Tunable metamaterial filter for optical communication in the terahertz frequency range
We present a design of a tunable terahertz (THz) filter (TTF) used in an indoor communication system. The unit cell of TTF is composed of ring-shaped and cross-shaped nanostructures. By utilizing the micro-electro-mechanical system (MEMS) technique to modify the height between the ring-shaped and cr...
Saved in:
Published in | Optics express Vol. 28; no. 12; p. 17620 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
08.06.2020
|
Online Access | Get full text |
Cover
Loading…
Abstract | We present a design of a tunable terahertz (THz) filter (TTF) used in an indoor communication system. The unit cell of TTF is composed of ring-shaped and cross-shaped nanostructures. By utilizing the micro-electro-mechanical system (MEMS) technique to modify the height between the ring-shaped and cross-shaped nanostructures in the incident transverse electric (TE) mode, the resonant frequencies can be tuned from 0.530 THz to 0.760 THz, which covers an atmospheric window from 0.625 THz to 0.725 THz for indoor wireless optical communication applications. This design of TTF provides an effective approach to select and filter specific signals. It makes the data processing more flexible at the transmission end of the communication system. Furthermore, such a TTF design can be realized the commercialization of communication system components due to its integrated circuit (IC) process compatibility, miniaturization and high flexibility. |
---|---|
AbstractList | We present a design of a tunable terahertz (THz) filter (TTF) used in an indoor communication system. The unit cell of TTF is composed of ring-shaped and cross-shaped nanostructures. By utilizing the micro-electro-mechanical system (MEMS) technique to modify the height between the ring-shaped and cross-shaped nanostructures in the incident transverse electric (TE) mode, the resonant frequencies can be tuned from 0.530 THz to 0.760 THz, which covers an atmospheric window from 0.625 THz to 0.725 THz for indoor wireless optical communication applications. This design of TTF provides an effective approach to select and filter specific signals. It makes the data processing more flexible at the transmission end of the communication system. Furthermore, such a TTF design can be realized the commercialization of communication system components due to its integrated circuit (IC) process compatibility, miniaturization and high flexibility.We present a design of a tunable terahertz (THz) filter (TTF) used in an indoor communication system. The unit cell of TTF is composed of ring-shaped and cross-shaped nanostructures. By utilizing the micro-electro-mechanical system (MEMS) technique to modify the height between the ring-shaped and cross-shaped nanostructures in the incident transverse electric (TE) mode, the resonant frequencies can be tuned from 0.530 THz to 0.760 THz, which covers an atmospheric window from 0.625 THz to 0.725 THz for indoor wireless optical communication applications. This design of TTF provides an effective approach to select and filter specific signals. It makes the data processing more flexible at the transmission end of the communication system. Furthermore, such a TTF design can be realized the commercialization of communication system components due to its integrated circuit (IC) process compatibility, miniaturization and high flexibility. We present a design of a tunable terahertz (THz) filter (TTF) used in an indoor communication system. The unit cell of TTF is composed of ring-shaped and cross-shaped nanostructures. By utilizing the micro-electro-mechanical system (MEMS) technique to modify the height between the ring-shaped and cross-shaped nanostructures in the incident transverse electric (TE) mode, the resonant frequencies can be tuned from 0.530 THz to 0.760 THz, which covers an atmospheric window from 0.625 THz to 0.725 THz for indoor wireless optical communication applications. This design of TTF provides an effective approach to select and filter specific signals. It makes the data processing more flexible at the transmission end of the communication system. Furthermore, such a TTF design can be realized the commercialization of communication system components due to its integrated circuit (IC) process compatibility, miniaturization and high flexibility. |
Author | Lin, Yu-Sheng Yang, Wei |
Author_xml | – sequence: 1 givenname: Wei surname: Yang fullname: Yang, Wei – sequence: 2 givenname: Yu-Sheng orcidid: 0000-0002-2825-0955 surname: Lin fullname: Lin, Yu-Sheng |
BookMark | eNptkD1PwzAQhi1UJNrCwD_wCENax3bjeERV-JAqdSmskeOcqVFiF9sZyq8nUAaEmO7R6bk73TtDE-cdIHSdk0XOCr7cVgsmi4KSMzTNieQZJ6WY_OILNIvxjZCcCymm6GU3ONV0gHtIqlcJglUdNrYbCRsfsD8kq8eW9n0_uBGT9Q5bh9Me8CipPYT0gU2A9wGcPuKg3CtconOjughXP3WOnu-r3fox22wfntZ3m0xTKVK2IoRTCmSlVcO4obkseAOtNqVoqBJF04iyZbxl0sgWOAOjpGS0YFwzUQJjc3Rz2nsIfrwfU93bqKHrlAM_xJpyyqWkpCSjentSdfAxBjD1IdhehWOdk_oru3pb1afsRnf5x9U2fX-egrLdPxOf9bZzrg |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2023_03_058 crossref_primary_10_1088_2040_8986_ac695f crossref_primary_10_1016_j_ijmecsci_2025_109916 crossref_primary_10_1364_JOSAB_448040 crossref_primary_10_1038_s41598_021_95468_8 crossref_primary_10_1016_j_isci_2022_103799 crossref_primary_10_1103_PhysRevApplied_18_064080 crossref_primary_10_1117_1_OE_63_4_045103 crossref_primary_10_1080_17452759_2023_2230468 crossref_primary_10_1166_jno_2024_3639 crossref_primary_10_1038_s41598_022_14911_6 crossref_primary_10_1109_TWC_2022_3168399 crossref_primary_10_1016_j_optlastec_2021_107323 crossref_primary_10_1080_09243046_2024_2397204 crossref_primary_10_1364_OME_442626 crossref_primary_10_3390_math11040800 crossref_primary_10_1016_j_ijleo_2021_167669 crossref_primary_10_1186_s11671_023_03843_3 crossref_primary_10_1166_jno_2023_3500 crossref_primary_10_1364_AO_550197 crossref_primary_10_1515_freq_2021_0204 crossref_primary_10_1039_D4TC03245D crossref_primary_10_1039_D2RA03014D crossref_primary_10_1016_j_sna_2022_113667 crossref_primary_10_1016_j_optlastec_2022_108488 crossref_primary_10_1016_j_physleta_2021_127523 crossref_primary_10_1016_j_jestch_2024_101801 crossref_primary_10_1007_s00339_022_05602_0 crossref_primary_10_1364_AO_489529 crossref_primary_10_1002_adpr_202100239 crossref_primary_10_1016_j_matdes_2024_113217 crossref_primary_10_1007_s13538_024_01485_z crossref_primary_10_1109_ACCESS_2024_3460671 crossref_primary_10_1063_5_0170485 crossref_primary_10_1038_s41598_021_86700_6 crossref_primary_10_1016_j_rinp_2020_103267 crossref_primary_10_1364_AO_413083 crossref_primary_10_1109_JMEMS_2021_3057354 crossref_primary_10_1007_s11468_024_02213_8 crossref_primary_10_1364_OL_402949 crossref_primary_10_1364_OE_472336 crossref_primary_10_1016_j_rinp_2021_104798 crossref_primary_10_1007_s11082_024_07355_x crossref_primary_10_1016_j_optlastec_2023_109526 crossref_primary_10_1007_s11468_024_02297_2 crossref_primary_10_1016_j_materresbull_2023_112444 crossref_primary_10_1364_OL_444842 crossref_primary_10_1016_j_optcom_2021_127575 crossref_primary_10_3390_nano11030598 crossref_primary_10_1140_epjp_s13360_022_03549_y crossref_primary_10_1038_s41598_021_01266_7 crossref_primary_10_1016_j_optcom_2023_129950 crossref_primary_10_3390_nano11092212 crossref_primary_10_1109_JSEN_2024_3447728 crossref_primary_10_1109_JMEMS_2020_3007738 crossref_primary_10_3390_nano11092175 crossref_primary_10_1063_5_0224213 crossref_primary_10_1016_j_optmat_2023_114389 crossref_primary_10_1016_j_physe_2024_116128 crossref_primary_10_1016_j_isci_2022_104727 crossref_primary_10_1364_AO_439400 crossref_primary_10_1007_s11468_024_02632_7 crossref_primary_10_1016_j_mtcomm_2023_105700 crossref_primary_10_1016_j_phycom_2022_101625 crossref_primary_10_1038_s41598_024_70251_7 crossref_primary_10_1016_j_rinp_2024_107846 crossref_primary_10_1016_j_sna_2024_115992 crossref_primary_10_1016_j_optcom_2022_128975 crossref_primary_10_1007_s11468_024_02466_3 crossref_primary_10_1039_D2TC03755F crossref_primary_10_3390_photonics10020111 crossref_primary_10_1364_OE_554332 crossref_primary_10_1088_1402_4896_ad5153 crossref_primary_10_1364_AO_471139 crossref_primary_10_1016_j_physe_2022_115140 crossref_primary_10_1016_j_rinp_2021_104049 crossref_primary_10_1039_D4TC02504K crossref_primary_10_3390_app10155267 crossref_primary_10_1016_j_optlastec_2024_112345 crossref_primary_10_3390_nano10081442 crossref_primary_10_1016_j_physe_2021_115131 crossref_primary_10_1016_j_cjph_2024_06_021 crossref_primary_10_1016_j_ijthermalsci_2024_109670 crossref_primary_10_1002_adpr_202200356 crossref_primary_10_1016_j_mtcomm_2024_110197 crossref_primary_10_1016_j_optmat_2022_112437 crossref_primary_10_1016_j_optlastec_2021_107103 crossref_primary_10_1016_j_optlastec_2022_108853 crossref_primary_10_1364_OE_490078 crossref_primary_10_1080_15599612_2020_1834655 crossref_primary_10_1364_PRJ_420876 crossref_primary_10_1007_s11664_022_09779_1 crossref_primary_10_1364_OE_462865 crossref_primary_10_1142_S2010135X2350025X crossref_primary_10_1016_j_physe_2022_115563 crossref_primary_10_1109_TNANO_2024_3385507 crossref_primary_10_1016_j_optlastec_2024_110692 crossref_primary_10_1016_j_physe_2023_115740 crossref_primary_10_1016_j_ijthermalsci_2024_108970 crossref_primary_10_1016_j_optcom_2023_129990 crossref_primary_10_1088_1402_4896_ad2e63 crossref_primary_10_1016_j_rinp_2020_103638 crossref_primary_10_1016_j_optlastec_2020_106635 crossref_primary_10_1016_j_optlaseng_2024_108795 |
Cites_doi | 10.1063/1.4767646 10.1002/admt.201800014 10.1364/OE.17.013373 10.1038/nphoton.2016.65 10.1364/OE.16.008825 10.1002/adma.200600106 10.1364/OE.17.000819 10.34133/2020/9468692 10.1002/adom.201800141 10.1049/el.2010.2062 10.1364/OE.19.009968 10.1364/OPTICA.5.000071 10.1038/nnano.2011.146 10.1038/s41598-018-37186-2 10.1364/OE.17.018330 10.1021/acsami.8b12210 10.1038/s41467-018-06360-5 10.1007/s11276-015-0942-z 10.1038/nature09278 10.1049/el.2009.2186 10.1364/OE.21.006519 10.1103/PhysRevLett.80.4249 10.1039/C7TC05724E 10.1038/ncomms2153 10.1364/OE.21.009144 10.1038/nphoton.2007.3 10.1364/OL.41.005333 10.1103/PhysRevLett.96.107401 10.1109/TTHZ.2011.2160021 10.1002/adom.201300384 10.1109/TMTT.2005.845211 10.1049/el:20056760 10.1109/JSTQE.2007.910984 10.1038/s41565-017-0034-6 10.1109/TMTT.2009.2017256 10.1007/s10762-013-0014-3 10.1109/MSPEC.2004.1309810 10.1364/OL.36.001230 10.1364/AO.51.006789 10.1002/adom.201900653 10.1126/science.1105371 10.1002/adfm.201705727 10.1088/2040-8978/14/7/075101 10.1063/1.3386413 10.1063/1.3021082 10.1103/PhysRevB.79.241108 10.1002/adma.201703912 10.1038/s41586-018-0421-7 10.1039/C8NR10151E 10.1038/nphoton.2008.52 10.1109/JLT.2008.925641 10.1049/el.2012.1708 10.1364/OL.44.003944 10.1103/PhysRevB.97.161405 10.1002/adom.201900379 10.1038/nphoton.2013.275 10.1364/OL.41.002879 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1364/OE.396620 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 10_1364_OE_396620 |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV CITATION CS3 DIK DSZJF DU5 E3Z EBS F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB 7X8 |
ID | FETCH-LOGICAL-c297t-500422e05cab34f21964bedcf87b2a76bb78d34d39f9de43efa9932634c378e33 |
ISSN | 1094-4087 |
IngestDate | Thu Jul 10 17:13:56 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Tue Jul 01 04:04:57 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c297t-500422e05cab34f21964bedcf87b2a76bb78d34d39f9de43efa9932634c378e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2825-0955 |
OpenAccessLink | https://doi.org/10.1364/oe.396620 |
PQID | 2424992080 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2424992080 crossref_primary_10_1364_OE_396620 crossref_citationtrail_10_1364_OE_396620 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-08 20200608 |
PublicationDateYYYYMMDD | 2020-06-08 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-08 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | Optics express |
PublicationYear | 2020 |
References | Padilla (oe-28-12-17620-R41) 2006; 96 Liu (oe-28-12-17620-R61) 2019; 9 Singh (oe-28-12-17620-R52) 2011; 36 Manjappa (oe-28-12-17620-R56) 2018; 6 Manjappa (oe-28-12-17620-R59) 2018; 9 Lee (oe-28-12-17620-R40) 2018; 6 Misra (oe-28-12-17620-R32) 2018; 10 Piesiewicz (oe-28-12-17620-R19) 2008; 14 Gerislioglu (oe-28-12-17620-R37) 2020; 2020 Chiang (oe-28-12-17620-R60) 2016; 41 Cheben (oe-28-12-17620-R36) 2018; 560 Song (oe-28-12-17620-R22) 2012; 48 Kischkat (oe-28-12-17620-R62) 2012; 51 Baena (oe-28-12-17620-R63) 2005; 53 Ahmadivand (oe-28-12-17620-R66) 2016; 41 Savo (oe-28-12-17620-R44) 2014; 2 Chen (oe-28-12-17620-R47) 2018; 3 Niu (oe-28-12-17620-R8) 2015; 21 Gerislioglu (oe-28-12-17620-R39) 2018; 97 Nagatsuma (oe-28-12-17620-R2) 2016; 10 Němec (oe-28-12-17620-R51) 2009; 79 Plum (oe-28-12-17620-R30) 2008; 93 Wu (oe-28-12-17620-R33) 2018; 30 Ahmadivand (oe-28-12-17620-R38) 2019; 11 Xu (oe-28-12-17620-R57) 2019; 7 Ju (oe-28-12-17620-R48) 2011; 6 Chen (oe-28-12-17620-R27) 2018; 13 Ducournau (oe-28-12-17620-R14) 2010; 46 Gu (oe-28-12-17620-R29) 2012; 3 Cherry (oe-28-12-17620-R1) 2004; 41 Kürner (oe-28-12-17620-R6) 2012; 5 Zhao (oe-28-12-17620-R54) 2009; 17 Klar (oe-28-12-17620-R65) 1998; 80 Yuan (oe-28-12-17620-R34) 2018; 28 Hirata (oe-28-12-17620-R10) 2009; 57 Kallfass (oe-28-12-17620-R15) 2011; 1 Chen (oe-28-12-17620-R42) 2008; 2 Hirata (oe-28-12-17620-R9) 2008; 26 Ren (oe-28-12-17620-R55) 2020; 8 Panpradit (oe-28-12-17620-R31) 2012; 14 Liu (oe-28-12-17620-R43) 2013; 21 Andryieuski (oe-28-12-17620-R28) 2013; 21 Paul (oe-28-12-17620-R46) 2009; 17 Xiao (oe-28-12-17620-R26) 2010; 466 Dicken (oe-28-12-17620-R50) 2009; 17 Xu (oe-28-12-17620-R58) 2019; 44 Linden (oe-28-12-17620-R25) 2004; 306 Roxworthy (oe-28-12-17620-R35) 2018; 5 Federici (oe-28-12-17620-R7) 2010; 107 Kats (oe-28-12-17620-R49) 2012; 101 Turitsyna (oe-28-12-17620-R18) 2005; 41 Soukoulis (oe-28-12-17620-R64) 2006; 18 Kang (oe-28-12-17620-R53) 2008; 16 Shrekenhamer (oe-28-12-17620-R45) 2011; 19 Song (oe-28-12-17620-R17) 2009; 45 Kürner (oe-28-12-17620-R4) 2014; 35 Koenig (oe-28-12-17620-R16) 2013; 7 Tonouchi (oe-28-12-17620-R3) 2007; 1 |
References_xml | – volume: 101 start-page: 221101 year: 2012 ident: oe-28-12-17620-R49 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4767646 – volume: 3 start-page: 1800014 year: 2018 ident: oe-28-12-17620-R47 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201800014 – volume: 17 start-page: 13373 year: 2009 ident: oe-28-12-17620-R54 publication-title: Opt. Express doi: 10.1364/OE.17.013373 – volume: 10 start-page: 371 year: 2016 ident: oe-28-12-17620-R2 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.65 – volume: 16 start-page: 8825 year: 2008 ident: oe-28-12-17620-R53 publication-title: Opt. Express doi: 10.1364/OE.16.008825 – volume: 18 start-page: 1941 year: 2006 ident: oe-28-12-17620-R64 publication-title: Adv. Mater. doi: 10.1002/adma.200600106 – volume: 17 start-page: 819 year: 2009 ident: oe-28-12-17620-R46 publication-title: Opt. Express doi: 10.1364/OE.17.000819 – volume: 2020 start-page: 1 year: 2020 ident: oe-28-12-17620-R37 publication-title: Research (Washington, DC, U. S.) doi: 10.34133/2020/9468692 – volume: 6 start-page: 1800141 year: 2018 ident: oe-28-12-17620-R56 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800141 – volume: 46 start-page: 1349 year: 2010 ident: oe-28-12-17620-R14 publication-title: Electron. Lett. doi: 10.1049/el.2010.2062 – volume: 19 start-page: 9968 year: 2011 ident: oe-28-12-17620-R45 publication-title: Opt. Express doi: 10.1364/OE.19.009968 – volume: 5 start-page: 71 year: 2018 ident: oe-28-12-17620-R35 publication-title: Optica doi: 10.1364/OPTICA.5.000071 – volume: 6 start-page: 630 year: 2011 ident: oe-28-12-17620-R48 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.146 – volume: 9 start-page: 1 year: 2019 ident: oe-28-12-17620-R61 publication-title: Sci. Rep. doi: 10.1038/s41598-018-37186-2 – volume: 17 start-page: 18330 year: 2009 ident: oe-28-12-17620-R50 publication-title: Opt. Express doi: 10.1364/OE.17.018330 – volume: 10 start-page: 32895 year: 2018 ident: oe-28-12-17620-R32 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12210 – volume: 9 start-page: 4056 year: 2018 ident: oe-28-12-17620-R59 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06360-5 – volume: 21 start-page: 2657 year: 2015 ident: oe-28-12-17620-R8 publication-title: Wireless Netw. doi: 10.1007/s11276-015-0942-z – volume: 466 start-page: 735 year: 2010 ident: oe-28-12-17620-R26 publication-title: Nature doi: 10.1038/nature09278 – volume: 45 start-page: 1121 year: 2009 ident: oe-28-12-17620-R17 publication-title: Electron. Lett. doi: 10.1049/el.2009.2186 – volume: 21 start-page: 6519 year: 2013 ident: oe-28-12-17620-R43 publication-title: Opt. Express doi: 10.1364/OE.21.006519 – volume: 80 start-page: 4249 year: 1998 ident: oe-28-12-17620-R65 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.4249 – volume: 6 start-page: 4959 year: 2018 ident: oe-28-12-17620-R40 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC05724E – volume: 3 start-page: 1151 year: 2012 ident: oe-28-12-17620-R29 publication-title: Nat. Commun. doi: 10.1038/ncomms2153 – volume: 21 start-page: 9144 year: 2013 ident: oe-28-12-17620-R28 publication-title: Opt. Express doi: 10.1364/OE.21.009144 – volume: 1 start-page: 97 year: 2007 ident: oe-28-12-17620-R3 publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.3 – volume: 41 start-page: 5333 year: 2016 ident: oe-28-12-17620-R66 publication-title: Opt. Lett. doi: 10.1364/OL.41.005333 – volume: 96 start-page: 107401 year: 2006 ident: oe-28-12-17620-R41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.107401 – volume: 1 start-page: 477 year: 2011 ident: oe-28-12-17620-R15 publication-title: IEEE Trans. Terahertz Sci. Technol. doi: 10.1109/TTHZ.2011.2160021 – volume: 2 start-page: 275 year: 2014 ident: oe-28-12-17620-R44 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201300384 – volume: 53 start-page: 1451 year: 2005 ident: oe-28-12-17620-R63 publication-title: IEEE Trans. Microwave Theory Tech. doi: 10.1109/TMTT.2005.845211 – volume: 41 start-page: 89 year: 2005 ident: oe-28-12-17620-R18 publication-title: Electron. Lett. doi: 10.1049/el:20056760 – volume: 14 start-page: 421 year: 2008 ident: oe-28-12-17620-R19 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2007.910984 – volume: 13 start-page: 220 year: 2018 ident: oe-28-12-17620-R27 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0034-6 – volume: 57 start-page: 1102 year: 2009 ident: oe-28-12-17620-R10 publication-title: IEEE Trans. Microwave Theory Tech. doi: 10.1109/TMTT.2009.2017256 – volume: 35 start-page: 53 year: 2014 ident: oe-28-12-17620-R4 publication-title: J. Infrared, Millimeter, Terahertz Waves doi: 10.1007/s10762-013-0014-3 – volume: 41 start-page: 58 year: 2004 ident: oe-28-12-17620-R1 publication-title: IEEE Spectrum doi: 10.1109/MSPEC.2004.1309810 – volume: 36 start-page: 1230 year: 2011 ident: oe-28-12-17620-R52 publication-title: Opt. Lett. doi: 10.1364/OL.36.001230 – volume: 51 start-page: 6789 year: 2012 ident: oe-28-12-17620-R62 publication-title: Appl. Opt. doi: 10.1364/AO.51.006789 – volume: 8 start-page: 1900653 year: 2020 ident: oe-28-12-17620-R55 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900653 – volume: 306 start-page: 1351 year: 2004 ident: oe-28-12-17620-R25 publication-title: Science doi: 10.1126/science.1105371 – volume: 28 start-page: 1705727 year: 2018 ident: oe-28-12-17620-R34 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705727 – volume: 14 start-page: 075101 year: 2012 ident: oe-28-12-17620-R31 publication-title: J. Opt. doi: 10.1088/2040-8978/14/7/075101 – volume: 107 start-page: 111101 year: 2010 ident: oe-28-12-17620-R7 publication-title: J. Appl. Phys. doi: 10.1063/1.3386413 – volume: 93 start-page: 191911 year: 2008 ident: oe-28-12-17620-R30 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3021082 – volume: 79 start-page: 241108 year: 2009 ident: oe-28-12-17620-R51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.241108 – volume: 30 start-page: 1703912 year: 2018 ident: oe-28-12-17620-R33 publication-title: Adv. Mater. doi: 10.1002/adma.201703912 – volume: 560 start-page: 565 year: 2018 ident: oe-28-12-17620-R36 publication-title: Nature doi: 10.1038/s41586-018-0421-7 – volume: 11 start-page: 8091 year: 2019 ident: oe-28-12-17620-R38 publication-title: Nanoscale doi: 10.1039/C8NR10151E – volume: 2 start-page: 295 year: 2008 ident: oe-28-12-17620-R42 publication-title: Nat. Photonics doi: 10.1038/nphoton.2008.52 – volume: 26 start-page: 2338 year: 2008 ident: oe-28-12-17620-R9 publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2008.925641 – volume: 48 start-page: 953 year: 2012 ident: oe-28-12-17620-R22 publication-title: Electron. Lett. doi: 10.1049/el.2012.1708 – volume: 44 start-page: 3944 year: 2019 ident: oe-28-12-17620-R58 publication-title: Opt. Lett. doi: 10.1364/OL.44.003944 – volume: 5 start-page: 11 year: 2012 ident: oe-28-12-17620-R6 publication-title: Terahertz Sci. Technol. – volume: 97 start-page: 161405 year: 2018 ident: oe-28-12-17620-R39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.161405 – volume: 7 start-page: 1900379 year: 2019 ident: oe-28-12-17620-R57 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900379 – volume: 7 start-page: 977 year: 2013 ident: oe-28-12-17620-R16 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.275 – volume: 41 start-page: 2879 year: 2016 ident: oe-28-12-17620-R60 publication-title: Opt. Lett. doi: 10.1364/OL.41.002879 |
SSID | ssj0014797 |
Score | 2.6036863 |
Snippet | We present a design of a tunable terahertz (THz) filter (TTF) used in an indoor communication system. The unit cell of TTF is composed of ring-shaped and... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 17620 |
Title | Tunable metamaterial filter for optical communication in the terahertz frequency range |
URI | https://www.proquest.com/docview/2424992080 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFA66IvhSWlvRXpYofRBkdE2yk8ljKVukoPvgpfo05DYotLPLOgutD_3tPblMOtvug_oyDCGTDPnCuSTnfAehj3lOhDSSZpIYcFCkNpmSmmVEKG1Ax1aMu-Tk07P85JJ9vR5et4XGY3ZJow71w9K8kuegCm2Aq8uSfQKyaVBogHfAF56AMDwfh_E8ZD79sI0Ey9NP6ZiWHPGhCx-cTJtIANLJAmkjG13qMQDWPBxUsxBP_etgFlMNkr06nnoaZ_tzmkI1nIiIh8zf7F0K6AlcBDfz7PzWRm0YDxPIwAc9deUfeHvgUkYdaJe0RaFJiu7mIB0ReAzidbBUONOcwYqOR4cUfKzQZ5EA-x_FlMIF_a1bzsrxqAyfrqI1Am6Bq1hx-nuUbo0YD8V02h-OTFLw6VGaddH-WFS_3qa4eIleRGcAfwrIvkIrtt5E6z4oV9-_RlcRX9zFFwd8MeCLI754AV98V2PAFyd8ccIXe3zfoMsvo4vPJ1msg5FpIniTDT1Rmx0MtVSUVcRxqClrdFVwRSTPleKFocxQUQljGbWVFM4sp0xTXlhKt1CvntR2G2Glh8aACWxURcAs0cJyUZjKEC6ZVHm-g_bb1Sl1JIl3tUq-l_9hsIP2UtdpYEZZ1mm3XeIS5Ja7jJK1nczvS5eWJAQBh-XtYwZ6hzb-7tf3qNfM5vYDmION6vtjlL7fCX8A2tdjrw |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+metamaterial+filter+for+optical+communication+in+the+terahertz+frequency+range&rft.jtitle=Optics+express&rft.au=Yang%2C+Wei&rft.au=Lin%2C+Yu-Sheng&rft.date=2020-06-08&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=28&rft.issue=12&rft.spage=17620&rft_id=info:doi/10.1364%2FOE.396620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_396620 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |