N-loaded clinoptilolite under water-saving irrigation mitigates ammonia volatilization while increasing grain yield and water-nitrogen use efficiency
Minimizing ammonia volatilization (AV) in paddy fields can not only reduce nitrogen (N) loss but also prevent environmental pollution. While clinoptilolite has been shown to effectively decrease AV, it is important to note that natural clinoptilolite contains non-desorption active sites that can hin...
Saved in:
Published in | Field crops research Vol. 300; p. 109000 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-4290 1872-6852 |
DOI | 10.1016/j.fcr.2023.109000 |
Cover
Abstract | Minimizing ammonia volatilization (AV) in paddy fields can not only reduce nitrogen (N) loss but also prevent environmental pollution. While clinoptilolite has been shown to effectively decrease AV, it is important to note that natural clinoptilolite contains non-desorption active sites that can hinder soil N effectiveness, ultimately leading to decreased N utilization. Therefore, we proposed modifying clinoptilolite with a weakly acidic NH4Cl solution (N-loaded clinoptilolite, NZ) to replenish exogenous N while continuously reducing AV. A lysimeter experiment was conducted under two irrigation regimes (ICF: continuous flooding irrigation; IAWD: alternate wet-dry irrigation) to examine the effect of N-loaded clinoptilolite on soil N, water-N use, AV loss and grain yield over two rice-growing seasons in Northeast China. The results show that AWD significantly reduced AV during the basal fertilization period and the first top-dressing period in 2020 and 2021. Compared with the control (without N-loaded clinoptilolite), N-loaded clinoptilolite at 10 t·ha−1 (NZ10) significantly reduced the total AV by 29% and 33% in the two years, respectively, with the most significant reduction impact (30% and 36%) occurring in the first top-dressing period. NZ10 coupled with AWD regime reduced AV more significantly and compared with conventional management (ICFNZ0), IAWDNZ10 decreased the total amount of AV by 36% and 42% in two years, respectively. N-loaded clinoptilolite also increased the soil NH4+-N and NO3--N content during the tillering and grain-filling stages of rice, which in turn increased the rate of maximum N accumulation, shortened the duration, promoted N accumulation and translocation in rice plants, and finally reduced AV. Additionally, when compared to the control, the utilization of NZ10 under the AWD irrigation regime resulted in an average 29% reduction in irrigation water usage and a yield increase of 5% over two years. Thus, IAWDNZ10 was not only highly productive and water-efficient but also significantly reduced AV, making it an environmentally friendly and effective management model for on-farm practices.
[Display omitted]
•N-loaded clinoptilolite with AWD reduced AV, increased yield and saved water.•N-loaded clinoptilolite raised soil inorganic N content in critical growth period.•Improving N accumulation and reducing its duration enhanced N uptake and reduced AV. |
---|---|
AbstractList | Minimizing ammonia volatilization (AV) in paddy fields can not only reduce nitrogen (N) loss but also prevent environmental pollution. While clinoptilolite has been shown to effectively decrease AV, it is important to note that natural clinoptilolite contains non-desorption active sites that can hinder soil N effectiveness, ultimately leading to decreased N utilization. Therefore, we proposed modifying clinoptilolite with a weakly acidic NH4Cl solution (N-loaded clinoptilolite, NZ) to replenish exogenous N while continuously reducing AV. A lysimeter experiment was conducted under two irrigation regimes (ICF: continuous flooding irrigation; IAWD: alternate wet-dry irrigation) to examine the effect of N-loaded clinoptilolite on soil N, water-N use, AV loss and grain yield over two rice-growing seasons in Northeast China. The results show that AWD significantly reduced AV during the basal fertilization period and the first top-dressing period in 2020 and 2021. Compared with the control (without N-loaded clinoptilolite), N-loaded clinoptilolite at 10 t·ha−1 (NZ10) significantly reduced the total AV by 29% and 33% in the two years, respectively, with the most significant reduction impact (30% and 36%) occurring in the first top-dressing period. NZ10 coupled with AWD regime reduced AV more significantly and compared with conventional management (ICFNZ0), IAWDNZ10 decreased the total amount of AV by 36% and 42% in two years, respectively. N-loaded clinoptilolite also increased the soil NH4+-N and NO3--N content during the tillering and grain-filling stages of rice, which in turn increased the rate of maximum N accumulation, shortened the duration, promoted N accumulation and translocation in rice plants, and finally reduced AV. Additionally, when compared to the control, the utilization of NZ10 under the AWD irrigation regime resulted in an average 29% reduction in irrigation water usage and a yield increase of 5% over two years. Thus, IAWDNZ10 was not only highly productive and water-efficient but also significantly reduced AV, making it an environmentally friendly and effective management model for on-farm practices.
[Display omitted]
•N-loaded clinoptilolite with AWD reduced AV, increased yield and saved water.•N-loaded clinoptilolite raised soil inorganic N content in critical growth period.•Improving N accumulation and reducing its duration enhanced N uptake and reduced AV. |
ArticleNumber | 109000 |
Author | Wu, Qi Chi, Daocai Chen, Hongyang Jia, Xiaofeng Gong, Fuzheng Liu, Xiaolong Sun, Yang |
Author_xml | – sequence: 1 givenname: Yang surname: Sun fullname: Sun, Yang – sequence: 2 givenname: Qi surname: Wu fullname: Wu, Qi email: qiwu0701@syau.edu.cn – sequence: 3 givenname: Hongyang surname: Chen fullname: Chen, Hongyang – sequence: 4 givenname: Xiaofeng surname: Jia fullname: Jia, Xiaofeng – sequence: 5 givenname: Fuzheng surname: Gong fullname: Gong, Fuzheng – sequence: 6 givenname: Xiaolong surname: Liu fullname: Liu, Xiaolong – sequence: 7 givenname: Daocai surname: Chi fullname: Chi, Daocai |
BookMark | eNp9kD1OAzEQhS0EEiFwADpfYIPtTexdUSHEn4Sggdry2rNhIseObCdRuAf3ZUOoKKhmRvO-J713Ro5DDEDIJWcTzri8Wkx6myaCiXq4W8bYERnxRolKNjNxTEasVk01FS07JWc5LwaBlFyOyNdL5aNx4Kj1GOKqoI8eC9B1cJDo1hRIVTYbDHOKKeHcFIyBLrHsV8jULJcxoKGb6IeXx8-DYPuBHigGm8DkPTxPBgPdIXhHTXC_zgFLinMIdJ2BQt-jRQh2d05OeuMzXPzOMXm_v3u7fayeXx-ebm-eKytaVaoZl6YVnZiKjsm250o5Y4Ex1TWqmXU16y1YyxreselM1hKYdLVpZd24zoES9Zjwg69NMecEvV4lXJq005zpfa96oYde9b5Xfeh1YNQfxmL5CV2GiP5f8vpAwhBpg5B0_okLDhPYol3Ef-hvE9WZBw |
CitedBy_id | crossref_primary_10_1016_j_agwat_2024_108788 crossref_primary_10_1016_j_chemosphere_2025_144114 crossref_primary_10_1016_j_chemosphere_2023_140326 crossref_primary_10_1016_j_fcr_2025_109872 crossref_primary_10_1016_j_scitotenv_2023_166575 crossref_primary_10_1007_s11356_024_33656_5 crossref_primary_10_1016_j_agwat_2024_109203 crossref_primary_10_1016_j_jclepro_2024_142257 |
Cites_doi | 10.5194/acp-16-2043-2016 10.1016/j.fcr.2019.03.004 10.1097/SS.0b013e31820e4063 10.13031/ja.15061 10.1016/S2095-3119(20)63406-2 10.1016/j.fcr.2016.12.002 10.1023/A:1021107026067 10.1080/00103624.2016.1228943 10.2136/sssaj2011.0229 10.1016/j.eja.2013.10.005 10.1100/tsw.2008.68 10.1016/j.soilbio.2011.12.028 10.1016/j.scitotenv.2018.04.294 10.1016/j.fcr.2004.09.022 10.1016/j.jhazmat.2012.06.001 10.1016/j.agwat.2020.106126 10.1016/j.scitotenv.2007.10.037 10.2134/agronj14.0468 10.1016/j.catena.2016.01.019 10.1016/j.jclepro.2021.128370 10.2134/agronj2015.0296 10.1007/s00374-010-0465-9 10.1016/j.apsoil.2017.06.004 10.1590/S0103-90162003000300011 10.1007/BF00015911 10.1016/j.envpol.2003.08.042 10.1016/j.agrformet.2013.05.001 10.2134/agronj1982.00021962007400050011x 10.1016/j.agwat.2011.12.013 10.1016/j.micromeso.2012.06.051 10.1016/j.agwat.2010.07.013 10.1007/s13280-012-0249-6 10.1016/j.agee.2016.06.040 10.1016/j.scitotenv.2022.154753 10.1016/j.scitotenv.2020.138897 10.1080/03650340.2016.1276286 10.5194/acp-19-2299-2019 10.1626/pps.8.487 10.1016/j.fcr.2017.03.013 10.1016/j.envpol.2018.10.124 10.1016/j.scitotenv.2021.148058 10.5897/AJAR2013.8236 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.fcr.2023.109000 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6852 |
ExternalDocumentID | 10_1016_j_fcr_2023_109000 S0378429023001934 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SEW SPCBC SSA SSZ T5K UNMZH Y6R ~G- ~KM 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ R2- RIG SEN SSH WUQ |
ID | FETCH-LOGICAL-c297t-516a92b242b069f177dace007b8785b30fcecc081b045636e06d3a9638dbde723 |
IEDL.DBID | AIKHN |
ISSN | 0378-4290 |
IngestDate | Tue Jul 01 04:25:07 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Fri Feb 23 02:37:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Acidification N-loaded clinoptilolite Water-nitrogen use efficiency Rice grain yield NH3 volatilization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-516a92b242b069f177dace007b8785b30fcecc081b045636e06d3a9638dbde723 |
ParticipantIDs | crossref_primary_10_1016_j_fcr_2023_109000 crossref_citationtrail_10_1016_j_fcr_2023_109000 elsevier_sciencedirect_doi_10_1016_j_fcr_2023_109000 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 2023-09-00 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Field crops research |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bernardi, Oliviera, Monte, Souza-Barros (bib5) 2013; 167 Yao, Zhang, Tian, Zhao, Zhang, Zhao, Yin (bib58) 2018; 218 Chen, Wilson, Liang, Xia, Chen, Chi (bib8) 2017; 63 Sepaskhah, Barzega (bib40) 2010; 98 Wang, Sun, Zhang, Zhang, Zhou (bib48) 2021 Huo, Lin, Dong, Cheng, Wang, Cao (bib21) 2012; 229 Kang, Liu, Song, Huang, Yao, Cai, Zhu (bib24) 2016; 16 Ahmed, Braine, Muhamad (bib2) 2010; 5 Carrijo, Lundy, Linquist (bib7) 2017; 203 Mahajan, Chauhan (bib31) 2016; 108 Pacifico, Delon, Jambert, Durand, Morris, Evans, Brilouet (bib36) 2019; 19 Belder, Spiertz, Bouman, Lu, Tuong (bib4) 2005; 93 Xia, Liu, Sha, Zhao, Zhang, Chen (bib53) 2019; 35 Sun, Xia, He, Wu, Zheng, Li, Chi (bib43) 2019; 235 Zhao, Wu, Dong, Li (bib62) 2010; 1 Omar, Ahmed, Muhamad (bib35) 2010; 5 Li, Ju, Zhang, Wan, Liu (bib28) 2008; 19 Qiong, Wang, Ding, Tao, Gao, Li, Li (bib39) 2021; 20 Sun, Zhang, Yang, Zhang, Norse, Zhu (bib42) 2012; 41 Garrity, Watts, Sullivan, Gilley (bib17) 1982; 74 Xu, Peng, Yang, Wang (bib55) 2012; 104 Ti, Xia, Chang, Yan (bib46) 2019; 245 Manikandan, Subramanian (bib32) 2014; 9 Engel, Jones, Wallander (bib11) 2011; 75 Huber, Alfaro, Scheer, Brunk, Ramirez, Rowlings, Grace (bib20) 2017; 238 Wang, Xia, Zheng, Wang, Chen, Chi, Ok (bib49) 2022; 830 Zhu, Chen (bib63) 2002; 63 Xu, He, Chen, Liu, Liu, Lyu, Wang, Yang (bib56) 2020; 31 Jaime, Antonio, Julia, Josette, Sonia, José, Alberto (bib23) 2018; 636 Won, Choi, Lee, Son, Chung (bib51) 2005; 8 Alemayehu, Teshome (bib3) 2021; 5 Guo, Fan, Zhang, Yan, Zheng, Wu, Li (bib18) 2021; 790 Hayashi, Nishimura, Yagi (bib19) 2008; 390 Min, Sun, Wang, Pan, Kronzucker, Zhao, Shi (bib33) 2021; 316 Xue, Pang, Cong, Fu, Feng, Xu (bib57) 2022 Erisman, Schaap (bib12) 2004; 129 Shao, Deng, Liu, Yu, Wang, She (bib41) 2014; 53 Yu, Cui, Han, Liu, Xu (bib59) 2015; 34 Kithome (bib26) 1998 Xie, Xu, Gao, Shen (bib54) 2021; 40 Nalley, Linquist, Kovacs, Anders (bib34) 2015; 107 García, Dourado-Neto, Basanta, Ovejero, Favarin (bib16) 2003; 60 Ippolito, Tarkalson, Lehrsch (bib22) 2011; 176 Ventura, Yoshida (bib47) 1977; 46 Luo, Wei, Sun, Li, Zou, Liu (bib30) 2011; 27 Wu, Xia, Chen, Zheng, Bu, Chi (bib52) 2016; 47 Dong, Brandt, Sørensen, Hung, Van Hach, Tan, Dalsgaard (bib10) 2012; 47 Kong, Guo, Pan (bib27) 2018; 38 Dong (bib9) 2008 Patel, Panda, Mohanty (bib38) 1989; 19 Sun, He, Wu, Zheng, Li, Wang, Chi (bib44) 2020; 235 Zhang, Liu, Wang, Meng, Chi, Chen (bib61) 2021; 37 Fan, Song, Lin, Yang, Luo (bib13) 2006; 18 Ferretti, Keiblinger, Zimmermann, Di Giuseppe, Faccini, Colombani, Mastrocicco (bib14) 2017; 119 Katata, Hayashi, Ono, Nagai, Miyata, Mano (bib25) 2013; 180 Campisi, Abbondanzi, Faccini, Giuseppe, Passaglia (bib6) 2016; 140 Fu, Luo, Hu (bib15) 2020; 731 Li, Zhu, Yan, Yuan (bib29) 2015; 29 Palanivell, Ahmed, Susilawati, Majid (bib37) 2015; 17 Sun, Chen, Wang, Li, Gong, Wu, Chi (bib45) 2022; 65 Win, Nonaka, Toyota, Motobayashi, Hosomi (bib50) 2010; 46 Zhang, Wang, Zhang, Cui, Ma, Chen, Jiang (bib60) 2008; 45 Ahmed, Aminuddin, Husni, Rahim, Majid (bib1) 2008; 8 Sun (10.1016/j.fcr.2023.109000_bib44) 2020; 235 Ahmed (10.1016/j.fcr.2023.109000_bib2) 2010; 5 Kang (10.1016/j.fcr.2023.109000_bib24) 2016; 16 Ventura (10.1016/j.fcr.2023.109000_bib47) 1977; 46 Xu (10.1016/j.fcr.2023.109000_bib56) 2020; 31 Xia (10.1016/j.fcr.2023.109000_bib53) 2019; 35 Dong (10.1016/j.fcr.2023.109000_bib9) 2008 Palanivell (10.1016/j.fcr.2023.109000_bib37) 2015; 17 Katata (10.1016/j.fcr.2023.109000_bib25) 2013; 180 Ti (10.1016/j.fcr.2023.109000_bib46) 2019; 245 Fu (10.1016/j.fcr.2023.109000_bib15) 2020; 731 García (10.1016/j.fcr.2023.109000_bib16) 2003; 60 Ippolito (10.1016/j.fcr.2023.109000_bib22) 2011; 176 Wu (10.1016/j.fcr.2023.109000_bib52) 2016; 47 Kithome (10.1016/j.fcr.2023.109000_bib26) 1998 Li (10.1016/j.fcr.2023.109000_bib28) 2008; 19 Alemayehu (10.1016/j.fcr.2023.109000_bib3) 2021; 5 Kong (10.1016/j.fcr.2023.109000_bib27) 2018; 38 Wang (10.1016/j.fcr.2023.109000_bib48) 2021 Li (10.1016/j.fcr.2023.109000_bib29) 2015; 29 Shao (10.1016/j.fcr.2023.109000_bib41) 2014; 53 Guo (10.1016/j.fcr.2023.109000_bib18) 2021; 790 Zhang (10.1016/j.fcr.2023.109000_bib60) 2008; 45 Zhu (10.1016/j.fcr.2023.109000_bib63) 2002; 63 Won (10.1016/j.fcr.2023.109000_bib51) 2005; 8 Yu (10.1016/j.fcr.2023.109000_bib59) 2015; 34 Huber (10.1016/j.fcr.2023.109000_bib20) 2017; 238 Engel (10.1016/j.fcr.2023.109000_bib11) 2011; 75 Nalley (10.1016/j.fcr.2023.109000_bib34) 2015; 107 Fan (10.1016/j.fcr.2023.109000_bib13) 2006; 18 Jaime (10.1016/j.fcr.2023.109000_bib23) 2018; 636 Manikandan (10.1016/j.fcr.2023.109000_bib32) 2014; 9 Dong (10.1016/j.fcr.2023.109000_bib10) 2012; 47 Min (10.1016/j.fcr.2023.109000_bib33) 2021; 316 Pacifico (10.1016/j.fcr.2023.109000_bib36) 2019; 19 Win (10.1016/j.fcr.2023.109000_bib50) 2010; 46 Zhang (10.1016/j.fcr.2023.109000_bib61) 2021; 37 Hayashi (10.1016/j.fcr.2023.109000_bib19) 2008; 390 Erisman (10.1016/j.fcr.2023.109000_bib12) 2004; 129 Campisi (10.1016/j.fcr.2023.109000_bib6) 2016; 140 Ahmed (10.1016/j.fcr.2023.109000_bib1) 2008; 8 Mahajan (10.1016/j.fcr.2023.109000_bib31) 2016; 108 Wang (10.1016/j.fcr.2023.109000_bib49) 2022; 830 Huo (10.1016/j.fcr.2023.109000_bib21) 2012; 229 Bernardi (10.1016/j.fcr.2023.109000_bib5) 2013; 167 Chen (10.1016/j.fcr.2023.109000_bib8) 2017; 63 Belder (10.1016/j.fcr.2023.109000_bib4) 2005; 93 Xie (10.1016/j.fcr.2023.109000_bib54) 2021; 40 Xue (10.1016/j.fcr.2023.109000_bib57) 2022 Carrijo (10.1016/j.fcr.2023.109000_bib7) 2017; 203 Yao (10.1016/j.fcr.2023.109000_bib58) 2018; 218 Ferretti (10.1016/j.fcr.2023.109000_bib14) 2017; 119 Garrity (10.1016/j.fcr.2023.109000_bib17) 1982; 74 Luo (10.1016/j.fcr.2023.109000_bib30) 2011; 27 Qiong (10.1016/j.fcr.2023.109000_bib39) 2021; 20 Omar (10.1016/j.fcr.2023.109000_bib35) 2010; 5 Sun (10.1016/j.fcr.2023.109000_bib45) 2022; 65 Sun (10.1016/j.fcr.2023.109000_bib43) 2019; 235 Sun (10.1016/j.fcr.2023.109000_bib42) 2012; 41 Xu (10.1016/j.fcr.2023.109000_bib55) 2012; 104 Patel (10.1016/j.fcr.2023.109000_bib38) 1989; 19 Sepaskhah (10.1016/j.fcr.2023.109000_bib40) 2010; 98 Zhao (10.1016/j.fcr.2023.109000_bib62) 2010; 1 |
References_xml | – volume: 8 start-page: 394 year: 2008 end-page: 399 ident: bib1 article-title: Enhancing the Urea-N use efficiency in maize (Zea mays) cultivation on acid soils amended with zeolite and TSP publication-title: Sci. World J. – volume: 790 year: 2021 ident: bib18 article-title: Blending urea and slow-release nitrogen fertilizer increases dryland maize yield and nitrogen use efficiency while mitigating ammonia volatilization publication-title: Sci. Total Environ. – volume: 31 start-page: 4312 year: 2020 end-page: 4320 ident: bib56 article-title: Effects of biochar on ammonia volatilization from farmland soil: a review publication-title: Chin. J. Appl. Ecol. – volume: 35 start-page: 9 year: 2019 ident: bib53 article-title: Impact of zeolite on dynamic of soil available potassium and grain yield in alternate wetting and drying rice system publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 316 year: 2021 ident: bib33 article-title: Mechanical side-deep fertilization mitigates ammonia volatilization and nitrogen runoff and increases profitability in rice production independent of fertilizer type and split ratio publication-title: J. Clean. Prod. – volume: 40 start-page: 37 year: 2021 end-page: 44 ident: bib54 article-title: Using Drainmod to simulate the impact of irrigation and drainage on reaction and movement of water and nitrogen in paddy field publication-title: J. Irrig. Drain. – volume: 47 start-page: 166 year: 2012 end-page: 174 ident: bib10 article-title: Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the mekong delta, vietnam publication-title: Soil Biol. Biochem. – volume: 19 start-page: 113 year: 1989 end-page: 119 ident: bib38 article-title: Relative ammonia loss from urea-based fertilizers applied to rice under different hydrological situations publication-title: Nutr. Cycl. Agroecosyst. – year: 2008 ident: bib9 article-title: Study on Environmental Implication of Water Saving Irrigation in Zhang he Irrigation System [DB/OL]. The Project Report Submitted to Regional Office for Asia and the Pacific – volume: 19 start-page: 2299 year: 2019 end-page: 2325 ident: bib36 article-title: Measurements of nitric oxide and ammonia soil fluxes from a wet savanna ecosystem site in West Africa during the DACCIWA field campaign publication-title: Atmos. Chem. Phys. – volume: 38 start-page: 201 year: 2018 end-page: 210 ident: bib27 article-title: Evaluation on Overfertilization and Its Spatial-Temporal Difference about Major Grain Crops in China publication-title: Econ. Geogr. – volume: 5 start-page: 2193 year: 2010 end-page: 2197 ident: bib35 article-title: Minimizing ammonia volatilization in waterlogged soils through mixing of urea with zeolite and sago waste water publication-title: Int. J. Phys. Sci. – volume: 63 start-page: 117 year: 2002 end-page: 127 ident: bib63 article-title: Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies publication-title: Nutr. Cycl. Agroecosyst. – volume: 16 start-page: 2043 year: 2016 end-page: 2058 ident: bib24 article-title: High-resolution ammonia emissions inventories in China from 1980 to 2012 publication-title: Atmos. Chem. Phys. – volume: 636 start-page: 427 year: 2018 end-page: 436 ident: bib23 article-title: The effect of nitrification inhibitors on NH publication-title: Sci. Total Environ. – volume: 53 start-page: 1 year: 2014 end-page: 9 ident: bib41 article-title: Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice publication-title: Eur. J. Agron. – volume: 119 start-page: 138 year: 2017 end-page: 144 ident: bib14 article-title: High resolution short-term investigation of soil CO publication-title: Appl. Soil Ecol. – volume: 18 start-page: 299 year: 2006 end-page: 303 ident: bib13 article-title: Ammonia volatilization losses and publication-title: J. Environ. Sci. – volume: 46 start-page: 521 year: 1977 end-page: 531 ident: bib47 article-title: Ammonia volatilization from a flooded tropical soil publication-title: Plant Soil – volume: 17 start-page: 149 year: 2015 end-page: 155 ident: bib37 article-title: Mitigating ammonia volatilization from urea in waterlogged condition using clinoptilolite zeolite publication-title: Int. J. Agric. Biol. – volume: 19 start-page: 99 year: 2008 end-page: 104 ident: bib28 article-title: Effects of different fertilization modes on soil ammonia volatilization and nitrous oxide emission. Ying Yong Sheng tai xue bao publication-title: J. Appl. Ecol. – volume: 20 start-page: 1503 year: 2021 end-page: 1514 ident: bib39 article-title: Effects of different types of slow-and controlled-release fertilizers on rice yield publication-title: J. Integr. Agric. – volume: 46 start-page: 589 year: 2010 end-page: 595 ident: bib50 article-title: Effects of option mitigating ammonia volatilization on CH publication-title: Biol. Fertil. Soils – volume: 60 start-page: 481 year: 2003 end-page: 488 ident: bib16 article-title: Logistic rice model for dry matter and nutrient uptake publication-title: Sci. Agric. – volume: 830 year: 2022 ident: bib49 article-title: Mulched drip irrigation and biochar application reduce gaseous nitrogen emissions, but increase nitrogen uptake and peanut yield publication-title: Sci. Total Environ. – volume: 180 start-page: 1 year: 2013 end-page: 21 ident: bib25 article-title: Coupling atmospheric ammonia exchange process over a rice paddy field with a multi-layer atmosphere soil-vegetation model publication-title: Agric. Meteorol. – volume: 235 year: 2020 ident: bib44 article-title: Zeolite amendment enhances rice production, nitrogen accumulation and translocation in wetting and drying irrigation paddy field publication-title: Agric. Water Manag. – volume: 37 start-page: 100 year: 2021 end-page: 109 ident: bib61 article-title: Effects of rice straw biochar with different adsorption characteristics on ammonia volatilization from paddy field and rice yield publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 75 start-page: 2348 year: 2011 ident: bib11 article-title: Ammonia volatilization from urea and mitigation by nbpt following surface application to cold soils publication-title: Soil Sci. Soc. Am. J. – volume: 74 start-page: 815 year: 1982 end-page: 820 ident: bib17 article-title: Moisture deficits and grain sorghum performance: evapotranspiration yield relationship publication-title: Agron. J. – year: 2021 ident: bib48 article-title: Effects of different fertilization methods on ammonia volatilization from rice paddies publication-title: J. Clean. Prod. – volume: 218 start-page: 254 year: 2018 end-page: 266 ident: bib58 article-title: Urea deep placement for minimizing NH publication-title: Field Crop. Res. – volume: 1 start-page: 10 year: 2010 end-page: 16 ident: bib62 article-title: Rice yield, nitrogen utilization and ammonia volatilization as influenced by modified rice cultivation at varying nitrogen rates publication-title: Agric. Sci. – year: 1998 ident: bib26 article-title: Reducing Nitrogen Losses during Composting of Poultry Manure using the Natural Zeolite Clinoptilolite – volume: 235 start-page: 95 year: 2019 end-page: 103 ident: bib43 article-title: Zeolite amendment coupled with alternate wetting and drying to reduce nitrogen loss and enhance rice production publication-title: Field Crop. Res. – volume: 34 start-page: 1 year: 2015 end-page: 5 ident: bib59 article-title: Variation of ammonia volitilization in paddy field under different irrigation and fertilization systerms publication-title: J. Irrig. Drain. – volume: 107 start-page: 9 year: 2015 end-page: 587 ident: bib34 article-title: The economic viability of alternate wetting and drying irrigation in Arkansas rice production publication-title: Agron. J. – volume: 108 start-page: 257 year: 2016 ident: bib31 article-title: Performance of dry directseeded rice in response to genotype and seeding rate publication-title: Agron. J. – start-page: 29 year: 2022 end-page: 35 ident: bib57 article-title: Effects of different irrigation and biochar amounts on NH publication-title: Water Sav. Irrig. – volume: 93 start-page: 169 year: 2005 end-page: 185 ident: bib4 article-title: Nitrogen economy and water productivity of lowland rice under water-saving irrigation publication-title: Field Crop. Res. – volume: 5 start-page: 008 year: 2021 end-page: 013 ident: bib3 article-title: Soil colloids, types and their properties: a review publication-title: Open J. Bioinform. Biostat. – volume: 63 start-page: 1210 year: 2017 end-page: 1226 ident: bib8 article-title: Influences of irrigation, nitrogen and zeolite management on the physicochemical properties of rice publication-title: Arch. Agron. Soil Sci. – volume: 5 start-page: 2198 year: 2010 end-page: 2202 ident: bib2 article-title: Minimizing ammonia loss from urea through mixing with zeolite and acid sulfate soil publication-title: Int. J. Math. Phys. Eng. Sci. – volume: 167 start-page: 16 year: 2013 end-page: 21 ident: bib5 article-title: Brazilian sedimentary zeolite use in agriculture publication-title: Microporous Mesoporous Mater. – volume: 8 start-page: 487 year: 2005 end-page: 492 ident: bib51 article-title: Water saving by shallow intermittent irrigation and growth of rice publication-title: Plant Prod. Sci. – volume: 140 start-page: 66 year: 2016 end-page: 76 ident: bib6 article-title: Ammonium-charged zeolitite effects on crop growth and nutrient leaching: greenhouse experiments on maize (Zea mays) publication-title: Catena – volume: 245 start-page: 141 year: 2019 end-page: 148 ident: bib46 article-title: Potential for mitigating global agricultural ammonia emission: a meta-analysis publication-title: Environ. Pollut. – volume: 731 year: 2020 ident: bib15 article-title: A temporal-spatial analysis and future trends of ammonia emissions in China publication-title: Sci. Total Environ. – volume: 129 start-page: 159 year: 2004 end-page: 163 ident: bib12 article-title: The need for ammonia abatement with respect to secondary PM reductions in Europe publication-title: Environ. Pollut. – volume: 47 start-page: 2103 year: 2016 end-page: 2114 ident: bib52 article-title: Effects of nitrogen and zeolite on rice grain yield, water and nitrogen use, and soil total nitrogen in coastal region of northeast China publication-title: Commun. Soil Sci. Plant – volume: 27 start-page: 243 year: 2011 end-page: 247 ident: bib30 article-title: Effects of zeolite addition on ammonia volatilization in chicken manure composting publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 176 start-page: 136 year: 2011 end-page: 142 ident: bib22 article-title: Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth publication-title: Soil Sci. – volume: 9 start-page: 276 year: 2014 end-page: 284 ident: bib32 article-title: Fabrication and characterisation of nanoporous zeolite based N fertilizer publication-title: Afr. J. Agric. Res. – volume: 203 start-page: 173 year: 2017 end-page: 180 ident: bib7 article-title: Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis publication-title: Field Crop. Res. – volume: 104 start-page: 184 year: 2012 end-page: 192 ident: bib55 article-title: Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements publication-title: Agric. Water Manag. – volume: 98 start-page: 38 year: 2010 end-page: 44 ident: bib40 article-title: Yield, water and nitrogen-use responses of rice to zeolite and nitrogen fertilization in a semi-arid environment publication-title: Agric. Water Manag. – volume: 29 start-page: 140 year: 2015 end-page: 144 ident: bib29 article-title: Effects of drying-rewetting cycles on nitrogen transformation and enzyme activities in black soil publication-title: Arid Zone Resour. Environ. – volume: 45 start-page: 915 year: 2008 end-page: 924 ident: bib60 article-title: Nutrient use efficiencies of major cereal crops in China and measures for improvement publication-title: Acta Pedol. Sin. – volume: 238 start-page: 46 year: 2017 end-page: 54 ident: bib20 article-title: Effect of nitrification and urease inhibitors on nitrous oxide and methane emissions from an oat crop in a volcanic ash soil publication-title: Agric. Ecosyst. Environ. – volume: 41 start-page: 370 year: 2012 end-page: 379 ident: bib42 article-title: Agricultural non-point source pollution in China: causes and mitigation measures publication-title: Ambio – volume: 65 start-page: 927 year: 2022 end-page: 936 ident: bib45 article-title: Effect of N-Loaded clinoptilolite on soil available nutrients and yield under water-saving irrigation publication-title: J. ASABE – volume: 390 start-page: 485 year: 2008 end-page: 494 ident: bib19 article-title: Ammonia volatilization from a paddy field following application of urea: rice plants are both an absorber and an emitter for atmospheric ammonia publication-title: Sci. Total Environ. – volume: 229 start-page: 292 year: 2012 end-page: 297 ident: bib21 article-title: Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite publication-title: J. Hazard. Mater. – volume: 16 start-page: 2043 issue: 4 year: 2016 ident: 10.1016/j.fcr.2023.109000_bib24 article-title: High-resolution ammonia emissions inventories in China from 1980 to 2012 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-2043-2016 – volume: 19 start-page: 113 year: 1989 ident: 10.1016/j.fcr.2023.109000_bib38 article-title: Relative ammonia loss from urea-based fertilizers applied to rice under different hydrological situations publication-title: Nutr. Cycl. Agroecosyst. – volume: 235 start-page: 95 year: 2019 ident: 10.1016/j.fcr.2023.109000_bib43 article-title: Zeolite amendment coupled with alternate wetting and drying to reduce nitrogen loss and enhance rice production publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2019.03.004 – volume: 176 start-page: 136 issue: 3 year: 2011 ident: 10.1016/j.fcr.2023.109000_bib22 article-title: Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth publication-title: Soil Sci. doi: 10.1097/SS.0b013e31820e4063 – volume: 65 start-page: 927 issue: 4 year: 2022 ident: 10.1016/j.fcr.2023.109000_bib45 article-title: Effect of N-Loaded clinoptilolite on soil available nutrients and yield under water-saving irrigation publication-title: J. ASABE doi: 10.13031/ja.15061 – volume: 5 start-page: 2198 issue: 14 year: 2010 ident: 10.1016/j.fcr.2023.109000_bib2 article-title: Minimizing ammonia loss from urea through mixing with zeolite and acid sulfate soil publication-title: Int. J. Math. Phys. Eng. Sci. – volume: 20 start-page: 1503 issue: 6 year: 2021 ident: 10.1016/j.fcr.2023.109000_bib39 article-title: Effects of different types of slow-and controlled-release fertilizers on rice yield publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(20)63406-2 – volume: 19 start-page: 99 issue: 1 year: 2008 ident: 10.1016/j.fcr.2023.109000_bib28 article-title: Effects of different fertilization modes on soil ammonia volatilization and nitrous oxide emission. Ying Yong Sheng tai xue bao publication-title: J. Appl. Ecol. – volume: 38 start-page: 201 issue: 10 year: 2018 ident: 10.1016/j.fcr.2023.109000_bib27 article-title: Evaluation on Overfertilization and Its Spatial-Temporal Difference about Major Grain Crops in China publication-title: Econ. Geogr. – volume: 203 start-page: 173 issue: Complete year: 2017 ident: 10.1016/j.fcr.2023.109000_bib7 article-title: Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2016.12.002 – volume: 63 start-page: 117 issue: 2–3 year: 2002 ident: 10.1016/j.fcr.2023.109000_bib63 article-title: Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1023/A:1021107026067 – volume: 5 start-page: 2193 issue: 14 year: 2010 ident: 10.1016/j.fcr.2023.109000_bib35 article-title: Minimizing ammonia volatilization in waterlogged soils through mixing of urea with zeolite and sago waste water publication-title: Int. J. Phys. Sci. – start-page: 29 issue: 7 year: 2022 ident: 10.1016/j.fcr.2023.109000_bib57 article-title: Effects of different irrigation and biochar amounts on NH3 volatilization in summer maize fields publication-title: Water Sav. Irrig. – issue: 4 year: 2021 ident: 10.1016/j.fcr.2023.109000_bib48 article-title: Effects of different fertilization methods on ammonia volatilization from rice paddies publication-title: J. Clean. Prod. – volume: 47 start-page: 2103 issue: 18 year: 2016 ident: 10.1016/j.fcr.2023.109000_bib52 article-title: Effects of nitrogen and zeolite on rice grain yield, water and nitrogen use, and soil total nitrogen in coastal region of northeast China publication-title: Commun. Soil Sci. Plant doi: 10.1080/00103624.2016.1228943 – volume: 75 start-page: 2348 issue: 6 year: 2011 ident: 10.1016/j.fcr.2023.109000_bib11 article-title: Ammonia volatilization from urea and mitigation by nbpt following surface application to cold soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0229 – volume: 53 start-page: 1 year: 2014 ident: 10.1016/j.fcr.2023.109000_bib41 article-title: Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2013.10.005 – volume: 8 start-page: 394 year: 2008 ident: 10.1016/j.fcr.2023.109000_bib1 article-title: Enhancing the Urea-N use efficiency in maize (Zea mays) cultivation on acid soils amended with zeolite and TSP publication-title: Sci. World J. doi: 10.1100/tsw.2008.68 – volume: 47 start-page: 166 year: 2012 ident: 10.1016/j.fcr.2023.109000_bib10 article-title: Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the mekong delta, vietnam publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.12.028 – volume: 636 start-page: 427 year: 2018 ident: 10.1016/j.fcr.2023.109000_bib23 article-title: The effect of nitrification inhibitors on NH3 and N2O emissions in highly N fertilized irrigated Mediterranean cropping systems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.294 – volume: 35 start-page: 9 issue: 18 year: 2019 ident: 10.1016/j.fcr.2023.109000_bib53 article-title: Impact of zeolite on dynamic of soil available potassium and grain yield in alternate wetting and drying rice system publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 93 start-page: 169 issue: 2–3 year: 2005 ident: 10.1016/j.fcr.2023.109000_bib4 article-title: Nitrogen economy and water productivity of lowland rice under water-saving irrigation publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2004.09.022 – volume: 31 start-page: 4312 issue: 12 year: 2020 ident: 10.1016/j.fcr.2023.109000_bib56 article-title: Effects of biochar on ammonia volatilization from farmland soil: a review publication-title: Chin. J. Appl. Ecol. – volume: 229 start-page: 292 year: 2012 ident: 10.1016/j.fcr.2023.109000_bib21 article-title: Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.06.001 – volume: 1 start-page: 10 issue: 1 year: 2010 ident: 10.1016/j.fcr.2023.109000_bib62 article-title: Rice yield, nitrogen utilization and ammonia volatilization as influenced by modified rice cultivation at varying nitrogen rates publication-title: Agric. Sci. – year: 2008 ident: 10.1016/j.fcr.2023.109000_bib9 – volume: 27 start-page: 243 issue: 2 year: 2011 ident: 10.1016/j.fcr.2023.109000_bib30 article-title: Effects of zeolite addition on ammonia volatilization in chicken manure composting publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 235 year: 2020 ident: 10.1016/j.fcr.2023.109000_bib44 article-title: Zeolite amendment enhances rice production, nitrogen accumulation and translocation in wetting and drying irrigation paddy field publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106126 – volume: 390 start-page: 485 issue: 2–3 year: 2008 ident: 10.1016/j.fcr.2023.109000_bib19 article-title: Ammonia volatilization from a paddy field following application of urea: rice plants are both an absorber and an emitter for atmospheric ammonia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2007.10.037 – year: 1998 ident: 10.1016/j.fcr.2023.109000_bib26 – volume: 34 start-page: 1 issue: 03 year: 2015 ident: 10.1016/j.fcr.2023.109000_bib59 article-title: Variation of ammonia volitilization in paddy field under different irrigation and fertilization systerms publication-title: J. Irrig. Drain. – volume: 107 start-page: 9 year: 2015 ident: 10.1016/j.fcr.2023.109000_bib34 article-title: The economic viability of alternate wetting and drying irrigation in Arkansas rice production publication-title: Agron. J. doi: 10.2134/agronj14.0468 – volume: 140 start-page: 66 year: 2016 ident: 10.1016/j.fcr.2023.109000_bib6 article-title: Ammonium-charged zeolitite effects on crop growth and nutrient leaching: greenhouse experiments on maize (Zea mays) publication-title: Catena doi: 10.1016/j.catena.2016.01.019 – volume: 316 year: 2021 ident: 10.1016/j.fcr.2023.109000_bib33 article-title: Mechanical side-deep fertilization mitigates ammonia volatilization and nitrogen runoff and increases profitability in rice production independent of fertilizer type and split ratio publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128370 – volume: 108 start-page: 257 issue: 1 year: 2016 ident: 10.1016/j.fcr.2023.109000_bib31 article-title: Performance of dry directseeded rice in response to genotype and seeding rate publication-title: Agron. J. doi: 10.2134/agronj2015.0296 – volume: 46 start-page: 589 issue: 6 year: 2010 ident: 10.1016/j.fcr.2023.109000_bib50 article-title: Effects of option mitigating ammonia volatilization on CH4 and N2O emissions from a paddy field fertilized with anaerobically digested cattle slurry publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-010-0465-9 – volume: 119 start-page: 138 year: 2017 ident: 10.1016/j.fcr.2023.109000_bib14 article-title: High resolution short-term investigation of soil CO2, N2O, NOx and NH3 emissions after different chabazite zeolite amendments publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2017.06.004 – volume: 60 start-page: 481 issue: 3 year: 2003 ident: 10.1016/j.fcr.2023.109000_bib16 article-title: Logistic rice model for dry matter and nutrient uptake publication-title: Sci. Agric. doi: 10.1590/S0103-90162003000300011 – volume: 46 start-page: 521 year: 1977 ident: 10.1016/j.fcr.2023.109000_bib47 article-title: Ammonia volatilization from a flooded tropical soil publication-title: Plant Soil doi: 10.1007/BF00015911 – volume: 40 start-page: 37 issue: 4 year: 2021 ident: 10.1016/j.fcr.2023.109000_bib54 article-title: Using Drainmod to simulate the impact of irrigation and drainage on reaction and movement of water and nitrogen in paddy field publication-title: J. Irrig. Drain. – volume: 129 start-page: 159 year: 2004 ident: 10.1016/j.fcr.2023.109000_bib12 article-title: The need for ammonia abatement with respect to secondary PM reductions in Europe publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2003.08.042 – volume: 5 start-page: 008 issue: 1 year: 2021 ident: 10.1016/j.fcr.2023.109000_bib3 article-title: Soil colloids, types and their properties: a review publication-title: Open J. Bioinform. Biostat. – volume: 18 start-page: 299 issue: 2 year: 2006 ident: 10.1016/j.fcr.2023.109000_bib13 article-title: Ammonia volatilization losses and 15N balance from urea applied to rice on a paddy soil publication-title: J. Environ. Sci. – volume: 180 start-page: 1 year: 2013 ident: 10.1016/j.fcr.2023.109000_bib25 article-title: Coupling atmospheric ammonia exchange process over a rice paddy field with a multi-layer atmosphere soil-vegetation model publication-title: Agric. Meteorol. doi: 10.1016/j.agrformet.2013.05.001 – volume: 74 start-page: 815 year: 1982 ident: 10.1016/j.fcr.2023.109000_bib17 article-title: Moisture deficits and grain sorghum performance: evapotranspiration yield relationship publication-title: Agron. J. doi: 10.2134/agronj1982.00021962007400050011x – volume: 104 start-page: 184 issue: none year: 2012 ident: 10.1016/j.fcr.2023.109000_bib55 article-title: Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2011.12.013 – volume: 167 start-page: 16 year: 2013 ident: 10.1016/j.fcr.2023.109000_bib5 article-title: Brazilian sedimentary zeolite use in agriculture publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2012.06.051 – volume: 98 start-page: 38 issue: 1 year: 2010 ident: 10.1016/j.fcr.2023.109000_bib40 article-title: Yield, water and nitrogen-use responses of rice to zeolite and nitrogen fertilization in a semi-arid environment publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2010.07.013 – volume: 41 start-page: 370 issue: 4 year: 2012 ident: 10.1016/j.fcr.2023.109000_bib42 article-title: Agricultural non-point source pollution in China: causes and mitigation measures publication-title: Ambio doi: 10.1007/s13280-012-0249-6 – volume: 238 start-page: 46 year: 2017 ident: 10.1016/j.fcr.2023.109000_bib20 article-title: Effect of nitrification and urease inhibitors on nitrous oxide and methane emissions from an oat crop in a volcanic ash soil publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2016.06.040 – volume: 830 year: 2022 ident: 10.1016/j.fcr.2023.109000_bib49 article-title: Mulched drip irrigation and biochar application reduce gaseous nitrogen emissions, but increase nitrogen uptake and peanut yield publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.154753 – volume: 37 start-page: 100 issue: 09 year: 2021 ident: 10.1016/j.fcr.2023.109000_bib61 article-title: Effects of rice straw biochar with different adsorption characteristics on ammonia volatilization from paddy field and rice yield publication-title: Trans. Chin. Soc. Agric. Eng. – volume: 45 start-page: 915 year: 2008 ident: 10.1016/j.fcr.2023.109000_bib60 article-title: Nutrient use efficiencies of major cereal crops in China and measures for improvement publication-title: Acta Pedol. Sin. – volume: 731 year: 2020 ident: 10.1016/j.fcr.2023.109000_bib15 article-title: A temporal-spatial analysis and future trends of ammonia emissions in China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.138897 – volume: 17 start-page: 149 issue: 1 year: 2015 ident: 10.1016/j.fcr.2023.109000_bib37 article-title: Mitigating ammonia volatilization from urea in waterlogged condition using clinoptilolite zeolite publication-title: Int. J. Agric. Biol. – volume: 63 start-page: 1210 issue: 9 year: 2017 ident: 10.1016/j.fcr.2023.109000_bib8 article-title: Influences of irrigation, nitrogen and zeolite management on the physicochemical properties of rice publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2016.1276286 – volume: 19 start-page: 2299 issue: 4 year: 2019 ident: 10.1016/j.fcr.2023.109000_bib36 article-title: Measurements of nitric oxide and ammonia soil fluxes from a wet savanna ecosystem site in West Africa during the DACCIWA field campaign publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-19-2299-2019 – volume: 8 start-page: 487 issue: 4 year: 2005 ident: 10.1016/j.fcr.2023.109000_bib51 article-title: Water saving by shallow intermittent irrigation and growth of rice publication-title: Plant Prod. Sci. doi: 10.1626/pps.8.487 – volume: 218 start-page: 254 year: 2018 ident: 10.1016/j.fcr.2023.109000_bib58 article-title: Urea deep placement for minimizing NH3 loss in an intensive rice cropping system publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2017.03.013 – volume: 245 start-page: 141 year: 2019 ident: 10.1016/j.fcr.2023.109000_bib46 article-title: Potential for mitigating global agricultural ammonia emission: a meta-analysis publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.10.124 – volume: 790 year: 2021 ident: 10.1016/j.fcr.2023.109000_bib18 article-title: Blending urea and slow-release nitrogen fertilizer increases dryland maize yield and nitrogen use efficiency while mitigating ammonia volatilization publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148058 – volume: 9 start-page: 276 issue: 2 year: 2014 ident: 10.1016/j.fcr.2023.109000_bib32 article-title: Fabrication and characterisation of nanoporous zeolite based N fertilizer publication-title: Afr. J. Agric. Res. doi: 10.5897/AJAR2013.8236 – volume: 29 start-page: 140 issue: 10 year: 2015 ident: 10.1016/j.fcr.2023.109000_bib29 article-title: Effects of drying-rewetting cycles on nitrogen transformation and enzyme activities in black soil publication-title: Arid Zone Resour. Environ. |
SSID | ssj0006616 |
Score | 2.4594707 |
Snippet | Minimizing ammonia volatilization (AV) in paddy fields can not only reduce nitrogen (N) loss but also prevent environmental pollution. While clinoptilolite has... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109000 |
SubjectTerms | Acidification N-loaded clinoptilolite NH3 volatilization Rice grain yield Water-nitrogen use efficiency |
Title | N-loaded clinoptilolite under water-saving irrigation mitigates ammonia volatilization while increasing grain yield and water-nitrogen use efficiency |
URI | https://dx.doi.org/10.1016/j.fcr.2023.109000 |
Volume | 300 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wscEE9RHpUPnJDCOnFix8dVRbWA6AUq9Rb5WYK2SZXdquLCv-D_MpM4FUjAgWMeE0WeyTdf7JnPAK9qkXttIs-8MTwrYy4yQ5UATnutRKiEGzvkPp7K9Vn5_rw634PjuReGyioT9k-YPqJ1OrNMo7m8atvlJy5UjWhKJBp5iij34aAQWlYLOFi9-7A-vQVkTEHTkiX-MJHBvLg5lnlFR6qghSBdJU59bn9KT7-knJP7cC9xRbaaXucB7IXuIdxdXQxJLyM8gh9Is3vjg2fU4tjj97-hgrbAqDdsYDfIJIdsa2jWgLXDMOpp9B27bEdpjbBlhuKwNQxRCi9tUlcmu_mCaMHajjglzSawC9pKgn2jejdmOp-ejHgw9BiC7HobWBjVKKiV8zGcnbz9fLzO0k4LmSu02mVVLo0uLKZry6WOuVLeuID0wdaqrqzg0aGrkT1YYoBCBi69MPTteuuDKsQTWHR9F54Cq5WVPJY2Oh1KL0udR3RPlKYyyuVOHgKfB7hxSYacdsPYNHO92dcGfdKQT5rJJ4fw-tbkatLg-NfN5ey15rdAajBH_N3s2f-ZPYc7dDQVnb2AxW64Di-RpezsEey_-Z4fpVj8CXqx6aE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVgOUAPFVBQaUvxoadKYZ11YifHFQJty8elIHGL_AlBS4Kyi1Av_Av-b2cSB6gEHLjGdhR5xjMv9ptnQn5kPLa58iyySrEo8TGPFDIBTG5zyV3KTVshd3wiJmfJ7_P0fIHs9bUwSKsMsb-L6W20Dk-GYTaHN2U5_MO4zCCaIogGnMKTRbKUpFwir2_3_onnAQmoO7CE3yXs3h9ttiQvb1ATdMRRVYlhldtLyelZwjlYJR8DUqTj7mPWyIKr1smH8UUT1DLcJ_IAILtW1lmKBY41rP4p0tkcxcqwht4BjmyimcI9A1o2TaumUVf0umyFNdyMKvTCUlGIUdA0DTWZ9O4SYgUtK0SUuJdAL_AiCfoX2W5UVTa8GaJBU4MD0tuZo67VosBCzg1ydrB_ujeJwj0LkRnlch6lsVD5SEOy1kzkPpbSKuMAPOhMZqnmzBswNGAHjfiPC8eE5QpXrtXWyRHfJIOqrtxnQjOpBfOJ9iZ3iRVJHnswjhcqVdLERmwR1k9wYYIIOd6FMS16ttlVATYp0CZFZ5Mt8vNxyE2nwPFW56S3WvGfGxWQIV4f9uV9w3bI8uT0-Kg4-nVy-JWsYEtHP_tGBvPm1m0DXpnr760__gN4JOps |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-loaded+clinoptilolite+under+water-saving+irrigation+mitigates+ammonia+volatilization+while+increasing+grain+yield+and+water-nitrogen+use+efficiency&rft.jtitle=Field+crops+research&rft.au=Sun%2C+Yang&rft.au=Wu%2C+Qi&rft.au=Chen%2C+Hongyang&rft.au=Jia%2C+Xiaofeng&rft.date=2023-09-01&rft.issn=0378-4290&rft.volume=300&rft.spage=109000&rft_id=info:doi/10.1016%2Fj.fcr.2023.109000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fcr_2023_109000 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4290&client=summon |