Highly sensitive fiber grating hydrogen sensor based on hydrogen-doped Pt/WO3
Hydrogen sensors are key to the emerging clean hydrogen economies and fiber-optic hydrogen sensors play a unique role owing to their inherent safety and high sensitivity. Currently Pt/WO3 has been employed as the mainstream hydrogen-sensitive material in high performance hydrogen sensors. Here we de...
Saved in:
Published in | Sensors and actuators. B, Chemical Vol. 404; p. 135250 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen sensors are key to the emerging clean hydrogen economies and fiber-optic hydrogen sensors play a unique role owing to their inherent safety and high sensitivity. Currently Pt/WO3 has been employed as the mainstream hydrogen-sensitive material in high performance hydrogen sensors. Here we develop an ultrasensitive fiber-optic hydrogen sensor with fast response by coating pretreated Pt/WO3 nanomaterial on fiber Bragg grating. We observe a great enhancement in sensitivity by the hydrogen-doping of the Pt/WO3 nanomaterials. The generation of HxWO3 composite material is confirmed by XRD, FTIR and Raman analysis. Compared with pure Pt/WO3, a 184-fold improvement in sensitivity is achieved by hydrogen doping, with a fast response of 25 s. An impressive limit of detection (LOD) of 30 ppm is demonstrated by employing both the narrowband weak FBGs and the hydrogen-doped Pt/WO3. The immunity to ambient temperature fluctuation is demonstrated by self-calibration through detecting the wavelength difference between a pair of FBGs. Good specificity is also demonstrated. This technology shows great potential in high spatial-resolution quasi-distributed hydrogen sensing.
•A new pre-treatment method for hydrogen-sensitive materials has been proposed, and the sensitivity increased by 184 times.•The trade-off between response time and limit of detection (LOD) has been resolved.•The quasi-distributed hydrogen sensing has been achieved through the wavelength division multiplexing technology.•The temperature compensation has been achieved and repeatable hydrogen tests were demonstrated under different temperatures. |
---|---|
AbstractList | Hydrogen sensors are key to the emerging clean hydrogen economies and fiber-optic hydrogen sensors play a unique role owing to their inherent safety and high sensitivity. Currently Pt/WO3 has been employed as the mainstream hydrogen-sensitive material in high performance hydrogen sensors. Here we develop an ultrasensitive fiber-optic hydrogen sensor with fast response by coating pretreated Pt/WO3 nanomaterial on fiber Bragg grating. We observe a great enhancement in sensitivity by the hydrogen-doping of the Pt/WO3 nanomaterials. The generation of HxWO3 composite material is confirmed by XRD, FTIR and Raman analysis. Compared with pure Pt/WO3, a 184-fold improvement in sensitivity is achieved by hydrogen doping, with a fast response of 25 s. An impressive limit of detection (LOD) of 30 ppm is demonstrated by employing both the narrowband weak FBGs and the hydrogen-doped Pt/WO3. The immunity to ambient temperature fluctuation is demonstrated by self-calibration through detecting the wavelength difference between a pair of FBGs. Good specificity is also demonstrated. This technology shows great potential in high spatial-resolution quasi-distributed hydrogen sensing.
•A new pre-treatment method for hydrogen-sensitive materials has been proposed, and the sensitivity increased by 184 times.•The trade-off between response time and limit of detection (LOD) has been resolved.•The quasi-distributed hydrogen sensing has been achieved through the wavelength division multiplexing technology.•The temperature compensation has been achieved and repeatable hydrogen tests were demonstrated under different temperatures. |
ArticleNumber | 135250 |
Author | Wang, Chaoqin Peng, Gang-Ding Wang, Chenxiang Han, Zewen Gong, Yuan Rao, Yun-Jiang |
Author_xml | – sequence: 1 givenname: Chaoqin surname: Wang fullname: Wang, Chaoqin organization: Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), University of Electronic Science and Technology of China, Chengdu 611731 China – sequence: 2 givenname: Zewen surname: Han fullname: Han, Zewen organization: Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), University of Electronic Science and Technology of China, Chengdu 611731 China – sequence: 3 givenname: Chenxiang surname: Wang fullname: Wang, Chenxiang organization: Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), University of Electronic Science and Technology of China, Chengdu 611731 China – sequence: 4 givenname: Gang-Ding surname: Peng fullname: Peng, Gang-Ding organization: Photonics & Optical Communications, School of Electrical Engineering & Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia – sequence: 5 givenname: Yun-Jiang surname: Rao fullname: Rao, Yun-Jiang organization: Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), University of Electronic Science and Technology of China, Chengdu 611731 China – sequence: 6 givenname: Yuan surname: Gong fullname: Gong, Yuan email: ygong@uestc.edu.cn organization: Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), University of Electronic Science and Technology of China, Chengdu 611731 China |
BookMark | eNp9kM9KAzEQh4NUsFYfwNu-wG7zp9ls8CRFrVCpB8VjyCaTbUpNSrIU-vZurXjw0NPAzO8bZr5rNAoxAEJ3BFcEk3q6qXJoK4opqwjjlOMLNCaNYCXDQozQGEvKyxnG_Apd57zBGM9YjcfodeG79fZQZAjZ934PhfMtpKJLuvehK9YHm2IH4ScQU9HqDLaI4W9Q2rgbOm_99HPFbtCl09sMt791gj6eHt_ni3K5en6ZPyxLQ6XoS85rYWbAJdG0lUzyGix3kliKpRPGuYZKLgStna6lbbFrhGsI04IB1RYsmyBx2mtSzDmBU8b3w8Ex9En7rSJYHa2ojRqsqKMVdbIykOQfuUv-S6fDWeb-xMDw0t5DUtl4CAasT2B6ZaM_Q38D2hJ8rA |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2025_01_112 crossref_primary_10_1109_TIM_2024_3522415 crossref_primary_10_3390_nano15060440 crossref_primary_10_1007_s13320_025_0750_8 crossref_primary_10_1002_adma_202410179 crossref_primary_10_3390_pr13010004 crossref_primary_10_1109_JLT_2024_3386904 crossref_primary_10_1002_adem_202402170 crossref_primary_10_1016_j_saa_2024_124727 crossref_primary_10_3390_en17164059 crossref_primary_10_1109_JSEN_2025_3529581 |
Cites_doi | 10.1109/JLT.2022.3193568 10.1016/j.snb.2008.06.018 10.1109/JSEN.2010.2092423 10.1016/0040-6090(94)06444-X 10.1364/AO.54.010342 10.1364/OE.23.022826 10.1109/LPT.2015.2425894 10.1021/jp074219c 10.1021/ja01025a089 10.1016/j.snb.2018.05.060 10.1016/j.snb.2013.08.083 10.1103/PhysRevB.54.2436 10.1016/j.jcat.2012.06.003 10.1016/j.optcom.2015.09.041 10.1364/OE.16.016854 10.1039/C8TA12219A 10.1109/LPT.2015.2466614 10.1364/OE.19.006141 10.1016/j.snb.2012.03.026 10.1002/anie.201908122 10.1088/0957-0233/17/5/S31 10.1109/JSEN.2020.3029519 10.1016/j.snb.2008.12.019 10.1016/S0167-2738(99)00101-0 10.1364/OME.8.001493 10.1109/LPT.2006.888973 10.1016/j.snb.2012.04.066 10.3390/s16122040 10.1109/50.32374 10.1149/1.2133399 10.1016/S0040-6090(01)01181-6 10.1016/j.jcat.2013.06.024 10.1016/0022-4596(87)90359-8 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.snb.2023.135250 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3077 |
ExternalDocumentID | 10_1016_j_snb_2023_135250 S0925400523019688 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSK SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ M36 M41 R2- RIG SCB SCH SSH WUQ |
ID | FETCH-LOGICAL-c297t-5567c4e591a2b93956ed5f91d209f7cff82957726fa69db0f87f813a73e2aded3 |
IEDL.DBID | .~1 |
ISSN | 0925-4005 |
IngestDate | Tue Jul 01 02:06:09 EDT 2025 Thu Apr 24 23:04:42 EDT 2025 Sat Feb 17 16:11:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Optical fiber sensors Hydrogen sensor Gas sensor Fiber Bragg grating |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-5567c4e591a2b93956ed5f91d209f7cff82957726fa69db0f87f813a73e2aded3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_snb_2023_135250 crossref_primary_10_1016_j_snb_2023_135250 elsevier_sciencedirect_doi_10_1016_j_snb_2023_135250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 2024-04-00 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Sensors and actuators. B, Chemical |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Dai, Yang (bib6) 2021; 21 Monzón-Hernández, Luna-Moreno, Martínez-Escobar (bib4) 2009; 136 Cazzanelli, Vinegoni, Mariotto, Kuzmin, Purans (bib19) 1999; 123 Jiang, Ma, Li, Song, Luo, Wang (bib35) 2015; 27 Yang, Dai, Qin, Xiang, Wang, Yang (bib25) 2018; 270 Yang, Wang, Xiang, Qin, Dai, Yang (bib29) 2018; 8 Kim, Park, Lee, Cho, Kim, Ye, Han, Lee, Jang, Lee (bib21) 2019; 58 Kim, Kim, Rho, Park, Jang, Lee (bib27) 2010; 11 Dai, Yang, Yang, Li, Wang, Wang, Zhang (bib26) 2014; 190 Zou, Dai, Zhou, Dong, Yang (bib32) 2016; 16 Wei, Wei, Xiao, Lin (bib30) 2008; 134 Sharma, Deepa, Varshney, Agnihotry (bib15) 2001; 401 Trouillet, Marin, Veillas (bib28) 2006; 17 Yang, Yang, Dai, Zhang (bib10) 2012; 166 Daniel, Desbat, Lassegues, Gerand, Figlarz (bib13) 1987; 67 Tang, Zhang, Li, Dai, Wang, Yang (bib1) 2015; 23 Artiglia, Coppa, Di Vita, Potenza, Sharma (bib11) 1989; 7 Sienko, Oestrreicher (bib16) 1968; 90 Ross-Medgaarden, Wachs (bib18) 2007; 111 Dai, Ruan, Zhou, Yin, Hu, Ye, Yang (bib9) 2022; 40 Yao, Wu, Webb, Zhou, Rao, Pospori, Yu, Gong, Chen, Wang (bib3) 2015; 27 Buric, Chen, Bhattarai, Swinehart, Maklad (bib31) 2007; 19 Hjelm, Granqvist, Wills (bib23) 1996; 54 Liu, Han, Xin, Lei, Zhang, Wang, Can (bib12) 2013; 307 Zhang, Wang, Sun, Jiang (bib22) 2015; 168 Dai, Yang, Chen, Cao, Liao, Zhang (bib34) 2011; 19 Coelho, de Almeida, Santos, Viegas (bib33) 2015; 54 Yan, Zhao, Zhang, Li, Cao, Han, Hao (bib2) 2016; 359 Dai, Yang, Yang, Li, Wang, Wang, Zhang, Zhuang (bib8) 2013; 190 Liu, Wang, Wang, Han, Li (bib17) 2012; 293 Schirmer, Wittwer, Baur, Brandt (bib24) 1977; 124 Nishide, Mizukami (bib14) 1995; 259 Ma, Li, Luo, Mu, Wang (bib5) 2012; 169 Caucheteur, Debliquy, Lahem, Mergret (bib7) 2008; 16 Tian, Cui, Zeng, Su, Song, Shi (bib20) 2019; 7 Dai (10.1016/j.snb.2023.135250_bib9) 2022; 40 Artiglia (10.1016/j.snb.2023.135250_bib11) 1989; 7 Yang (10.1016/j.snb.2023.135250_bib10) 2012; 166 Tang (10.1016/j.snb.2023.135250_bib1) 2015; 23 Dai (10.1016/j.snb.2023.135250_bib34) 2011; 19 Buric (10.1016/j.snb.2023.135250_bib31) 2007; 19 Cazzanelli (10.1016/j.snb.2023.135250_bib19) 1999; 123 Schirmer (10.1016/j.snb.2023.135250_bib24) 1977; 124 Yang (10.1016/j.snb.2023.135250_bib25) 2018; 270 Wei (10.1016/j.snb.2023.135250_bib30) 2008; 134 Jiang (10.1016/j.snb.2023.135250_bib35) 2015; 27 Zhang (10.1016/j.snb.2023.135250_bib22) 2015; 168 Yao (10.1016/j.snb.2023.135250_bib3) 2015; 27 Zou (10.1016/j.snb.2023.135250_bib32) 2016; 16 Ross-Medgaarden (10.1016/j.snb.2023.135250_bib18) 2007; 111 Liu (10.1016/j.snb.2023.135250_bib17) 2012; 293 Hjelm (10.1016/j.snb.2023.135250_bib23) 1996; 54 Yang (10.1016/j.snb.2023.135250_bib29) 2018; 8 Kim (10.1016/j.snb.2023.135250_bib21) 2019; 58 Trouillet (10.1016/j.snb.2023.135250_bib28) 2006; 17 Sharma (10.1016/j.snb.2023.135250_bib15) 2001; 401 Yan (10.1016/j.snb.2023.135250_bib2) 2016; 359 Monzón-Hernández (10.1016/j.snb.2023.135250_bib4) 2009; 136 Daniel (10.1016/j.snb.2023.135250_bib13) 1987; 67 Dai (10.1016/j.snb.2023.135250_bib26) 2014; 190 Wang (10.1016/j.snb.2023.135250_bib6) 2021; 21 Caucheteur (10.1016/j.snb.2023.135250_bib7) 2008; 16 Dai (10.1016/j.snb.2023.135250_bib8) 2013; 190 Liu (10.1016/j.snb.2023.135250_bib12) 2013; 307 Tian (10.1016/j.snb.2023.135250_bib20) 2019; 7 Coelho (10.1016/j.snb.2023.135250_bib33) 2015; 54 Kim (10.1016/j.snb.2023.135250_bib27) 2010; 11 Sienko (10.1016/j.snb.2023.135250_bib16) 1968; 90 Ma (10.1016/j.snb.2023.135250_bib5) 2012; 169 Nishide (10.1016/j.snb.2023.135250_bib14) 1995; 259 |
References_xml | – volume: 67 start-page: 235 year: 1987 end-page: 247 ident: bib13 article-title: Infrared and Raman study of WO publication-title: J. Solid State Chem. – volume: 401 start-page: 45 year: 2001 end-page: 51 ident: bib15 article-title: FTIR investigations of tungsten oxide electrochromic films derived from organically modified peroxotungstic acid precursors publication-title: Thin Solid Films – volume: 19 start-page: 255 year: 2007 end-page: 257 ident: bib31 article-title: Active fiber bragg grating hydrogen sensors for all-temperature operation publication-title: IEEE Photonics Technol. Lett. – volume: 359 start-page: 157 year: 2016 end-page: 161 ident: bib2 article-title: A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face publication-title: Opt. Commun. – volume: 27 start-page: 1453 year: 2015 end-page: 1458 ident: bib35 article-title: Highly sensitive dissolved hydrogen sensor based on side-polished fiber Bragg grating publication-title: IEEE Photon. Technol. Lett. – volume: 40 start-page: 6583 year: 2022 end-page: 6589 ident: bib9 article-title: Ultra-high sensitive fiber optic hydrogen sensor in air publication-title: J. Light. Technol. – volume: 27 start-page: 2399 year: 2015 end-page: 2402 ident: bib3 article-title: Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection publication-title: IEEE Photonics Technol. Lett. – volume: 17 start-page: 1124 year: 2006 end-page: 1128 ident: bib28 article-title: Fibre gratings for hydrogen sensing publication-title: Meas. Sci. Technol. – volume: 136 start-page: 562 year: 2009 end-page: 566 ident: bib4 article-title: Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers publication-title: Sens. Actuators B – volume: 19 start-page: 6141 year: 2011 end-page: 6148 ident: bib34 article-title: Side-polished fiber Bragg grating hydrogen sensor with WO publication-title: Opt. Express – volume: 293 start-page: 61 year: 2012 end-page: 66 ident: bib17 article-title: Photocatalytic H publication-title: J. Catal. – volume: 270 start-page: 333 year: 2018 end-page: 340 ident: bib25 article-title: Improved performance of fiber optic hydrogen sensor based on MoO3 by ion intercalation publication-title: Sens. Actuators B – volume: 134 start-page: 687 year: 2008 end-page: 693 ident: bib30 article-title: Nano-structred Pd-long period fiber gratings integrated optical sensor for hydrogen detection. publication-title: Sens. Actuators B – volume: 307 start-page: 148 year: 2013 end-page: 152 ident: bib12 article-title: Enhancement of visible-light-driven O publication-title: J. Catal. – volume: 58 start-page: 16038 year: 2019 end-page: 16042 ident: bib21 article-title: Investigation of the support effect in atomically dispersed Pt on WO publication-title: Angew. Chem. Int. Ed. – volume: 168 start-page: 9 year: 2015 end-page: 13 ident: bib22 article-title: Near-infrared light photocatalysis with metallic/semiconducting H publication-title: Appl. Catal. B-Environ. – volume: 259 start-page: 212 year: 1995 end-page: 217 ident: bib14 article-title: Crystal structures and optical properties of tungsten oxide films prepared by a complexing-agent-assisted sol-gel process publication-title: Thin Solid Films – volume: 123 start-page: 67 year: 1999 end-page: 74 ident: bib19 article-title: Raman study of the phase transitions sequence in pure WO publication-title: Solid State Ion. – volume: 21 start-page: 12706 year: 2021 end-page: 12718 ident: bib6 article-title: Fiber-optic hydrogen sensors: a review publication-title: IEEE Sens. J. – volume: 16 start-page: 16854 year: 2008 end-page: 16859 ident: bib7 article-title: Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air publication-title: Opt. Express – volume: 54 start-page: 2436 year: 1996 end-page: 2445 ident: bib23 article-title: Electronic structure and optical properties of WO publication-title: Phys. Rev. B – volume: 166 start-page: 632 year: 2012 end-page: 636 ident: bib10 article-title: Fiber optic hydrogen sensors with sol–gel WO publication-title: Sens. Actuators B – volume: 16 start-page: 2040 year: 2016 ident: bib32 article-title: Femtosecond laser ablated FBG with composite microstructure for hydrogen sensor application publication-title: Sensors – volume: 190 start-page: 657 year: 2014 end-page: 663 ident: bib26 article-title: Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO publication-title: Sens. Actuators B – volume: 7 start-page: 6285 year: 2019 end-page: 6293 ident: bib20 article-title: Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst publication-title: J. Mater. Chem. – volume: 124 start-page: 749 year: 1977 end-page: 753 ident: bib24 article-title: Dependence of WO publication-title: J. Electrochem. Soc. – volume: 169 start-page: 195 year: 2012 end-page: 198 ident: bib5 article-title: High sensitive and reliable fiber Bragg grating hydrogen sensor for fault detection of power transformer publication-title: Sens. Actuators B – volume: 8 start-page: 1493 year: 2018 end-page: 1504 ident: bib29 article-title: Pt nanoparticles encapsulated in mesoporous tungsten oxide to enhance the repeatability of a FBG hydrogen sensor publication-title: Opt. Mater. Express – volume: 90 start-page: 6568 year: 1968 end-page: 6570 ident: bib16 article-title: Infrared and electron spin resonance study of hydrogen tungsten bronze publication-title: J. Am. Chem. Soc. – volume: 111 start-page: 15089 year: 2007 end-page: 15099 ident: bib18 article-title: Structural determination of bulk and surface tungsten oxides with UV−vis diffuse reflectance spectroscopy and raman spectroscopy publication-title: J. Phys. Chem. C – volume: 7 start-page: 1139 year: 1989 end-page: 1152 ident: bib11 article-title: Mode field diameter measurements in single-mode optical fibers publication-title: J. Light. Technol. – volume: 11 start-page: 1423 year: 2010 end-page: 1426 ident: bib27 article-title: Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode publication-title: IEEE Sens. J. – volume: 190 start-page: 657 year: 2013 end-page: 663 ident: bib8 article-title: Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating publication-title: Sens. Actuators B – volume: 23 start-page: 22826 year: 2015 end-page: 22835 ident: bib1 article-title: Self-compensated microstructure fiber optic sensor to detect high hydrogen concentration publication-title: Opt. Express – volume: 54 start-page: 10342 year: 2015 end-page: 10348 ident: bib33 article-title: Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium publication-title: Appl. Opt. – volume: 40 start-page: 6583 issue: 19 year: 2022 ident: 10.1016/j.snb.2023.135250_bib9 article-title: Ultra-high sensitive fiber optic hydrogen sensor in air publication-title: J. Light. Technol. doi: 10.1109/JLT.2022.3193568 – volume: 134 start-page: 687 issue: 2 year: 2008 ident: 10.1016/j.snb.2023.135250_bib30 article-title: Nano-structred Pd-long period fiber gratings integrated optical sensor for hydrogen detection. publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.06.018 – volume: 11 start-page: 1423 issue: 6 year: 2010 ident: 10.1016/j.snb.2023.135250_bib27 article-title: Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2010.2092423 – volume: 259 start-page: 212 issue: 2 year: 1995 ident: 10.1016/j.snb.2023.135250_bib14 article-title: Crystal structures and optical properties of tungsten oxide films prepared by a complexing-agent-assisted sol-gel process publication-title: Thin Solid Films doi: 10.1016/0040-6090(94)06444-X – volume: 54 start-page: 10342 issue: 35 year: 2015 ident: 10.1016/j.snb.2023.135250_bib33 article-title: Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium publication-title: Appl. Opt. doi: 10.1364/AO.54.010342 – volume: 23 start-page: 22826 issue: 17 year: 2015 ident: 10.1016/j.snb.2023.135250_bib1 article-title: Self-compensated microstructure fiber optic sensor to detect high hydrogen concentration publication-title: Opt. Express doi: 10.1364/OE.23.022826 – volume: 27 start-page: 1453 issue: 13 year: 2015 ident: 10.1016/j.snb.2023.135250_bib35 article-title: Highly sensitive dissolved hydrogen sensor based on side-polished fiber Bragg grating publication-title: IEEE Photon. Technol. Lett. doi: 10.1109/LPT.2015.2425894 – volume: 168 start-page: 9 year: 2015 ident: 10.1016/j.snb.2023.135250_bib22 article-title: Near-infrared light photocatalysis with metallic/semiconducting HxWO3/WO3 nanoheterostructure in situ formed in mesoporous template publication-title: Appl. Catal. B-Environ. – volume: 111 start-page: 15089 year: 2007 ident: 10.1016/j.snb.2023.135250_bib18 article-title: Structural determination of bulk and surface tungsten oxides with UV−vis diffuse reflectance spectroscopy and raman spectroscopy publication-title: J. Phys. Chem. C doi: 10.1021/jp074219c – volume: 90 start-page: 6568 issue: 23 year: 1968 ident: 10.1016/j.snb.2023.135250_bib16 article-title: Infrared and electron spin resonance study of hydrogen tungsten bronze publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01025a089 – volume: 270 start-page: 333 year: 2018 ident: 10.1016/j.snb.2023.135250_bib25 article-title: Improved performance of fiber optic hydrogen sensor based on MoO3 by ion intercalation publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.05.060 – volume: 190 start-page: 657 year: 2013 ident: 10.1016/j.snb.2023.135250_bib8 article-title: Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating publication-title: Sens. Actuators B doi: 10.1016/j.snb.2013.08.083 – volume: 54 start-page: 2436 year: 1996 ident: 10.1016/j.snb.2023.135250_bib23 article-title: Electronic structure and optical properties of WO3, LiWO3, NaWO3, and H2WO3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.2436 – volume: 190 start-page: 657 year: 2014 ident: 10.1016/j.snb.2023.135250_bib26 article-title: Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating publication-title: Sens. Actuators B doi: 10.1016/j.snb.2013.08.083 – volume: 293 start-page: 61 year: 2012 ident: 10.1016/j.snb.2023.135250_bib17 article-title: Photocatalytic H2 and O2 evolution over tungsten oxide dispersed on silica publication-title: J. Catal. doi: 10.1016/j.jcat.2012.06.003 – volume: 359 start-page: 157 year: 2016 ident: 10.1016/j.snb.2023.135250_bib2 article-title: A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face publication-title: Opt. Commun. doi: 10.1016/j.optcom.2015.09.041 – volume: 16 start-page: 16854 issue: 21 year: 2008 ident: 10.1016/j.snb.2023.135250_bib7 article-title: Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air publication-title: Opt. Express doi: 10.1364/OE.16.016854 – volume: 7 start-page: 6285 issue: 11 year: 2019 ident: 10.1016/j.snb.2023.135250_bib20 article-title: Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst publication-title: J. Mater. Chem. doi: 10.1039/C8TA12219A – volume: 27 start-page: 2399 issue: 22 year: 2015 ident: 10.1016/j.snb.2023.135250_bib3 article-title: Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2015.2466614 – volume: 19 start-page: 6141 issue: 7 year: 2011 ident: 10.1016/j.snb.2023.135250_bib34 article-title: Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials publication-title: Opt. Express doi: 10.1364/OE.19.006141 – volume: 166 start-page: 632 year: 2012 ident: 10.1016/j.snb.2023.135250_bib10 article-title: Fiber optic hydrogen sensors with sol–gel WO3 coatings publication-title: Sens. Actuators B doi: 10.1016/j.snb.2012.03.026 – volume: 58 start-page: 16038 issue: 45 year: 2019 ident: 10.1016/j.snb.2023.135250_bib21 article-title: Investigation of the support effect in atomically dispersed Pt on WO3−X for utilization of Pt in the hydrogen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201908122 – volume: 17 start-page: 1124 issue: 1124 year: 2006 ident: 10.1016/j.snb.2023.135250_bib28 article-title: Fibre gratings for hydrogen sensing publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/17/5/S31 – volume: 21 start-page: 12706 issue: 11 year: 2021 ident: 10.1016/j.snb.2023.135250_bib6 article-title: Fiber-optic hydrogen sensors: a review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3029519 – volume: 136 start-page: 562 issue: 2 year: 2009 ident: 10.1016/j.snb.2023.135250_bib4 article-title: Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers publication-title: Sens. Actuators B doi: 10.1016/j.snb.2008.12.019 – volume: 123 start-page: 67 issue: 1-4 year: 1999 ident: 10.1016/j.snb.2023.135250_bib19 article-title: Raman study of the phase transitions sequence in pure WO3 at high temperature and in HxWO3 with variable hydrogen content publication-title: Solid State Ion. doi: 10.1016/S0167-2738(99)00101-0 – volume: 8 start-page: 1493 issue: 6 year: 2018 ident: 10.1016/j.snb.2023.135250_bib29 article-title: Pt nanoparticles encapsulated in mesoporous tungsten oxide to enhance the repeatability of a FBG hydrogen sensor publication-title: Opt. Mater. Express doi: 10.1364/OME.8.001493 – volume: 19 start-page: 255 issue: 5 year: 2007 ident: 10.1016/j.snb.2023.135250_bib31 article-title: Active fiber bragg grating hydrogen sensors for all-temperature operation publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2006.888973 – volume: 169 start-page: 195 year: 2012 ident: 10.1016/j.snb.2023.135250_bib5 article-title: High sensitive and reliable fiber Bragg grating hydrogen sensor for fault detection of power transformer publication-title: Sens. Actuators B doi: 10.1016/j.snb.2012.04.066 – volume: 16 start-page: 2040 issue: 12 year: 2016 ident: 10.1016/j.snb.2023.135250_bib32 article-title: Femtosecond laser ablated FBG with composite microstructure for hydrogen sensor application publication-title: Sensors doi: 10.3390/s16122040 – volume: 7 start-page: 1139 issue: 8 year: 1989 ident: 10.1016/j.snb.2023.135250_bib11 article-title: Mode field diameter measurements in single-mode optical fibers publication-title: J. Light. Technol. doi: 10.1109/50.32374 – volume: 124 start-page: 749 year: 1977 ident: 10.1016/j.snb.2023.135250_bib24 article-title: Dependence of WO3 electrochromic absorption on crystallinity publication-title: J. Electrochem. Soc. doi: 10.1149/1.2133399 – volume: 401 start-page: 45 issue: 1-2 year: 2001 ident: 10.1016/j.snb.2023.135250_bib15 article-title: FTIR investigations of tungsten oxide electrochromic films derived from organically modified peroxotungstic acid precursors publication-title: Thin Solid Films doi: 10.1016/S0040-6090(01)01181-6 – volume: 307 start-page: 148 year: 2013 ident: 10.1016/j.snb.2023.135250_bib12 article-title: Enhancement of visible-light-driven O2 evolution from water oxidation on WO3 treated with hydrogen publication-title: J. Catal. doi: 10.1016/j.jcat.2013.06.024 – volume: 67 start-page: 235 issue: 2 year: 1987 ident: 10.1016/j.snb.2023.135250_bib13 article-title: Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide hydrates publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(87)90359-8 |
SSID | ssj0004360 |
Score | 2.5278773 |
Snippet | Hydrogen sensors are key to the emerging clean hydrogen economies and fiber-optic hydrogen sensors play a unique role owing to their inherent safety and high... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 135250 |
SubjectTerms | Fiber Bragg grating Gas sensor Hydrogen sensor Optical fiber sensors |
Title | Highly sensitive fiber grating hydrogen sensor based on hydrogen-doped Pt/WO3 |
URI | https://dx.doi.org/10.1016/j.snb.2023.135250 |
Volume | 404 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpnlYEJyU3i2HE8VhVVAbUgQUW3yIltUVQlVVuGLvx2fHmUIgEDY5w7Kbpc7j7H390hdOXZ719IIjEPGccA2LE0xmCPC224ZCnzoMB5MAz7I3o3ZuMG6ta1MECrrGJ_GdOLaF2tuJU13dlk4j55wm5uyt-a1o0iKPillIOXtz--aB40KCqFQRiDdH2yWXC8FlnShvnhMP2BQOn9T7lpI9_09tBuBRSdTvks-6ihswO0s9E-8BANgKQxXTkLIKFD2HIM8D8caP9gBZzXlZrn1kEKgXzuQMZSTp6tb2CVz-zK49J9eQiO0Kh389zt42o8Ak6J4EvMWMhTqpnwJUlEYDc6WjEjfEU8YXhqTEQEs-A5NDIUKvFMxE3kB5IHmkilVXCMmlme6RPkEEWo9Flq8SClCQ-SxMIETaVFW4wnfniKvNowcVr1DocRFtO4Jom9xdaWMdgyLm15iq7XKrOyccZfwrS2dvzt7cc2sP-udvY_tXO0ba8q_s0Fai7n7_rSQotl0ip8p4W2Orf3_eEnc7fL0Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9VAEJ4gHpSDQdSIiu4BLiTLa7e73e6BA0HJQ3hAIkRuddvdjRDSvrz3DHkX_in-QWf6AzFRDyZcd3ea7dfpzGz7zQzAeoTvv7HCcp0qzSlg5zaEwCNtfNBWlSqiBOfRUTo8k5_P1fkC3Pa5MESr7Gx_a9Mba92NDDo0B-OLi8GXyODhpv2siWqUZR2z8sDPr_HcNt3e_4gPeUOIvU-nu0PetRbgpTB6xpVKdSm9MrEVhUnwkOCdCiZ2IjJBlyFkwigMPNNgU-OKKGQ6ZHFideKFdd4leN1H8FiiuaC2CVs3v3glMmlSk2l3nLbX_0ptSGXTqtiihuXUbkJQrv-fnOE9B7e3DM-6yJTttDf_HBZ8tQJL9-oVvoARsUKu5mxKrHeykywQ4YRRvQlcwL7P3aRGjWwW1BNGLtKxurqb4K4e48jJbPD1OHkJZw8C2itYrOrKvwYmnJA2ViUGoFIWOikKjEu8tBjeKV3E6SpEPTB52RUrp54ZV3nPSrvMEcucsMxbLFdh805k3Fbq-Ndi2aOd_6ZuOXqSv4u9-T-xD_BkeDo6zA_3jw7ewlOc6cg_72BxNvnh1zCumRXvGz1i8O2hFfcngIsHqg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive+fiber+grating+hydrogen+sensor+based+on+hydrogen-doped+Pt%2FWO3&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Wang%2C+Chaoqin&rft.au=Han%2C+Zewen&rft.au=Wang%2C+Chenxiang&rft.au=Peng%2C+Gang-Ding&rft.date=2024-04-01&rft.issn=0925-4005&rft.volume=404&rft.spage=135250&rft_id=info:doi/10.1016%2Fj.snb.2023.135250&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_snb_2023_135250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |