Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production
[Display omitted] •Co3O4 as a heat source in composite system can generate heat by absorbing Vis-NIR light.•High-frequency photons are converted into heat to accelerate interfacial charge transfer.•S-scheme retains carriers with high redox potentials converted from low-frequency photons. The develop...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 459; p. 141549 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Co3O4 as a heat source in composite system can generate heat by absorbing Vis-NIR light.•High-frequency photons are converted into heat to accelerate interfacial charge transfer.•S-scheme retains carriers with high redox potentials converted from low-frequency photons.
The development of photocatalysts that maximize the use of solar spectra for photocatalysis for obtaining more efficient photocatalysts is urgently needed. Herein, the core–shell Co3O4@ZnIn2S4 S-scheme heterojunction was synthesized for achieving high-efficient photothermal-assisted photocatalytic hydrogen (H2) performance under full solar-spectrum irradiation. Notably, photocatalytic H2 production tests indicate that the as-prepared optimal Co3O4@ZnIn2S4 sample (CO@ZIS-20) exhibits impressive H2 production rates of about 18.9 and 9.8 mmol h−1 g−1 under AM 1.5G and real sunlight irradiation, respectively. The effect of the reaction solution temperature induced by the photothermal effect on the photocatalytic activity in solid–liquid reactions was also investigated. Furthermore, the results of the characterization analysis revealed that high-frequency photons dominate photocatalytic reactions while low-frequency photons are converted into heat to improve photocatalytic reactions. This study provides effective design ideas of developing high-activity photothermal-assisted photocatalysts for realizing solar energy conversion. |
---|---|
AbstractList | [Display omitted]
•Co3O4 as a heat source in composite system can generate heat by absorbing Vis-NIR light.•High-frequency photons are converted into heat to accelerate interfacial charge transfer.•S-scheme retains carriers with high redox potentials converted from low-frequency photons.
The development of photocatalysts that maximize the use of solar spectra for photocatalysis for obtaining more efficient photocatalysts is urgently needed. Herein, the core–shell Co3O4@ZnIn2S4 S-scheme heterojunction was synthesized for achieving high-efficient photothermal-assisted photocatalytic hydrogen (H2) performance under full solar-spectrum irradiation. Notably, photocatalytic H2 production tests indicate that the as-prepared optimal Co3O4@ZnIn2S4 sample (CO@ZIS-20) exhibits impressive H2 production rates of about 18.9 and 9.8 mmol h−1 g−1 under AM 1.5G and real sunlight irradiation, respectively. The effect of the reaction solution temperature induced by the photothermal effect on the photocatalytic activity in solid–liquid reactions was also investigated. Furthermore, the results of the characterization analysis revealed that high-frequency photons dominate photocatalytic reactions while low-frequency photons are converted into heat to improve photocatalytic reactions. This study provides effective design ideas of developing high-activity photothermal-assisted photocatalysts for realizing solar energy conversion. |
ArticleNumber | 141549 |
Author | Shi, Weilong Guo, Feng Xu, Zheng Shi, Yuxing Li, Lingling |
Author_xml | – sequence: 1 givenname: Yuxing surname: Shi fullname: Shi, Yuxing organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China – sequence: 2 givenname: Lingling surname: Li fullname: Li, Lingling organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China – sequence: 3 givenname: Zheng surname: Xu fullname: Xu, Zheng organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China – sequence: 4 givenname: Feng surname: Guo fullname: Guo, Feng email: gfeng0105@126.com organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China – sequence: 5 givenname: Weilong orcidid: 0000-0002-4762-5599 surname: Shi fullname: Shi, Weilong email: shiwl@just.edu.cn organization: School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China |
BookMark | eNp9kM1KAzEQgINUsK0-gLe8wK6ZZH_xJEWtUPBg7yGbndAs201J0kLvPrhbVhA89DTDDN_8fAsyG9yAhDwCS4FB8dSlGruUMy5SyCDP6hsyh6oUieDAZ2Muqjyp6qy8I4sQOsZYUUM9J98rN4TojzpaN1BnqDn2PQ2uVz4JB9Rja0_VSdleNT3SryToHe6R7jCid91xmEDjPG2cCxFbeti56OIO_V71iQrB_lW1iqo_R6vpmtODd-20957cGtUHfPiNS7J9e92u1snm8_1j9bJJNK_LmGRtqYu6LgxnZVVVutBgKsFyzWoAkRvggiMYUZXQtI1QDbSZYaxRuSlKk4klKaex2rsQPBqpbVSXA6IfH5TA5MWl7OToUl5cysnlSMI_8uDtXvnzVeZ5YnD86GTRy6AtDhpb60evsnX2Cv0DB36SNA |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_05_279 crossref_primary_10_1016_j_apcatb_2025_125098 crossref_primary_10_1016_j_jcis_2025_137269 crossref_primary_10_1016_j_cej_2025_161072 crossref_primary_10_1039_D4NR03195D crossref_primary_10_1016_j_jallcom_2023_171659 crossref_primary_10_1002_asia_202400993 crossref_primary_10_1021_acs_inorgchem_4c00481 crossref_primary_10_1016_j_jece_2024_114876 crossref_primary_10_1063_5_0218539 crossref_primary_10_1016_j_eti_2023_103337 crossref_primary_10_1016_j_ijhydene_2024_06_088 crossref_primary_10_1016_j_jre_2024_02_002 crossref_primary_10_1016_j_seppur_2024_129479 crossref_primary_10_1016_j_cej_2024_153058 crossref_primary_10_1016_j_colsurfa_2024_135554 crossref_primary_10_1016_j_seppur_2023_126243 crossref_primary_10_1016_j_colsurfa_2024_135311 crossref_primary_10_1016_j_jallcom_2023_171302 crossref_primary_10_1063_5_0202991 crossref_primary_10_1016_j_jphotochem_2025_116314 crossref_primary_10_1016_j_jallcom_2024_176381 crossref_primary_10_1039_D3LF00157A crossref_primary_10_1007_s10562_024_04880_y crossref_primary_10_1016_j_apcatb_2023_123005 crossref_primary_10_1016_j_cej_2024_153168 crossref_primary_10_1016_j_jallcom_2024_176822 crossref_primary_10_1016_j_seppur_2023_124633 crossref_primary_10_1016_j_cej_2024_149232 crossref_primary_10_3390_molecules28135098 crossref_primary_10_1016_j_jphotochem_2024_115768 crossref_primary_10_3390_molecules28052142 crossref_primary_10_1016_j_ceramint_2024_10_108 crossref_primary_10_1016_j_jcat_2023_115131 crossref_primary_10_1039_D3NR06588J crossref_primary_10_1016_j_jcis_2024_04_223 crossref_primary_10_1016_j_colsurfa_2024_134320 crossref_primary_10_1007_s40843_023_2773_9 crossref_primary_10_1016_j_jwpe_2024_104803 crossref_primary_10_1002_cey2_499 crossref_primary_10_1016_j_jallcom_2024_176736 crossref_primary_10_1016_j_seppur_2023_125059 crossref_primary_10_1016_j_flatc_2023_100597 crossref_primary_10_1016_j_fuel_2024_132394 crossref_primary_10_1016_j_matre_2023_100234 crossref_primary_10_1002_anie_202410474 crossref_primary_10_1016_j_jcis_2024_08_048 crossref_primary_10_1002_slct_202403308 crossref_primary_10_1016_j_cej_2024_157185 crossref_primary_10_1016_j_jece_2024_112900 crossref_primary_10_1002_aenm_202404621 crossref_primary_10_1021_acs_iecr_3c03837 crossref_primary_10_1016_j_apsusc_2024_159790 crossref_primary_10_1016_j_jcis_2024_01_150 crossref_primary_10_1016_j_cej_2025_161502 crossref_primary_10_1021_acsanm_4c01427 crossref_primary_10_1016_j_jallcom_2025_179730 crossref_primary_10_1016_j_apcatb_2024_124971 crossref_primary_10_1016_j_jcis_2024_05_122 crossref_primary_10_1039_D4MA00493K crossref_primary_10_1021_acs_chemrev_4c00276 crossref_primary_10_1016_j_cej_2024_155430 crossref_primary_10_1016_j_apcatb_2024_123834 crossref_primary_10_1016_j_seppur_2024_127253 crossref_primary_10_1016_j_ijhydene_2024_09_009 crossref_primary_10_1016_j_ijhydene_2025_01_229 crossref_primary_10_1016_j_seppur_2023_125994 crossref_primary_10_1016_j_jcis_2024_03_194 crossref_primary_10_1016_j_jphotochem_2023_115027 crossref_primary_10_1039_D4TA03636K crossref_primary_10_1016_j_cej_2023_143831 crossref_primary_10_1016_j_jallcom_2023_170932 crossref_primary_10_1016_j_jcis_2024_08_066 crossref_primary_10_1016_j_jcis_2024_01_213 crossref_primary_10_1016_j_ijhydene_2024_09_260 crossref_primary_10_1016_j_seppur_2024_128694 crossref_primary_10_1002_ange_202410474 crossref_primary_10_1016_j_cej_2023_145690 crossref_primary_10_1016_j_jcis_2024_07_144 crossref_primary_10_1016_j_jpcs_2023_111535 crossref_primary_10_1016_j_jcis_2023_09_154 crossref_primary_10_1016_j_jallcom_2024_176094 crossref_primary_10_1016_j_jece_2024_115147 crossref_primary_10_1016_j_snb_2024_135422 crossref_primary_10_1039_D3TC02869K crossref_primary_10_1002_smtd_202300558 crossref_primary_10_1016_j_jcis_2024_03_178 crossref_primary_10_1021_acs_langmuir_4c04971 crossref_primary_10_1016_j_apcatb_2024_124703 crossref_primary_10_1016_j_cej_2024_151041 crossref_primary_10_1021_acs_langmuir_4c00805 crossref_primary_10_1016_j_jallcom_2024_175324 crossref_primary_10_1016_j_jallcom_2024_176891 crossref_primary_10_1016_j_jcis_2025_02_218 crossref_primary_10_1111_jace_19920 crossref_primary_10_1016_j_pes_2024_100018 crossref_primary_10_1016_j_cej_2024_155886 crossref_primary_10_1016_j_ijhydene_2023_07_103 crossref_primary_10_1016_j_seppur_2024_126932 crossref_primary_10_1016_j_apmt_2024_102279 crossref_primary_10_1016_j_seppur_2023_125302 crossref_primary_10_1016_j_cej_2023_145550 crossref_primary_10_1016_j_jssc_2024_124749 crossref_primary_10_1016_j_jece_2024_112971 crossref_primary_10_1002_smll_202406609 crossref_primary_10_1016_j_cej_2024_151822 crossref_primary_10_1007_s12274_024_6501_0 crossref_primary_10_1039_D3GC03859A crossref_primary_10_1016_j_enconman_2024_119069 crossref_primary_10_1016_j_jece_2024_112611 crossref_primary_10_1016_j_jcis_2023_08_133 crossref_primary_10_1016_j_cej_2025_159957 crossref_primary_10_1016_j_jcis_2024_10_117 crossref_primary_10_1016_j_jallcom_2024_177888 crossref_primary_10_1016_j_renene_2024_120998 crossref_primary_10_1016_j_ceramint_2024_11_443 crossref_primary_10_1016_j_cej_2023_147279 crossref_primary_10_1016_j_jallcom_2023_169606 crossref_primary_10_1016_j_jiec_2023_11_007 crossref_primary_10_1515_gps_2024_0040 crossref_primary_10_1016_j_seppur_2024_130975 crossref_primary_10_1016_j_apcatb_2024_124679 crossref_primary_10_1039_D4TA06654E crossref_primary_10_1016_j_cej_2023_146062 crossref_primary_10_1016_j_jallcom_2024_175692 crossref_primary_10_1016_j_ijhydene_2025_02_163 crossref_primary_10_1016_j_inoche_2025_114297 crossref_primary_10_1016_j_cej_2024_149607 crossref_primary_10_1007_s10853_024_09435_5 crossref_primary_10_1016_j_jcis_2025_137402 crossref_primary_10_1016_j_jwpe_2024_105501 crossref_primary_10_1016_j_cej_2024_151483 crossref_primary_10_1002_smll_202407963 crossref_primary_10_1016_j_mtcomm_2023_106333 crossref_primary_10_1016_j_cjche_2024_07_025 crossref_primary_10_3390_nano13081326 crossref_primary_10_1016_j_ijhydene_2025_01_489 crossref_primary_10_1016_j_jcis_2024_11_014 crossref_primary_10_1016_j_jcis_2024_11_120 crossref_primary_10_1016_j_jece_2024_113158 crossref_primary_10_1016_j_apcatb_2024_124690 crossref_primary_10_1007_s11771_024_5838_6 crossref_primary_10_1021_acsaenm_4c00707 crossref_primary_10_1016_j_surfin_2023_103811 crossref_primary_10_1021_acs_inorgchem_3c04102 crossref_primary_10_1016_j_cej_2024_156498 crossref_primary_10_1016_j_jallcom_2024_174705 crossref_primary_10_1016_j_jcis_2025_01_178 crossref_primary_10_1016_j_jcis_2023_09_170 crossref_primary_10_1016_j_apcatb_2024_124694 crossref_primary_10_1016_j_cej_2024_155728 crossref_primary_10_1021_acsanm_4c01029 crossref_primary_10_1016_j_colsurfa_2024_135705 crossref_primary_10_1016_j_coche_2024_101059 crossref_primary_10_1021_acsanm_3c02444 crossref_primary_10_1016_j_apsusc_2023_158890 crossref_primary_10_1002_smll_202408038 crossref_primary_10_1016_j_jallcom_2023_173005 crossref_primary_10_1016_j_seppur_2024_129832 crossref_primary_10_1016_j_apsusc_2023_158648 crossref_primary_10_26599_JAC_2024_9220996 crossref_primary_10_1016_j_jcis_2024_05_077 crossref_primary_10_1016_j_cej_2023_145611 crossref_primary_10_1016_j_seppur_2024_127091 crossref_primary_10_1016_j_jece_2023_110367 crossref_primary_10_1016_j_seppur_2024_129394 crossref_primary_10_1016_j_ijhydene_2023_12_287 crossref_primary_10_1016_j_apcatb_2023_123601 crossref_primary_10_1016_j_chemosphere_2023_140634 crossref_primary_10_1016_j_mtcomm_2023_106741 crossref_primary_10_1016_j_apcatb_2023_123284 crossref_primary_10_46670_JSST_2024_33_5_274 crossref_primary_10_1016_j_jallcom_2024_174284 crossref_primary_10_1039_D4QI02806F crossref_primary_10_1007_s11705_024_2469_2 crossref_primary_10_1016_j_jcis_2024_08_116 crossref_primary_10_1021_acsami_3c15566 crossref_primary_10_3390_catal13060967 crossref_primary_10_1016_j_jallcom_2024_174755 crossref_primary_10_1016_j_jallcom_2025_179009 crossref_primary_10_1016_j_cej_2025_160561 crossref_primary_10_1016_j_seppur_2023_124600 crossref_primary_10_1016_j_jece_2024_113111 crossref_primary_10_1021_acs_inorgchem_4c00218 crossref_primary_10_1021_acsaem_4c01395 crossref_primary_10_1016_j_inoche_2024_112044 crossref_primary_10_1016_j_jcis_2024_03_102 crossref_primary_10_1016_j_jcis_2024_08_122 crossref_primary_10_1016_j_apsusc_2024_160322 crossref_primary_10_1016_j_apsusc_2024_161655 crossref_primary_10_1016_j_coche_2024_101042 crossref_primary_10_1016_j_cej_2024_156455 crossref_primary_10_1016_j_jcis_2024_12_086 crossref_primary_10_1016_j_apcatb_2024_124657 crossref_primary_10_1016_j_jcis_2023_07_147 crossref_primary_10_1016_j_jcis_2023_10_074 crossref_primary_10_1016_j_jclepro_2023_139617 crossref_primary_10_1016_j_ijhydene_2024_07_005 crossref_primary_10_1039_D3TA07169C |
Cites_doi | 10.1016/j.cej.2019.122382 10.1039/D2EN00781A 10.1016/j.jhazmat.2021.127128 10.1016/j.apcatb.2020.119818 10.1016/j.nanoen.2017.08.032 10.1002/smtd.202100887 10.1016/j.cej.2018.09.014 10.1016/j.jcis.2021.06.074 10.1016/j.apsusc.2022.153482 10.1016/j.cej.2021.133741 10.1016/j.apcatb.2017.09.003 10.1038/s41467-022-28995-1 10.1016/j.apcatb.2014.12.048 10.1016/j.apcatb.2022.121109 10.1016/j.jcou.2022.102003 10.1016/j.apcatb.2020.119789 10.1021/acsami.2c04734 10.1038/s41467-022-33439-x 10.1016/j.apcatb.2022.121893 10.1039/C8EE01146J 10.1002/adma.201802894 10.1016/S1872-2067(20)63597-5 10.1016/j.ijhydene.2021.07.201 10.1016/j.seppur.2022.120987 10.1016/j.apcatb.2020.119254 10.1002/adsu.202200115 10.1016/j.cej.2022.139834 10.1002/adma.202107668 10.1016/j.apsusc.2022.153281 10.1039/C7MH01064H 10.1002/solr.202100118 10.1016/j.apcatb.2021.120979 10.1016/j.seppur.2021.119153 10.1021/acssuschemeng.0c07638 10.1016/j.apcatb.2021.120573 10.1002/er.8254 10.1016/j.apcatb.2022.121577 10.1016/j.apcatb.2021.120139 10.1016/j.apcatb.2020.119474 10.1016/j.seppur.2022.122337 10.1038/s41467-021-21526-4 10.1007/s40145-022-0621-3 10.1007/s40145-022-0598-y 10.1016/j.ijhydene.2022.08.232 10.1016/j.cej.2022.135014 10.1002/adma.201603730 10.1016/j.apsusc.2022.155272 10.1016/j.apcatb.2019.02.027 10.1016/j.cej.2022.140442 10.1016/j.apsusc.2020.145529 10.1016/S1872-2067(21)63875-5 10.1016/j.jallcom.2022.167450 10.1039/D1SC06401K 10.1016/j.apcatb.2021.120394 10.1002/advs.202103926 10.1002/anie.202000503 10.1016/j.apcatb.2020.118900 10.1016/j.jcis.2021.10.136 10.1016/j.apsusc.2022.154841 10.1002/adma.202101751 10.1016/j.jcis.2021.09.095 10.1016/j.apcatb.2022.121550 10.1016/j.jhazmat.2022.129141 10.1002/adma.202100317 10.1016/j.nanoen.2020.105031 10.1016/j.seppur.2022.121240 10.1016/j.apcatb.2019.04.082 10.1016/j.apsusc.2022.153382 10.1016/j.jcis.2022.10.022 10.1016/j.ceramint.2015.10.101 10.1016/j.compositesb.2022.109955 10.1016/j.nanoen.2022.107028 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2023.141549 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2023_141549 S1385894723002802 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SSH ZY4 |
ID | FETCH-LOGICAL-c297t-4d7c6996f207888c6c1f8305c091135f1232e1f3871bdb3ab1d4f00ba5f67f43 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 01:50:34 EDT 2025 Thu Apr 24 22:58:49 EDT 2025 Fri Feb 23 02:36:47 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Full solar-spectrum Photothermal-assisted Hydrogen Photocatalysis S-scheme heterojunction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-4d7c6996f207888c6c1f8305c091135f1232e1f3871bdb3ab1d4f00ba5f67f43 |
ORCID | 0000-0002-4762-5599 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2023_141549 crossref_primary_10_1016_j_cej_2023_141549 elsevier_sciencedirect_doi_10_1016_j_cej_2023_141549 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 2023-03-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Guo, Mao, Tang, Shang, Cai, Zhang, Hu, Tan, Liu, Wang, Yu, Ye (b0050) 2022; 95 Bi, Su, Zhang, Chen, Darr, Weng, Wu (b0100) 2022; 306 Chen, Guo, Sun, Shi, Shi (b0305) 2021; 607 Zhang, Luo, Liu, Dong, Xiang, Zhao, Shu, Hou, Wang, Chen (b0270) 2022; 14 Wang, Wang, Zhen (b0160) 2019; 356 Zhang, Chen, Li, Xu, Li, He, Lu (b0165) 2020; 59 Cheng, Wang, Schaaf (b0010) 2022; 6 Yang, Zhao, Bi, Chen, Wang, Cui, Xu, Zhang (b0115) 2022; 315 Chen, Chen, Jiang, Zheng, Song, Zhao, Xie, Kuang (b0205) 2021; 297 Wang, Li, Deng, Wei, Weng, Dong, Qi, Qiu, Chen, Wu (b0240) 2017; 29 Shao, Meng, Lai, Zhang, Pu, Su, Li, Ren, Geng (b0140) 2021; 42 Zhang, Dong, Jiang, Chu, Xu (b0350) 2022; 435 Ma, Liu, Wang, Jin (b0290) 2021; 46 Zhu, Gao, Peh, Ho (b0065) 2018; 5 Hu, Chen, Wang, Tian, Ma, Zhang, Huang (b0225) 2021; 33 Shi, Li, Xu, Qin, Cai, Zhang, Shi, Du, Guo (b0230) 2023; 630 Shi, Hao, Shi, Guo, Tang (b0365) 2023; 304 Du, Yan, Yang (b0120) 2020; 76 Lu, Liu, Qiu, Qiao, Li, Cheng, Xue, Hou, Xu, Xiang, Peng, Guo (b0210) 2020; 379 Shi, Wang, Wang, Sun, Shi, Guo, Lu (b0020) 2022; 292 Wu, Dai, Pan, Huo, Wang, Zhang, Hu, Yan (b0155) 2020; 510 Song, Liu, Sun, Han, Xu, Xu, Wu, Meng, Xu, Sun, Zhang (b0185) 2021; 275 Chen, Zhang, Liu, Li, Liu, Li, Wong, An, Zhao (b0190) 2015; 168–169 Meng, Chen, Gu, Wu, Meng, Zhang, Chen, Fu, Liu, Lei (b0195) 2021; 285 Huang, Li, Fang, Chen, Luo, Shi (b0285) 2019; 254 Y.J. Bao S.Q. Song G.J. Yao S.J. Jiang S-Scheme Photocatalytic Systems Sol. Rrl 5 2021 https://doi.org/solr.202100118. Shi, Hao, Fu, Guo, Tang, Yan (b0295) 2022; 433 Shi, Sun, Liu, Zhang, Sun, Lin, Hong, Guo (b0220) 2022; 436 Shi, Dai, Wang, Hu, Zhang, Zheng, Mao, Zheng, Zhu (b0250) 2022; 13 Yang, Mei, Fan, Zhang, Zhu, Amal, Yin, Zeng (b0245) 2021; 5 Zhang, Gong, Mahmood, Pan, Zhang, Zou (b0355) 2018; 221 Wang, Liu, Wu, Gao, Li, Xing, Li, Zhou (b0105) 2022; 18 Sun, Shi, Lu, Shi, Guo (b0215) 2022; 606 Yang, Gao, Hong, Ho (b0005) 2018; 30 Lu, Zhang, Fan, Chen, Yang (b0060) 2022; 423 Guo, Huang, Chen, Shi, Sun, Cheng, Shi, Chen (b0255) 2021; 602 Chen, Liao, Zhou, Yang, Gao, Cai, Peng, Fang, Zhang (b0370) 2021; 291 Gao, Zhu, Peh, Ho (b0035) 2019; 12 Wang, Tang, Sun, Wu, Liang, Qu, Jing (b0345) 2022; 319 Hong, Xu, Deng, Gao, Zhu, Zhang, Zhang (b0015) 2022; 9 Chen, Shi, Shu, Luo, Shi, Guo (b0040) 2023; 454 Lu, Shi, Chen, Sun, Yuan, Guo, Shi (b0055) 2023; 453 Li, Li, gao, Jia (b0275) 2022; 47 Li, Yue, Yang, Qiu, Xue, Xu, Wang (b0200) 2016; 42 Wang, Shi, Sun, Shi, Guo (b0335) 2023; 930 Zhu, Zhou (b0260) 2021; 281 Zhang, Zhang, Yu, Yu (b0080) 2022; 34 Zhang, Chen, Li, Xu, Li, Lu (b0145) 2023; 610 Guo, Li, Li, Wei (b0025) 2021; 12 Li, Sun, Chen, Yao, Cong, Liu (b0030) 2021; 298 Li, Li, Zhu, Jin (b0150) 2022; 46 Ai, Huang, Shi, Yang, Hu, Zhang, Shao, Shen, Wu, Hao (b0310) 2022; 315 Xing, Cheng, Zhang, Liu, Chen, Huang (b0280) 2021; 285 Gu, Ding, Tong, Yao, Yang, Zhong (b0110) 2022; 61 Kong, Fan, Yin, Zhang, Pu, Yao, Su (b0125) 2021; 9 Yue, Cheng, Fan, Xiang (b0085) 2022; 304 Li, Wu, Li, Dong, Zhao, Wang (b0090) 2022; 43 Yuan, Shi, Lu, Wang, Shi, Guo, Kang (b0360) 2023; 454 Suguro, Kishimoto, Kariya, Fukui, Nakabayashi, Shibata, Takata, Domen, Takanabe (b0070) 2022; 13 Du, Zhang, Lin, Yan, Xia, Yang (b0170) 2019; 248 Sun, Shi, Shi, Guo (b0315) 2022; 593 Huang, Hu, Hu, Liu, He, Zhou, Hu, Yang, Zhang, Zhou, Zou (b0340) 2022; 9 Ravishankar, Bisquert, Kirchartz (b0265) 2022; 13 Cai, Shi, Shi, Bai, Yang, Guo (b0235) 2022; 238 Hu, Shi, Luo, Ai, Jing (b0045) 2022; 608 Tao, Wang, Liu, Liu, Lu, Wan, Tang, Qiao (b0130) 2022; 11 Xu, Shi, Shi, Sun, Li, Guo, Wen (b0325) 2022; 595 Cheng, He, Fan, Cheng, Cao, Yu (b0095) 2021; 33 Wei, Zhang, Gao, Wang, Zhang, Bao, He (b0180) 2022; 295 Luo, Tian, Liu, Zhang (b0075) 2022; 593 Nasir, Yang, Ayub, Wang, Yan (b0300) 2020; 270 Qin, Li, Lu, Feng, Meng, Ma, Yan, Meng (b0175) 2020; 277 Jin, Jing, Wang, Hu, Zhou (b0135) 2022; 11 Huang, Song, Wang, Pan, Li, Zhang, Wang, Zou (b0320) 2017; 40 Yue (10.1016/j.cej.2023.141549_b0085) 2022; 304 Du (10.1016/j.cej.2023.141549_b0170) 2019; 248 Cai (10.1016/j.cej.2023.141549_b0235) 2022; 238 Yang (10.1016/j.cej.2023.141549_b0245) 2021; 5 Shi (10.1016/j.cej.2023.141549_b0230) 2023; 630 Nasir (10.1016/j.cej.2023.141549_b0300) 2020; 270 Shi (10.1016/j.cej.2023.141549_b0365) 2023; 304 Shi (10.1016/j.cej.2023.141549_b0295) 2022; 433 Gao (10.1016/j.cej.2023.141549_b0035) 2019; 12 Wang (10.1016/j.cej.2023.141549_b0240) 2017; 29 Zhu (10.1016/j.cej.2023.141549_b0065) 2018; 5 Sun (10.1016/j.cej.2023.141549_b0215) 2022; 606 Shi (10.1016/j.cej.2023.141549_b0250) 2022; 13 Chen (10.1016/j.cej.2023.141549_b0305) 2021; 607 Tao (10.1016/j.cej.2023.141549_b0130) 2022; 11 Xing (10.1016/j.cej.2023.141549_b0280) 2021; 285 Cheng (10.1016/j.cej.2023.141549_b0095) 2021; 33 Guo (10.1016/j.cej.2023.141549_b0025) 2021; 12 Zhang (10.1016/j.cej.2023.141549_b0165) 2020; 59 Qin (10.1016/j.cej.2023.141549_b0175) 2020; 277 Li (10.1016/j.cej.2023.141549_b0150) 2022; 46 Wang (10.1016/j.cej.2023.141549_b0105) 2022; 18 Li (10.1016/j.cej.2023.141549_b0200) 2016; 42 Zhang (10.1016/j.cej.2023.141549_b0350) 2022; 435 Wang (10.1016/j.cej.2023.141549_b0335) 2023; 930 Sun (10.1016/j.cej.2023.141549_b0315) 2022; 593 Suguro (10.1016/j.cej.2023.141549_b0070) 2022; 13 Huang (10.1016/j.cej.2023.141549_b0320) 2017; 40 Cheng (10.1016/j.cej.2023.141549_b0010) 2022; 6 Chen (10.1016/j.cej.2023.141549_b0370) 2021; 291 Ma (10.1016/j.cej.2023.141549_b0290) 2021; 46 Zhang (10.1016/j.cej.2023.141549_b0355) 2018; 221 Meng (10.1016/j.cej.2023.141549_b0195) 2021; 285 Guo (10.1016/j.cej.2023.141549_b0050) 2022; 95 Du (10.1016/j.cej.2023.141549_b0120) 2020; 76 Wu (10.1016/j.cej.2023.141549_b0155) 2020; 510 Hong (10.1016/j.cej.2023.141549_b0015) 2022; 9 Hu (10.1016/j.cej.2023.141549_b0045) 2022; 608 Jin (10.1016/j.cej.2023.141549_b0135) 2022; 11 Wang (10.1016/j.cej.2023.141549_b0345) 2022; 319 Luo (10.1016/j.cej.2023.141549_b0075) 2022; 593 Zhang (10.1016/j.cej.2023.141549_b0145) 2023; 610 Song (10.1016/j.cej.2023.141549_b0185) 2021; 275 Huang (10.1016/j.cej.2023.141549_b0285) 2019; 254 10.1016/j.cej.2023.141549_b0330 Wei (10.1016/j.cej.2023.141549_b0180) 2022; 295 Yuan (10.1016/j.cej.2023.141549_b0360) 2023; 454 Hu (10.1016/j.cej.2023.141549_b0225) 2021; 33 Shi (10.1016/j.cej.2023.141549_b0020) 2022; 292 Ravishankar (10.1016/j.cej.2023.141549_b0265) 2022; 13 Xu (10.1016/j.cej.2023.141549_b0325) 2022; 595 Zhu (10.1016/j.cej.2023.141549_b0260) 2021; 281 Lu (10.1016/j.cej.2023.141549_b0210) 2020; 379 Li (10.1016/j.cej.2023.141549_b0275) 2022; 47 Kong (10.1016/j.cej.2023.141549_b0125) 2021; 9 Shi (10.1016/j.cej.2023.141549_b0220) 2022; 436 Chen (10.1016/j.cej.2023.141549_b0040) 2023; 454 Zhang (10.1016/j.cej.2023.141549_b0080) 2022; 34 Zhang (10.1016/j.cej.2023.141549_b0270) 2022; 14 Huang (10.1016/j.cej.2023.141549_b0340) 2022; 9 Gu (10.1016/j.cej.2023.141549_b0110) 2022; 61 Lu (10.1016/j.cej.2023.141549_b0055) 2023; 453 Wang (10.1016/j.cej.2023.141549_b0160) 2019; 356 Chen (10.1016/j.cej.2023.141549_b0190) 2015; 168–169 Yang (10.1016/j.cej.2023.141549_b0115) 2022; 315 Guo (10.1016/j.cej.2023.141549_b0255) 2021; 602 Li (10.1016/j.cej.2023.141549_b0030) 2021; 298 Chen (10.1016/j.cej.2023.141549_b0205) 2021; 297 Li (10.1016/j.cej.2023.141549_b0090) 2022; 43 Lu (10.1016/j.cej.2023.141549_b0060) 2022; 423 Shao (10.1016/j.cej.2023.141549_b0140) 2021; 42 Ai (10.1016/j.cej.2023.141549_b0310) 2022; 315 Bi (10.1016/j.cej.2023.141549_b0100) 2022; 306 Yang (10.1016/j.cej.2023.141549_b0005) 2018; 30 |
References_xml | – volume: 593 year: 2022 ident: b0315 article-title: High-crystalline/amorphous g-C publication-title: Appl. Surf. Sci. – volume: 436 year: 2022 ident: b0220 article-title: A self-sufficient photo-Fenton system with coupling in-situ production H publication-title: J. Hazard. Mater. – volume: 277 year: 2020 ident: b0175 article-title: Synergy between van der waals heterojunction and vacancy in ZnIn publication-title: Appl. Cataly. B-Environ. – volume: 315 year: 2022 ident: b0310 article-title: Phase engineering of CdS optimized by BP with p-n junction: Establishing spatial-gradient charges transmission mode toward efficient photocatalytic water reduction publication-title: Appl. Cataly. B-Environ. – volume: 454 start-page: 1400442 year: 2023 ident: b0360 article-title: Dual-channels separated mechanism of photo-generated charges over semiconductor photocatalyst for hydrogen evolution: Interfacial charge transfer and transport dynamics insight publication-title: Chem. Eng. J. – volume: 510 year: 2020 ident: b0155 article-title: Co publication-title: Appl. Surf. Sci. – volume: 33 year: 2021 ident: b0095 article-title: An Inorganic/Organic S-Scheme Heterojunction H publication-title: Adv. Mater. – volume: 42 start-page: 439 year: 2021 end-page: 449 ident: b0140 article-title: Coralline-like Ni publication-title: Chin. J. Catal. – volume: 315 year: 2022 ident: b0115 article-title: Highly efficient photothermal catalysis of toluene over Co publication-title: Appl. Cataly. B-Environ. – volume: 306 year: 2022 ident: b0100 article-title: Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation publication-title: Appl. Cataly. B Environ. – volume: 435 year: 2022 ident: b0350 article-title: A novel S-scheme heterojunction of CsPbBr 3 nanocrystals/AgBr nanorods for artificial photosynthesis publication-title: Chem. Eng. J. – volume: 33 year: 2021 ident: b0225 article-title: Exceptional Cocatalyst-Free Photo-Enhanced Piezocatalytic Hydrogen Evolution of Carbon Nitride Nanosheets from Strong In-Plane Polarization publication-title: Adv. Mater. – volume: 281 year: 2021 ident: b0260 article-title: Nitrogen doped g-C publication-title: Appl. Cataly. B-Environ. – volume: 606 year: 2022 ident: b0215 article-title: Template-free self-assembly of three-dimensional porous graphitic carbon nitride nanovesicles with size-dependent photocatalytic activity for hydrogen evolution publication-title: Appl. Surf. Sci. – volume: 285 year: 2021 ident: b0280 article-title: Tunable charge transfer efficiency in H publication-title: Appl. Cataly. B-Environ. – volume: 319 year: 2022 ident: b0345 article-title: BiFeO publication-title: Appl. Cataly. B-Environ. – volume: 18 year: 2022 ident: b0105 article-title: Hollow Nanoboxes Cu publication-title: Small – volume: 610 year: 2023 ident: b0145 article-title: Fabricating 1D/2D Co publication-title: Appl. Surf. Sci. – volume: 11 start-page: 1117 year: 2022 end-page: 1130 ident: b0130 article-title: Efficient photocatalytic hydrogen evolution coupled with benzaldehyde production over 0D Cd publication-title: J Adv. Ceram. – volume: 42 start-page: 3121 year: 2016 end-page: 3129 ident: b0200 article-title: Porous nanotubes derived from a metal-organic framework as high-performance supercapacitor electrodes publication-title: Ceram. Int. – volume: 6 start-page: 2200115 year: 2022 ident: b0010 article-title: A review on photothermal conversion of solar energy with nanomaterials and nanostructures: from fundamentals to applications publication-title: Adv. Sustain. Syst. – volume: 30 start-page: 1802894 year: 2018 ident: b0005 article-title: Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production publication-title: Adv. Mater. – volume: 9 start-page: 2103926 year: 2022 ident: b0015 article-title: Photothermal chemistry based on solar energy: from synergistic effects to practical applications publication-title: Adv. Sci. (Weinh). – volume: 295 year: 2022 ident: b0180 article-title: Self-template synthesis of Co publication-title: Sep. Purif. Technol. – volume: 297 year: 2021 ident: b0205 article-title: Constructing oxide/sulfide in-plane heterojunctions with enlarged internal electric field for efficient CO publication-title: Appl. Cataly. B-Environ. – volume: 59 start-page: 8255 year: 2020 end-page: 8261 ident: b0165 article-title: Construction of Hierarchical Hollow Co publication-title: Angew. Chem. Int. Ed. Engl. – volume: 12 start-page: 1343 year: 2021 ident: b0025 article-title: Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems publication-title: Nat. Commun. – volume: 168–169 start-page: 266 year: 2015 end-page: 273 ident: b0190 article-title: Cross-linked ZnIn publication-title: Appl. Cataly. B-Environ. – volume: 12 start-page: 841 year: 2019 end-page: 864 ident: b0035 article-title: Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production publication-title: Energ. Environ. Sci. – volume: 292 year: 2022 ident: b0020 article-title: Magnetically retrievable CdS/reduced graphene oxide/ZnFe publication-title: Sep. Purif. Technol. – volume: 9 start-page: 2673 year: 2021 end-page: 2683 ident: b0125 article-title: AgFeO publication-title: ACS Sustain. Chem. Eng. – volume: 595 year: 2022 ident: b0325 article-title: Carbon dots as solid-state electron mediator and electron acceptor in S-scheme heterojunction for boosted photocatalytic hydrogen evolution publication-title: Appl. Surf. Sci. – volume: 270 year: 2020 ident: b0300 article-title: Tin diselinide a stable co-catalyst coupled with branched TiO publication-title: Appl. Cataly. B-Environ. – volume: 13 start-page: 5698 year: 2022 ident: b0070 article-title: A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting publication-title: Nat. Commun. – volume: 356 start-page: 1 year: 2019 end-page: 10 ident: b0160 article-title: Template-free synthesis of multifunctional Co publication-title: Chem. Eng. J. – volume: 453 year: 2023 ident: b0055 article-title: Photothermal effect of carbon dots for boosted photothermal-assisted photocatalytic water/seawater splitting into hydrogen publication-title: Chem. Eng. J. – volume: 608 start-page: 2058 year: 2022 end-page: 2065 ident: b0045 article-title: Significantly enhanced photothermal catalytic hydrogen evolution over Cu publication-title: J. Colloid Interf. Sci. – volume: 47 start-page: 36397 year: 2022 end-page: 36407 ident: b0275 article-title: Self-construction of pea-like Cu/Cu publication-title: Int. J. Hydrogen Energ. – volume: 34 year: 2022 ident: b0080 article-title: Emerging S-Scheme Photocatalyst publication-title: Adv. Mater. – volume: 248 start-page: 193 year: 2019 end-page: 201 ident: b0170 article-title: Half-unit-cell ZnIn publication-title: Appl. Cataly. B-Environ. – volume: 95 year: 2022 ident: b0050 article-title: Concentrating electron and activating H-OH bond of absorbed water on metallic NiCo publication-title: Nano Energy – volume: 433 year: 2022 ident: b0295 article-title: Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots publication-title: Chem. Eng. J. – volume: 423 year: 2022 ident: b0060 article-title: Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment publication-title: J. Hazard. Mater. – volume: 930 year: 2023 ident: b0335 article-title: Fabrication of Bi publication-title: J. Alloy. Compd. – volume: 221 start-page: 9 year: 2018 end-page: 16 ident: b0355 article-title: Oxygen-doped nanoporous carbon nitride via water-based homogeneous supramolecular assembly for photocatalytic hydrogen evolution publication-title: Appl. Cataly. B-Environ. – volume: 11 start-page: 1431 year: 2022 end-page: 1444 ident: b0135 article-title: Construction and performance of CdS/MoO publication-title: J. Adv. Ceram. – volume: 593 year: 2022 ident: b0075 article-title: An integrated photothermal-photocatalytic materials for efficient photocatalytic performance boosting by synergistic photothermally publication-title: Appl. Surf. Sci. – volume: 40 start-page: 308 year: 2017 end-page: 316 ident: b0320 article-title: Switching charge transfer of C publication-title: Nano Energy – volume: 298 year: 2021 ident: b0030 article-title: Construction photothermal/pyroelectric property of hollow FeS publication-title: Appl. Catal. B Environ. – volume: 454 year: 2023 ident: b0040 article-title: Construction of core–shell FeS publication-title: Chem. Eng. J. – volume: 304 year: 2023 ident: b0365 article-title: Effect of different carbon dots positions on the transfer of photo-induced charges in type I heterojunction for significantly enhanced photocatalytic activity publication-title: Sep. Purif. Technol. – volume: 304 year: 2022 ident: b0085 article-title: 2D/2D BiVO publication-title: Appl. Catal. B Environ. – volume: 43 start-page: 339 year: 2022 end-page: 349 ident: b0090 article-title: 1D/2D TiO publication-title: Chin. J. Catal. – volume: 630 start-page: 274 year: 2023 end-page: 285 ident: b0230 article-title: Coupled internal electric field with hydrogen release kinetics for promoted photocatalytic hydrogen production through employing carbon coated transition metal as co-catalyst publication-title: J. Colloid Interf. Sci. – volume: 254 start-page: 128 year: 2019 end-page: 134 ident: b0285 article-title: Controlling carbon self-doping site of g-C publication-title: Appl. Cataly. B-Environ. – volume: 275 year: 2021 ident: b0185 article-title: Rational design of direct Z-scheme heterostructure NiCoP/ZIS for highly efficient photocatalytic hydrogen evolution under visible light irradiation publication-title: Sep. Purif. Technol. – reference: Y.J. Bao S.Q. Song G.J. Yao S.J. Jiang S-Scheme Photocatalytic Systems Sol. Rrl 5 2021 https://doi.org/solr.202100118. – volume: 13 start-page: 1287 year: 2022 ident: b0250 article-title: Protruding Pt single-sites on hexagonal ZnIn publication-title: Nat. Commun. – volume: 607 start-page: 1391 year: 2021 end-page: 1401 ident: b0305 article-title: Well-designed three-dimensional hierarchical hollow tubular g-C publication-title: J. Colloid Interf. Sci. – volume: 13 start-page: 4828 year: 2022 end-page: 4837 ident: b0265 article-title: Interpretation of Mott-Schottky plots of photoanodes for water splitting publication-title: Chem. Sci. – volume: 61 year: 2022 ident: b0110 article-title: Photothermal catalyzed hydrogenation of carbon dioxide over porous nanosheet Co publication-title: J. CO – volume: 76 year: 2020 ident: b0120 article-title: Self-integrated effects of 2D ZnIn publication-title: Nano Energy – volume: 285 year: 2021 ident: b0195 article-title: Efficient photocatalytic H publication-title: Appl. Cataly. B-Environ. – volume: 9 start-page: 4433 year: 2022 end-page: 4444 ident: b0340 article-title: Simultaneously enhanced photocatalytic cleanup of Cr(vi) and tetracycline via a ZnIn publication-title: Environ. Sci-Nano – volume: 238 year: 2022 ident: b0235 article-title: A one-photon excitation pathway in 0D/3D CoS publication-title: Compos. Part. B-Eng. – volume: 29 start-page: 1603730 year: 2017 ident: b0240 article-title: High-Performance Photothermal Conversion of Narrow-Bandgap Ti publication-title: Adv. Mater. – volume: 5 start-page: 323 year: 2018 end-page: 343 ident: b0065 article-title: Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications publication-title: Mater. Horiz. – volume: 379 year: 2020 ident: b0210 article-title: Photothermal-assisted photocatalytic degradation with ultrahigh solar utilization: Towards practical application publication-title: Chem. Eng. J. – volume: 14 start-page: 23546 year: 2022 end-page: 23557 ident: b0270 article-title: ZnFe publication-title: ACS Appl. Mater. Interf. – volume: 5 year: 2021 ident: b0245 article-title: ZnIn publication-title: Small Methods – volume: 46 start-page: 33809 year: 2021 end-page: 33822 ident: b0290 article-title: Co publication-title: Int. J. Hydrogen Energ. – volume: 602 start-page: 889 year: 2021 end-page: 897 ident: b0255 article-title: Formation of unique hollow ZnSnO publication-title: J. Colloid Interf. Sci. – volume: 291 year: 2021 ident: b0370 article-title: Boosting photocatalytic hydrogen evolution using a noble-metal-free co-catalyst: CuNi@C with oxygen-containing functional groups publication-title: Appl. Catal. B-Environ. – volume: 46 start-page: 15589 year: 2022 end-page: 15601 ident: b0150 article-title: Integrating Co publication-title: Int. J. Energ. Res. – volume: 379 year: 2020 ident: 10.1016/j.cej.2023.141549_b0210 article-title: Photothermal-assisted photocatalytic degradation with ultrahigh solar utilization: Towards practical application publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122382 – volume: 9 start-page: 4433 year: 2022 ident: 10.1016/j.cej.2023.141549_b0340 article-title: Simultaneously enhanced photocatalytic cleanup of Cr(vi) and tetracycline via a ZnIn2S4 nanoflake-decorated 24-faceted concave MIL-88B(Fe) polyhedron S-scheme system publication-title: Environ. Sci-Nano doi: 10.1039/D2EN00781A – volume: 423 year: 2022 ident: 10.1016/j.cej.2023.141549_b0060 article-title: Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127128 – volume: 285 year: 2021 ident: 10.1016/j.cej.2023.141549_b0280 article-title: Tunable charge transfer efficiency in HxMoO3@ZnIn2S4 hierarchical direct Z-scheme heterojunction toward efficient visible-light-driven hydrogen evolution publication-title: Appl. Cataly. B-Environ. doi: 10.1016/j.apcatb.2020.119818 – volume: 18 issue: 31 year: 2022 ident: 10.1016/j.cej.2023.141549_b0105 article-title: Hollow Nanoboxes Cu2-x S@ZnIn2 S4 Core-Shell S-Scheme Heterojunction with Broad-Spectrum Response and Enhanced Photothermal-Photocatalytic Performance publication-title: Small – volume: 40 start-page: 308 year: 2017 ident: 10.1016/j.cej.2023.141549_b0320 article-title: Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.032 – volume: 5 issue: 10 year: 2021 ident: 10.1016/j.cej.2023.141549_b0245 article-title: ZnIn2S4 -Based Photocatalysts for Energy and Environmental Applications publication-title: Small Methods doi: 10.1002/smtd.202100887 – volume: 356 start-page: 1 year: 2019 ident: 10.1016/j.cej.2023.141549_b0160 article-title: Template-free synthesis of multifunctional Co3O4 nanotubes as excellent performance electrode materials for superior energy storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.014 – volume: 602 start-page: 889 year: 2021 ident: 10.1016/j.cej.2023.141549_b0255 article-title: Formation of unique hollow ZnSnO3@ZnIn2S4 core-shell heterojunction to boost visible-light-driven photocatalytic water splitting for hydrogen production publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.06.074 – volume: 595 year: 2022 ident: 10.1016/j.cej.2023.141549_b0325 article-title: Carbon dots as solid-state electron mediator and electron acceptor in S-scheme heterojunction for boosted photocatalytic hydrogen evolution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153482 – volume: 454 year: 2023 ident: 10.1016/j.cej.2023.141549_b0040 article-title: Construction of core–shell FeS2@ZnIn2S4 hollow hierarchical structure S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production publication-title: Chem. Eng. J. – volume: 433 year: 2022 ident: 10.1016/j.cej.2023.141549_b0295 article-title: Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133741 – volume: 221 start-page: 9 year: 2018 ident: 10.1016/j.cej.2023.141549_b0355 article-title: Oxygen-doped nanoporous carbon nitride via water-based homogeneous supramolecular assembly for photocatalytic hydrogen evolution publication-title: Appl. Cataly. B-Environ. doi: 10.1016/j.apcatb.2017.09.003 – volume: 13 start-page: 1287 year: 2022 ident: 10.1016/j.cej.2023.141549_b0250 article-title: Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution publication-title: Nat. Commun. doi: 10.1038/s41467-022-28995-1 – volume: 168–169 start-page: 266 year: 2015 ident: 10.1016/j.cej.2023.141549_b0190 article-title: Cross-linked ZnIn2S4 /rGO composite photocatalyst for sunlight-driven photocatalytic degradation of 4-nitrophenol publication-title: Appl. Cataly. B-Environ. doi: 10.1016/j.apcatb.2014.12.048 – volume: 306 year: 2022 ident: 10.1016/j.cej.2023.141549_b0100 article-title: Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation publication-title: Appl. Cataly. B Environ. doi: 10.1016/j.apcatb.2022.121109 – volume: 61 year: 2022 ident: 10.1016/j.cej.2023.141549_b0110 article-title: Photothermal catalyzed hydrogenation of carbon dioxide over porous nanosheet Co3O4 publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2022.102003 – volume: 285 year: 2021 ident: 10.1016/j.cej.2023.141549_b0195 article-title: Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering publication-title: Appl. Cataly. B-Environ. doi: 10.1016/j.apcatb.2020.119789 – volume: 14 start-page: 23546 issue: 20 year: 2022 ident: 10.1016/j.cej.2023.141549_b0270 article-title: ZnFe2O4-Ni5P4 Mott-Schottky Heterojunctions to Promote Kinetics for Advanced Li-S Batteries publication-title: ACS Appl. Mater. Interf. doi: 10.1021/acsami.2c04734 – volume: 13 start-page: 5698 year: 2022 ident: 10.1016/j.cej.2023.141549_b0070 article-title: A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting publication-title: Nat. Commun. doi: 10.1038/s41467-022-33439-x – volume: 319 year: 2022 ident: 10.1016/j.cej.2023.141549_b0345 article-title: BiFeO3/Bi2Fe4O9 S-scheme heterojunction hollow nanospheres for high-efficiency photocatalytic o-chlorophenol degradation publication-title: Appl. Cataly. B-Environ. doi: 10.1016/j.apcatb.2022.121893 – volume: 12 start-page: 841 year: 2019 ident: 10.1016/j.cej.2023.141549_b0035 article-title: Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production publication-title: Energ. Environ. Sci. doi: 10.1039/C8EE01146J – volume: 30 start-page: 1802894 year: 2018 ident: 10.1016/j.cej.2023.141549_b0005 article-title: Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production publication-title: Adv. Mater. doi: 10.1002/adma.201802894 – volume: 42 start-page: 439 year: 2021 ident: 10.1016/j.cej.2023.141549_b0140 article-title: Coralline-like Ni2P decorated novel tetrapod-bundle Cd0.9Zn0.1S ZB/WZ homojunctions for highly efficient visible-light photocatalytic hydrogen evolution publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(20)63597-5 – volume: 46 start-page: 33809 year: 2021 ident: 10.1016/j.cej.2023.141549_b0290 article-title: Co3O4/CeO2 p-n heterojunction construction and application for efficient photocatalytic hydrogen evolution publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2021.07.201 – volume: 292 year: 2022 ident: 10.1016/j.cej.2023.141549_b0020 article-title: Magnetically retrievable CdS/reduced graphene oxide/ZnFe2O4 ternary nanocomposite for self-generated H2O2 towards photo-Fenton removal of tetracycline under visible light irradiation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.120987 – volume: 277 year: 2020 ident: 10.1016/j.cej.2023.141549_b0175 article-title: Synergy between van der waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution publication-title: Appl. Cataly. B-Environ. doi: 10.1016/j.apcatb.2020.119254 – volume: 6 start-page: 2200115 year: 2022 ident: 10.1016/j.cej.2023.141549_b0010 article-title: A review on photothermal conversion of solar energy with nanomaterials and nanostructures: from fundamentals to applications publication-title: Adv. Sustain. Syst. doi: 10.1002/adsu.202200115 – volume: 453 year: 2023 ident: 10.1016/j.cej.2023.141549_b0055 article-title: Photothermal effect of carbon dots for boosted photothermal-assisted photocatalytic water/seawater splitting into hydrogen publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139834 – volume: 34 issue: 11 year: 2022 ident: 10.1016/j.cej.2023.141549_b0080 article-title: Emerging S-Scheme Photocatalyst publication-title: Adv. Mater. doi: 10.1002/adma.202107668 – volume: 593 year: 2022 ident: 10.1016/j.cej.2023.141549_b0315 article-title: High-crystalline/amorphous g-C3N4 S-scheme homojunction for boosted photocatalytic H2 production in water/simulated seawater: Interfacial charge transfer and mechanism insight publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153281 – volume: 5 start-page: 323 year: 2018 ident: 10.1016/j.cej.2023.141549_b0065 article-title: Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications publication-title: Mater. Horiz. doi: 10.1039/C7MH01064H – ident: 10.1016/j.cej.2023.141549_b0330 doi: 10.1002/solr.202100118 – volume: 304 year: 2022 ident: 10.1016/j.cej.2023.141549_b0085 article-title: 2D/2D BiVO4/CsPbBr 3 S-scheme heterojunction for photocatalytic CO2 reduction: Insights into structure regulation and Fermi level modulation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120979 – volume: 275 year: 2021 ident: 10.1016/j.cej.2023.141549_b0185 article-title: Rational design of direct Z-scheme heterostructure NiCoP/ZIS for highly efficient photocatalytic hydrogen evolution under visible light irradiation publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2021.119153 – volume: 9 start-page: 2673 year: 2021 ident: 10.1016/j.cej.2023.141549_b0125 article-title: AgFeO2 Nanoparticle/ZnIn2S4 Microsphere p–n Heterojunctions with Hierarchical Nanostructures for Efficient Visible-Light-Driven H2 Evolution publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c07638 – volume: 298 year: 2021 ident: 10.1016/j.cej.2023.141549_b0030 article-title: Construction photothermal/pyroelectric property of hollow FeS2/Bi2S3 nanostructure with enhanced full spectrum photocatalytic activity publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2021.120573 – volume: 46 start-page: 15589 year: 2022 ident: 10.1016/j.cej.2023.141549_b0150 article-title: Integrating Co3O4 with ZnIn2S4 p-n heterojunction for efficient photocatalytic hydrogen production publication-title: Int. J. Energ. Res. doi: 10.1002/er.8254 – volume: 315 year: 2022 ident: 10.1016/j.cej.2023.141549_b0310 article-title: Phase engineering of CdS optimized by BP with p-n junction: Establishing spatial-gradient charges transmission mode toward efficient photocatalytic water reduction publication-title: Appl. Cataly. B-Environ. doi: 10.1016/j.apcatb.2022.121577 – volume: 291 year: 2021 ident: 10.1016/j.cej.2023.141549_b0370 article-title: Boosting photocatalytic hydrogen evolution using a noble-metal-free co-catalyst: CuNi@C with oxygen-containing functional groups publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2021.120139 – volume: 281 year: 2021 ident: 10.1016/j.cej.2023.141549_b0260 article-title: Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light publication-title: Appl. Cataly. B-Environ. doi: 10.1016/j.apcatb.2020.119474 – volume: 304 year: 2023 ident: 10.1016/j.cej.2023.141549_b0365 article-title: Effect of different carbon dots positions on the transfer of photo-induced charges in type I heterojunction for significantly enhanced photocatalytic activity publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.122337 – volume: 12 start-page: 1343 year: 2021 ident: 10.1016/j.cej.2023.141549_b0025 article-title: Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems publication-title: Nat. Commun. doi: 10.1038/s41467-021-21526-4 – volume: 11 start-page: 1431 year: 2022 ident: 10.1016/j.cej.2023.141549_b0135 article-title: Construction and performance of CdS/MoO2@Mo2C-MXene photocatalyst for H2 production publication-title: J. Adv. Ceram. doi: 10.1007/s40145-022-0621-3 – volume: 11 start-page: 1117 year: 2022 ident: 10.1016/j.cej.2023.141549_b0130 article-title: Efficient photocatalytic hydrogen evolution coupled with benzaldehyde production over 0D Cd0.5Zn0.5S/2D Ti3C2 Schottky heterojunction publication-title: J Adv. Ceram. doi: 10.1007/s40145-022-0598-y – volume: 47 start-page: 36397 issue: 86 year: 2022 ident: 10.1016/j.cej.2023.141549_b0275 article-title: Self-construction of pea-like Cu/Cu2S Mott-Schottky electrocatalyst for the oxygen evolution reaction publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2022.08.232 – volume: 435 year: 2022 ident: 10.1016/j.cej.2023.141549_b0350 article-title: A novel S-scheme heterojunction of CsPbBr 3 nanocrystals/AgBr nanorods for artificial photosynthesis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135014 – volume: 29 start-page: 1603730 year: 2017 ident: 10.1016/j.cej.2023.141549_b0240 article-title: High-Performance Photothermal Conversion of Narrow-Bandgap Ti2O3 Nanoparticles publication-title: Adv. Mater. doi: 10.1002/adma.201603730 – volume: 610 year: 2023 ident: 10.1016/j.cej.2023.141549_b0145 article-title: Fabricating 1D/2D Co3O4/ZnIn2S4 core–shell heterostructures with boosted charge transfer for photocatalytic hydrogen production publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.155272 – volume: 248 start-page: 193 year: 2019 ident: 10.1016/j.cej.2023.141549_b0170 article-title: Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution publication-title: Appl. Cataly. B-Environ. doi: 10.1016/j.apcatb.2019.02.027 – volume: 454 start-page: 1400442 year: 2023 ident: 10.1016/j.cej.2023.141549_b0360 article-title: Dual-channels separated mechanism of photo-generated charges over semiconductor photocatalyst for hydrogen evolution: Interfacial charge transfer and transport dynamics insight publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.140442 – volume: 510 year: 2020 ident: 10.1016/j.cej.2023.141549_b0155 article-title: Co3O4 hollow microspheres on polypyrrole nanotubes network enabling long-term cyclability sulfur cathode publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.145529 – volume: 43 start-page: 339 year: 2022 ident: 10.1016/j.cej.2023.141549_b0090 article-title: 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63875-5 – volume: 930 year: 2023 ident: 10.1016/j.cej.2023.141549_b0335 article-title: Fabrication of Bi4Ti3O12/ZnIn2S4 S-scheme heterojunction for achieving efficient photocatalytic hydrogen production publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.167450 – volume: 13 start-page: 4828 year: 2022 ident: 10.1016/j.cej.2023.141549_b0265 article-title: Interpretation of Mott-Schottky plots of photoanodes for water splitting publication-title: Chem. Sci. doi: 10.1039/D1SC06401K – volume: 297 year: 2021 ident: 10.1016/j.cej.2023.141549_b0205 article-title: Constructing oxide/sulfide in-plane heterojunctions with enlarged internal electric field for efficient CO2 photoreduction publication-title: Appl. Cataly. B-Environ. doi: 10.1016/j.apcatb.2021.120394 – volume: 9 start-page: 2103926 issue: 3 year: 2022 ident: 10.1016/j.cej.2023.141549_b0015 article-title: Photothermal chemistry based on solar energy: from synergistic effects to practical applications publication-title: Adv. Sci. (Weinh). doi: 10.1002/advs.202103926 – volume: 59 start-page: 8255 year: 2020 ident: 10.1016/j.cej.2023.141549_b0165 article-title: Construction of Hierarchical Hollow Co9S8 /ZnIn2S4 Tubular Heterostructures for Highly Efficient Solar Energy Conversion and Environmental Remediation publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202000503 – volume: 270 year: 2020 ident: 10.1016/j.cej.2023.141549_b0300 article-title: Tin diselinide a stable co-catalyst coupled with branched TiO2 fiber and g-C3N4 quantum dots for photocatalytic hydrogen evolution publication-title: Appl. Cataly. B-Environ. doi: 10.1016/j.apcatb.2020.118900 – volume: 608 start-page: 2058 year: 2022 ident: 10.1016/j.cej.2023.141549_b0045 article-title: Significantly enhanced photothermal catalytic hydrogen evolution over Cu2O-rGO/TiO2 composite with full spectrum solar light publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.10.136 – volume: 606 year: 2022 ident: 10.1016/j.cej.2023.141549_b0215 article-title: Template-free self-assembly of three-dimensional porous graphitic carbon nitride nanovesicles with size-dependent photocatalytic activity for hydrogen evolution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.154841 – volume: 33 issue: 24 year: 2021 ident: 10.1016/j.cej.2023.141549_b0225 article-title: Exceptional Cocatalyst-Free Photo-Enhanced Piezocatalytic Hydrogen Evolution of Carbon Nitride Nanosheets from Strong In-Plane Polarization publication-title: Adv. Mater. doi: 10.1002/adma.202101751 – volume: 607 start-page: 1391 year: 2021 ident: 10.1016/j.cej.2023.141549_b0305 article-title: Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2021.09.095 – volume: 315 year: 2022 ident: 10.1016/j.cej.2023.141549_b0115 article-title: Highly efficient photothermal catalysis of toluene over Co3O4/TiO2 p-n heterojunction: The crucial roles of interface defects and band structure publication-title: Appl. Cataly. B-Environ. doi: 10.1016/j.apcatb.2022.121550 – volume: 436 year: 2022 ident: 10.1016/j.cej.2023.141549_b0220 article-title: A self-sufficient photo-Fenton system with coupling in-situ production H2O2 of ultrathin porous g-C3N4 nanosheets and amorphous FeOOH quantum dots publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.129141 – volume: 33 issue: 22 year: 2021 ident: 10.1016/j.cej.2023.141549_b0095 article-title: An Inorganic/Organic S-Scheme Heterojunction H2-Production Photocatalyst and its Charge Transfer Mechanism publication-title: Adv. Mater. doi: 10.1002/adma.202100317 – volume: 76 year: 2020 ident: 10.1016/j.cej.2023.141549_b0120 article-title: Self-integrated effects of 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite for promoting solar hydrogen generation publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105031 – volume: 295 year: 2022 ident: 10.1016/j.cej.2023.141549_b0180 article-title: Self-template synthesis of Co3O4 nanotube for efficient Hg0 removal from flue gas publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121240 – volume: 254 start-page: 128 year: 2019 ident: 10.1016/j.cej.2023.141549_b0285 article-title: Controlling carbon self-doping site of g-C3N4 for highly enhanced visible-light-driven hydrogen evolution publication-title: Appl. Cataly. B-Environ. doi: 10.1016/j.apcatb.2019.04.082 – volume: 593 year: 2022 ident: 10.1016/j.cej.2023.141549_b0075 article-title: An integrated photothermal-photocatalytic materials for efficient photocatalytic performance boosting by synergistic photothermally publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.153382 – volume: 630 start-page: 274 year: 2023 ident: 10.1016/j.cej.2023.141549_b0230 article-title: Coupled internal electric field with hydrogen release kinetics for promoted photocatalytic hydrogen production through employing carbon coated transition metal as co-catalyst publication-title: J. Colloid Interf. Sci. doi: 10.1016/j.jcis.2022.10.022 – volume: 42 start-page: 3121 year: 2016 ident: 10.1016/j.cej.2023.141549_b0200 article-title: Porous nanotubes derived from a metal-organic framework as high-performance supercapacitor electrodes publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.10.101 – volume: 238 year: 2022 ident: 10.1016/j.cej.2023.141549_b0235 article-title: A one-photon excitation pathway in 0D/3D CoS2/ZnIn2S4 composite with nanoparticles on micro-flowers structure for boosted visible-light-driven photocatalytic hydrogen evolution publication-title: Compos. Part. B-Eng. doi: 10.1016/j.compositesb.2022.109955 – volume: 95 year: 2022 ident: 10.1016/j.cej.2023.141549_b0050 article-title: Concentrating electron and activating H-OH bond of absorbed water on metallic NiCo2S4 boosting photocatalytic hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107028 |
SSID | ssj0006919 |
Score | 2.7112486 |
Snippet | [Display omitted]
•Co3O4 as a heat source in composite system can generate heat by absorbing Vis-NIR light.•High-frequency photons are converted into heat to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 141549 |
SubjectTerms | Full solar-spectrum Hydrogen Photocatalysis Photothermal-assisted S-scheme heterojunction |
Title | Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production |
URI | https://dx.doi.org/10.1016/j.cej.2023.141549 |
Volume | 459 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpn5YEJyW0eTpyMVUVVqNSBFtEtShxbTdVHBAWJhYkfzp2T0CIBA1OUyCdZPufuO_vuO0KuHAfrfhOPCak540K7LNTSYYnCHqoxF3Fq2D4Hfu-B3429cY10qloYTKssbX9h0421Lr-0ytVs5VnWGtp4pxVyASAa7wfRDnMucJc339dpHn5omnvgYIajq5tNk-Ml1bSJ_cPBXiBV2c--acPfdPfIbgkUabuYyz6pqcUB2dmgDzwkH9hts-J_pUtN8SydPmOwykwF5dPLnMavcTbD-ig6ZBDJqrmiE0yBWU7BoxlBgK0UsDaee9J8slyZmqx5PGOAq7P1V3PQ8wazoT2H5gVRLIgfkVH3ZtTpsbKrApNOKFaMp0L6EOVox8LwV_rS1gH89RKQg-16GjGWsrULkVSSJm6c2CnXlpXEnvaF5u4xqS-WC3VCKE9EoDQgKBF6GAfGPreCUKtUpK4OeHpKrGo5I1kyjmPji1lUpZZNI9BAhBqICg2ckusvkbyg2_hrMK90FH3bMxG4g9_Fzv4ndk628a3IP7sgddChugRAskoaZsc1yFb7tt8b4LN__9j_BKng4ww |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOFRQQtDx8KBcks4njxJsDB8RDS6Fc2ErcrMSxtbval8pCxaWn_qL-QmachAUJekDaq5OJHM9o5hvPC-CbEFT3m8dcGSe5VC7iqTOC55ZmqGZSZYXv9nmVtH7K7zfxzRz8q2thKK2y0v2lTvfaulppVKfZGHe7jeuQYlqpVAiiKT4oqszKC_vwG_2228PzE2TynhBnp-3jFq9GC3AjUjXhslAmQajvREA-oElM6Joo-gbNZxjFjoCGDV2E7kRe5FGWh4V0QZBnsUuUkxF-9gMsSNQWNDXh4M80rSRJ_TAR2hyn3dWRVJ9TZmzvgOaVo36i1miv28Jn9u1sGT5VwJQdlf--AnN2-BmWnrUrXIW_NN2z7jfLRo7R3T27JeeY-4rNX3cDlt1n3T7VY7Frjp6zHVjWoZSbUQ8tqCdEmMwQ29M9Kxt3RhNfAzbI-hxxfHe66i-WHnA3rCXYuGxMi-Rr0J7FUa_D_HA0tBvAZK6a1iFiU2lMfmeWyKCZOluoInJNWWxCUB-nNlWHcxq00dd1KltPIwc0cUCXHNiE_SeScdne438vy5pH-oWMajQ_b5N9eR_ZLiy22j8u9eX51cVX-EhPyty3LZhHftptBEOTfMdLHwM9Y2l_BLOnG1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+full+solar-spectrum+available+S-scheme+heterojunction+for+boosted+photothermal-assisted+photocatalytic+H2+production&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Shi%2C+Yuxing&rft.au=Li%2C+Lingling&rft.au=Xu%2C+Zheng&rft.au=Guo%2C+Feng&rft.date=2023-03-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=459&rft_id=info:doi/10.1016%2Fj.cej.2023.141549&rft.externalDocID=S1385894723002802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |