An atomistic modeling framework for valence change memory cells

We present a framework dedicated to modeling the resistive switching operation of Valence Change Memory (VCM) cells. The method combines an atomistic description of the device structure, a Kinetic Monte Carlo (KMC) model for the creation and diffusion of oxygen vacancies in the central oxide under a...

Full description

Saved in:
Bibliographic Details
Published inSolid-state electronics Vol. 199; p. 108506
Main Authors Kaniselvan, Manasa, Luisier, Mathieu, Mladenović, Marko
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a framework dedicated to modeling the resistive switching operation of Valence Change Memory (VCM) cells. The method combines an atomistic description of the device structure, a Kinetic Monte Carlo (KMC) model for the creation and diffusion of oxygen vacancies in the central oxide under an external field, and an ab initio quantum transport method to calculate electrical current and conductance. As such, it reproduces a realistically stochastic device operation and its impact on the resulting conductance. We demonstrate this framework by simulating a switching cycle for a TiN/HfO2/TiN VCM cell, and see a clear current hysteresis between high/low resistance states, with a conductance ratio of one order of magnitude. Additionally, we observe that the changes in conductance originate from the creation and recombination of vacancies near the active electrode, effectively modulating a tunneling gap for the current. This framework can be used to further investigate the mechanisms behind resistive switching at an atomistic scale and optimize VCM material stacks and geometries. •We develop a framework to model resistive switching in Valence Change Memory (VCM) at an atomistic resolution.•The method combines stochastic Kinetic Monte Carlo simulations with a Quantum Transport solver.•Simulation results reveal a tunneling-gap-mediated switching mechanism between low- and high-resistance states.
AbstractList We present a framework dedicated to modeling the resistive switching operation of Valence Change Memory (VCM) cells. The method combines an atomistic description of the device structure, a Kinetic Monte Carlo (KMC) model for the creation and diffusion of oxygen vacancies in the central oxide under an external field, and an ab initio quantum transport method to calculate electrical current and conductance. As such, it reproduces a realistically stochastic device operation and its impact on the resulting conductance. We demonstrate this framework by simulating a switching cycle for a TiN/HfO2/TiN VCM cell, and see a clear current hysteresis between high/low resistance states, with a conductance ratio of one order of magnitude. Additionally, we observe that the changes in conductance originate from the creation and recombination of vacancies near the active electrode, effectively modulating a tunneling gap for the current. This framework can be used to further investigate the mechanisms behind resistive switching at an atomistic scale and optimize VCM material stacks and geometries. •We develop a framework to model resistive switching in Valence Change Memory (VCM) at an atomistic resolution.•The method combines stochastic Kinetic Monte Carlo simulations with a Quantum Transport solver.•Simulation results reveal a tunneling-gap-mediated switching mechanism between low- and high-resistance states.
ArticleNumber 108506
Author Kaniselvan, Manasa
Luisier, Mathieu
Mladenović, Marko
Author_xml – sequence: 1
  givenname: Manasa
  orcidid: 0000-0002-5331-8878
  surname: Kaniselvan
  fullname: Kaniselvan, Manasa
– sequence: 2
  givenname: Mathieu
  surname: Luisier
  fullname: Luisier, Mathieu
– sequence: 3
  givenname: Marko
  surname: Mladenović
  fullname: Mladenović, Marko
  email: mmladenovic@iis.ee.ethz.ch
BookMark eNp9kMtqwzAQRUVJoUnaD-hOP-B0JL_GdFFC6AsC3bRrIcujVKltFcmk5O9r4667GgbmDPeeFVv0vifGbgVsBIji7riJkTYSpBx3zKG4YEuBZZXIDPIFWwKkmIjx9IqtYjwCgCwELNnDtud68J2LgzO88w21rj9wG3RHPz58cesDP-mWekPcfOr-QLyjzoczN9S28ZpdWt1Guvmba_bx9Pi-e0n2b8-vu-0-MbIqhySzdZ1ZqLG0ukRhRE4FlmBlI9Oqboo0M4VELMkAIpHEGnWVA0qDKRis0zUT818TfIyBrPoOrtPhrASoyYA6qtGAmgyo2cDI3M8MjcFOjoKKxk1FGhfIDKrx7h_6Fw8UZV0
CitedBy_id crossref_primary_10_1039_D3NH00476G
Cites_doi 10.1016/j.cpc.2021.108171
10.1038/npjcompumats.2015.11
10.3390/nano11051261
10.1080/00018732.2022.2084006
10.1063/1.1415500
10.1039/D0NA00168F
10.1038/nnano.2012.240
10.3389/fnano.2021.734121
10.1088/0034-4885/69/2/R02
10.1063/5.0007045
10.1021/acsnano.1c01466
10.1021/acsami.1c14667
10.1063/1.3671565
10.1103/PhysRevB.74.205323
10.1109/TED.2017.2785352
10.3389/fchem.2019.00202
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.sse.2022.108506
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2405
ExternalDocumentID 10_1016_j_sse_2022_108506
S0038110122002775
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
PZZ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
TAE
TN5
WH7
WUQ
XFK
XSW
ZMT
ZY4
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c297t-4fbb4f0b87fa781c15e6870f2d239bd634c62887ec088ee28b8a95082c830c8b3
IEDL.DBID .~1
ISSN 0038-1101
IngestDate Thu Sep 26 16:09:36 EDT 2024
Fri Feb 23 02:40:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords RRAM
Kinetic Monte Carlo
Dielectric breakdown
Valence change memory
Memristors
Quantum transport
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-4fbb4f0b87fa781c15e6870f2d239bd634c62887ec088ee28b8a95082c830c8b3
ORCID 0000-0002-5331-8878
ParticipantIDs crossref_primary_10_1016_j_sse_2022_108506
elsevier_sciencedirect_doi_10_1016_j_sse_2022_108506
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Solid-state electronics
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Urquiza, Islam, van Duin, Cartoixà, Strachan (b4) 2021; 15
O’Hara, Bersuker, Demkov (b13) 2014; 115
Zeumault, Alam, Wood, Weiss, Aziz, Rose (b3) 2021; 3
Kühne, Iannuzzi, Ben, Rybkin, Seewald, Stein (b10) 2020; 152
Robertson (b17) 2005; 69
Senftle, Hong, Islam, Kylasa, Zheng, Shin (b9) 2016; 2
Andersen, Panosetti, Reuter (b12) 2019; 7
Padovani, Larcher, Woo, Hwang (b2) 2017
Roldán, González-Cordero, Picos, Miranda, Palumbo, Jiménez-Molinos (b19) 2021; 11
Henkelman, Jónsson (b11) 2001; 115
Bersuker, Gilmer, Veksler, Kirsch, Vandelli, Padovani (b6) 2011; 110
Luisier, Schenk, Fichtner, Klimeck (b15) 2006; 74
Kopperberg, Wiefels, Liberda, Waser, Menzel (b7) 2021; 13
Padilha, McKenna (b5) 2018; 2
Dittmann, Menzel, Waser (b1) 2021; 70
Yang, Strukov, Stewart (b18) 2012; 8
Traore, Blaise, Sklenard, Vianello, Magyari-Kope, Nishi (b14) 2018; 65
Ducry, Aeschlimann, Luisier (b16) 2020; 2
Thompson, Aktulga, Berger, Bolintineanu, Brown, Crozier (b8) 2022; 271
Kopperberg (10.1016/j.sse.2022.108506_b7) 2021; 13
Bersuker (10.1016/j.sse.2022.108506_b6) 2011; 110
Padovani (10.1016/j.sse.2022.108506_b2) 2017
Henkelman (10.1016/j.sse.2022.108506_b11) 2001; 115
O’Hara (10.1016/j.sse.2022.108506_b13) 2014; 115
Yang (10.1016/j.sse.2022.108506_b18) 2012; 8
Thompson (10.1016/j.sse.2022.108506_b8) 2022; 271
Senftle (10.1016/j.sse.2022.108506_b9) 2016; 2
Traore (10.1016/j.sse.2022.108506_b14) 2018; 65
Urquiza (10.1016/j.sse.2022.108506_b4) 2021; 15
Padilha (10.1016/j.sse.2022.108506_b5) 2018; 2
Kühne (10.1016/j.sse.2022.108506_b10) 2020; 152
Luisier (10.1016/j.sse.2022.108506_b15) 2006; 74
Roldán (10.1016/j.sse.2022.108506_b19) 2021; 11
Ducry (10.1016/j.sse.2022.108506_b16) 2020; 2
Zeumault (10.1016/j.sse.2022.108506_b3) 2021; 3
Dittmann (10.1016/j.sse.2022.108506_b1) 2021; 70
Andersen (10.1016/j.sse.2022.108506_b12) 2019; 7
Robertson (10.1016/j.sse.2022.108506_b17) 2005; 69
References_xml – volume: 271
  year: 2022
  ident: b8
  article-title: LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
  publication-title: Comput Phys Comm
  contributor:
    fullname: Crozier
– volume: 110
  year: 2011
  ident: b6
  article-title: Metal oxide resistive memory switching mechanism based on conductive filament properties
  publication-title: J Appl Phys
  contributor:
    fullname: Padovani
– volume: 15
  start-page: 12945
  year: 2021
  end-page: 12954
  ident: b4
  article-title: Atomistic insights on the full operation cycle of a HfO
  publication-title: ACS Nano
  contributor:
    fullname: Strachan
– volume: 74
  year: 2006
  ident: b15
  article-title: Atomistic simulation of nanowires in the Sp3D5S tight-binding formalism: From boundary conditions to strain calculations
  publication-title: Phys Rev B
  contributor:
    fullname: Klimeck
– volume: 3
  year: 2021
  ident: b3
  article-title: TCAD modeling of resistive-switching of HfO
  publication-title: Front Nanotechnol
  contributor:
    fullname: Rose
– volume: 2
  start-page: 15011
  year: 2016
  ident: b9
  article-title: The ReaxFF reactive force-field: Development, applications and future directions
  publication-title: Npj Comput Mater
  contributor:
    fullname: Shin
– volume: 152
  year: 2020
  ident: b10
  article-title: CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations
  publication-title: J Chem Phys
  contributor:
    fullname: Stein
– volume: 65
  start-page: 507
  year: 2018
  end-page: 513
  ident: b14
  article-title: HfO
  publication-title: IEEE Trans Electron Dev
  contributor:
    fullname: Nishi
– volume: 13
  start-page: 58066
  year: 2021
  end-page: 58075
  ident: b7
  article-title: A consistent model for short-term instability and long-term retention in filamentary oxide-based memristive devices
  publication-title: ACS Appl Mater Interfaces
  contributor:
    fullname: Menzel
– volume: 7
  start-page: 202
  year: 2019
  ident: b12
  article-title: A practical guide to surface kinetic Monte Carlo simulations
  publication-title: Front Chem
  contributor:
    fullname: Reuter
– volume: 69
  start-page: 327
  year: 2005
  end-page: 396
  ident: b17
  article-title: High dielectric constant gate oxides for metal oxide Si transistors
  publication-title: Rep Progr Phys
  contributor:
    fullname: Robertson
– volume: 70
  start-page: 155
  year: 2021
  end-page: 349
  ident: b1
  article-title: Nanoionic memristive phenomena in metal oxides: The valence change mechanism
  publication-title: Adv Phys
  contributor:
    fullname: Waser
– volume: 115
  start-page: 9657
  year: 2001
  end-page: 9666
  ident: b11
  article-title: Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table
  publication-title: J Chem Phys
  contributor:
    fullname: Jónsson
– year: 2017
  ident: b2
  article-title: A multiscale modeling approach for the simulation of OxRRAM devices
  publication-title: 2017 17th non-volatile memory technology symposium
  contributor:
    fullname: Hwang
– volume: 115
  year: 2014
  ident: b13
  article-title: Assessing hafnium on Hafnia as an oxygen getter
  publication-title: J Appl Phys
  contributor:
    fullname: Demkov
– volume: 8
  start-page: 13
  year: 2012
  end-page: 24
  ident: b18
  article-title: Memristive devices for computing
  publication-title: Nature Nanotechnol
  contributor:
    fullname: Stewart
– volume: 2
  start-page: 2648
  year: 2020
  end-page: 2667
  ident: b16
  article-title: Electro-thermal transport in disordered nanostructures: A modeling perspective
  publication-title: Nanoscale Adv
  contributor:
    fullname: Luisier
– volume: 2
  year: 2018
  ident: b5
  article-title: Structure and properties of a model conductive filament/host oxide interface in HfO
  publication-title: Phys Rev Mater
  contributor:
    fullname: McKenna
– volume: 11
  start-page: 1261
  year: 2021
  ident: b19
  article-title: On the thermal models for resistive random access memory circuit simulation
  publication-title: Nanomaterials
  contributor:
    fullname: Jiménez-Molinos
– volume: 271
  year: 2022
  ident: 10.1016/j.sse.2022.108506_b8
  article-title: LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
  publication-title: Comput Phys Comm
  doi: 10.1016/j.cpc.2021.108171
  contributor:
    fullname: Thompson
– volume: 2
  start-page: 15011
  issue: 1
  year: 2016
  ident: 10.1016/j.sse.2022.108506_b9
  article-title: The ReaxFF reactive force-field: Development, applications and future directions
  publication-title: Npj Comput Mater
  doi: 10.1038/npjcompumats.2015.11
  contributor:
    fullname: Senftle
– volume: 11
  start-page: 1261
  issue: 5
  year: 2021
  ident: 10.1016/j.sse.2022.108506_b19
  article-title: On the thermal models for resistive random access memory circuit simulation
  publication-title: Nanomaterials
  doi: 10.3390/nano11051261
  contributor:
    fullname: Roldán
– volume: 70
  start-page: 155
  issue: 2
  year: 2021
  ident: 10.1016/j.sse.2022.108506_b1
  article-title: Nanoionic memristive phenomena in metal oxides: The valence change mechanism
  publication-title: Adv Phys
  doi: 10.1080/00018732.2022.2084006
  contributor:
    fullname: Dittmann
– volume: 115
  start-page: 9657
  issue: 21
  year: 2001
  ident: 10.1016/j.sse.2022.108506_b11
  article-title: Long time scale kinetic Monte Carlo simulations without lattice approximation and predefined event table
  publication-title: J Chem Phys
  doi: 10.1063/1.1415500
  contributor:
    fullname: Henkelman
– volume: 2
  start-page: 2648
  issue: 7
  year: 2020
  ident: 10.1016/j.sse.2022.108506_b16
  article-title: Electro-thermal transport in disordered nanostructures: A modeling perspective
  publication-title: Nanoscale Adv
  doi: 10.1039/D0NA00168F
  contributor:
    fullname: Ducry
– volume: 115
  issue: 18
  year: 2014
  ident: 10.1016/j.sse.2022.108506_b13
  article-title: Assessing hafnium on Hafnia as an oxygen getter
  publication-title: J Appl Phys
  contributor:
    fullname: O’Hara
– volume: 8
  start-page: 13
  issue: 1
  year: 2012
  ident: 10.1016/j.sse.2022.108506_b18
  article-title: Memristive devices for computing
  publication-title: Nature Nanotechnol
  doi: 10.1038/nnano.2012.240
  contributor:
    fullname: Yang
– volume: 3
  year: 2021
  ident: 10.1016/j.sse.2022.108506_b3
  article-title: TCAD modeling of resistive-switching of HfO2 memristors: Efficient device-circuit co-design for neuromorphic systems
  publication-title: Front Nanotechnol
  doi: 10.3389/fnano.2021.734121
  contributor:
    fullname: Zeumault
– year: 2017
  ident: 10.1016/j.sse.2022.108506_b2
  article-title: A multiscale modeling approach for the simulation of OxRRAM devices
  contributor:
    fullname: Padovani
– volume: 69
  start-page: 327
  issue: 2
  year: 2005
  ident: 10.1016/j.sse.2022.108506_b17
  article-title: High dielectric constant gate oxides for metal oxide Si transistors
  publication-title: Rep Progr Phys
  doi: 10.1088/0034-4885/69/2/R02
  contributor:
    fullname: Robertson
– volume: 152
  issue: 19
  year: 2020
  ident: 10.1016/j.sse.2022.108506_b10
  article-title: CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations
  publication-title: J Chem Phys
  doi: 10.1063/5.0007045
  contributor:
    fullname: Kühne
– volume: 15
  start-page: 12945
  issue: 8
  year: 2021
  ident: 10.1016/j.sse.2022.108506_b4
  article-title: Atomistic insights on the full operation cycle of a HfO2-based resistive random access memory cell from molecular dynamics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c01466
  contributor:
    fullname: Urquiza
– volume: 13
  start-page: 58066
  issue: 48
  year: 2021
  ident: 10.1016/j.sse.2022.108506_b7
  article-title: A consistent model for short-term instability and long-term retention in filamentary oxide-based memristive devices
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.1c14667
  contributor:
    fullname: Kopperberg
– volume: 110
  issue: 12
  year: 2011
  ident: 10.1016/j.sse.2022.108506_b6
  article-title: Metal oxide resistive memory switching mechanism based on conductive filament properties
  publication-title: J Appl Phys
  doi: 10.1063/1.3671565
  contributor:
    fullname: Bersuker
– volume: 2
  year: 2018
  ident: 10.1016/j.sse.2022.108506_b5
  article-title: Structure and properties of a model conductive filament/host oxide interface in HfO2-based ReRAM
  publication-title: Phys Rev Mater
  contributor:
    fullname: Padilha
– volume: 74
  issue: 20
  year: 2006
  ident: 10.1016/j.sse.2022.108506_b15
  article-title: Atomistic simulation of nanowires in the Sp3D5S tight-binding formalism: From boundary conditions to strain calculations
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.74.205323
  contributor:
    fullname: Luisier
– volume: 65
  start-page: 507
  issue: 2
  year: 2018
  ident: 10.1016/j.sse.2022.108506_b14
  article-title: HfO2/Ti interface mediated conductive filament formation in RRAM: An Ab Initio study
  publication-title: IEEE Trans Electron Dev
  doi: 10.1109/TED.2017.2785352
  contributor:
    fullname: Traore
– volume: 7
  start-page: 202
  year: 2019
  ident: 10.1016/j.sse.2022.108506_b12
  article-title: A practical guide to surface kinetic Monte Carlo simulations
  publication-title: Front Chem
  doi: 10.3389/fchem.2019.00202
  contributor:
    fullname: Andersen
SSID ssj0002610
Score 2.4102995
Snippet We present a framework dedicated to modeling the resistive switching operation of Valence Change Memory (VCM) cells. The method combines an atomistic...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 108506
SubjectTerms Dielectric breakdown
Kinetic Monte Carlo
Memristors
Quantum transport
RRAM
Valence change memory
Title An atomistic modeling framework for valence change memory cells
URI https://dx.doi.org/10.1016/j.sse.2022.108506
Volume 199
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB6KXvQgPrE-Sg6ehLW72WySnqQUS1XsyUJvIUmzUKFrsfXgxd_uzD6wgl68hg3sTpL5ZrLfzAdwlavceaniKCgnIqFDiKzNiJkTMqslJhRlhffTWI4m4mGaTVswaGphiFZZ-_7Kp5feuh7p1tbsLudzqvFFtKH2VMQzUIoKzQXCH-7pm89vmgdmCHVrRsyW8Onmz2bJ8VqtqFMm58S0y0j06Dds2sCb4T7s1YEi61fvcgCtUBzC7kb7wCO47RcMc-ZF2WuZlZo2OM7yhm_FMCBluJPoo1hV4csWxKz9YHRfvzqGyfDueTCKakGEyPOeWkcid07ksdMqt0onPsmCxPOW8xlPe24mU-FJPVgFj74jBK6dtqTyyr1OY69degJbxWsRToEhLHsrqbAV8d16qXk6C8EnznKXOB234boxhVlWfS9MQwh7MWg3Q3Yzld3aIBpjmR-LZ9Av_z3t7H_TzmGHNN-re5AL2Fq_vYdLjAzWrlMufQe2-_ePo_EX58C2sg
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe1AP4hPrMwdPwtJu9pH0JKVYtvZxaqG3kKRZqNC12Hrw3zuzD6mgF6-Bgd1vk29mst_MADykIjU2Fm3PCRN6oXTO0zoiZY6LtIwxocgrvMeTOJmFL_NoXoNeVQtDssqS-wtOz9m6XGmVaLbWyyXV-KK3ofZUpDMQItqDBkYDHTydje5gmEy-CRmThLI7IyZMaFD93MxlXpsNNcvknMR2Ec09-s097bic_jEclbEi6xaPcwI1l53C4U4HwTN46mYM0-ZV3m6Z5WNtcJ2lleSKYUzKcDPRe7GiyJetSFz7yejKfnMOs_7ztJd45UwEz_KO2HphakyYto0UqRbSt37kYjxyKV_woGMWcRBaGiAsnEX6cI5LIzUNeuVWBm0rTXAB9ewtc5fA0DNbHVNtK7p4bWPJg4Vz1jeaG9_IdhMeKyjUumh9oSpN2KtC3BThpgrcmhBWYKkf308hNf9tdvU_s3vYT6bjkRoNJsNrOKAR8MW1yA3Ut-8f7hYDha25KzfCF1EVuWY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+atomistic+modeling+framework+for+valence+change+memory+cells&rft.jtitle=Solid-state+electronics&rft.au=Kaniselvan%2C+Manasa&rft.au=Luisier%2C+Mathieu&rft.au=Mladenovi%C4%87%2C+Marko&rft.date=2023-01-01&rft.issn=0038-1101&rft.volume=199&rft.spage=108506&rft_id=info:doi/10.1016%2Fj.sse.2022.108506&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sse_2022_108506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-1101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-1101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-1101&client=summon