AI vs linguistic-based human judgement: Bridging the gap in pursuit of truth for fake news detection

One of the negative aspects of the world becoming more digitized has been fake news, i.e., online disinformation – false, often fabricated reports of events, written and read on websites. The term has already entered collective consciousness and become an inseparable element of scientific discourse....

Full description

Saved in:
Bibliographic Details
Published inInformation sciences Vol. 679; p. 121097
Main Authors Pawlicka, Aleksandra, Pawlicki, Marek, Kozik, Rafał, Andrychowicz-Trojanowska, Agnieszka, Choraś, Michał
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the negative aspects of the world becoming more digitized has been fake news, i.e., online disinformation – false, often fabricated reports of events, written and read on websites. The term has already entered collective consciousness and become an inseparable element of scientific discourse. Once a piece of news goes online, stopping it from spreading may become a complicated matter. Literature suggests that the two main pillars of the effective fight against fake news are education and detection. Thus, this paper describes a multidisciplinary study performed by a group of scientists representing two distinct fields - AI and linguistics. In their joint study, they compared, formally evaluated and explored the intersection between two approaches to fake news detection, i.e., the automated one, using a machine-learning-based tool, and the linguistic-based human judgement, using the data from two disinformation campaigns, sourced from two open benchmark fake news datasets. The study focused on the news' headlines as an effective proxy for the identification of fake news. In accordance with the achieved results, the paper argues that in the fight against fake news, the two approaches have the potential of augmenting and enhancing each other, utilizing the state-of-the-art technologies and linguistic knowledge. In addition, this paper provides a list of the linguistic features characteristic of possible disinformation, which is the most comprehensive collection of this kind in the subject literature to date.
AbstractList One of the negative aspects of the world becoming more digitized has been fake news, i.e., online disinformation – false, often fabricated reports of events, written and read on websites. The term has already entered collective consciousness and become an inseparable element of scientific discourse. Once a piece of news goes online, stopping it from spreading may become a complicated matter. Literature suggests that the two main pillars of the effective fight against fake news are education and detection. Thus, this paper describes a multidisciplinary study performed by a group of scientists representing two distinct fields - AI and linguistics. In their joint study, they compared, formally evaluated and explored the intersection between two approaches to fake news detection, i.e., the automated one, using a machine-learning-based tool, and the linguistic-based human judgement, using the data from two disinformation campaigns, sourced from two open benchmark fake news datasets. The study focused on the news' headlines as an effective proxy for the identification of fake news. In accordance with the achieved results, the paper argues that in the fight against fake news, the two approaches have the potential of augmenting and enhancing each other, utilizing the state-of-the-art technologies and linguistic knowledge. In addition, this paper provides a list of the linguistic features characteristic of possible disinformation, which is the most comprehensive collection of this kind in the subject literature to date.
ArticleNumber 121097
Author Pawlicka, Aleksandra
Choraś, Michał
Pawlicki, Marek
Kozik, Rafał
Andrychowicz-Trojanowska, Agnieszka
Author_xml – sequence: 1
  givenname: Aleksandra
  orcidid: 0000-0003-4380-014X
  surname: Pawlicka
  fullname: Pawlicka, Aleksandra
  organization: University of Warsaw, Warsaw, Poland
– sequence: 2
  givenname: Marek
  surname: Pawlicki
  fullname: Pawlicki, Marek
  organization: Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
– sequence: 3
  givenname: Rafał
  orcidid: 0000-0001-7122-3306
  surname: Kozik
  fullname: Kozik, Rafał
  organization: Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
– sequence: 4
  givenname: Agnieszka
  orcidid: 0000-0001-6657-8823
  surname: Andrychowicz-Trojanowska
  fullname: Andrychowicz-Trojanowska, Agnieszka
  organization: University of Warsaw, Warsaw, Poland
– sequence: 5
  givenname: Michał
  orcidid: 0000-0003-1405-9911
  surname: Choraś
  fullname: Choraś, Michał
  email: mchoras@itti.com.pl, chorasm@pbs.edu.pl
  organization: Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
BookMark eNp9kMtOwzAQRS1UJNrCB7DzD6TYzsMJrErFo1IlNrC2_BinDq1T2U4Rf0-qsmLBajTSnKu5Z4YmvveA0C0lC0poddctnI8LRlixoIyShl-gKa05yyrW0AmaEsJIRlhZXqFZjB0hpOBVNUVmucbHiHfOt4OLyelMyQgGb4e99LgbTAt78OkePwZn2vEKpy3gVh6w8_gwhDi4hHuLUxjSFts-YCs_AXv4ithAAp1c76_RpZW7CDe_c44-np_eV6_Z5u1lvVpuMs0anrIyt1abmubaGtnUTCqmOONS8mbcTWOJVVSz2ihVFk1ZqDqvVC1zUHWR57LI54ifc3XoYwxghXZJnj5IQbqdoEScZIlOjLLESZY4yxpJ-oc8BLeX4ftf5uHMwFjp6CCIqB14DcaFsbcwvfuH_gG90IX1
CitedBy_id crossref_primary_10_1007_s44196_024_00730_2
crossref_primary_10_3390_app14219916
Cites_doi 10.4269/ajtmh.20-0812
10.1088/1757-899X/1099/1/012040
10.1126/science.aap9559
10.5539/ijel.v11n1p99
10.1016/j.asoc.2020.107050
10.1016/j.cognition.2018.06.011
10.1016/j.inffus.2019.12.012
10.1109/MITP.2022.3163007
10.1016/S0378-2166(02)00134-0
10.17951/ms.2019.3.95-114
10.1093/jigpal/jzac009
10.1038/s41598-021-03100-6
10.1207/s15327957pspr1003_2
10.1108/JPBM-12-2018-2179
10.1088/1742-6596/2161/1/012027
10.1080/10447318.2022.2097601
10.33077/uw.24511617.ms.2019.4.187
10.1145/2896377.2901462
10.1016/j.neucom.2023.02.005
10.1177/2053951719843310
10.1016/S0378-2166(00)00013-8
10.1017/S1930297500008640
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2024.121097
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
ExternalDocumentID 10_1016_j_ins_2024_121097
S0020025524010119
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-53ffcd813cfda982ab2b727aa79da9d9f0fb1c28dbb54954b836b8a3eb8433a43
IEDL.DBID .~1
ISSN 0020-0255
IngestDate Thu Apr 24 23:01:43 EDT 2025
Tue Jul 01 01:27:07 EDT 2025
Sat Jul 20 16:35:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords AI
Disinformation
Artificial intelligence
Fake news
Machine learning
ML
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-53ffcd813cfda982ab2b727aa79da9d9f0fb1c28dbb54954b836b8a3eb8433a43
ORCID 0000-0003-1405-9911
0000-0003-4380-014X
0000-0001-7122-3306
0000-0001-6657-8823
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2024_121097
crossref_primary_10_1016_j_ins_2024_121097
elsevier_sciencedirect_doi_10_1016_j_ins_2024_121097
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhu, Sinnott (br0310) 2021
Snijders, Conijn, de Fouw, van Berlo (br0250) 2023; 39
Ahmed, Traore, Saad (br0330) 2018; 1
Giuliani-Hoffman (br0020) 2017
Dor (br0090) 2003; 35
Školkay, Filin (br0280) 2019; 20
Khanam, Alwasel, Sirafi, Rashid (br0210) 2021; 1099
Nasir, Khan, Varlamis (br0300) 2021; 1
Loukas, Murugesan, Andriole (br0060) 2022; 24
Mahyoob, Algaraady, Alrahaili (br0400) 2020; 11
Capuano, Fenza, Loia, Nota (br0200) 2023; 530
Paschen (br0430) 2019; 29
Ecker, Lewandowsky, Chang, Pillai (br0080) 2014
Zhou, Zafarani (br0230) dec 2018
Shariatmadari (br0390) 2019
Pennycook, Rand (br0120) 2019; 188
Pandey, Prabhakaran, Subba Reddy, Acharya (br0220) 2022; 2161
M. Gabielkov, A. Ramachandran, A. Chaintreau, A. Legout, Social Clicks: What and Who Gets Read on Twitter? ACM SIGMETRICS / IFIP Performance, 2016.
Sinclair (br0350) 2004
Lind (br0010) 2018
Vosoughi, Roy, Aral (br0450) 2018; 359
Alba-Juez (br0470) 2020
Ahmad, Yousaf, Yousaf, Ahmad (br0290) 2020; 2020
Marquardt (br0360) 2019; 3
Ross, Rand, Pennycook (br0110) 2021; 16
Szczepański, Pawlicki, Kozik, Choraś (br0190) 2021; 11
Bond, DePaulo (br0240) 2006; 10
Akhtar, Ghouri, Khan, Amin ul Haq, Awan, Zahoor, Khan, Ashraf (br0270) 2022
Horne, Adali (br0380) mar 2017
Khaldarova, Pantti, News (br0050) 2016; 10
Kozik, Pawlicki, Kula, Choraś (br0160) 2022
Lai, Tan (br0260) 2019
Barredo Arrieta, Díaz-Rodríguez, Del Ser, Bennetot, Tabik, Barbado, Garcia, Gil-Lopez, Molina, Benjamins, Chatila, Herrera (br0180) 2020; 58
Denaux, Gómez (br0410) 2021
Ahmed, Traore, Saad (br0320) 2017
Scarpellini (br0480) 2022
Tompkins (br0440) oct 2019
Taboada (br0130) 2021
Torabi Asr, Taboada (br0340) 2019; 6
Islam, Sarkar, Khan, Mostofa Kamal, Hasan, Kabir, Yeasmin, Islam, Amin Chowdhury, Anwar, Chughtai, Seale (br0030) 2020; 103
Gradoń (br0040) 2020; 4
Kronrod, Engel (br0070) 2001; 33
Francis (br0370) 2013
Asr (br0420) 2019
Dame Adjin-Tettey (br0140) dec 2022; 9
Volkova, Shaffer, Jang, Hodas (br0460) 2017
Hangloo, Arora (br0150) 2021
Choraś, Demestichas, Giełczyk, Herrero, Ksieniewicz, Remoundou, Urda, Woźniak (br0170) 2021; 101
Pennycook (10.1016/j.ins.2024.121097_br0120) 2019; 188
Dor (10.1016/j.ins.2024.121097_br0090) 2003; 35
Gradoń (10.1016/j.ins.2024.121097_br0040) 2020; 4
Ahmad (10.1016/j.ins.2024.121097_br0290) 2020; 2020
Vosoughi (10.1016/j.ins.2024.121097_br0450) 2018; 359
Zhou (10.1016/j.ins.2024.121097_br0230)
Hangloo (10.1016/j.ins.2024.121097_br0150)
10.1016/j.ins.2024.121097_br0100
Shariatmadari (10.1016/j.ins.2024.121097_br0390)
Ahmed (10.1016/j.ins.2024.121097_br0330) 2018; 1
Pandey (10.1016/j.ins.2024.121097_br0220) 2022; 2161
Marquardt (10.1016/j.ins.2024.121097_br0360) 2019; 3
Taboada (10.1016/j.ins.2024.121097_br0130)
Francis (10.1016/j.ins.2024.121097_br0370) 2013
Szczepański (10.1016/j.ins.2024.121097_br0190) 2021; 11
Giuliani-Hoffman (10.1016/j.ins.2024.121097_br0020)
Tompkins (10.1016/j.ins.2024.121097_br0440)
Ross (10.1016/j.ins.2024.121097_br0110) 2021; 16
Choraś (10.1016/j.ins.2024.121097_br0170) 2021; 101
Ahmed (10.1016/j.ins.2024.121097_br0320)
Volkova (10.1016/j.ins.2024.121097_br0460) 2017
Khaldarova (10.1016/j.ins.2024.121097_br0050) 2016; 10
Lind (10.1016/j.ins.2024.121097_br0010)
Akhtar (10.1016/j.ins.2024.121097_br0270) 2022
Zhu (10.1016/j.ins.2024.121097_br0310) 2021
Horne (10.1016/j.ins.2024.121097_br0380)
Paschen (10.1016/j.ins.2024.121097_br0430) 2019; 29
Kozik (10.1016/j.ins.2024.121097_br0160) 2022
Loukas (10.1016/j.ins.2024.121097_br0060) 2022; 24
Ecker (10.1016/j.ins.2024.121097_br0080)
Capuano (10.1016/j.ins.2024.121097_br0200) 2023; 530
Bond (10.1016/j.ins.2024.121097_br0240) 2006; 10
Asr (10.1016/j.ins.2024.121097_br0420) 2019
Khanam (10.1016/j.ins.2024.121097_br0210) 2021; 1099
Dame Adjin-Tettey (10.1016/j.ins.2024.121097_br0140) 2022; 9
Sinclair (10.1016/j.ins.2024.121097_br0350)
Snijders (10.1016/j.ins.2024.121097_br0250) 2023; 39
Lai (10.1016/j.ins.2024.121097_br0260) 2019
Školkay (10.1016/j.ins.2024.121097_br0280) 2019; 20
Denaux (10.1016/j.ins.2024.121097_br0410)
Mahyoob (10.1016/j.ins.2024.121097_br0400) 2020; 11
Barredo Arrieta (10.1016/j.ins.2024.121097_br0180) 2020; 58
Islam (10.1016/j.ins.2024.121097_br0030) 2020; 103
Torabi Asr (10.1016/j.ins.2024.121097_br0340) 2019; 6
Scarpellini (10.1016/j.ins.2024.121097_br0480)
Kronrod (10.1016/j.ins.2024.121097_br0070) 2001; 33
Alba-Juez (10.1016/j.ins.2024.121097_br0470) 2020
Nasir (10.1016/j.ins.2024.121097_br0300) 2021; 1
References_xml – volume: 103
  start-page: 1621
  year: 2020
  end-page: 1629
  ident: br0030
  article-title: COVID-19–related infodemic and its impact on public health: a global social media analysis
  publication-title: Am. J. Trop. Med. Hyg.
– volume: 58
  start-page: 82
  year: 2020
  end-page: 115
  ident: br0180
  article-title: Explainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible ai
  publication-title: Inf. Fusion
– year: dec 2018
  ident: br0230
  article-title: A survey of fake news: fundamental theories, detection methods, and opportunities
– volume: 1
  year: 2021
  ident: br0300
  article-title: Fake news detection: a hybrid CNN-RNN based deep learning approach
  publication-title: Int. J. Data Inf. Manag. Insights
– year: 2021
  ident: br0150
  article-title: Fake news detection tools and methods – a review
– volume: 35
  year: 2003
  ident: br0090
  article-title: On newspaper headlines as relevance optimizers
  publication-title: J. Pragmat.
– year: oct 2019
  ident: br0440
  article-title: Disinformation Detection: a review of linguistic feature selection and classification models in news veracity assessments
– volume: 2161
  year: 2022
  ident: br0220
  article-title: Fake news detection from online media using machine learning classifiers
  publication-title: J. Phys. Conf. Ser.
– start-page: 29
  year: 2019
  end-page: 38
  ident: br0260
  article-title: On human predictions with explanations and predictions of machine learning models
  publication-title: Proceedings of the Conference on Fairness, Accountability, and Transparency
– volume: 101
  year: 2021
  ident: br0170
  article-title: Advanced Machine Learning techniques for fake news (online disinformation) detection: a systematic mapping study
  publication-title: Appl. Soft Comput.
– volume: 20
  start-page: 365
  year: 2019
  end-page: 383
  ident: br0280
  article-title: A comparison of fake news detecting and fact-checking AI based solutions
  publication-title: Studia Medioznawcze
– year: 2017
  ident: br0320
  article-title: Detection of online fake news using n-gram analysis and machine learning techniques
– volume: 10
  start-page: 214
  year: 2006
  end-page: 234
  ident: br0240
  article-title: Accuracy of deception judgments
  publication-title: Personal. Soc. Psychol. Rev.
– year: 2013
  ident: br0370
  article-title: MisInfoWars: A Linguistic Analysis of Deceptive and Credible News
– year: 2021
  ident: br0130
  article-title: Authentic language in fake news
– volume: 530
  start-page: 91
  year: 2023
  end-page: 103
  ident: br0200
  article-title: Content-based fake news detection with machine and deep learning: a systematic review
  publication-title: Neurocomputing
– year: 2018
  ident: br0010
  article-title: President Donald Trump finally admits that “fake news” just means news he doesn't like
– volume: 39
  start-page: 1483
  year: 2023
  end-page: 1494
  ident: br0250
  article-title: Humans and algorithms detecting fake news: effects of individual and contextual confidence on trust in algorithmic advice
  publication-title: Int. J. Hum.-Comput. Interact.
– volume: 4
  start-page: 133
  year: 2020
  end-page: 148
  ident: br0040
  article-title: Crime in the time of the plague: fake news pandemic and the challenges to law-enforcement and intelligence community
  publication-title: Soc. Res.
– volume: 10
  start-page: 891
  year: 2016
  end-page: 901
  ident: br0050
  publication-title: Journal. Pract.
– year: 2019
  ident: br0420
  article-title: The language gives it away: how an algorithm can help us detect fake news
  publication-title: The Conversation
– volume: 11
  year: 2021
  ident: br0190
  article-title: New explainability method for BERT-based model in fake news detection
  publication-title: Sci. Rep.
– year: 2022
  ident: br0270
  article-title: Detecting fake news and disinformation using artificial intelligence and machine learning to avoid supply chain disruptions
  publication-title: Ann. Oper. Res.
– volume: 188
  start-page: 39
  year: 2019
  end-page: 50
  ident: br0120
  article-title: Lazy, not biased: susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning
  publication-title: Cognition
– volume: 11
  start-page: 99
  year: 2020
  ident: br0400
  article-title: Linguistic-based detection of fake news in social media
  publication-title: Int. J. Eng. Linguist.
– volume: 9
  year: dec 2022
  ident: br0140
  article-title: Combating fake news, disinformation, and misinformation: experimental evidence for media literacy education
  publication-title: Cogent Arts Humanit.
– reference: M. Gabielkov, A. Ramachandran, A. Chaintreau, A. Legout, Social Clicks: What and Who Gets Read on Twitter? ACM SIGMETRICS / IFIP Performance, 2016.
– start-page: 1
  year: 2021
  end-page: 7
  ident: br0310
  article-title: A performance comparison of fake news detection approaches
  publication-title: 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)
– year: 2020
  ident: br0470
  article-title: The expression of otherness in fake news as a strategy for the manipulation of emotion and stance
  publication-title: ERUDITT Journée D'étude: Discours et Stratégies de L'altérité et de L'interculturalité
– year: 2014
  ident: br0080
  article-title: The effects of subtle misinformation in news headlines
– year: 2017
  ident: br0020
  article-title: ‘F*** News’ should be replaced by these words, Claire Wardle says
– volume: 359
  start-page: 1146
  year: 2018
  end-page: 1151
  ident: br0450
  article-title: The spread of true and false news online
  publication-title: Science
– volume: 24
  start-page: 16
  year: 2022
  end-page: 18
  ident: br0060
  article-title: Information hygiene: the fight against the misinformation “Infodemic”
  publication-title: IT Prof.
– start-page: 647
  year: 2017
  end-page: 653
  ident: br0460
  article-title: Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on Twitter
  publication-title: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
– volume: 33
  start-page: 683
  year: 2001
  end-page: 699
  ident: br0070
  article-title: Accessibility theory and referring expressions in newspaper headlines
  publication-title: J. Pragmat.
– volume: 16
  start-page: 484
  year: 2021
  end-page: 504
  ident: br0110
  article-title: Beyond “fake news”: analytic thinking and the detection of false and hyperpartisan news headlines
  publication-title: Judgm. Decis. Mak.
– volume: 29
  start-page: 223
  year: 2019
  end-page: 233
  ident: br0430
  article-title: Investigating the emotional appeal of fake news using artificial intelligence and human contributions
  publication-title: J. Prod. Brand Manag.
– volume: 1
  year: 2018
  ident: br0330
  article-title: Detecting opinion spams and fake news using text classification
  publication-title: Secur. Priv.
– year: 2022
  ident: br0160
  article-title: Fake news detection platform—conceptual architecture and prototype
  publication-title: Log. J. IGPL
– volume: 3
  start-page: 95
  year: 2019
  ident: br0360
  article-title: Linguistic indicators in the identification of fake news
  publication-title: Mediatization Stud.
– year: 2021
  ident: br0410
  article-title: The language of ‘fake news’. How and why does it work? Co-Inform
– volume: 1099
  year: 2021
  ident: br0210
  article-title: Fake news detection using machine learning approaches
  publication-title: IOP Conf. Ser., Mater. Sci. Eng.
– year: 2022
  ident: br0480
  article-title: Cohen's kappa free calculator
– volume: 2020
  start-page: 1
  year: 2020
  end-page: 11
  ident: br0290
  article-title: Fake news detection using machine learning ensemble methods
  publication-title: Complexity
– year: 2004
  ident: br0350
  article-title: Trust the text, Routledge
– volume: 6
  year: 2019
  ident: br0340
  article-title: Big Data and quality data for fake news and misinformation detection
  publication-title: Big Data Soc.
– year: mar 2017
  ident: br0380
  article-title: This just in: fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news
– year: 2019
  ident: br0390
  article-title: Could language be the key to detecting fake news?
– ident: 10.1016/j.ins.2024.121097_br0410
– volume: 9
  issue: 1
  year: 2022
  ident: 10.1016/j.ins.2024.121097_br0140
  article-title: Combating fake news, disinformation, and misinformation: experimental evidence for media literacy education
  publication-title: Cogent Arts Humanit.
– ident: 10.1016/j.ins.2024.121097_br0380
– volume: 103
  start-page: 1621
  issue: 4
  year: 2020
  ident: 10.1016/j.ins.2024.121097_br0030
  article-title: COVID-19–related infodemic and its impact on public health: a global social media analysis
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.20-0812
– volume: 1099
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2024.121097_br0210
  article-title: Fake news detection using machine learning approaches
  publication-title: IOP Conf. Ser., Mater. Sci. Eng.
  doi: 10.1088/1757-899X/1099/1/012040
– volume: 359
  start-page: 1146
  issue: 6380
  year: 2018
  ident: 10.1016/j.ins.2024.121097_br0450
  article-title: The spread of true and false news online
  publication-title: Science
  doi: 10.1126/science.aap9559
– volume: 11
  start-page: 99
  issue: 1
  year: 2020
  ident: 10.1016/j.ins.2024.121097_br0400
  article-title: Linguistic-based detection of fake news in social media
  publication-title: Int. J. Eng. Linguist.
  doi: 10.5539/ijel.v11n1p99
– volume: 10
  start-page: 891
  issue: 7
  year: 2016
  ident: 10.1016/j.ins.2024.121097_br0050
  publication-title: Journal. Pract.
– volume: 101
  year: 2021
  ident: 10.1016/j.ins.2024.121097_br0170
  article-title: Advanced Machine Learning techniques for fake news (online disinformation) detection: a systematic mapping study
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.107050
– ident: 10.1016/j.ins.2024.121097_br0080
– volume: 188
  start-page: 39
  year: 2019
  ident: 10.1016/j.ins.2024.121097_br0120
  article-title: Lazy, not biased: susceptibility to partisan fake news is better explained by lack of reasoning than by motivated reasoning
  publication-title: Cognition
  doi: 10.1016/j.cognition.2018.06.011
– volume: 58
  start-page: 82
  year: 2020
  ident: 10.1016/j.ins.2024.121097_br0180
  article-title: Explainable artificial intelligence (xai): concepts, taxonomies, opportunities and challenges toward responsible ai
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.12.012
– ident: 10.1016/j.ins.2024.121097_br0320
– volume: 24
  start-page: 16
  issue: 2
  year: 2022
  ident: 10.1016/j.ins.2024.121097_br0060
  article-title: Information hygiene: the fight against the misinformation “Infodemic”
  publication-title: IT Prof.
  doi: 10.1109/MITP.2022.3163007
– volume: 35
  issue: 5
  year: 2003
  ident: 10.1016/j.ins.2024.121097_br0090
  article-title: On newspaper headlines as relevance optimizers
  publication-title: J. Pragmat.
  doi: 10.1016/S0378-2166(02)00134-0
– ident: 10.1016/j.ins.2024.121097_br0130
– volume: 3
  start-page: 95
  year: 2019
  ident: 10.1016/j.ins.2024.121097_br0360
  article-title: Linguistic indicators in the identification of fake news
  publication-title: Mediatization Stud.
  doi: 10.17951/ms.2019.3.95-114
– ident: 10.1016/j.ins.2024.121097_br0390
– start-page: 29
  year: 2019
  ident: 10.1016/j.ins.2024.121097_br0260
  article-title: On human predictions with explanations and predictions of machine learning models
– start-page: 647
  year: 2017
  ident: 10.1016/j.ins.2024.121097_br0460
  article-title: Separating facts from fiction: linguistic models to classify suspicious and trusted news posts on Twitter
– ident: 10.1016/j.ins.2024.121097_br0480
– ident: 10.1016/j.ins.2024.121097_br0150
– ident: 10.1016/j.ins.2024.121097_br0010
– ident: 10.1016/j.ins.2024.121097_br0440
– year: 2022
  ident: 10.1016/j.ins.2024.121097_br0160
  article-title: Fake news detection platform—conceptual architecture and prototype
  publication-title: Log. J. IGPL
  doi: 10.1093/jigpal/jzac009
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2024.121097_br0190
  article-title: New explainability method for BERT-based model in fake news detection
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-03100-6
– volume: 4
  start-page: 133
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2024.121097_br0040
  article-title: Crime in the time of the plague: fake news pandemic and the challenges to law-enforcement and intelligence community
  publication-title: Soc. Res.
– volume: 10
  start-page: 214
  issue: 3
  year: 2006
  ident: 10.1016/j.ins.2024.121097_br0240
  article-title: Accuracy of deception judgments
  publication-title: Personal. Soc. Psychol. Rev.
  doi: 10.1207/s15327957pspr1003_2
– year: 2020
  ident: 10.1016/j.ins.2024.121097_br0470
  article-title: The expression of otherness in fake news as a strategy for the manipulation of emotion and stance
– year: 2013
  ident: 10.1016/j.ins.2024.121097_br0370
– ident: 10.1016/j.ins.2024.121097_br0020
– volume: 29
  start-page: 223
  issue: 2
  year: 2019
  ident: 10.1016/j.ins.2024.121097_br0430
  article-title: Investigating the emotional appeal of fake news using artificial intelligence and human contributions
  publication-title: J. Prod. Brand Manag.
  doi: 10.1108/JPBM-12-2018-2179
– volume: 2161
  issue: 1
  year: 2022
  ident: 10.1016/j.ins.2024.121097_br0220
  article-title: Fake news detection from online media using machine learning classifiers
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2161/1/012027
– volume: 2020
  start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2024.121097_br0290
  article-title: Fake news detection using machine learning ensemble methods
  publication-title: Complexity
– year: 2019
  ident: 10.1016/j.ins.2024.121097_br0420
  article-title: The language gives it away: how an algorithm can help us detect fake news
  publication-title: The Conversation
– ident: 10.1016/j.ins.2024.121097_br0230
– volume: 39
  start-page: 1483
  issue: 7
  year: 2023
  ident: 10.1016/j.ins.2024.121097_br0250
  article-title: Humans and algorithms detecting fake news: effects of individual and contextual confidence on trust in algorithmic advice
  publication-title: Int. J. Hum.-Comput. Interact.
  doi: 10.1080/10447318.2022.2097601
– start-page: 1
  year: 2021
  ident: 10.1016/j.ins.2024.121097_br0310
  article-title: A performance comparison of fake news detection approaches
– volume: 20
  start-page: 365
  issue: 4
  year: 2019
  ident: 10.1016/j.ins.2024.121097_br0280
  article-title: A comparison of fake news detecting and fact-checking AI based solutions
  publication-title: Studia Medioznawcze
  doi: 10.33077/uw.24511617.ms.2019.4.187
– ident: 10.1016/j.ins.2024.121097_br0350
– ident: 10.1016/j.ins.2024.121097_br0100
  doi: 10.1145/2896377.2901462
– volume: 530
  start-page: 91
  year: 2023
  ident: 10.1016/j.ins.2024.121097_br0200
  article-title: Content-based fake news detection with machine and deep learning: a systematic review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.02.005
– year: 2022
  ident: 10.1016/j.ins.2024.121097_br0270
  article-title: Detecting fake news and disinformation using artificial intelligence and machine learning to avoid supply chain disruptions
  publication-title: Ann. Oper. Res.
– volume: 6
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2024.121097_br0340
  article-title: Big Data and quality data for fake news and misinformation detection
  publication-title: Big Data Soc.
  doi: 10.1177/2053951719843310
– volume: 33
  start-page: 683
  issue: 5
  year: 2001
  ident: 10.1016/j.ins.2024.121097_br0070
  article-title: Accessibility theory and referring expressions in newspaper headlines
  publication-title: J. Pragmat.
  doi: 10.1016/S0378-2166(00)00013-8
– volume: 16
  start-page: 484
  issue: 2
  year: 2021
  ident: 10.1016/j.ins.2024.121097_br0110
  article-title: Beyond “fake news”: analytic thinking and the detection of false and hyperpartisan news headlines
  publication-title: Judgm. Decis. Mak.
  doi: 10.1017/S1930297500008640
– volume: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.ins.2024.121097_br0300
  article-title: Fake news detection: a hybrid CNN-RNN based deep learning approach
  publication-title: Int. J. Data Inf. Manag. Insights
– volume: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.ins.2024.121097_br0330
  article-title: Detecting opinion spams and fake news using text classification
  publication-title: Secur. Priv.
SSID ssj0004766
Score 2.4627485
Snippet One of the negative aspects of the world becoming more digitized has been fake news, i.e., online disinformation – false, often fabricated reports of events,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 121097
SubjectTerms Artificial intelligence
Disinformation
Fake news
Machine learning
Title AI vs linguistic-based human judgement: Bridging the gap in pursuit of truth for fake news detection
URI https://dx.doi.org/10.1016/j.ins.2024.121097
Volume 679
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLaq7QIHtA0Qg3V6B8QBKbSJnSberauoWhA9Uam3yD8hA6VVm-y4v33vJc4YEnDgaMtPjt5z_D4n3_vM2FtM2pjWtIxin4lIpHhmVTxRUaLzNI-dltrQ944vq8liLT5t0s2AzfpaGKJVhr2_29Pb3Tr0jII3R7uypBrfpEXEmJNiUi6jCnaR0Sr_cPeL5oE9k47mMY5odP9ns-V4lRUpdieCNBZa3ac_5aZH-WZ-wp4FoAjT7llO2cBVZ-zpI_nAMzYMRQfwDkJVEXkZwuv6nNnpEm4PQAXnTavHHFHOstDeywc3je14L1dwTVVbOAoQDcI3tYOygl2zPzRlDVsP9b6pvwNOAF79cEBAHKyrWxJX9YKt5x-_zhZRuFUhMonM6ijl3hubx9x4q2SeKJ1oBDFKZRLbVvqx17FJcqs1nh1ToXM-0bniTueCcyX4S3ZUbSv3iuGkTmiLkEsaBGLGSIczTPhYWgI2Pjtn496fhQmS43Tzxc-i55bdFBiCgkJQdCE4Z-8fTHad3sa_Bos-SMVvi6bAfPB3s9f_Z_aGPaFWRzC7YEfofDdERFLry3bJXbLj6fLzYnUPD6Pfrg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QF6QFBAbWlhDogDUtRN7Gzi3paKape2e2ql3iJ_QkqVrtqE389M4kCRgAPHJB45mnH8nuOZZ4B3BNoEa0YlaShkInNas2qR6SQzZV6m3ihj-X_H-Wq2uJSfr_KrDTgea2E4rTLO_cOc3s_W8c5h9Obhuq65xjfrGTFhUsrKZY9gk9Wp8glszpeni9Wv8shi2LLklRIbjJubfZpX3bBodyZZZqGXfvoTPD2AnJNn8DRyRZwPr_McNnyzDVsPFAS34SDWHeB7jIVF7GiMX-wLcPMlfr9HrjnveknmhGHLYX80H153bkh9OcKPXLhFrZAIIX7Ra6wbXHd3913d4m3A9q5rvyJ1gEF_88hcHJ1v-zyu5iVcnny6OF4k8WCFxGaqaJNchGBdmQobnFZlpk1miMdoXSi6dipMg0ltVjpjaPmYS1OKmSm18KaUQmgpXsGkuW38DlCnXhpHrEtZ4mLWKk89zMRUOeY2odiF6ejPykbVcT784qYa08uuKwpBxSGohhDswoefJutBcuNfjeUYpOq3cVMRJPzdbO__zN7C48XF-Vl1tlydvoYn_GTIN9uHCQXCHxBBac2bOAB_AMKl4l8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI+vs+linguistic-based+human+judgement%3A+Bridging+the+gap+in+pursuit+of+truth+for+fake+news+detection&rft.jtitle=Information+sciences&rft.au=Pawlicka%2C+Aleksandra&rft.au=Pawlicki%2C+Marek&rft.au=Kozik%2C+Rafa%C5%82&rft.au=Andrychowicz-Trojanowska%2C+Agnieszka&rft.date=2024-09-01&rft.issn=0020-0255&rft.volume=679&rft.spage=121097&rft_id=info:doi/10.1016%2Fj.ins.2024.121097&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2024_121097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon