Some exact results for generalized Turán problems

Fix a k-chromatic graph F. In this paper we consider the question to determine for which graphs H does the Turán graph Tk−1(n) have the maximum number of copies of H among all n-vertex F-free graphs (for n large enough). We say that such a graph H is F-Turán-good. In addition to some general results...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of combinatorics Vol. 103; p. 103519
Main Authors Gerbner, Dániel, Palmer, Cory
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2022
Online AccessGet full text
ISSN0195-6698
1095-9971
DOI10.1016/j.ejc.2022.103519

Cover

Abstract Fix a k-chromatic graph F. In this paper we consider the question to determine for which graphs H does the Turán graph Tk−1(n) have the maximum number of copies of H among all n-vertex F-free graphs (for n large enough). We say that such a graph H is F-Turán-good. In addition to some general results, we give (among others) the following concrete results: (i) For every complete multipartite graph H, there is k large enough such that H is Kk-Turán-good. (ii) The path P3 is F-Turán-good for F with χ(F)≥4. (iii) The path P4 and cycle C4 are C5-Turán-good. (iv) The cycle C4 is F2-Turán-good where F2 is the graph of two triangles sharing exactly one vertex.
AbstractList Fix a k-chromatic graph F. In this paper we consider the question to determine for which graphs H does the Turán graph Tk−1(n) have the maximum number of copies of H among all n-vertex F-free graphs (for n large enough). We say that such a graph H is F-Turán-good. In addition to some general results, we give (among others) the following concrete results: (i) For every complete multipartite graph H, there is k large enough such that H is Kk-Turán-good. (ii) The path P3 is F-Turán-good for F with χ(F)≥4. (iii) The path P4 and cycle C4 are C5-Turán-good. (iv) The cycle C4 is F2-Turán-good where F2 is the graph of two triangles sharing exactly one vertex.
ArticleNumber 103519
Author Palmer, Cory
Gerbner, Dániel
Author_xml – sequence: 1
  givenname: Dániel
  surname: Gerbner
  fullname: Gerbner, Dániel
  email: gerbner@renyi.hu
  organization: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Hungary
– sequence: 2
  givenname: Cory
  surname: Palmer
  fullname: Palmer, Cory
  email: cory.palmer@umontana.edu
  organization: Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA
BookMark eNp9z81KAzEQwPEgFWyrD-BtX2BrPpqkwZMUtULBg_Uc8jGRLNvdkqSivo3P4ou5pZ489DQzh9_Af4JGXd8BQtcEzwgm4qaZQeNmFFM63IwTdYbGBCteKyXJCI0xGXYh1OICTXJuMCaEMzZG9KXfQgUfxpUqQd63JVehT9UbdJBMG7_AV5t9-vnuql3qbQvbfInOg2kzXP3NKXp9uN8sV_X6-fFpebeuHVWy1PNgvBLGhoWFIJjESnoH3M4X0luGhXHCUevmVHAuLPcSBxyYY9Y4bKSibIrk8a9Lfc4JgnaxmBL7riQTW02wPqTrRg_p-pCuj-mDJP_kLsWtSZ8nze3RwJD0HiHp7CJ0DnxM4Ir2fTyhfwHd5nRc
CitedBy_id crossref_primary_10_1007_s40840_023_01602_2
crossref_primary_10_1016_j_disc_2024_114021
crossref_primary_10_1016_j_disc_2023_113395
crossref_primary_10_1002_jgt_23151
crossref_primary_10_1556_012_2023_01533
crossref_primary_10_1016_j_ejc_2022_103682
crossref_primary_10_1016_j_jctb_2023_06_004
crossref_primary_10_1016_j_ejc_2025_104135
crossref_primary_10_1016_j_dam_2024_10_008
crossref_primary_10_1007_s00373_023_02641_z
crossref_primary_10_1007_s00373_024_02876_4
crossref_primary_10_1007_s00373_024_02757_w
crossref_primary_10_1016_j_disc_2022_113238
Cites_doi 10.1002/jgt.22390
10.1017/S0963548311000629
10.1016/0095-8956(75)90084-2
10.1016/j.jcta.2012.12.008
10.1016/j.disc.2007.08.016
10.1090/S0002-9904-1946-08715-7
10.1006/jctb.1995.1026
10.1007/BF02122689
10.1016/j.jctb.2020.05.005
10.1016/j.ejc.2019.103026
10.1016/j.jctb.2012.04.001
10.1017/S0963548309009687
10.1093/imrn/rny108
10.1016/j.disc.2019.06.022
10.1016/j.jctb.2016.03.004
10.1007/BF01789461
10.1016/j.ejc.2019.103001
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ejc.2022.103519
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1095-9971
ExternalDocumentID 10_1016_j_ejc_2022_103519
S0195669822000154
GrantInformation_xml – fundername: János Bolyai Research Fellowship of the Hungarian Academy of Sciences
– fundername: Simons Foundation
  grantid: #712036
– fundername: National Research, Development and Innovation Office – NKFIH, Hungary
  grantid: FK 132060; KKP-133819; KH130371; SNN 129364
  funderid: http://dx.doi.org/10.13039/501100012550
GroupedDBID --K
--M
-ET
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-4fad96abf8bef637097dce5b487db306ac6c2bc426556b5d70f0f3c3bac0a7923
IEDL.DBID AIKHN
ISSN 0195-6698
IngestDate Tue Jul 01 01:37:06 EDT 2025
Thu Apr 24 22:54:46 EDT 2025
Fri Feb 23 02:38:42 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-4fad96abf8bef637097dce5b487db306ac6c2bc426556b5d70f0f3c3bac0a7923
ParticipantIDs crossref_citationtrail_10_1016_j_ejc_2022_103519
crossref_primary_10_1016_j_ejc_2022_103519
elsevier_sciencedirect_doi_10_1016_j_ejc_2022_103519
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle European journal of combinatorics
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gerbner, Methuku, Vizer (b12) 2019; 342
Erdős (b4) 1962; 7
Alon, Shikhelman (b1) 2016; 121
Győri, Li (b18) 2011; 21
Gerbner, Palmer (b13) 2019; 82
Ergemlidze, Methuku (b9) 2018
Turán (b26) 1941; 48
Erdős, Füredi, Gould, Gunderson (b5) 1995; 64
Guiduli (b16) 1996
Ma, Qiu (b22) 2020; 84
Győri, Salia, Tompkins, Zamora (b20) 2019; 21
Cutler, Nir, Radcliffe (b3) 2019
Erdős, Stone (b7) 1946; 52
Gerbner (b10) 2020
Bollobás, Győri (b2) 2008; 308
Hatami, Hladký, Král, Norine, Razborov (b21) 2012; 120
Nikiforov (b23) 2009; 18
Győri (b17) 1989; 9
Simonovits (b25) 1966
Zykov (b27) 1949; 66
Erdős, Simonovits (b6) 1966; 1
Grzesik (b15) 2012; 102
Pippenger, Golumbic (b24) 1975; 19
Gishboliner, Shapira (b14) 2020; 11
Gerbner, Győri, Methuku, Vizer (b11) 2019; 145
Ergemlidze, Győri, Methuku, Salia (b8) 2019; 90
Győri, Pach, Simonovits (b19) 1991; 7
Győri (10.1016/j.ejc.2022.103519_b18) 2011; 21
Győri (10.1016/j.ejc.2022.103519_b17) 1989; 9
Erdős (10.1016/j.ejc.2022.103519_b4) 1962; 7
Zykov (10.1016/j.ejc.2022.103519_b27) 1949; 66
Ergemlidze (10.1016/j.ejc.2022.103519_b9) 2018
Ma (10.1016/j.ejc.2022.103519_b22) 2020; 84
Alon (10.1016/j.ejc.2022.103519_b1) 2016; 121
Gerbner (10.1016/j.ejc.2022.103519_b10) 2020
Turán (10.1016/j.ejc.2022.103519_b26) 1941; 48
Hatami (10.1016/j.ejc.2022.103519_b21) 2012; 120
Cutler (10.1016/j.ejc.2022.103519_b3) 2019
Gishboliner (10.1016/j.ejc.2022.103519_b14) 2020; 11
Gerbner (10.1016/j.ejc.2022.103519_b12) 2019; 342
Erdős (10.1016/j.ejc.2022.103519_b6) 1966; 1
Gerbner (10.1016/j.ejc.2022.103519_b13) 2019; 82
Gerbner (10.1016/j.ejc.2022.103519_b11) 2019; 145
Simonovits (10.1016/j.ejc.2022.103519_b25) 1966
Bollobás (10.1016/j.ejc.2022.103519_b2) 2008; 308
Győri (10.1016/j.ejc.2022.103519_b19) 1991; 7
Győri (10.1016/j.ejc.2022.103519_b20) 2019; 21
Ergemlidze (10.1016/j.ejc.2022.103519_b8) 2019; 90
Nikiforov (10.1016/j.ejc.2022.103519_b23) 2009; 18
Erdős (10.1016/j.ejc.2022.103519_b5) 1995; 64
Grzesik (10.1016/j.ejc.2022.103519_b15) 2012; 102
Erdős (10.1016/j.ejc.2022.103519_b7) 1946; 52
Guiduli (10.1016/j.ejc.2022.103519_b16) 1996
Pippenger (10.1016/j.ejc.2022.103519_b24) 1975; 19
References_xml – volume: 145
  start-page: 169
  year: 2019
  end-page: 213
  ident: b11
  article-title: Generalized turán problems for even cycles
  publication-title: J. Combin. Theory Ser. B
– volume: 66
  start-page: 163
  year: 1949
  end-page: 188
  ident: b27
  article-title: On some properties of linear complexes
  publication-title: Mat. Sb.
– volume: 84
  year: 2020
  ident: b22
  article-title: Some sharp results on the generalized Turán numbers
  publication-title: European J. Combin.
– volume: 19
  start-page: 189
  year: 1975
  end-page: 203
  ident: b24
  article-title: The inducibility of graphs
  publication-title: J. Comb. Theory Ser. B
– volume: 308
  start-page: 4332
  year: 2008
  end-page: 4336
  ident: b2
  article-title: Pentagons vs triangles
  publication-title: Discrete Math.
– volume: 21
  start-page: 187
  year: 2011
  end-page: 191
  ident: b18
  article-title: The maximum number of triangles in
  publication-title: Combin. Probab. Comput.
– year: 2019
  ident: b3
  article-title: Supersaturation for subgraph counts
– volume: 11
  start-page: 3417
  year: 2020
  end-page: 3452
  ident: b14
  article-title: A generalized turán problem and its applications
  publication-title: Int. Math. Res. Notices (IMRN)
– volume: 7
  start-page: 31
  year: 1991
  end-page: 37
  ident: b19
  article-title: On the maximal number of certain subgraphs in
  publication-title: Graphs Combin.
– volume: 90
  start-page: 227
  year: 2019
  end-page: 230
  ident: b8
  article-title: A note on the maximum number of triangles in a
  publication-title: J. Graph Theory
– year: 2020
  ident: b10
  article-title: Generalized turán problems for small graphs
– year: 2018
  ident: b9
  article-title: Triangles in
– volume: 64
  start-page: 89
  year: 1995
  end-page: 100
  ident: b5
  article-title: Extremal graphs for intersecting triangles
  publication-title: J. Combin. Theory Ser. B
– volume: 7
  start-page: 459
  year: 1962
  end-page: 464
  ident: b4
  article-title: On the number of complete subgraphs contained in certain graphs
  publication-title: Magyar Tud. Akad. Mat. KutatÓInt. KÖzl.
– volume: 121
  start-page: 146
  year: 2016
  end-page: 172
  ident: b1
  article-title: Many
  publication-title: J. Combin. Theory Ser. B
– volume: 102
  start-page: 1061
  year: 2012
  end-page: 1066
  ident: b15
  article-title: On the maximum number of five-cycles in a triangle-free graph
  publication-title: J. Combin. Theory Ser. B
– volume: 82
  year: 2019
  ident: b13
  article-title: Counting copies of a fixed subgraph in
  publication-title: European J. Combin.
– volume: 21
  start-page: 21
  year: 2019
  ident: b20
  article-title: The maximum number of
  publication-title: Discrete Math. Theor. Comput. Sci.
– volume: 48
  start-page: 436
  year: 1941
  end-page: 452
  ident: b26
  article-title: On an extremal problem in graph theory (in hungarian)
  publication-title: Mat. Fizikai Lapok
– volume: 342
  start-page: 3130
  year: 2019
  end-page: 3141
  ident: b12
  article-title: Generalized Turán problems for disjoint copies of graphs
  publication-title: Discrete Math.
– volume: 9
  start-page: 101
  year: 1989
  end-page: 102
  ident: b17
  article-title: On the number of
  publication-title: Combinatorica
– start-page: 279
  year: 1966
  end-page: 319
  ident: b25
  article-title: A method for solving extremal problems in graph theory, stability problems
  publication-title: Theory of Graphs, Proc. Colloq., Tihany
– volume: 1
  start-page: 51
  year: 1966
  end-page: 57
  ident: b6
  article-title: A limit theorem in graph theory
  publication-title: Studia Sci. Math. Hungar.
– year: 1996
  ident: b16
  article-title: Spectral Extrema for Graphs
– volume: 120
  start-page: 722
  year: 2012
  end-page: 732
  ident: b21
  article-title: On the number of pentagons in triangle-free graphs
  publication-title: J. Combin. Theory Ser. A
– volume: 18
  start-page: 455
  year: 2009
  end-page: 458
  ident: b23
  article-title: A spectral erdős-Stone-Bollobás theorem
  publication-title: Combin. Probab. Comput.
– volume: 52
  start-page: 1087
  year: 1946
  end-page: 1091
  ident: b7
  article-title: On the structure of linear graphs
  publication-title: Bull. Am. Math. Soc.
– volume: 90
  start-page: 227
  year: 2019
  ident: 10.1016/j.ejc.2022.103519_b8
  article-title: A note on the maximum number of triangles in a C5-free graph
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.22390
– year: 2018
  ident: 10.1016/j.ejc.2022.103519_b9
– volume: 21
  start-page: 187
  year: 2011
  ident: 10.1016/j.ejc.2022.103519_b18
  article-title: The maximum number of triangles in C2k+1-free graphs
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548311000629
– volume: 19
  start-page: 189
  year: 1975
  ident: 10.1016/j.ejc.2022.103519_b24
  article-title: The inducibility of graphs
  publication-title: J. Comb. Theory Ser. B
  doi: 10.1016/0095-8956(75)90084-2
– volume: 120
  start-page: 722
  year: 2012
  ident: 10.1016/j.ejc.2022.103519_b21
  article-title: On the number of pentagons in triangle-free graphs
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/j.jcta.2012.12.008
– start-page: 279
  year: 1966
  ident: 10.1016/j.ejc.2022.103519_b25
  article-title: A method for solving extremal problems in graph theory, stability problems
– volume: 308
  start-page: 4332
  year: 2008
  ident: 10.1016/j.ejc.2022.103519_b2
  article-title: Pentagons vs triangles
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2007.08.016
– volume: 21
  start-page: 21
  year: 2019
  ident: 10.1016/j.ejc.2022.103519_b20
  article-title: The maximum number of Pℓ copies in Pk-free graphs
  publication-title: Discrete Math. Theor. Comput. Sci.
– volume: 52
  start-page: 1087
  year: 1946
  ident: 10.1016/j.ejc.2022.103519_b7
  article-title: On the structure of linear graphs
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1946-08715-7
– volume: 64
  start-page: 89
  year: 1995
  ident: 10.1016/j.ejc.2022.103519_b5
  article-title: Extremal graphs for intersecting triangles
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1006/jctb.1995.1026
– year: 1996
  ident: 10.1016/j.ejc.2022.103519_b16
– volume: 9
  start-page: 101
  year: 1989
  ident: 10.1016/j.ejc.2022.103519_b17
  article-title: On the number of C5’s in a triangle-free graph
  publication-title: Combinatorica
  doi: 10.1007/BF02122689
– volume: 66
  start-page: 163
  year: 1949
  ident: 10.1016/j.ejc.2022.103519_b27
  article-title: On some properties of linear complexes
  publication-title: Mat. Sb.
– volume: 145
  start-page: 169
  year: 2019
  ident: 10.1016/j.ejc.2022.103519_b11
  article-title: Generalized turán problems for even cycles
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/j.jctb.2020.05.005
– volume: 1
  start-page: 51
  year: 1966
  ident: 10.1016/j.ejc.2022.103519_b6
  article-title: A limit theorem in graph theory
  publication-title: Studia Sci. Math. Hungar.
– volume: 7
  start-page: 459
  year: 1962
  ident: 10.1016/j.ejc.2022.103519_b4
  article-title: On the number of complete subgraphs contained in certain graphs
  publication-title: Magyar Tud. Akad. Mat. KutatÓInt. KÖzl.
– volume: 84
  year: 2020
  ident: 10.1016/j.ejc.2022.103519_b22
  article-title: Some sharp results on the generalized Turán numbers
  publication-title: European J. Combin.
  doi: 10.1016/j.ejc.2019.103026
– volume: 102
  start-page: 1061
  year: 2012
  ident: 10.1016/j.ejc.2022.103519_b15
  article-title: On the maximum number of five-cycles in a triangle-free graph
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/j.jctb.2012.04.001
– volume: 18
  start-page: 455
  year: 2009
  ident: 10.1016/j.ejc.2022.103519_b23
  article-title: A spectral erdős-Stone-Bollobás theorem
  publication-title: Combin. Probab. Comput.
  doi: 10.1017/S0963548309009687
– volume: 11
  start-page: 3417
  year: 2020
  ident: 10.1016/j.ejc.2022.103519_b14
  article-title: A generalized turán problem and its applications
  publication-title: Int. Math. Res. Notices (IMRN)
  doi: 10.1093/imrn/rny108
– volume: 342
  start-page: 3130
  year: 2019
  ident: 10.1016/j.ejc.2022.103519_b12
  article-title: Generalized Turán problems for disjoint copies of graphs
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2019.06.022
– volume: 121
  start-page: 146
  year: 2016
  ident: 10.1016/j.ejc.2022.103519_b1
  article-title: Many T copies in H-free graphs
  publication-title: J. Combin. Theory Ser. B
  doi: 10.1016/j.jctb.2016.03.004
– year: 2019
  ident: 10.1016/j.ejc.2022.103519_b3
– year: 2020
  ident: 10.1016/j.ejc.2022.103519_b10
– volume: 7
  start-page: 31
  year: 1991
  ident: 10.1016/j.ejc.2022.103519_b19
  article-title: On the maximal number of certain subgraphs in Kr-free graphs
  publication-title: Graphs Combin.
  doi: 10.1007/BF01789461
– volume: 48
  start-page: 436
  year: 1941
  ident: 10.1016/j.ejc.2022.103519_b26
  article-title: On an extremal problem in graph theory (in hungarian)
  publication-title: Mat. Fizikai Lapok
– volume: 82
  year: 2019
  ident: 10.1016/j.ejc.2022.103519_b13
  article-title: Counting copies of a fixed subgraph in F-free graphs
  publication-title: European J. Combin.
  doi: 10.1016/j.ejc.2019.103001
SSID ssj0011533
Score 2.409281
Snippet Fix a k-chromatic graph F. In this paper we consider the question to determine for which graphs H does the Turán graph Tk−1(n) have the maximum number of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103519
Title Some exact results for generalized Turán problems
URI https://dx.doi.org/10.1016/j.ejc.2022.103519
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsNAFL3UdqML8Yn1UbJwJcQmk8lMsizFUl9FbAvdhZnJjLTUtLQpiAv_xW_xx5zJoyioC5cJuZCcDPfBvedcgHOMTS-PMVtgHhtKTmAH3EU2YoIFuh7xHJ4NyPZId4hvRv6oAu2SC2PGKgvfn_v0zFsXd5oFms35eNzsZ1Q3YvTnMkIw3oAa8kLiV6HWur7t9tbNBJPSlGsJjUHZ3MzGvOTECBkiZNjnvtHb-Sk8fQk5nR3YLnJFq5W_zi5UZLIHW_drodXlPqD-7Fla8oWJ1NKF82qaLi2dhlpPuZr0-FXG1mC1-HhPrGJ1zPIAhp2rQbtrF2sQbIFCmtpYsTgkjKuAS0U86oQ0FtLnutSIuc74mSACcaFDre8T7sfUUY7yhMeZcJiRBzyEajJL5BFYnqDMVSGhgiqMOAljhQV1gthTnCDq1sEpvz4ShUa4WVUxjcphsEmkAYsMYFEOWB0u1ibzXCDjr4dxCWn07S9H2oH_bnb8P7MT2DRX-WDXKVTTxUqe6RQi5Q3YuHxzG_qgtB_vHhrFgfkEJYTF6g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA21LtSF-MT6zMKVMHaaySQzSymWqm03bcFdyFNa6rS0UxAX_ovf4o-ZzKMoqAu3k1zI3Bnug5xzLgCXGLu7PM49iYVylJzIi0QDeYhLHtl-JPBFBpDtkfYQ3z-GjxXQLLkwDlZZxP48pmfRunhSL7xZn41G9X5GdSNOfy4jBOM1sI7DgDpc3_XbCufRcAVNOZTQbS-vNjOQlx47GUOEHPc8dGo7PyWnLwmntQO2i0oR3uSH2QUVneyBre5KZnWxD1B_-qyhfuEyhbZtXk7SBbRFKHzKtaRHr1rBwXL-8Z7AYnDM4gAMW7eDZtsrhiB4EsU09bDhKiZcmEhoQwLqx1RJHQrbaChh630uiURC2kQbhkSEivrGN4EMBJc-d-KAh6CaTBN9BGAgKW-YmFBJDUaCxMpgSf1IBUYQRBs14Jdvz2ShEO4GVUxYCQUbM-sw5hzGcofVwNXKZJbLY_y1GZcuZd--MbPh-3ez4_-ZXYCN9qDbYZ273sMJ2HQrOcTrFFTT-VKf2WIiFefZz_IJnkTFIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+exact+results+for+generalized+Tur%C3%A1n+problems&rft.jtitle=European+journal+of+combinatorics&rft.au=Gerbner%2C+D%C3%A1niel&rft.au=Palmer%2C+Cory&rft.date=2022-06-01&rft.issn=0195-6698&rft.volume=103&rft.spage=103519&rft_id=info:doi/10.1016%2Fj.ejc.2022.103519&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejc_2022_103519
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0195-6698&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0195-6698&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0195-6698&client=summon