Highly sensitive fiber grating hydrogen sensor based on hydrogen-doped Pt/WO3

Hydrogen sensors are key to the emerging clean hydrogen economies and fiber-optic hydrogen sensors play a unique role owing to their inherent safety and high sensitivity. Currently Pt/WO3 has been employed as the mainstream hydrogen-sensitive material in high performance hydrogen sensors. Here we de...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 404; p. 135250
Main Authors Wang, Chaoqin, Han, Zewen, Wang, Chenxiang, Peng, Gang-Ding, Rao, Yun-Jiang, Gong, Yuan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen sensors are key to the emerging clean hydrogen economies and fiber-optic hydrogen sensors play a unique role owing to their inherent safety and high sensitivity. Currently Pt/WO3 has been employed as the mainstream hydrogen-sensitive material in high performance hydrogen sensors. Here we develop an ultrasensitive fiber-optic hydrogen sensor with fast response by coating pretreated Pt/WO3 nanomaterial on fiber Bragg grating. We observe a great enhancement in sensitivity by the hydrogen-doping of the Pt/WO3 nanomaterials. The generation of HxWO3 composite material is confirmed by XRD, FTIR and Raman analysis. Compared with pure Pt/WO3, a 184-fold improvement in sensitivity is achieved by hydrogen doping, with a fast response of 25 s. An impressive limit of detection (LOD) of 30 ppm is demonstrated by employing both the narrowband weak FBGs and the hydrogen-doped Pt/WO3. The immunity to ambient temperature fluctuation is demonstrated by self-calibration through detecting the wavelength difference between a pair of FBGs. Good specificity is also demonstrated. This technology shows great potential in high spatial-resolution quasi-distributed hydrogen sensing. •A new pre-treatment method for hydrogen-sensitive materials has been proposed, and the sensitivity increased by 184 times.•The trade-off between response time and limit of detection (LOD) has been resolved.•The quasi-distributed hydrogen sensing has been achieved through the wavelength division multiplexing technology.•The temperature compensation has been achieved and repeatable hydrogen tests were demonstrated under different temperatures.
AbstractList Hydrogen sensors are key to the emerging clean hydrogen economies and fiber-optic hydrogen sensors play a unique role owing to their inherent safety and high sensitivity. Currently Pt/WO3 has been employed as the mainstream hydrogen-sensitive material in high performance hydrogen sensors. Here we develop an ultrasensitive fiber-optic hydrogen sensor with fast response by coating pretreated Pt/WO3 nanomaterial on fiber Bragg grating. We observe a great enhancement in sensitivity by the hydrogen-doping of the Pt/WO3 nanomaterials. The generation of HxWO3 composite material is confirmed by XRD, FTIR and Raman analysis. Compared with pure Pt/WO3, a 184-fold improvement in sensitivity is achieved by hydrogen doping, with a fast response of 25 s. An impressive limit of detection (LOD) of 30 ppm is demonstrated by employing both the narrowband weak FBGs and the hydrogen-doped Pt/WO3. The immunity to ambient temperature fluctuation is demonstrated by self-calibration through detecting the wavelength difference between a pair of FBGs. Good specificity is also demonstrated. This technology shows great potential in high spatial-resolution quasi-distributed hydrogen sensing. •A new pre-treatment method for hydrogen-sensitive materials has been proposed, and the sensitivity increased by 184 times.•The trade-off between response time and limit of detection (LOD) has been resolved.•The quasi-distributed hydrogen sensing has been achieved through the wavelength division multiplexing technology.•The temperature compensation has been achieved and repeatable hydrogen tests were demonstrated under different temperatures.
ArticleNumber 135250
Author Wang, Chaoqin
Peng, Gang-Ding
Wang, Chenxiang
Han, Zewen
Gong, Yuan
Rao, Yun-Jiang
Author_xml – sequence: 1
  givenname: Chaoqin
  surname: Wang
  fullname: Wang, Chaoqin
  organization: Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), University of Electronic Science and Technology of China, Chengdu 611731 China
– sequence: 2
  givenname: Zewen
  surname: Han
  fullname: Han, Zewen
  organization: Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), University of Electronic Science and Technology of China, Chengdu 611731 China
– sequence: 3
  givenname: Chenxiang
  surname: Wang
  fullname: Wang, Chenxiang
  organization: Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), University of Electronic Science and Technology of China, Chengdu 611731 China
– sequence: 4
  givenname: Gang-Ding
  surname: Peng
  fullname: Peng, Gang-Ding
  organization: Photonics & Optical Communications, School of Electrical Engineering & Telecommunications, University of New South Wales, Sydney, NSW 2052, Australia
– sequence: 5
  givenname: Yun-Jiang
  surname: Rao
  fullname: Rao, Yun-Jiang
  organization: Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), University of Electronic Science and Technology of China, Chengdu 611731 China
– sequence: 6
  givenname: Yuan
  surname: Gong
  fullname: Gong, Yuan
  email: ygong@uestc.edu.cn
  organization: Key Laboratory of Optical Fiber Sensing and Communications (Ministry of Education of China), University of Electronic Science and Technology of China, Chengdu 611731 China
BookMark eNp9kM9KAzEQh4NUsFYfwNu-wG7zp9ls8CRFrVCpB8VjyCaTbUpNSrIU-vZurXjw0NPAzO8bZr5rNAoxAEJ3BFcEk3q6qXJoK4opqwjjlOMLNCaNYCXDQozQGEvKyxnG_Apd57zBGM9YjcfodeG79fZQZAjZ934PhfMtpKJLuvehK9YHm2IH4ScQU9HqDLaI4W9Q2rgbOm_99HPFbtCl09sMt791gj6eHt_ni3K5en6ZPyxLQ6XoS85rYWbAJdG0lUzyGix3kliKpRPGuYZKLgStna6lbbFrhGsI04IB1RYsmyBx2mtSzDmBU8b3w8Ex9En7rSJYHa2ojRqsqKMVdbIykOQfuUv-S6fDWeb-xMDw0t5DUtl4CAasT2B6ZaM_Q38D2hJ8rA
CitedBy_id crossref_primary_10_1016_j_ijhydene_2025_01_112
crossref_primary_10_1109_TIM_2024_3522415
crossref_primary_10_3390_nano15060440
crossref_primary_10_1007_s13320_025_0750_8
crossref_primary_10_1002_adma_202410179
crossref_primary_10_3390_pr13010004
crossref_primary_10_1109_JLT_2024_3386904
crossref_primary_10_1002_adem_202402170
crossref_primary_10_1016_j_saa_2024_124727
crossref_primary_10_3390_en17164059
crossref_primary_10_1109_JSEN_2025_3529581
Cites_doi 10.1109/JLT.2022.3193568
10.1016/j.snb.2008.06.018
10.1109/JSEN.2010.2092423
10.1016/0040-6090(94)06444-X
10.1364/AO.54.010342
10.1364/OE.23.022826
10.1109/LPT.2015.2425894
10.1021/jp074219c
10.1021/ja01025a089
10.1016/j.snb.2018.05.060
10.1016/j.snb.2013.08.083
10.1103/PhysRevB.54.2436
10.1016/j.jcat.2012.06.003
10.1016/j.optcom.2015.09.041
10.1364/OE.16.016854
10.1039/C8TA12219A
10.1109/LPT.2015.2466614
10.1364/OE.19.006141
10.1016/j.snb.2012.03.026
10.1002/anie.201908122
10.1088/0957-0233/17/5/S31
10.1109/JSEN.2020.3029519
10.1016/j.snb.2008.12.019
10.1016/S0167-2738(99)00101-0
10.1364/OME.8.001493
10.1109/LPT.2006.888973
10.1016/j.snb.2012.04.066
10.3390/s16122040
10.1109/50.32374
10.1149/1.2133399
10.1016/S0040-6090(01)01181-6
10.1016/j.jcat.2013.06.024
10.1016/0022-4596(87)90359-8
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.snb.2023.135250
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
ExternalDocumentID 10_1016_j_snb_2023_135250
S0925400523019688
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
M36
M41
R2-
RIG
SCB
SCH
SSH
WUQ
ID FETCH-LOGICAL-c297t-5567c4e591a2b93956ed5f91d209f7cff82957726fa69db0f87f813a73e2aded3
IEDL.DBID .~1
ISSN 0925-4005
IngestDate Tue Jul 01 02:06:09 EDT 2025
Thu Apr 24 23:04:42 EDT 2025
Sat Feb 17 16:11:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Optical fiber sensors
Hydrogen sensor
Gas sensor
Fiber Bragg grating
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-5567c4e591a2b93956ed5f91d209f7cff82957726fa69db0f87f813a73e2aded3
ParticipantIDs crossref_citationtrail_10_1016_j_snb_2023_135250
crossref_primary_10_1016_j_snb_2023_135250
elsevier_sciencedirect_doi_10_1016_j_snb_2023_135250
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Dai, Yang (bib6) 2021; 21
Monzón-Hernández, Luna-Moreno, Martínez-Escobar (bib4) 2009; 136
Cazzanelli, Vinegoni, Mariotto, Kuzmin, Purans (bib19) 1999; 123
Jiang, Ma, Li, Song, Luo, Wang (bib35) 2015; 27
Yang, Dai, Qin, Xiang, Wang, Yang (bib25) 2018; 270
Yang, Wang, Xiang, Qin, Dai, Yang (bib29) 2018; 8
Kim, Park, Lee, Cho, Kim, Ye, Han, Lee, Jang, Lee (bib21) 2019; 58
Kim, Kim, Rho, Park, Jang, Lee (bib27) 2010; 11
Dai, Yang, Yang, Li, Wang, Wang, Zhang (bib26) 2014; 190
Zou, Dai, Zhou, Dong, Yang (bib32) 2016; 16
Wei, Wei, Xiao, Lin (bib30) 2008; 134
Sharma, Deepa, Varshney, Agnihotry (bib15) 2001; 401
Trouillet, Marin, Veillas (bib28) 2006; 17
Yang, Yang, Dai, Zhang (bib10) 2012; 166
Daniel, Desbat, Lassegues, Gerand, Figlarz (bib13) 1987; 67
Tang, Zhang, Li, Dai, Wang, Yang (bib1) 2015; 23
Artiglia, Coppa, Di Vita, Potenza, Sharma (bib11) 1989; 7
Sienko, Oestrreicher (bib16) 1968; 90
Ross-Medgaarden, Wachs (bib18) 2007; 111
Dai, Ruan, Zhou, Yin, Hu, Ye, Yang (bib9) 2022; 40
Yao, Wu, Webb, Zhou, Rao, Pospori, Yu, Gong, Chen, Wang (bib3) 2015; 27
Buric, Chen, Bhattarai, Swinehart, Maklad (bib31) 2007; 19
Hjelm, Granqvist, Wills (bib23) 1996; 54
Liu, Han, Xin, Lei, Zhang, Wang, Can (bib12) 2013; 307
Zhang, Wang, Sun, Jiang (bib22) 2015; 168
Dai, Yang, Chen, Cao, Liao, Zhang (bib34) 2011; 19
Coelho, de Almeida, Santos, Viegas (bib33) 2015; 54
Yan, Zhao, Zhang, Li, Cao, Han, Hao (bib2) 2016; 359
Dai, Yang, Yang, Li, Wang, Wang, Zhang, Zhuang (bib8) 2013; 190
Liu, Wang, Wang, Han, Li (bib17) 2012; 293
Schirmer, Wittwer, Baur, Brandt (bib24) 1977; 124
Nishide, Mizukami (bib14) 1995; 259
Ma, Li, Luo, Mu, Wang (bib5) 2012; 169
Caucheteur, Debliquy, Lahem, Mergret (bib7) 2008; 16
Tian, Cui, Zeng, Su, Song, Shi (bib20) 2019; 7
Dai (10.1016/j.snb.2023.135250_bib9) 2022; 40
Artiglia (10.1016/j.snb.2023.135250_bib11) 1989; 7
Yang (10.1016/j.snb.2023.135250_bib10) 2012; 166
Tang (10.1016/j.snb.2023.135250_bib1) 2015; 23
Dai (10.1016/j.snb.2023.135250_bib34) 2011; 19
Buric (10.1016/j.snb.2023.135250_bib31) 2007; 19
Cazzanelli (10.1016/j.snb.2023.135250_bib19) 1999; 123
Schirmer (10.1016/j.snb.2023.135250_bib24) 1977; 124
Yang (10.1016/j.snb.2023.135250_bib25) 2018; 270
Wei (10.1016/j.snb.2023.135250_bib30) 2008; 134
Jiang (10.1016/j.snb.2023.135250_bib35) 2015; 27
Zhang (10.1016/j.snb.2023.135250_bib22) 2015; 168
Yao (10.1016/j.snb.2023.135250_bib3) 2015; 27
Zou (10.1016/j.snb.2023.135250_bib32) 2016; 16
Ross-Medgaarden (10.1016/j.snb.2023.135250_bib18) 2007; 111
Liu (10.1016/j.snb.2023.135250_bib17) 2012; 293
Hjelm (10.1016/j.snb.2023.135250_bib23) 1996; 54
Yang (10.1016/j.snb.2023.135250_bib29) 2018; 8
Kim (10.1016/j.snb.2023.135250_bib21) 2019; 58
Trouillet (10.1016/j.snb.2023.135250_bib28) 2006; 17
Sharma (10.1016/j.snb.2023.135250_bib15) 2001; 401
Yan (10.1016/j.snb.2023.135250_bib2) 2016; 359
Monzón-Hernández (10.1016/j.snb.2023.135250_bib4) 2009; 136
Daniel (10.1016/j.snb.2023.135250_bib13) 1987; 67
Dai (10.1016/j.snb.2023.135250_bib26) 2014; 190
Wang (10.1016/j.snb.2023.135250_bib6) 2021; 21
Caucheteur (10.1016/j.snb.2023.135250_bib7) 2008; 16
Dai (10.1016/j.snb.2023.135250_bib8) 2013; 190
Liu (10.1016/j.snb.2023.135250_bib12) 2013; 307
Tian (10.1016/j.snb.2023.135250_bib20) 2019; 7
Coelho (10.1016/j.snb.2023.135250_bib33) 2015; 54
Kim (10.1016/j.snb.2023.135250_bib27) 2010; 11
Sienko (10.1016/j.snb.2023.135250_bib16) 1968; 90
Ma (10.1016/j.snb.2023.135250_bib5) 2012; 169
Nishide (10.1016/j.snb.2023.135250_bib14) 1995; 259
References_xml – volume: 67
  start-page: 235
  year: 1987
  end-page: 247
  ident: bib13
  article-title: Infrared and Raman study of WO
  publication-title: J. Solid State Chem.
– volume: 401
  start-page: 45
  year: 2001
  end-page: 51
  ident: bib15
  article-title: FTIR investigations of tungsten oxide electrochromic films derived from organically modified peroxotungstic acid precursors
  publication-title: Thin Solid Films
– volume: 19
  start-page: 255
  year: 2007
  end-page: 257
  ident: bib31
  article-title: Active fiber bragg grating hydrogen sensors for all-temperature operation
  publication-title: IEEE Photonics Technol. Lett.
– volume: 359
  start-page: 157
  year: 2016
  end-page: 161
  ident: bib2
  article-title: A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face
  publication-title: Opt. Commun.
– volume: 27
  start-page: 1453
  year: 2015
  end-page: 1458
  ident: bib35
  article-title: Highly sensitive dissolved hydrogen sensor based on side-polished fiber Bragg grating
  publication-title: IEEE Photon. Technol. Lett.
– volume: 40
  start-page: 6583
  year: 2022
  end-page: 6589
  ident: bib9
  article-title: Ultra-high sensitive fiber optic hydrogen sensor in air
  publication-title: J. Light. Technol.
– volume: 27
  start-page: 2399
  year: 2015
  end-page: 2402
  ident: bib3
  article-title: Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection
  publication-title: IEEE Photonics Technol. Lett.
– volume: 17
  start-page: 1124
  year: 2006
  end-page: 1128
  ident: bib28
  article-title: Fibre gratings for hydrogen sensing
  publication-title: Meas. Sci. Technol.
– volume: 136
  start-page: 562
  year: 2009
  end-page: 566
  ident: bib4
  article-title: Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers
  publication-title: Sens. Actuators B
– volume: 19
  start-page: 6141
  year: 2011
  end-page: 6148
  ident: bib34
  article-title: Side-polished fiber Bragg grating hydrogen sensor with WO
  publication-title: Opt. Express
– volume: 293
  start-page: 61
  year: 2012
  end-page: 66
  ident: bib17
  article-title: Photocatalytic H
  publication-title: J. Catal.
– volume: 270
  start-page: 333
  year: 2018
  end-page: 340
  ident: bib25
  article-title: Improved performance of fiber optic hydrogen sensor based on MoO3 by ion intercalation
  publication-title: Sens. Actuators B
– volume: 134
  start-page: 687
  year: 2008
  end-page: 693
  ident: bib30
  article-title: Nano-structred Pd-long period fiber gratings integrated optical sensor for hydrogen detection.
  publication-title: Sens. Actuators B
– volume: 307
  start-page: 148
  year: 2013
  end-page: 152
  ident: bib12
  article-title: Enhancement of visible-light-driven O
  publication-title: J. Catal.
– volume: 58
  start-page: 16038
  year: 2019
  end-page: 16042
  ident: bib21
  article-title: Investigation of the support effect in atomically dispersed Pt on WO
  publication-title: Angew. Chem. Int. Ed.
– volume: 168
  start-page: 9
  year: 2015
  end-page: 13
  ident: bib22
  article-title: Near-infrared light photocatalysis with metallic/semiconducting H
  publication-title: Appl. Catal. B-Environ.
– volume: 259
  start-page: 212
  year: 1995
  end-page: 217
  ident: bib14
  article-title: Crystal structures and optical properties of tungsten oxide films prepared by a complexing-agent-assisted sol-gel process
  publication-title: Thin Solid Films
– volume: 123
  start-page: 67
  year: 1999
  end-page: 74
  ident: bib19
  article-title: Raman study of the phase transitions sequence in pure WO
  publication-title: Solid State Ion.
– volume: 21
  start-page: 12706
  year: 2021
  end-page: 12718
  ident: bib6
  article-title: Fiber-optic hydrogen sensors: a review
  publication-title: IEEE Sens. J.
– volume: 16
  start-page: 16854
  year: 2008
  end-page: 16859
  ident: bib7
  article-title: Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air
  publication-title: Opt. Express
– volume: 54
  start-page: 2436
  year: 1996
  end-page: 2445
  ident: bib23
  article-title: Electronic structure and optical properties of WO
  publication-title: Phys. Rev. B
– volume: 166
  start-page: 632
  year: 2012
  end-page: 636
  ident: bib10
  article-title: Fiber optic hydrogen sensors with sol–gel WO
  publication-title: Sens. Actuators B
– volume: 16
  start-page: 2040
  year: 2016
  ident: bib32
  article-title: Femtosecond laser ablated FBG with composite microstructure for hydrogen sensor application
  publication-title: Sensors
– volume: 190
  start-page: 657
  year: 2014
  end-page: 663
  ident: bib26
  article-title: Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO
  publication-title: Sens. Actuators B
– volume: 7
  start-page: 6285
  year: 2019
  end-page: 6293
  ident: bib20
  article-title: Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst
  publication-title: J. Mater. Chem.
– volume: 124
  start-page: 749
  year: 1977
  end-page: 753
  ident: bib24
  article-title: Dependence of WO
  publication-title: J. Electrochem. Soc.
– volume: 169
  start-page: 195
  year: 2012
  end-page: 198
  ident: bib5
  article-title: High sensitive and reliable fiber Bragg grating hydrogen sensor for fault detection of power transformer
  publication-title: Sens. Actuators B
– volume: 8
  start-page: 1493
  year: 2018
  end-page: 1504
  ident: bib29
  article-title: Pt nanoparticles encapsulated in mesoporous tungsten oxide to enhance the repeatability of a FBG hydrogen sensor
  publication-title: Opt. Mater. Express
– volume: 90
  start-page: 6568
  year: 1968
  end-page: 6570
  ident: bib16
  article-title: Infrared and electron spin resonance study of hydrogen tungsten bronze
  publication-title: J. Am. Chem. Soc.
– volume: 111
  start-page: 15089
  year: 2007
  end-page: 15099
  ident: bib18
  article-title: Structural determination of bulk and surface tungsten oxides with UV−vis diffuse reflectance spectroscopy and raman spectroscopy
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 1139
  year: 1989
  end-page: 1152
  ident: bib11
  article-title: Mode field diameter measurements in single-mode optical fibers
  publication-title: J. Light. Technol.
– volume: 11
  start-page: 1423
  year: 2010
  end-page: 1426
  ident: bib27
  article-title: Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode
  publication-title: IEEE Sens. J.
– volume: 190
  start-page: 657
  year: 2013
  end-page: 663
  ident: bib8
  article-title: Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating
  publication-title: Sens. Actuators B
– volume: 23
  start-page: 22826
  year: 2015
  end-page: 22835
  ident: bib1
  article-title: Self-compensated microstructure fiber optic sensor to detect high hydrogen concentration
  publication-title: Opt. Express
– volume: 54
  start-page: 10342
  year: 2015
  end-page: 10348
  ident: bib33
  article-title: Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium
  publication-title: Appl. Opt.
– volume: 40
  start-page: 6583
  issue: 19
  year: 2022
  ident: 10.1016/j.snb.2023.135250_bib9
  article-title: Ultra-high sensitive fiber optic hydrogen sensor in air
  publication-title: J. Light. Technol.
  doi: 10.1109/JLT.2022.3193568
– volume: 134
  start-page: 687
  issue: 2
  year: 2008
  ident: 10.1016/j.snb.2023.135250_bib30
  article-title: Nano-structred Pd-long period fiber gratings integrated optical sensor for hydrogen detection.
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.06.018
– volume: 11
  start-page: 1423
  issue: 6
  year: 2010
  ident: 10.1016/j.snb.2023.135250_bib27
  article-title: Ultra sensitive fiber-optic hydrogen sensor based on high order cladding mode
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2010.2092423
– volume: 259
  start-page: 212
  issue: 2
  year: 1995
  ident: 10.1016/j.snb.2023.135250_bib14
  article-title: Crystal structures and optical properties of tungsten oxide films prepared by a complexing-agent-assisted sol-gel process
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(94)06444-X
– volume: 54
  start-page: 10342
  issue: 35
  year: 2015
  ident: 10.1016/j.snb.2023.135250_bib33
  article-title: Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium
  publication-title: Appl. Opt.
  doi: 10.1364/AO.54.010342
– volume: 23
  start-page: 22826
  issue: 17
  year: 2015
  ident: 10.1016/j.snb.2023.135250_bib1
  article-title: Self-compensated microstructure fiber optic sensor to detect high hydrogen concentration
  publication-title: Opt. Express
  doi: 10.1364/OE.23.022826
– volume: 27
  start-page: 1453
  issue: 13
  year: 2015
  ident: 10.1016/j.snb.2023.135250_bib35
  article-title: Highly sensitive dissolved hydrogen sensor based on side-polished fiber Bragg grating
  publication-title: IEEE Photon. Technol. Lett.
  doi: 10.1109/LPT.2015.2425894
– volume: 168
  start-page: 9
  year: 2015
  ident: 10.1016/j.snb.2023.135250_bib22
  article-title: Near-infrared light photocatalysis with metallic/semiconducting HxWO3/WO3 nanoheterostructure in situ formed in mesoporous template
  publication-title: Appl. Catal. B-Environ.
– volume: 111
  start-page: 15089
  year: 2007
  ident: 10.1016/j.snb.2023.135250_bib18
  article-title: Structural determination of bulk and surface tungsten oxides with UV−vis diffuse reflectance spectroscopy and raman spectroscopy
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp074219c
– volume: 90
  start-page: 6568
  issue: 23
  year: 1968
  ident: 10.1016/j.snb.2023.135250_bib16
  article-title: Infrared and electron spin resonance study of hydrogen tungsten bronze
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01025a089
– volume: 270
  start-page: 333
  year: 2018
  ident: 10.1016/j.snb.2023.135250_bib25
  article-title: Improved performance of fiber optic hydrogen sensor based on MoO3 by ion intercalation
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.05.060
– volume: 190
  start-page: 657
  year: 2013
  ident: 10.1016/j.snb.2023.135250_bib8
  article-title: Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2013.08.083
– volume: 54
  start-page: 2436
  year: 1996
  ident: 10.1016/j.snb.2023.135250_bib23
  article-title: Electronic structure and optical properties of WO3, LiWO3, NaWO3, and H2WO3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.2436
– volume: 190
  start-page: 657
  year: 2014
  ident: 10.1016/j.snb.2023.135250_bib26
  article-title: Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2013.08.083
– volume: 293
  start-page: 61
  year: 2012
  ident: 10.1016/j.snb.2023.135250_bib17
  article-title: Photocatalytic H2 and O2 evolution over tungsten oxide dispersed on silica
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.06.003
– volume: 359
  start-page: 157
  year: 2016
  ident: 10.1016/j.snb.2023.135250_bib2
  article-title: A fast response hydrogen sensor with Pd metallic grating onto a fiber's end-face
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2015.09.041
– volume: 16
  start-page: 16854
  issue: 21
  year: 2008
  ident: 10.1016/j.snb.2023.135250_bib7
  article-title: Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air
  publication-title: Opt. Express
  doi: 10.1364/OE.16.016854
– volume: 7
  start-page: 6285
  issue: 11
  year: 2019
  ident: 10.1016/j.snb.2023.135250_bib20
  article-title: Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst
  publication-title: J. Mater. Chem.
  doi: 10.1039/C8TA12219A
– volume: 27
  start-page: 2399
  issue: 22
  year: 2015
  ident: 10.1016/j.snb.2023.135250_bib3
  article-title: Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2015.2466614
– volume: 19
  start-page: 6141
  issue: 7
  year: 2011
  ident: 10.1016/j.snb.2023.135250_bib34
  article-title: Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials
  publication-title: Opt. Express
  doi: 10.1364/OE.19.006141
– volume: 166
  start-page: 632
  year: 2012
  ident: 10.1016/j.snb.2023.135250_bib10
  article-title: Fiber optic hydrogen sensors with sol–gel WO3 coatings
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2012.03.026
– volume: 58
  start-page: 16038
  issue: 45
  year: 2019
  ident: 10.1016/j.snb.2023.135250_bib21
  article-title: Investigation of the support effect in atomically dispersed Pt on WO3−X for utilization of Pt in the hydrogen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201908122
– volume: 17
  start-page: 1124
  issue: 1124
  year: 2006
  ident: 10.1016/j.snb.2023.135250_bib28
  article-title: Fibre gratings for hydrogen sensing
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/17/5/S31
– volume: 21
  start-page: 12706
  issue: 11
  year: 2021
  ident: 10.1016/j.snb.2023.135250_bib6
  article-title: Fiber-optic hydrogen sensors: a review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3029519
– volume: 136
  start-page: 562
  issue: 2
  year: 2009
  ident: 10.1016/j.snb.2023.135250_bib4
  article-title: Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2008.12.019
– volume: 123
  start-page: 67
  issue: 1-4
  year: 1999
  ident: 10.1016/j.snb.2023.135250_bib19
  article-title: Raman study of the phase transitions sequence in pure WO3 at high temperature and in HxWO3 with variable hydrogen content
  publication-title: Solid State Ion.
  doi: 10.1016/S0167-2738(99)00101-0
– volume: 8
  start-page: 1493
  issue: 6
  year: 2018
  ident: 10.1016/j.snb.2023.135250_bib29
  article-title: Pt nanoparticles encapsulated in mesoporous tungsten oxide to enhance the repeatability of a FBG hydrogen sensor
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.8.001493
– volume: 19
  start-page: 255
  issue: 5
  year: 2007
  ident: 10.1016/j.snb.2023.135250_bib31
  article-title: Active fiber bragg grating hydrogen sensors for all-temperature operation
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2006.888973
– volume: 169
  start-page: 195
  year: 2012
  ident: 10.1016/j.snb.2023.135250_bib5
  article-title: High sensitive and reliable fiber Bragg grating hydrogen sensor for fault detection of power transformer
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2012.04.066
– volume: 16
  start-page: 2040
  issue: 12
  year: 2016
  ident: 10.1016/j.snb.2023.135250_bib32
  article-title: Femtosecond laser ablated FBG with composite microstructure for hydrogen sensor application
  publication-title: Sensors
  doi: 10.3390/s16122040
– volume: 7
  start-page: 1139
  issue: 8
  year: 1989
  ident: 10.1016/j.snb.2023.135250_bib11
  article-title: Mode field diameter measurements in single-mode optical fibers
  publication-title: J. Light. Technol.
  doi: 10.1109/50.32374
– volume: 124
  start-page: 749
  year: 1977
  ident: 10.1016/j.snb.2023.135250_bib24
  article-title: Dependence of WO3 electrochromic absorption on crystallinity
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2133399
– volume: 401
  start-page: 45
  issue: 1-2
  year: 2001
  ident: 10.1016/j.snb.2023.135250_bib15
  article-title: FTIR investigations of tungsten oxide electrochromic films derived from organically modified peroxotungstic acid precursors
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(01)01181-6
– volume: 307
  start-page: 148
  year: 2013
  ident: 10.1016/j.snb.2023.135250_bib12
  article-title: Enhancement of visible-light-driven O2 evolution from water oxidation on WO3 treated with hydrogen
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2013.06.024
– volume: 67
  start-page: 235
  issue: 2
  year: 1987
  ident: 10.1016/j.snb.2023.135250_bib13
  article-title: Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide hydrates
  publication-title: J. Solid State Chem.
  doi: 10.1016/0022-4596(87)90359-8
SSID ssj0004360
Score 2.5278773
Snippet Hydrogen sensors are key to the emerging clean hydrogen economies and fiber-optic hydrogen sensors play a unique role owing to their inherent safety and high...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 135250
SubjectTerms Fiber Bragg grating
Gas sensor
Hydrogen sensor
Optical fiber sensors
Title Highly sensitive fiber grating hydrogen sensor based on hydrogen-doped Pt/WO3
URI https://dx.doi.org/10.1016/j.snb.2023.135250
Volume 404
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpnlYEJyU3i2HE8VhVVAbUgQUW3yIltUVQlVVuGLvx2fHmUIgEDY5w7Kbpc7j7H390hdOXZ719IIjEPGccA2LE0xmCPC224ZCnzoMB5MAz7I3o3ZuMG6ta1MECrrGJ_GdOLaF2tuJU13dlk4j55wm5uyt-a1o0iKPillIOXtz--aB40KCqFQRiDdH2yWXC8FlnShvnhMP2BQOn9T7lpI9_09tBuBRSdTvks-6ihswO0s9E-8BANgKQxXTkLIKFD2HIM8D8caP9gBZzXlZrn1kEKgXzuQMZSTp6tb2CVz-zK49J9eQiO0Kh389zt42o8Ak6J4EvMWMhTqpnwJUlEYDc6WjEjfEU8YXhqTEQEs-A5NDIUKvFMxE3kB5IHmkilVXCMmlme6RPkEEWo9Flq8SClCQ-SxMIETaVFW4wnfniKvNowcVr1DocRFtO4Jom9xdaWMdgyLm15iq7XKrOyccZfwrS2dvzt7cc2sP-udvY_tXO0ba8q_s0Fai7n7_rSQotl0ip8p4W2Orf3_eEnc7fL0Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9VAEJ4gHpSDQdSIiu4BLiTLa7e73e6BA0HJQ3hAIkRuddvdjRDSvrz3DHkX_in-QWf6AzFRDyZcd3ea7dfpzGz7zQzAeoTvv7HCcp0qzSlg5zaEwCNtfNBWlSqiBOfRUTo8k5_P1fkC3Pa5MESr7Gx_a9Mba92NDDo0B-OLi8GXyODhpv2siWqUZR2z8sDPr_HcNt3e_4gPeUOIvU-nu0PetRbgpTB6xpVKdSm9MrEVhUnwkOCdCiZ2IjJBlyFkwigMPNNgU-OKKGQ6ZHFideKFdd4leN1H8FiiuaC2CVs3v3glMmlSk2l3nLbX_0ptSGXTqtiihuXUbkJQrv-fnOE9B7e3DM-6yJTttDf_HBZ8tQJL9-oVvoARsUKu5mxKrHeykywQ4YRRvQlcwL7P3aRGjWwW1BNGLtKxurqb4K4e48jJbPD1OHkJZw8C2itYrOrKvwYmnJA2ViUGoFIWOikKjEu8tBjeKV3E6SpEPTB52RUrp54ZV3nPSrvMEcucsMxbLFdh805k3Fbq-Ndi2aOd_6ZuOXqSv4u9-T-xD_BkeDo6zA_3jw7ewlOc6cg_72BxNvnh1zCumRXvGz1i8O2hFfcngIsHqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive+fiber+grating+hydrogen+sensor+based+on+hydrogen-doped+Pt%2FWO3&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Wang%2C+Chaoqin&rft.au=Han%2C+Zewen&rft.au=Wang%2C+Chenxiang&rft.au=Peng%2C+Gang-Ding&rft.date=2024-04-01&rft.issn=0925-4005&rft.volume=404&rft.spage=135250&rft_id=info:doi/10.1016%2Fj.snb.2023.135250&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_snb_2023_135250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon