Tunable metamaterial filter for optical communication in the terahertz frequency range

We present a design of a tunable terahertz (THz) filter (TTF) used in an indoor communication system. The unit cell of TTF is composed of ring-shaped and cross-shaped nanostructures. By utilizing the micro-electro-mechanical system (MEMS) technique to modify the height between the ring-shaped and cr...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 28; no. 12; p. 17620
Main Authors Yang, Wei, Lin, Yu-Sheng
Format Journal Article
LanguageEnglish
Published 08.06.2020
Online AccessGet full text

Cover

Loading…
Abstract We present a design of a tunable terahertz (THz) filter (TTF) used in an indoor communication system. The unit cell of TTF is composed of ring-shaped and cross-shaped nanostructures. By utilizing the micro-electro-mechanical system (MEMS) technique to modify the height between the ring-shaped and cross-shaped nanostructures in the incident transverse electric (TE) mode, the resonant frequencies can be tuned from 0.530 THz to 0.760 THz, which covers an atmospheric window from 0.625 THz to 0.725 THz for indoor wireless optical communication applications. This design of TTF provides an effective approach to select and filter specific signals. It makes the data processing more flexible at the transmission end of the communication system. Furthermore, such a TTF design can be realized the commercialization of communication system components due to its integrated circuit (IC) process compatibility, miniaturization and high flexibility.
AbstractList We present a design of a tunable terahertz (THz) filter (TTF) used in an indoor communication system. The unit cell of TTF is composed of ring-shaped and cross-shaped nanostructures. By utilizing the micro-electro-mechanical system (MEMS) technique to modify the height between the ring-shaped and cross-shaped nanostructures in the incident transverse electric (TE) mode, the resonant frequencies can be tuned from 0.530 THz to 0.760 THz, which covers an atmospheric window from 0.625 THz to 0.725 THz for indoor wireless optical communication applications. This design of TTF provides an effective approach to select and filter specific signals. It makes the data processing more flexible at the transmission end of the communication system. Furthermore, such a TTF design can be realized the commercialization of communication system components due to its integrated circuit (IC) process compatibility, miniaturization and high flexibility.We present a design of a tunable terahertz (THz) filter (TTF) used in an indoor communication system. The unit cell of TTF is composed of ring-shaped and cross-shaped nanostructures. By utilizing the micro-electro-mechanical system (MEMS) technique to modify the height between the ring-shaped and cross-shaped nanostructures in the incident transverse electric (TE) mode, the resonant frequencies can be tuned from 0.530 THz to 0.760 THz, which covers an atmospheric window from 0.625 THz to 0.725 THz for indoor wireless optical communication applications. This design of TTF provides an effective approach to select and filter specific signals. It makes the data processing more flexible at the transmission end of the communication system. Furthermore, such a TTF design can be realized the commercialization of communication system components due to its integrated circuit (IC) process compatibility, miniaturization and high flexibility.
We present a design of a tunable terahertz (THz) filter (TTF) used in an indoor communication system. The unit cell of TTF is composed of ring-shaped and cross-shaped nanostructures. By utilizing the micro-electro-mechanical system (MEMS) technique to modify the height between the ring-shaped and cross-shaped nanostructures in the incident transverse electric (TE) mode, the resonant frequencies can be tuned from 0.530 THz to 0.760 THz, which covers an atmospheric window from 0.625 THz to 0.725 THz for indoor wireless optical communication applications. This design of TTF provides an effective approach to select and filter specific signals. It makes the data processing more flexible at the transmission end of the communication system. Furthermore, such a TTF design can be realized the commercialization of communication system components due to its integrated circuit (IC) process compatibility, miniaturization and high flexibility.
Author Lin, Yu-Sheng
Yang, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Yang
  fullname: Yang, Wei
– sequence: 2
  givenname: Yu-Sheng
  orcidid: 0000-0002-2825-0955
  surname: Lin
  fullname: Lin, Yu-Sheng
BookMark eNptkD1PwzAQhi1UJNrCwD_wCENax3bjeERV-JAqdSmskeOcqVFiF9sZyq8nUAaEmO7R6bk73TtDE-cdIHSdk0XOCr7cVgsmi4KSMzTNieQZJ6WY_OILNIvxjZCcCymm6GU3ONV0gHtIqlcJglUdNrYbCRsfsD8kq8eW9n0_uBGT9Q5bh9Me8CipPYT0gU2A9wGcPuKg3CtconOjughXP3WOnu-r3fox22wfntZ3m0xTKVK2IoRTCmSlVcO4obkseAOtNqVoqBJF04iyZbxl0sgWOAOjpGS0YFwzUQJjc3Rz2nsIfrwfU93bqKHrlAM_xJpyyqWkpCSjentSdfAxBjD1IdhehWOdk_oru3pb1afsRnf5x9U2fX-egrLdPxOf9bZzrg
CitedBy_id crossref_primary_10_1016_j_jmrt_2023_03_058
crossref_primary_10_1088_2040_8986_ac695f
crossref_primary_10_1016_j_ijmecsci_2025_109916
crossref_primary_10_1364_JOSAB_448040
crossref_primary_10_1038_s41598_021_95468_8
crossref_primary_10_1016_j_isci_2022_103799
crossref_primary_10_1103_PhysRevApplied_18_064080
crossref_primary_10_1117_1_OE_63_4_045103
crossref_primary_10_1080_17452759_2023_2230468
crossref_primary_10_1166_jno_2024_3639
crossref_primary_10_1038_s41598_022_14911_6
crossref_primary_10_1109_TWC_2022_3168399
crossref_primary_10_1016_j_optlastec_2021_107323
crossref_primary_10_1080_09243046_2024_2397204
crossref_primary_10_1364_OME_442626
crossref_primary_10_3390_math11040800
crossref_primary_10_1016_j_ijleo_2021_167669
crossref_primary_10_1186_s11671_023_03843_3
crossref_primary_10_1166_jno_2023_3500
crossref_primary_10_1364_AO_550197
crossref_primary_10_1515_freq_2021_0204
crossref_primary_10_1039_D4TC03245D
crossref_primary_10_1039_D2RA03014D
crossref_primary_10_1016_j_sna_2022_113667
crossref_primary_10_1016_j_optlastec_2022_108488
crossref_primary_10_1016_j_physleta_2021_127523
crossref_primary_10_1016_j_jestch_2024_101801
crossref_primary_10_1007_s00339_022_05602_0
crossref_primary_10_1364_AO_489529
crossref_primary_10_1002_adpr_202100239
crossref_primary_10_1016_j_matdes_2024_113217
crossref_primary_10_1007_s13538_024_01485_z
crossref_primary_10_1109_ACCESS_2024_3460671
crossref_primary_10_1063_5_0170485
crossref_primary_10_1038_s41598_021_86700_6
crossref_primary_10_1016_j_rinp_2020_103267
crossref_primary_10_1364_AO_413083
crossref_primary_10_1109_JMEMS_2021_3057354
crossref_primary_10_1007_s11468_024_02213_8
crossref_primary_10_1364_OL_402949
crossref_primary_10_1364_OE_472336
crossref_primary_10_1016_j_rinp_2021_104798
crossref_primary_10_1007_s11082_024_07355_x
crossref_primary_10_1016_j_optlastec_2023_109526
crossref_primary_10_1007_s11468_024_02297_2
crossref_primary_10_1016_j_materresbull_2023_112444
crossref_primary_10_1364_OL_444842
crossref_primary_10_1016_j_optcom_2021_127575
crossref_primary_10_3390_nano11030598
crossref_primary_10_1140_epjp_s13360_022_03549_y
crossref_primary_10_1038_s41598_021_01266_7
crossref_primary_10_1016_j_optcom_2023_129950
crossref_primary_10_3390_nano11092212
crossref_primary_10_1109_JSEN_2024_3447728
crossref_primary_10_1109_JMEMS_2020_3007738
crossref_primary_10_3390_nano11092175
crossref_primary_10_1063_5_0224213
crossref_primary_10_1016_j_optmat_2023_114389
crossref_primary_10_1016_j_physe_2024_116128
crossref_primary_10_1016_j_isci_2022_104727
crossref_primary_10_1364_AO_439400
crossref_primary_10_1007_s11468_024_02632_7
crossref_primary_10_1016_j_mtcomm_2023_105700
crossref_primary_10_1016_j_phycom_2022_101625
crossref_primary_10_1038_s41598_024_70251_7
crossref_primary_10_1016_j_rinp_2024_107846
crossref_primary_10_1016_j_sna_2024_115992
crossref_primary_10_1016_j_optcom_2022_128975
crossref_primary_10_1007_s11468_024_02466_3
crossref_primary_10_1039_D2TC03755F
crossref_primary_10_3390_photonics10020111
crossref_primary_10_1364_OE_554332
crossref_primary_10_1088_1402_4896_ad5153
crossref_primary_10_1364_AO_471139
crossref_primary_10_1016_j_physe_2022_115140
crossref_primary_10_1016_j_rinp_2021_104049
crossref_primary_10_1039_D4TC02504K
crossref_primary_10_3390_app10155267
crossref_primary_10_1016_j_optlastec_2024_112345
crossref_primary_10_3390_nano10081442
crossref_primary_10_1016_j_physe_2021_115131
crossref_primary_10_1016_j_cjph_2024_06_021
crossref_primary_10_1016_j_ijthermalsci_2024_109670
crossref_primary_10_1002_adpr_202200356
crossref_primary_10_1016_j_mtcomm_2024_110197
crossref_primary_10_1016_j_optmat_2022_112437
crossref_primary_10_1016_j_optlastec_2021_107103
crossref_primary_10_1016_j_optlastec_2022_108853
crossref_primary_10_1364_OE_490078
crossref_primary_10_1080_15599612_2020_1834655
crossref_primary_10_1364_PRJ_420876
crossref_primary_10_1007_s11664_022_09779_1
crossref_primary_10_1364_OE_462865
crossref_primary_10_1142_S2010135X2350025X
crossref_primary_10_1016_j_physe_2022_115563
crossref_primary_10_1109_TNANO_2024_3385507
crossref_primary_10_1016_j_optlastec_2024_110692
crossref_primary_10_1016_j_physe_2023_115740
crossref_primary_10_1016_j_ijthermalsci_2024_108970
crossref_primary_10_1016_j_optcom_2023_129990
crossref_primary_10_1088_1402_4896_ad2e63
crossref_primary_10_1016_j_rinp_2020_103638
crossref_primary_10_1016_j_optlastec_2020_106635
crossref_primary_10_1016_j_optlaseng_2024_108795
Cites_doi 10.1063/1.4767646
10.1002/admt.201800014
10.1364/OE.17.013373
10.1038/nphoton.2016.65
10.1364/OE.16.008825
10.1002/adma.200600106
10.1364/OE.17.000819
10.34133/2020/9468692
10.1002/adom.201800141
10.1049/el.2010.2062
10.1364/OE.19.009968
10.1364/OPTICA.5.000071
10.1038/nnano.2011.146
10.1038/s41598-018-37186-2
10.1364/OE.17.018330
10.1021/acsami.8b12210
10.1038/s41467-018-06360-5
10.1007/s11276-015-0942-z
10.1038/nature09278
10.1049/el.2009.2186
10.1364/OE.21.006519
10.1103/PhysRevLett.80.4249
10.1039/C7TC05724E
10.1038/ncomms2153
10.1364/OE.21.009144
10.1038/nphoton.2007.3
10.1364/OL.41.005333
10.1103/PhysRevLett.96.107401
10.1109/TTHZ.2011.2160021
10.1002/adom.201300384
10.1109/TMTT.2005.845211
10.1049/el:20056760
10.1109/JSTQE.2007.910984
10.1038/s41565-017-0034-6
10.1109/TMTT.2009.2017256
10.1007/s10762-013-0014-3
10.1109/MSPEC.2004.1309810
10.1364/OL.36.001230
10.1364/AO.51.006789
10.1002/adom.201900653
10.1126/science.1105371
10.1002/adfm.201705727
10.1088/2040-8978/14/7/075101
10.1063/1.3386413
10.1063/1.3021082
10.1103/PhysRevB.79.241108
10.1002/adma.201703912
10.1038/s41586-018-0421-7
10.1039/C8NR10151E
10.1038/nphoton.2008.52
10.1109/JLT.2008.925641
10.1049/el.2012.1708
10.1364/OL.44.003944
10.1103/PhysRevB.97.161405
10.1002/adom.201900379
10.1038/nphoton.2013.275
10.1364/OL.41.002879
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1364/OE.396620
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1094-4087
ExternalDocumentID 10_1364_OE_396620
GroupedDBID ---
123
29N
2WC
8SL
AAFWJ
AAWJZ
AAYXX
ACGFO
ADBBV
AEDJG
AENEX
AFPKN
AKGWG
ALMA_UNASSIGNED_HOLDINGS
ATHME
AYPRP
AZSQR
AZYMN
BAWUL
BCNDV
CITATION
CS3
DIK
DSZJF
DU5
E3Z
EBS
F5P
GROUPED_DOAJ
GX1
KQ8
M~E
OFLFD
OK1
OPJBK
OPLUZ
OVT
P2P
RNS
ROL
ROS
TR2
TR6
XSB
7X8
ID FETCH-LOGICAL-c297t-500422e05cab34f21964bedcf87b2a76bb78d34d39f9de43efa9932634c378e33
ISSN 1094-4087
IngestDate Thu Jul 10 17:13:56 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
Tue Jul 01 04:04:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-500422e05cab34f21964bedcf87b2a76bb78d34d39f9de43efa9932634c378e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2825-0955
OpenAccessLink https://doi.org/10.1364/oe.396620
PQID 2424992080
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2424992080
crossref_primary_10_1364_OE_396620
crossref_citationtrail_10_1364_OE_396620
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-08
20200608
PublicationDateYYYYMMDD 2020-06-08
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-08
  day: 08
PublicationDecade 2020
PublicationTitle Optics express
PublicationYear 2020
References Padilla (oe-28-12-17620-R41) 2006; 96
Liu (oe-28-12-17620-R61) 2019; 9
Singh (oe-28-12-17620-R52) 2011; 36
Manjappa (oe-28-12-17620-R56) 2018; 6
Manjappa (oe-28-12-17620-R59) 2018; 9
Lee (oe-28-12-17620-R40) 2018; 6
Misra (oe-28-12-17620-R32) 2018; 10
Piesiewicz (oe-28-12-17620-R19) 2008; 14
Gerislioglu (oe-28-12-17620-R37) 2020; 2020
Chiang (oe-28-12-17620-R60) 2016; 41
Cheben (oe-28-12-17620-R36) 2018; 560
Song (oe-28-12-17620-R22) 2012; 48
Kischkat (oe-28-12-17620-R62) 2012; 51
Baena (oe-28-12-17620-R63) 2005; 53
Ahmadivand (oe-28-12-17620-R66) 2016; 41
Savo (oe-28-12-17620-R44) 2014; 2
Chen (oe-28-12-17620-R47) 2018; 3
Niu (oe-28-12-17620-R8) 2015; 21
Gerislioglu (oe-28-12-17620-R39) 2018; 97
Nagatsuma (oe-28-12-17620-R2) 2016; 10
Němec (oe-28-12-17620-R51) 2009; 79
Plum (oe-28-12-17620-R30) 2008; 93
Wu (oe-28-12-17620-R33) 2018; 30
Ahmadivand (oe-28-12-17620-R38) 2019; 11
Xu (oe-28-12-17620-R57) 2019; 7
Ju (oe-28-12-17620-R48) 2011; 6
Chen (oe-28-12-17620-R27) 2018; 13
Ducournau (oe-28-12-17620-R14) 2010; 46
Gu (oe-28-12-17620-R29) 2012; 3
Cherry (oe-28-12-17620-R1) 2004; 41
Kürner (oe-28-12-17620-R6) 2012; 5
Zhao (oe-28-12-17620-R54) 2009; 17
Klar (oe-28-12-17620-R65) 1998; 80
Yuan (oe-28-12-17620-R34) 2018; 28
Hirata (oe-28-12-17620-R10) 2009; 57
Kallfass (oe-28-12-17620-R15) 2011; 1
Chen (oe-28-12-17620-R42) 2008; 2
Hirata (oe-28-12-17620-R9) 2008; 26
Ren (oe-28-12-17620-R55) 2020; 8
Panpradit (oe-28-12-17620-R31) 2012; 14
Liu (oe-28-12-17620-R43) 2013; 21
Andryieuski (oe-28-12-17620-R28) 2013; 21
Paul (oe-28-12-17620-R46) 2009; 17
Xiao (oe-28-12-17620-R26) 2010; 466
Dicken (oe-28-12-17620-R50) 2009; 17
Xu (oe-28-12-17620-R58) 2019; 44
Linden (oe-28-12-17620-R25) 2004; 306
Roxworthy (oe-28-12-17620-R35) 2018; 5
Federici (oe-28-12-17620-R7) 2010; 107
Kats (oe-28-12-17620-R49) 2012; 101
Turitsyna (oe-28-12-17620-R18) 2005; 41
Soukoulis (oe-28-12-17620-R64) 2006; 18
Kang (oe-28-12-17620-R53) 2008; 16
Shrekenhamer (oe-28-12-17620-R45) 2011; 19
Song (oe-28-12-17620-R17) 2009; 45
Kürner (oe-28-12-17620-R4) 2014; 35
Koenig (oe-28-12-17620-R16) 2013; 7
Tonouchi (oe-28-12-17620-R3) 2007; 1
References_xml – volume: 101
  start-page: 221101
  year: 2012
  ident: oe-28-12-17620-R49
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4767646
– volume: 3
  start-page: 1800014
  year: 2018
  ident: oe-28-12-17620-R47
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201800014
– volume: 17
  start-page: 13373
  year: 2009
  ident: oe-28-12-17620-R54
  publication-title: Opt. Express
  doi: 10.1364/OE.17.013373
– volume: 10
  start-page: 371
  year: 2016
  ident: oe-28-12-17620-R2
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.65
– volume: 16
  start-page: 8825
  year: 2008
  ident: oe-28-12-17620-R53
  publication-title: Opt. Express
  doi: 10.1364/OE.16.008825
– volume: 18
  start-page: 1941
  year: 2006
  ident: oe-28-12-17620-R64
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600106
– volume: 17
  start-page: 819
  year: 2009
  ident: oe-28-12-17620-R46
  publication-title: Opt. Express
  doi: 10.1364/OE.17.000819
– volume: 2020
  start-page: 1
  year: 2020
  ident: oe-28-12-17620-R37
  publication-title: Research (Washington, DC, U. S.)
  doi: 10.34133/2020/9468692
– volume: 6
  start-page: 1800141
  year: 2018
  ident: oe-28-12-17620-R56
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800141
– volume: 46
  start-page: 1349
  year: 2010
  ident: oe-28-12-17620-R14
  publication-title: Electron. Lett.
  doi: 10.1049/el.2010.2062
– volume: 19
  start-page: 9968
  year: 2011
  ident: oe-28-12-17620-R45
  publication-title: Opt. Express
  doi: 10.1364/OE.19.009968
– volume: 5
  start-page: 71
  year: 2018
  ident: oe-28-12-17620-R35
  publication-title: Optica
  doi: 10.1364/OPTICA.5.000071
– volume: 6
  start-page: 630
  year: 2011
  ident: oe-28-12-17620-R48
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.146
– volume: 9
  start-page: 1
  year: 2019
  ident: oe-28-12-17620-R61
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37186-2
– volume: 17
  start-page: 18330
  year: 2009
  ident: oe-28-12-17620-R50
  publication-title: Opt. Express
  doi: 10.1364/OE.17.018330
– volume: 10
  start-page: 32895
  year: 2018
  ident: oe-28-12-17620-R32
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12210
– volume: 9
  start-page: 4056
  year: 2018
  ident: oe-28-12-17620-R59
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06360-5
– volume: 21
  start-page: 2657
  year: 2015
  ident: oe-28-12-17620-R8
  publication-title: Wireless Netw.
  doi: 10.1007/s11276-015-0942-z
– volume: 466
  start-page: 735
  year: 2010
  ident: oe-28-12-17620-R26
  publication-title: Nature
  doi: 10.1038/nature09278
– volume: 45
  start-page: 1121
  year: 2009
  ident: oe-28-12-17620-R17
  publication-title: Electron. Lett.
  doi: 10.1049/el.2009.2186
– volume: 21
  start-page: 6519
  year: 2013
  ident: oe-28-12-17620-R43
  publication-title: Opt. Express
  doi: 10.1364/OE.21.006519
– volume: 80
  start-page: 4249
  year: 1998
  ident: oe-28-12-17620-R65
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.4249
– volume: 6
  start-page: 4959
  year: 2018
  ident: oe-28-12-17620-R40
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC05724E
– volume: 3
  start-page: 1151
  year: 2012
  ident: oe-28-12-17620-R29
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2153
– volume: 21
  start-page: 9144
  year: 2013
  ident: oe-28-12-17620-R28
  publication-title: Opt. Express
  doi: 10.1364/OE.21.009144
– volume: 1
  start-page: 97
  year: 2007
  ident: oe-28-12-17620-R3
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2007.3
– volume: 41
  start-page: 5333
  year: 2016
  ident: oe-28-12-17620-R66
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.005333
– volume: 96
  start-page: 107401
  year: 2006
  ident: oe-28-12-17620-R41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.107401
– volume: 1
  start-page: 477
  year: 2011
  ident: oe-28-12-17620-R15
  publication-title: IEEE Trans. Terahertz Sci. Technol.
  doi: 10.1109/TTHZ.2011.2160021
– volume: 2
  start-page: 275
  year: 2014
  ident: oe-28-12-17620-R44
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201300384
– volume: 53
  start-page: 1451
  year: 2005
  ident: oe-28-12-17620-R63
  publication-title: IEEE Trans. Microwave Theory Tech.
  doi: 10.1109/TMTT.2005.845211
– volume: 41
  start-page: 89
  year: 2005
  ident: oe-28-12-17620-R18
  publication-title: Electron. Lett.
  doi: 10.1049/el:20056760
– volume: 14
  start-page: 421
  year: 2008
  ident: oe-28-12-17620-R19
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2007.910984
– volume: 13
  start-page: 220
  year: 2018
  ident: oe-28-12-17620-R27
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0034-6
– volume: 57
  start-page: 1102
  year: 2009
  ident: oe-28-12-17620-R10
  publication-title: IEEE Trans. Microwave Theory Tech.
  doi: 10.1109/TMTT.2009.2017256
– volume: 35
  start-page: 53
  year: 2014
  ident: oe-28-12-17620-R4
  publication-title: J. Infrared, Millimeter, Terahertz Waves
  doi: 10.1007/s10762-013-0014-3
– volume: 41
  start-page: 58
  year: 2004
  ident: oe-28-12-17620-R1
  publication-title: IEEE Spectrum
  doi: 10.1109/MSPEC.2004.1309810
– volume: 36
  start-page: 1230
  year: 2011
  ident: oe-28-12-17620-R52
  publication-title: Opt. Lett.
  doi: 10.1364/OL.36.001230
– volume: 51
  start-page: 6789
  year: 2012
  ident: oe-28-12-17620-R62
  publication-title: Appl. Opt.
  doi: 10.1364/AO.51.006789
– volume: 8
  start-page: 1900653
  year: 2020
  ident: oe-28-12-17620-R55
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900653
– volume: 306
  start-page: 1351
  year: 2004
  ident: oe-28-12-17620-R25
  publication-title: Science
  doi: 10.1126/science.1105371
– volume: 28
  start-page: 1705727
  year: 2018
  ident: oe-28-12-17620-R34
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705727
– volume: 14
  start-page: 075101
  year: 2012
  ident: oe-28-12-17620-R31
  publication-title: J. Opt.
  doi: 10.1088/2040-8978/14/7/075101
– volume: 107
  start-page: 111101
  year: 2010
  ident: oe-28-12-17620-R7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3386413
– volume: 93
  start-page: 191911
  year: 2008
  ident: oe-28-12-17620-R30
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3021082
– volume: 79
  start-page: 241108
  year: 2009
  ident: oe-28-12-17620-R51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.241108
– volume: 30
  start-page: 1703912
  year: 2018
  ident: oe-28-12-17620-R33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703912
– volume: 560
  start-page: 565
  year: 2018
  ident: oe-28-12-17620-R36
  publication-title: Nature
  doi: 10.1038/s41586-018-0421-7
– volume: 11
  start-page: 8091
  year: 2019
  ident: oe-28-12-17620-R38
  publication-title: Nanoscale
  doi: 10.1039/C8NR10151E
– volume: 2
  start-page: 295
  year: 2008
  ident: oe-28-12-17620-R42
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2008.52
– volume: 26
  start-page: 2338
  year: 2008
  ident: oe-28-12-17620-R9
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2008.925641
– volume: 48
  start-page: 953
  year: 2012
  ident: oe-28-12-17620-R22
  publication-title: Electron. Lett.
  doi: 10.1049/el.2012.1708
– volume: 44
  start-page: 3944
  year: 2019
  ident: oe-28-12-17620-R58
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.003944
– volume: 5
  start-page: 11
  year: 2012
  ident: oe-28-12-17620-R6
  publication-title: Terahertz Sci. Technol.
– volume: 97
  start-page: 161405
  year: 2018
  ident: oe-28-12-17620-R39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.161405
– volume: 7
  start-page: 1900379
  year: 2019
  ident: oe-28-12-17620-R57
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900379
– volume: 7
  start-page: 977
  year: 2013
  ident: oe-28-12-17620-R16
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.275
– volume: 41
  start-page: 2879
  year: 2016
  ident: oe-28-12-17620-R60
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.002879
SSID ssj0014797
Score 2.6036863
Snippet We present a design of a tunable terahertz (THz) filter (TTF) used in an indoor communication system. The unit cell of TTF is composed of ring-shaped and...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 17620
Title Tunable metamaterial filter for optical communication in the terahertz frequency range
URI https://www.proquest.com/docview/2424992080
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFA66IvhSWlvRXpYofRBkdE2yk8ljKVukoPvgpfo05DYotLPLOgutD_3tPblMOtvug_oyDCGTDPnCuSTnfAehj3lOhDSSZpIYcFCkNpmSmmVEKG1Ax1aMu-Tk07P85JJ9vR5et4XGY3ZJow71w9K8kuegCm2Aq8uSfQKyaVBogHfAF56AMDwfh_E8ZD79sI0Ey9NP6ZiWHPGhCx-cTJtIANLJAmkjG13qMQDWPBxUsxBP_etgFlMNkr06nnoaZ_tzmkI1nIiIh8zf7F0K6AlcBDfz7PzWRm0YDxPIwAc9deUfeHvgUkYdaJe0RaFJiu7mIB0ReAzidbBUONOcwYqOR4cUfKzQZ5EA-x_FlMIF_a1bzsrxqAyfrqI1Am6Bq1hx-nuUbo0YD8V02h-OTFLw6VGaddH-WFS_3qa4eIleRGcAfwrIvkIrtt5E6z4oV9-_RlcRX9zFFwd8MeCLI754AV98V2PAFyd8ccIXe3zfoMsvo4vPJ1msg5FpIniTDT1Rmx0MtVSUVcRxqClrdFVwRSTPleKFocxQUQljGbWVFM4sp0xTXlhKt1CvntR2G2Glh8aACWxURcAs0cJyUZjKEC6ZVHm-g_bb1Sl1JIl3tUq-l_9hsIP2UtdpYEZZ1mm3XeIS5Ja7jJK1nczvS5eWJAQBh-XtYwZ6hzb-7tf3qNfM5vYDmION6vtjlL7fCX8A2tdjrw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunable+metamaterial+filter+for+optical+communication+in+the+terahertz+frequency+range&rft.jtitle=Optics+express&rft.au=Yang%2C+Wei&rft.au=Lin%2C+Yu-Sheng&rft.date=2020-06-08&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=28&rft.issue=12&rft.spage=17620&rft_id=info:doi/10.1364%2FOE.396620&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_396620
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon