Some exact results for generalized Turán problems
Fix a k-chromatic graph F. In this paper we consider the question to determine for which graphs H does the Turán graph Tk−1(n) have the maximum number of copies of H among all n-vertex F-free graphs (for n large enough). We say that such a graph H is F-Turán-good. In addition to some general results...
Saved in:
Published in | European journal of combinatorics Vol. 103; p. 103519 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2022
|
Online Access | Get full text |
ISSN | 0195-6698 1095-9971 |
DOI | 10.1016/j.ejc.2022.103519 |
Cover
Abstract | Fix a k-chromatic graph F. In this paper we consider the question to determine for which graphs H does the Turán graph Tk−1(n) have the maximum number of copies of H among all n-vertex F-free graphs (for n large enough). We say that such a graph H is F-Turán-good. In addition to some general results, we give (among others) the following concrete results:
(i) For every complete multipartite graph H, there is k large enough such that H is Kk-Turán-good.
(ii) The path P3 is F-Turán-good for F with χ(F)≥4.
(iii) The path P4 and cycle C4 are C5-Turán-good.
(iv) The cycle C4 is F2-Turán-good where F2 is the graph of two triangles sharing exactly one vertex. |
---|---|
AbstractList | Fix a k-chromatic graph F. In this paper we consider the question to determine for which graphs H does the Turán graph Tk−1(n) have the maximum number of copies of H among all n-vertex F-free graphs (for n large enough). We say that such a graph H is F-Turán-good. In addition to some general results, we give (among others) the following concrete results:
(i) For every complete multipartite graph H, there is k large enough such that H is Kk-Turán-good.
(ii) The path P3 is F-Turán-good for F with χ(F)≥4.
(iii) The path P4 and cycle C4 are C5-Turán-good.
(iv) The cycle C4 is F2-Turán-good where F2 is the graph of two triangles sharing exactly one vertex. |
ArticleNumber | 103519 |
Author | Palmer, Cory Gerbner, Dániel |
Author_xml | – sequence: 1 givenname: Dániel surname: Gerbner fullname: Gerbner, Dániel email: gerbner@renyi.hu organization: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Hungary – sequence: 2 givenname: Cory surname: Palmer fullname: Palmer, Cory email: cory.palmer@umontana.edu organization: Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA |
BookMark | eNp9z81KAzEQwPEgFWyrD-BtX2BrPpqkwZMUtULBg_Uc8jGRLNvdkqSivo3P4ou5pZ489DQzh9_Af4JGXd8BQtcEzwgm4qaZQeNmFFM63IwTdYbGBCteKyXJCI0xGXYh1OICTXJuMCaEMzZG9KXfQgUfxpUqQd63JVehT9UbdJBMG7_AV5t9-vnuql3qbQvbfInOg2kzXP3NKXp9uN8sV_X6-fFpebeuHVWy1PNgvBLGhoWFIJjESnoH3M4X0luGhXHCUevmVHAuLPcSBxyYY9Y4bKSibIrk8a9Lfc4JgnaxmBL7riQTW02wPqTrRg_p-pCuj-mDJP_kLsWtSZ8nze3RwJD0HiHp7CJ0DnxM4Ir2fTyhfwHd5nRc |
CitedBy_id | crossref_primary_10_1007_s40840_023_01602_2 crossref_primary_10_1016_j_disc_2024_114021 crossref_primary_10_1016_j_disc_2023_113395 crossref_primary_10_1002_jgt_23151 crossref_primary_10_1556_012_2023_01533 crossref_primary_10_1016_j_ejc_2022_103682 crossref_primary_10_1016_j_jctb_2023_06_004 crossref_primary_10_1016_j_ejc_2025_104135 crossref_primary_10_1016_j_dam_2024_10_008 crossref_primary_10_1007_s00373_023_02641_z crossref_primary_10_1007_s00373_024_02876_4 crossref_primary_10_1007_s00373_024_02757_w crossref_primary_10_1016_j_disc_2022_113238 |
Cites_doi | 10.1002/jgt.22390 10.1017/S0963548311000629 10.1016/0095-8956(75)90084-2 10.1016/j.jcta.2012.12.008 10.1016/j.disc.2007.08.016 10.1090/S0002-9904-1946-08715-7 10.1006/jctb.1995.1026 10.1007/BF02122689 10.1016/j.jctb.2020.05.005 10.1016/j.ejc.2019.103026 10.1016/j.jctb.2012.04.001 10.1017/S0963548309009687 10.1093/imrn/rny108 10.1016/j.disc.2019.06.022 10.1016/j.jctb.2016.03.004 10.1007/BF01789461 10.1016/j.ejc.2019.103001 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ejc.2022.103519 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1095-9971 |
ExternalDocumentID | 10_1016_j_ejc_2022_103519 S0195669822000154 |
GrantInformation_xml | – fundername: János Bolyai Research Fellowship of the Hungarian Academy of Sciences – fundername: Simons Foundation grantid: #712036 – fundername: National Research, Development and Innovation Office – NKFIH, Hungary grantid: FK 132060; KKP-133819; KH130371; SNN 129364 funderid: http://dx.doi.org/10.13039/501100012550 |
GroupedDBID | --K --M -ET -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADIYS ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K WUQ XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-4fad96abf8bef637097dce5b487db306ac6c2bc426556b5d70f0f3c3bac0a7923 |
IEDL.DBID | AIKHN |
ISSN | 0195-6698 |
IngestDate | Tue Jul 01 01:37:06 EDT 2025 Thu Apr 24 22:54:46 EDT 2025 Fri Feb 23 02:38:42 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-4fad96abf8bef637097dce5b487db306ac6c2bc426556b5d70f0f3c3bac0a7923 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ejc_2022_103519 crossref_primary_10_1016_j_ejc_2022_103519 elsevier_sciencedirect_doi_10_1016_j_ejc_2022_103519 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationTitle | European journal of combinatorics |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gerbner, Methuku, Vizer (b12) 2019; 342 Erdős (b4) 1962; 7 Alon, Shikhelman (b1) 2016; 121 Győri, Li (b18) 2011; 21 Gerbner, Palmer (b13) 2019; 82 Ergemlidze, Methuku (b9) 2018 Turán (b26) 1941; 48 Erdős, Füredi, Gould, Gunderson (b5) 1995; 64 Guiduli (b16) 1996 Ma, Qiu (b22) 2020; 84 Győri, Salia, Tompkins, Zamora (b20) 2019; 21 Cutler, Nir, Radcliffe (b3) 2019 Erdős, Stone (b7) 1946; 52 Gerbner (b10) 2020 Bollobás, Győri (b2) 2008; 308 Hatami, Hladký, Král, Norine, Razborov (b21) 2012; 120 Nikiforov (b23) 2009; 18 Győri (b17) 1989; 9 Simonovits (b25) 1966 Zykov (b27) 1949; 66 Erdős, Simonovits (b6) 1966; 1 Grzesik (b15) 2012; 102 Pippenger, Golumbic (b24) 1975; 19 Gishboliner, Shapira (b14) 2020; 11 Gerbner, Győri, Methuku, Vizer (b11) 2019; 145 Ergemlidze, Győri, Methuku, Salia (b8) 2019; 90 Győri, Pach, Simonovits (b19) 1991; 7 Győri (10.1016/j.ejc.2022.103519_b18) 2011; 21 Győri (10.1016/j.ejc.2022.103519_b17) 1989; 9 Erdős (10.1016/j.ejc.2022.103519_b4) 1962; 7 Zykov (10.1016/j.ejc.2022.103519_b27) 1949; 66 Ergemlidze (10.1016/j.ejc.2022.103519_b9) 2018 Ma (10.1016/j.ejc.2022.103519_b22) 2020; 84 Alon (10.1016/j.ejc.2022.103519_b1) 2016; 121 Gerbner (10.1016/j.ejc.2022.103519_b10) 2020 Turán (10.1016/j.ejc.2022.103519_b26) 1941; 48 Hatami (10.1016/j.ejc.2022.103519_b21) 2012; 120 Cutler (10.1016/j.ejc.2022.103519_b3) 2019 Gishboliner (10.1016/j.ejc.2022.103519_b14) 2020; 11 Gerbner (10.1016/j.ejc.2022.103519_b12) 2019; 342 Erdős (10.1016/j.ejc.2022.103519_b6) 1966; 1 Gerbner (10.1016/j.ejc.2022.103519_b13) 2019; 82 Gerbner (10.1016/j.ejc.2022.103519_b11) 2019; 145 Simonovits (10.1016/j.ejc.2022.103519_b25) 1966 Bollobás (10.1016/j.ejc.2022.103519_b2) 2008; 308 Győri (10.1016/j.ejc.2022.103519_b19) 1991; 7 Győri (10.1016/j.ejc.2022.103519_b20) 2019; 21 Ergemlidze (10.1016/j.ejc.2022.103519_b8) 2019; 90 Nikiforov (10.1016/j.ejc.2022.103519_b23) 2009; 18 Erdős (10.1016/j.ejc.2022.103519_b5) 1995; 64 Grzesik (10.1016/j.ejc.2022.103519_b15) 2012; 102 Erdős (10.1016/j.ejc.2022.103519_b7) 1946; 52 Guiduli (10.1016/j.ejc.2022.103519_b16) 1996 Pippenger (10.1016/j.ejc.2022.103519_b24) 1975; 19 |
References_xml | – volume: 145 start-page: 169 year: 2019 end-page: 213 ident: b11 article-title: Generalized turán problems for even cycles publication-title: J. Combin. Theory Ser. B – volume: 66 start-page: 163 year: 1949 end-page: 188 ident: b27 article-title: On some properties of linear complexes publication-title: Mat. Sb. – volume: 84 year: 2020 ident: b22 article-title: Some sharp results on the generalized Turán numbers publication-title: European J. Combin. – volume: 19 start-page: 189 year: 1975 end-page: 203 ident: b24 article-title: The inducibility of graphs publication-title: J. Comb. Theory Ser. B – volume: 308 start-page: 4332 year: 2008 end-page: 4336 ident: b2 article-title: Pentagons vs triangles publication-title: Discrete Math. – volume: 21 start-page: 187 year: 2011 end-page: 191 ident: b18 article-title: The maximum number of triangles in publication-title: Combin. Probab. Comput. – year: 2019 ident: b3 article-title: Supersaturation for subgraph counts – volume: 11 start-page: 3417 year: 2020 end-page: 3452 ident: b14 article-title: A generalized turán problem and its applications publication-title: Int. Math. Res. Notices (IMRN) – volume: 7 start-page: 31 year: 1991 end-page: 37 ident: b19 article-title: On the maximal number of certain subgraphs in publication-title: Graphs Combin. – volume: 90 start-page: 227 year: 2019 end-page: 230 ident: b8 article-title: A note on the maximum number of triangles in a publication-title: J. Graph Theory – year: 2020 ident: b10 article-title: Generalized turán problems for small graphs – year: 2018 ident: b9 article-title: Triangles in – volume: 64 start-page: 89 year: 1995 end-page: 100 ident: b5 article-title: Extremal graphs for intersecting triangles publication-title: J. Combin. Theory Ser. B – volume: 7 start-page: 459 year: 1962 end-page: 464 ident: b4 article-title: On the number of complete subgraphs contained in certain graphs publication-title: Magyar Tud. Akad. Mat. KutatÓInt. KÖzl. – volume: 121 start-page: 146 year: 2016 end-page: 172 ident: b1 article-title: Many publication-title: J. Combin. Theory Ser. B – volume: 102 start-page: 1061 year: 2012 end-page: 1066 ident: b15 article-title: On the maximum number of five-cycles in a triangle-free graph publication-title: J. Combin. Theory Ser. B – volume: 82 year: 2019 ident: b13 article-title: Counting copies of a fixed subgraph in publication-title: European J. Combin. – volume: 21 start-page: 21 year: 2019 ident: b20 article-title: The maximum number of publication-title: Discrete Math. Theor. Comput. Sci. – volume: 48 start-page: 436 year: 1941 end-page: 452 ident: b26 article-title: On an extremal problem in graph theory (in hungarian) publication-title: Mat. Fizikai Lapok – volume: 342 start-page: 3130 year: 2019 end-page: 3141 ident: b12 article-title: Generalized Turán problems for disjoint copies of graphs publication-title: Discrete Math. – volume: 9 start-page: 101 year: 1989 end-page: 102 ident: b17 article-title: On the number of publication-title: Combinatorica – start-page: 279 year: 1966 end-page: 319 ident: b25 article-title: A method for solving extremal problems in graph theory, stability problems publication-title: Theory of Graphs, Proc. Colloq., Tihany – volume: 1 start-page: 51 year: 1966 end-page: 57 ident: b6 article-title: A limit theorem in graph theory publication-title: Studia Sci. Math. Hungar. – year: 1996 ident: b16 article-title: Spectral Extrema for Graphs – volume: 120 start-page: 722 year: 2012 end-page: 732 ident: b21 article-title: On the number of pentagons in triangle-free graphs publication-title: J. Combin. Theory Ser. A – volume: 18 start-page: 455 year: 2009 end-page: 458 ident: b23 article-title: A spectral erdős-Stone-Bollobás theorem publication-title: Combin. Probab. Comput. – volume: 52 start-page: 1087 year: 1946 end-page: 1091 ident: b7 article-title: On the structure of linear graphs publication-title: Bull. Am. Math. Soc. – volume: 90 start-page: 227 year: 2019 ident: 10.1016/j.ejc.2022.103519_b8 article-title: A note on the maximum number of triangles in a C5-free graph publication-title: J. Graph Theory doi: 10.1002/jgt.22390 – year: 2018 ident: 10.1016/j.ejc.2022.103519_b9 – volume: 21 start-page: 187 year: 2011 ident: 10.1016/j.ejc.2022.103519_b18 article-title: The maximum number of triangles in C2k+1-free graphs publication-title: Combin. Probab. Comput. doi: 10.1017/S0963548311000629 – volume: 19 start-page: 189 year: 1975 ident: 10.1016/j.ejc.2022.103519_b24 article-title: The inducibility of graphs publication-title: J. Comb. Theory Ser. B doi: 10.1016/0095-8956(75)90084-2 – volume: 120 start-page: 722 year: 2012 ident: 10.1016/j.ejc.2022.103519_b21 article-title: On the number of pentagons in triangle-free graphs publication-title: J. Combin. Theory Ser. A doi: 10.1016/j.jcta.2012.12.008 – start-page: 279 year: 1966 ident: 10.1016/j.ejc.2022.103519_b25 article-title: A method for solving extremal problems in graph theory, stability problems – volume: 308 start-page: 4332 year: 2008 ident: 10.1016/j.ejc.2022.103519_b2 article-title: Pentagons vs triangles publication-title: Discrete Math. doi: 10.1016/j.disc.2007.08.016 – volume: 21 start-page: 21 year: 2019 ident: 10.1016/j.ejc.2022.103519_b20 article-title: The maximum number of Pℓ copies in Pk-free graphs publication-title: Discrete Math. Theor. Comput. Sci. – volume: 52 start-page: 1087 year: 1946 ident: 10.1016/j.ejc.2022.103519_b7 article-title: On the structure of linear graphs publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1946-08715-7 – volume: 64 start-page: 89 year: 1995 ident: 10.1016/j.ejc.2022.103519_b5 article-title: Extremal graphs for intersecting triangles publication-title: J. Combin. Theory Ser. B doi: 10.1006/jctb.1995.1026 – year: 1996 ident: 10.1016/j.ejc.2022.103519_b16 – volume: 9 start-page: 101 year: 1989 ident: 10.1016/j.ejc.2022.103519_b17 article-title: On the number of C5’s in a triangle-free graph publication-title: Combinatorica doi: 10.1007/BF02122689 – volume: 66 start-page: 163 year: 1949 ident: 10.1016/j.ejc.2022.103519_b27 article-title: On some properties of linear complexes publication-title: Mat. Sb. – volume: 145 start-page: 169 year: 2019 ident: 10.1016/j.ejc.2022.103519_b11 article-title: Generalized turán problems for even cycles publication-title: J. Combin. Theory Ser. B doi: 10.1016/j.jctb.2020.05.005 – volume: 1 start-page: 51 year: 1966 ident: 10.1016/j.ejc.2022.103519_b6 article-title: A limit theorem in graph theory publication-title: Studia Sci. Math. Hungar. – volume: 7 start-page: 459 year: 1962 ident: 10.1016/j.ejc.2022.103519_b4 article-title: On the number of complete subgraphs contained in certain graphs publication-title: Magyar Tud. Akad. Mat. KutatÓInt. KÖzl. – volume: 84 year: 2020 ident: 10.1016/j.ejc.2022.103519_b22 article-title: Some sharp results on the generalized Turán numbers publication-title: European J. Combin. doi: 10.1016/j.ejc.2019.103026 – volume: 102 start-page: 1061 year: 2012 ident: 10.1016/j.ejc.2022.103519_b15 article-title: On the maximum number of five-cycles in a triangle-free graph publication-title: J. Combin. Theory Ser. B doi: 10.1016/j.jctb.2012.04.001 – volume: 18 start-page: 455 year: 2009 ident: 10.1016/j.ejc.2022.103519_b23 article-title: A spectral erdős-Stone-Bollobás theorem publication-title: Combin. Probab. Comput. doi: 10.1017/S0963548309009687 – volume: 11 start-page: 3417 year: 2020 ident: 10.1016/j.ejc.2022.103519_b14 article-title: A generalized turán problem and its applications publication-title: Int. Math. Res. Notices (IMRN) doi: 10.1093/imrn/rny108 – volume: 342 start-page: 3130 year: 2019 ident: 10.1016/j.ejc.2022.103519_b12 article-title: Generalized Turán problems for disjoint copies of graphs publication-title: Discrete Math. doi: 10.1016/j.disc.2019.06.022 – volume: 121 start-page: 146 year: 2016 ident: 10.1016/j.ejc.2022.103519_b1 article-title: Many T copies in H-free graphs publication-title: J. Combin. Theory Ser. B doi: 10.1016/j.jctb.2016.03.004 – year: 2019 ident: 10.1016/j.ejc.2022.103519_b3 – year: 2020 ident: 10.1016/j.ejc.2022.103519_b10 – volume: 7 start-page: 31 year: 1991 ident: 10.1016/j.ejc.2022.103519_b19 article-title: On the maximal number of certain subgraphs in Kr-free graphs publication-title: Graphs Combin. doi: 10.1007/BF01789461 – volume: 48 start-page: 436 year: 1941 ident: 10.1016/j.ejc.2022.103519_b26 article-title: On an extremal problem in graph theory (in hungarian) publication-title: Mat. Fizikai Lapok – volume: 82 year: 2019 ident: 10.1016/j.ejc.2022.103519_b13 article-title: Counting copies of a fixed subgraph in F-free graphs publication-title: European J. Combin. doi: 10.1016/j.ejc.2019.103001 |
SSID | ssj0011533 |
Score | 2.409281 |
Snippet | Fix a k-chromatic graph F. In this paper we consider the question to determine for which graphs H does the Turán graph Tk−1(n) have the maximum number of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103519 |
Title | Some exact results for generalized Turán problems |
URI | https://dx.doi.org/10.1016/j.ejc.2022.103519 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFL3UdqML8Yn1UbJwJcQmk8lMsizFUl9FbAvdhZnJjLTUtLQpiAv_xW_xx5zJoyioC5cJuZCcDPfBvedcgHOMTS-PMVtgHhtKTmAH3EU2YoIFuh7xHJ4NyPZId4hvRv6oAu2SC2PGKgvfn_v0zFsXd5oFms35eNzsZ1Q3YvTnMkIw3oAa8kLiV6HWur7t9tbNBJPSlGsJjUHZ3MzGvOTECBkiZNjnvtHb-Sk8fQk5nR3YLnJFq5W_zi5UZLIHW_drodXlPqD-7Fla8oWJ1NKF82qaLi2dhlpPuZr0-FXG1mC1-HhPrGJ1zPIAhp2rQbtrF2sQbIFCmtpYsTgkjKuAS0U86oQ0FtLnutSIuc74mSACcaFDre8T7sfUUY7yhMeZcJiRBzyEajJL5BFYnqDMVSGhgiqMOAljhQV1gthTnCDq1sEpvz4ShUa4WVUxjcphsEmkAYsMYFEOWB0u1ibzXCDjr4dxCWn07S9H2oH_bnb8P7MT2DRX-WDXKVTTxUqe6RQi5Q3YuHxzG_qgtB_vHhrFgfkEJYTF6g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA21LtSF-MT6zMKVMHaaySQzSymWqm03bcFdyFNa6rS0UxAX_ovf4o-ZzKMoqAu3k1zI3Bnug5xzLgCXGLu7PM49iYVylJzIi0QDeYhLHtl-JPBFBpDtkfYQ3z-GjxXQLLkwDlZZxP48pmfRunhSL7xZn41G9X5GdSNOfy4jBOM1sI7DgDpc3_XbCufRcAVNOZTQbS-vNjOQlx47GUOEHPc8dGo7PyWnLwmntQO2i0oR3uSH2QUVneyBre5KZnWxD1B_-qyhfuEyhbZtXk7SBbRFKHzKtaRHr1rBwXL-8Z7AYnDM4gAMW7eDZtsrhiB4EsU09bDhKiZcmEhoQwLqx1RJHQrbaChh630uiURC2kQbhkSEivrGN4EMBJc-d-KAh6CaTBN9BGAgKW-YmFBJDUaCxMpgSf1IBUYQRBs14Jdvz2ShEO4GVUxYCQUbM-sw5hzGcofVwNXKZJbLY_y1GZcuZd--MbPh-3ez4_-ZXYCN9qDbYZ273sMJ2HQrOcTrFFTT-VKf2WIiFefZz_IJnkTFIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+exact+results+for+generalized+Tur%C3%A1n+problems&rft.jtitle=European+journal+of+combinatorics&rft.au=Gerbner%2C+D%C3%A1niel&rft.au=Palmer%2C+Cory&rft.date=2022-06-01&rft.issn=0195-6698&rft.volume=103&rft.spage=103519&rft_id=info:doi/10.1016%2Fj.ejc.2022.103519&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejc_2022_103519 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6698&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6698&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6698&client=summon |