJAmkyY-OQLW5_nc_eVgUglfdMixQxRZJg3pdL5ULd1ZIxS0S4LGmMmpuYbp7EXs6QpLLtO0P4J2T-p7L_Lvj2r3FZkG_8Tls0KJX_tmATB4G21vfep7bMPNGieDl-EOmDrxeLeHWI4UmRH5X47Yhudi0F_RM_Bz9-DJ-Ax30s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9tQDLdYOWwcpm1sAjaGDztNempeeO-12a1iVAHaXgCJW5S8D62oNKgEiR75z2fnA4G07bBr8ixFjuWf7Wf_DPAteGkIh52IXKKFskkQw6CtUNpSyiylVYFnh6czk16q0yt9tQFH3SwMt1W2vr_x6bW3bp_0W232b-fz_rnkO62EyQ4JNgloXsEms1OpHmyOTs7S2ZNDNkm934PPCxboLjfrNi_rrylLjGNyGVIa-Wd4egY543fwto0VcdR8znvY8MsPsPWMQXAbHqfluRKTn-kPHCGPVWHdbelx7AUDlMNFvuZ1nOjK-2Lh8dfarcqHufNYF27WdxVS2Iq-ZpIgUcyrVc04jSt_U5IZYr50yGziD-sbHtdcBIpOkcchmmLuR7gcH18cpaLdqiBsnAwqoQc5ZUmxo8zU8SVk0FERTBJ7NyS8P9Q2BEMas8YlcVTIYc6MPBTlFZGyhbTJ4SfoLcul3wGUueJ3RuaUJMqCUqdc-RCboRlYq_VgF6JOmZltKcd588Ui63rLrjPSf8b6zxr978L3J5Hbhm_jX4dV94eyF0aTER78XWzv_8QO4HV6MZ1kk5PZ2Wd4w3vnuRYj9RfoVat7v0_RSVV8ba3vN5QO4Fk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MoS4-LDH%3A+A+dual+centre+Fe-based+layered+double+hydroxide+catalyst+for+efficient+atrazine+removal+and+peroxymonsulfate+activation&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Ali%2C+Jawad&rft.au=Li%2C+Dan&rft.au=Shahzad%2C+Ajmal&rft.au=Wajid+Ullah%2C+Muhammad&rft.date=2023-01-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=456&rft_id=info:doi/10.1016%2Fj.cej.2022.141161&rft.externalDocID=S1385894722066426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon