Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production

[Display omitted] •Co3O4 as a heat source in composite system can generate heat by absorbing Vis-NIR light.•High-frequency photons are converted into heat to accelerate interfacial charge transfer.•S-scheme retains carriers with high redox potentials converted from low-frequency photons. The develop...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 459; p. 141549
Main Authors Shi, Yuxing, Li, Lingling, Xu, Zheng, Guo, Feng, Shi, Weilong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Co3O4 as a heat source in composite system can generate heat by absorbing Vis-NIR light.•High-frequency photons are converted into heat to accelerate interfacial charge transfer.•S-scheme retains carriers with high redox potentials converted from low-frequency photons. The development of photocatalysts that maximize the use of solar spectra for photocatalysis for obtaining more efficient photocatalysts is urgently needed. Herein, the core–shell Co3O4@ZnIn2S4 S-scheme heterojunction was synthesized for achieving high-efficient photothermal-assisted photocatalytic hydrogen (H2) performance under full solar-spectrum irradiation. Notably, photocatalytic H2 production tests indicate that the as-prepared optimal Co3O4@ZnIn2S4 sample (CO@ZIS-20) exhibits impressive H2 production rates of about 18.9 and 9.8 mmol h−1 g−1 under AM 1.5G and real sunlight irradiation, respectively. The effect of the reaction solution temperature induced by the photothermal effect on the photocatalytic activity in solid–liquid reactions was also investigated. Furthermore, the results of the characterization analysis revealed that high-frequency photons dominate photocatalytic reactions while low-frequency photons are converted into heat to improve photocatalytic reactions. This study provides effective design ideas of developing high-activity photothermal-assisted photocatalysts for realizing solar energy conversion.
AbstractList [Display omitted] •Co3O4 as a heat source in composite system can generate heat by absorbing Vis-NIR light.•High-frequency photons are converted into heat to accelerate interfacial charge transfer.•S-scheme retains carriers with high redox potentials converted from low-frequency photons. The development of photocatalysts that maximize the use of solar spectra for photocatalysis for obtaining more efficient photocatalysts is urgently needed. Herein, the core–shell Co3O4@ZnIn2S4 S-scheme heterojunction was synthesized for achieving high-efficient photothermal-assisted photocatalytic hydrogen (H2) performance under full solar-spectrum irradiation. Notably, photocatalytic H2 production tests indicate that the as-prepared optimal Co3O4@ZnIn2S4 sample (CO@ZIS-20) exhibits impressive H2 production rates of about 18.9 and 9.8 mmol h−1 g−1 under AM 1.5G and real sunlight irradiation, respectively. The effect of the reaction solution temperature induced by the photothermal effect on the photocatalytic activity in solid–liquid reactions was also investigated. Furthermore, the results of the characterization analysis revealed that high-frequency photons dominate photocatalytic reactions while low-frequency photons are converted into heat to improve photocatalytic reactions. This study provides effective design ideas of developing high-activity photothermal-assisted photocatalysts for realizing solar energy conversion.
ArticleNumber 141549
Author Shi, Weilong
Guo, Feng
Xu, Zheng
Shi, Yuxing
Li, Lingling
Author_xml – sequence: 1
  givenname: Yuxing
  surname: Shi
  fullname: Shi, Yuxing
  organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
– sequence: 2
  givenname: Lingling
  surname: Li
  fullname: Li, Lingling
  organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
– sequence: 3
  givenname: Zheng
  surname: Xu
  fullname: Xu, Zheng
  organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
– sequence: 4
  givenname: Feng
  surname: Guo
  fullname: Guo, Feng
  email: gfeng0105@126.com
  organization: School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
– sequence: 5
  givenname: Weilong
  orcidid: 0000-0002-4762-5599
  surname: Shi
  fullname: Shi, Weilong
  email: shiwl@just.edu.cn
  organization: School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
BookMark eNp9kM1KAzEQgINUsK0-gLe8wK6ZZH_xJEWtUPBg7yGbndAs201J0kLvPrhbVhA89DTDDN_8fAsyG9yAhDwCS4FB8dSlGruUMy5SyCDP6hsyh6oUieDAZ2Muqjyp6qy8I4sQOsZYUUM9J98rN4TojzpaN1BnqDn2PQ2uVz4JB9Rja0_VSdleNT3SryToHe6R7jCid91xmEDjPG2cCxFbeti56OIO_V71iQrB_lW1iqo_R6vpmtODd-20957cGtUHfPiNS7J9e92u1snm8_1j9bJJNK_LmGRtqYu6LgxnZVVVutBgKsFyzWoAkRvggiMYUZXQtI1QDbSZYaxRuSlKk4klKaex2rsQPBqpbVSXA6IfH5TA5MWl7OToUl5cysnlSMI_8uDtXvnzVeZ5YnD86GTRy6AtDhpb60evsnX2Cv0DB36SNA
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_05_279
crossref_primary_10_1016_j_apcatb_2025_125098
crossref_primary_10_1016_j_jcis_2025_137269
crossref_primary_10_1016_j_cej_2025_161072
crossref_primary_10_1039_D4NR03195D
crossref_primary_10_1016_j_jallcom_2023_171659
crossref_primary_10_1002_asia_202400993
crossref_primary_10_1021_acs_inorgchem_4c00481
crossref_primary_10_1016_j_jece_2024_114876
crossref_primary_10_1063_5_0218539
crossref_primary_10_1016_j_eti_2023_103337
crossref_primary_10_1016_j_ijhydene_2024_06_088
crossref_primary_10_1016_j_jre_2024_02_002
crossref_primary_10_1016_j_seppur_2024_129479
crossref_primary_10_1016_j_cej_2024_153058
crossref_primary_10_1016_j_colsurfa_2024_135554
crossref_primary_10_1016_j_seppur_2023_126243
crossref_primary_10_1016_j_colsurfa_2024_135311
crossref_primary_10_1016_j_jallcom_2023_171302
crossref_primary_10_1063_5_0202991
crossref_primary_10_1016_j_jphotochem_2025_116314
crossref_primary_10_1016_j_jallcom_2024_176381
crossref_primary_10_1039_D3LF00157A
crossref_primary_10_1007_s10562_024_04880_y
crossref_primary_10_1016_j_apcatb_2023_123005
crossref_primary_10_1016_j_cej_2024_153168
crossref_primary_10_1016_j_jallcom_2024_176822
crossref_primary_10_1016_j_seppur_2023_124633
crossref_primary_10_1016_j_cej_2024_149232
crossref_primary_10_3390_molecules28135098
crossref_primary_10_1016_j_jphotochem_2024_115768
crossref_primary_10_3390_molecules28052142
crossref_primary_10_1016_j_ceramint_2024_10_108
crossref_primary_10_1016_j_jcat_2023_115131
crossref_primary_10_1039_D3NR06588J
crossref_primary_10_1016_j_jcis_2024_04_223
crossref_primary_10_1016_j_colsurfa_2024_134320
crossref_primary_10_1007_s40843_023_2773_9
crossref_primary_10_1016_j_jwpe_2024_104803
crossref_primary_10_1002_cey2_499
crossref_primary_10_1016_j_jallcom_2024_176736
crossref_primary_10_1016_j_seppur_2023_125059
crossref_primary_10_1016_j_flatc_2023_100597
crossref_primary_10_1016_j_fuel_2024_132394
crossref_primary_10_1016_j_matre_2023_100234
crossref_primary_10_1002_anie_202410474
crossref_primary_10_1016_j_jcis_2024_08_048
crossref_primary_10_1002_slct_202403308
crossref_primary_10_1016_j_cej_2024_157185
crossref_primary_10_1016_j_jece_2024_112900
crossref_primary_10_1002_aenm_202404621
crossref_primary_10_1021_acs_iecr_3c03837
crossref_primary_10_1016_j_apsusc_2024_159790
crossref_primary_10_1016_j_jcis_2024_01_150
crossref_primary_10_1016_j_cej_2025_161502
crossref_primary_10_1021_acsanm_4c01427
crossref_primary_10_1016_j_jallcom_2025_179730
crossref_primary_10_1016_j_apcatb_2024_124971
crossref_primary_10_1016_j_jcis_2024_05_122
crossref_primary_10_1039_D4MA00493K
crossref_primary_10_1021_acs_chemrev_4c00276
crossref_primary_10_1016_j_cej_2024_155430
crossref_primary_10_1016_j_apcatb_2024_123834
crossref_primary_10_1016_j_seppur_2024_127253
crossref_primary_10_1016_j_ijhydene_2024_09_009
crossref_primary_10_1016_j_ijhydene_2025_01_229
crossref_primary_10_1016_j_seppur_2023_125994
crossref_primary_10_1016_j_jcis_2024_03_194
crossref_primary_10_1016_j_jphotochem_2023_115027
crossref_primary_10_1039_D4TA03636K
crossref_primary_10_1016_j_cej_2023_143831
crossref_primary_10_1016_j_jallcom_2023_170932
crossref_primary_10_1016_j_jcis_2024_08_066
crossref_primary_10_1016_j_jcis_2024_01_213
crossref_primary_10_1016_j_ijhydene_2024_09_260
crossref_primary_10_1016_j_seppur_2024_128694
crossref_primary_10_1002_ange_202410474
crossref_primary_10_1016_j_cej_2023_145690
crossref_primary_10_1016_j_jcis_2024_07_144
crossref_primary_10_1016_j_jpcs_2023_111535
crossref_primary_10_1016_j_jcis_2023_09_154
crossref_primary_10_1016_j_jallcom_2024_176094
crossref_primary_10_1016_j_jece_2024_115147
crossref_primary_10_1016_j_snb_2024_135422
crossref_primary_10_1039_D3TC02869K
crossref_primary_10_1002_smtd_202300558
crossref_primary_10_1016_j_jcis_2024_03_178
crossref_primary_10_1021_acs_langmuir_4c04971
crossref_primary_10_1016_j_apcatb_2024_124703
crossref_primary_10_1016_j_cej_2024_151041
crossref_primary_10_1021_acs_langmuir_4c00805
crossref_primary_10_1016_j_jallcom_2024_175324
crossref_primary_10_1016_j_jallcom_2024_176891
crossref_primary_10_1016_j_jcis_2025_02_218
crossref_primary_10_1111_jace_19920
crossref_primary_10_1016_j_pes_2024_100018
crossref_primary_10_1016_j_cej_2024_155886
crossref_primary_10_1016_j_ijhydene_2023_07_103
crossref_primary_10_1016_j_seppur_2024_126932
crossref_primary_10_1016_j_apmt_2024_102279
crossref_primary_10_1016_j_seppur_2023_125302
crossref_primary_10_1016_j_cej_2023_145550
crossref_primary_10_1016_j_jssc_2024_124749
crossref_primary_10_1016_j_jece_2024_112971
crossref_primary_10_1002_smll_202406609
crossref_primary_10_1016_j_cej_2024_151822
crossref_primary_10_1007_s12274_024_6501_0
crossref_primary_10_1039_D3GC03859A
crossref_primary_10_1016_j_enconman_2024_119069
crossref_primary_10_1016_j_jece_2024_112611
crossref_primary_10_1016_j_jcis_2023_08_133
crossref_primary_10_1016_j_cej_2025_159957
crossref_primary_10_1016_j_jcis_2024_10_117
crossref_primary_10_1016_j_jallcom_2024_177888
crossref_primary_10_1016_j_renene_2024_120998
crossref_primary_10_1016_j_ceramint_2024_11_443
crossref_primary_10_1016_j_cej_2023_147279
crossref_primary_10_1016_j_jallcom_2023_169606
crossref_primary_10_1016_j_jiec_2023_11_007
crossref_primary_10_1515_gps_2024_0040
crossref_primary_10_1016_j_seppur_2024_130975
crossref_primary_10_1016_j_apcatb_2024_124679
crossref_primary_10_1039_D4TA06654E
crossref_primary_10_1016_j_cej_2023_146062
crossref_primary_10_1016_j_jallcom_2024_175692
crossref_primary_10_1016_j_ijhydene_2025_02_163
crossref_primary_10_1016_j_inoche_2025_114297
crossref_primary_10_1016_j_cej_2024_149607
crossref_primary_10_1007_s10853_024_09435_5
crossref_primary_10_1016_j_jcis_2025_137402
crossref_primary_10_1016_j_jwpe_2024_105501
crossref_primary_10_1016_j_cej_2024_151483
crossref_primary_10_1002_smll_202407963
crossref_primary_10_1016_j_mtcomm_2023_106333
crossref_primary_10_1016_j_cjche_2024_07_025
crossref_primary_10_3390_nano13081326
crossref_primary_10_1016_j_ijhydene_2025_01_489
crossref_primary_10_1016_j_jcis_2024_11_014
crossref_primary_10_1016_j_jcis_2024_11_120
crossref_primary_10_1016_j_jece_2024_113158
crossref_primary_10_1016_j_apcatb_2024_124690
crossref_primary_10_1007_s11771_024_5838_6
crossref_primary_10_1021_acsaenm_4c00707
crossref_primary_10_1016_j_surfin_2023_103811
crossref_primary_10_1021_acs_inorgchem_3c04102
crossref_primary_10_1016_j_cej_2024_156498
crossref_primary_10_1016_j_jallcom_2024_174705
crossref_primary_10_1016_j_jcis_2025_01_178
crossref_primary_10_1016_j_jcis_2023_09_170
crossref_primary_10_1016_j_apcatb_2024_124694
crossref_primary_10_1016_j_cej_2024_155728
crossref_primary_10_1021_acsanm_4c01029
crossref_primary_10_1016_j_colsurfa_2024_135705
crossref_primary_10_1016_j_coche_2024_101059
crossref_primary_10_1021_acsanm_3c02444
crossref_primary_10_1016_j_apsusc_2023_158890
crossref_primary_10_1002_smll_202408038
crossref_primary_10_1016_j_jallcom_2023_173005
crossref_primary_10_1016_j_seppur_2024_129832
crossref_primary_10_1016_j_apsusc_2023_158648
crossref_primary_10_26599_JAC_2024_9220996
crossref_primary_10_1016_j_jcis_2024_05_077
crossref_primary_10_1016_j_cej_2023_145611
crossref_primary_10_1016_j_seppur_2024_127091
crossref_primary_10_1016_j_jece_2023_110367
crossref_primary_10_1016_j_seppur_2024_129394
crossref_primary_10_1016_j_ijhydene_2023_12_287
crossref_primary_10_1016_j_apcatb_2023_123601
crossref_primary_10_1016_j_chemosphere_2023_140634
crossref_primary_10_1016_j_mtcomm_2023_106741
crossref_primary_10_1016_j_apcatb_2023_123284
crossref_primary_10_46670_JSST_2024_33_5_274
crossref_primary_10_1016_j_jallcom_2024_174284
crossref_primary_10_1039_D4QI02806F
crossref_primary_10_1007_s11705_024_2469_2
crossref_primary_10_1016_j_jcis_2024_08_116
crossref_primary_10_1021_acsami_3c15566
crossref_primary_10_3390_catal13060967
crossref_primary_10_1016_j_jallcom_2024_174755
crossref_primary_10_1016_j_jallcom_2025_179009
crossref_primary_10_1016_j_cej_2025_160561
crossref_primary_10_1016_j_seppur_2023_124600
crossref_primary_10_1016_j_jece_2024_113111
crossref_primary_10_1021_acs_inorgchem_4c00218
crossref_primary_10_1021_acsaem_4c01395
crossref_primary_10_1016_j_inoche_2024_112044
crossref_primary_10_1016_j_jcis_2024_03_102
crossref_primary_10_1016_j_jcis_2024_08_122
crossref_primary_10_1016_j_apsusc_2024_160322
crossref_primary_10_1016_j_apsusc_2024_161655
crossref_primary_10_1016_j_coche_2024_101042
crossref_primary_10_1016_j_cej_2024_156455
crossref_primary_10_1016_j_jcis_2024_12_086
crossref_primary_10_1016_j_apcatb_2024_124657
crossref_primary_10_1016_j_jcis_2023_07_147
crossref_primary_10_1016_j_jcis_2023_10_074
crossref_primary_10_1016_j_jclepro_2023_139617
crossref_primary_10_1016_j_ijhydene_2024_07_005
crossref_primary_10_1039_D3TA07169C
Cites_doi 10.1016/j.cej.2019.122382
10.1039/D2EN00781A
10.1016/j.jhazmat.2021.127128
10.1016/j.apcatb.2020.119818
10.1016/j.nanoen.2017.08.032
10.1002/smtd.202100887
10.1016/j.cej.2018.09.014
10.1016/j.jcis.2021.06.074
10.1016/j.apsusc.2022.153482
10.1016/j.cej.2021.133741
10.1016/j.apcatb.2017.09.003
10.1038/s41467-022-28995-1
10.1016/j.apcatb.2014.12.048
10.1016/j.apcatb.2022.121109
10.1016/j.jcou.2022.102003
10.1016/j.apcatb.2020.119789
10.1021/acsami.2c04734
10.1038/s41467-022-33439-x
10.1016/j.apcatb.2022.121893
10.1039/C8EE01146J
10.1002/adma.201802894
10.1016/S1872-2067(20)63597-5
10.1016/j.ijhydene.2021.07.201
10.1016/j.seppur.2022.120987
10.1016/j.apcatb.2020.119254
10.1002/adsu.202200115
10.1016/j.cej.2022.139834
10.1002/adma.202107668
10.1016/j.apsusc.2022.153281
10.1039/C7MH01064H
10.1002/solr.202100118
10.1016/j.apcatb.2021.120979
10.1016/j.seppur.2021.119153
10.1021/acssuschemeng.0c07638
10.1016/j.apcatb.2021.120573
10.1002/er.8254
10.1016/j.apcatb.2022.121577
10.1016/j.apcatb.2021.120139
10.1016/j.apcatb.2020.119474
10.1016/j.seppur.2022.122337
10.1038/s41467-021-21526-4
10.1007/s40145-022-0621-3
10.1007/s40145-022-0598-y
10.1016/j.ijhydene.2022.08.232
10.1016/j.cej.2022.135014
10.1002/adma.201603730
10.1016/j.apsusc.2022.155272
10.1016/j.apcatb.2019.02.027
10.1016/j.cej.2022.140442
10.1016/j.apsusc.2020.145529
10.1016/S1872-2067(21)63875-5
10.1016/j.jallcom.2022.167450
10.1039/D1SC06401K
10.1016/j.apcatb.2021.120394
10.1002/advs.202103926
10.1002/anie.202000503
10.1016/j.apcatb.2020.118900
10.1016/j.jcis.2021.10.136
10.1016/j.apsusc.2022.154841
10.1002/adma.202101751
10.1016/j.jcis.2021.09.095
10.1016/j.apcatb.2022.121550
10.1016/j.jhazmat.2022.129141
10.1002/adma.202100317
10.1016/j.nanoen.2020.105031
10.1016/j.seppur.2022.121240
10.1016/j.apcatb.2019.04.082
10.1016/j.apsusc.2022.153382
10.1016/j.jcis.2022.10.022
10.1016/j.ceramint.2015.10.101
10.1016/j.compositesb.2022.109955
10.1016/j.nanoen.2022.107028
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2023.141549
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2023_141549
S1385894723002802
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SSH
ZY4
ID FETCH-LOGICAL-c297t-4d7c6996f207888c6c1f8305c091135f1232e1f3871bdb3ab1d4f00ba5f67f43
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 01:50:34 EDT 2025
Thu Apr 24 22:58:49 EDT 2025
Fri Feb 23 02:36:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Full solar-spectrum
Photothermal-assisted
Hydrogen
Photocatalysis
S-scheme heterojunction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-4d7c6996f207888c6c1f8305c091135f1232e1f3871bdb3ab1d4f00ba5f67f43
ORCID 0000-0002-4762-5599
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2023_141549
crossref_primary_10_1016_j_cej_2023_141549
elsevier_sciencedirect_doi_10_1016_j_cej_2023_141549
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Guo, Mao, Tang, Shang, Cai, Zhang, Hu, Tan, Liu, Wang, Yu, Ye (b0050) 2022; 95
Bi, Su, Zhang, Chen, Darr, Weng, Wu (b0100) 2022; 306
Chen, Guo, Sun, Shi, Shi (b0305) 2021; 607
Zhang, Luo, Liu, Dong, Xiang, Zhao, Shu, Hou, Wang, Chen (b0270) 2022; 14
Wang, Wang, Zhen (b0160) 2019; 356
Zhang, Chen, Li, Xu, Li, He, Lu (b0165) 2020; 59
Cheng, Wang, Schaaf (b0010) 2022; 6
Yang, Zhao, Bi, Chen, Wang, Cui, Xu, Zhang (b0115) 2022; 315
Chen, Chen, Jiang, Zheng, Song, Zhao, Xie, Kuang (b0205) 2021; 297
Wang, Li, Deng, Wei, Weng, Dong, Qi, Qiu, Chen, Wu (b0240) 2017; 29
Shao, Meng, Lai, Zhang, Pu, Su, Li, Ren, Geng (b0140) 2021; 42
Zhang, Dong, Jiang, Chu, Xu (b0350) 2022; 435
Ma, Liu, Wang, Jin (b0290) 2021; 46
Zhu, Gao, Peh, Ho (b0065) 2018; 5
Hu, Chen, Wang, Tian, Ma, Zhang, Huang (b0225) 2021; 33
Shi, Li, Xu, Qin, Cai, Zhang, Shi, Du, Guo (b0230) 2023; 630
Shi, Hao, Shi, Guo, Tang (b0365) 2023; 304
Du, Yan, Yang (b0120) 2020; 76
Lu, Liu, Qiu, Qiao, Li, Cheng, Xue, Hou, Xu, Xiang, Peng, Guo (b0210) 2020; 379
Shi, Wang, Wang, Sun, Shi, Guo, Lu (b0020) 2022; 292
Wu, Dai, Pan, Huo, Wang, Zhang, Hu, Yan (b0155) 2020; 510
Song, Liu, Sun, Han, Xu, Xu, Wu, Meng, Xu, Sun, Zhang (b0185) 2021; 275
Chen, Zhang, Liu, Li, Liu, Li, Wong, An, Zhao (b0190) 2015; 168–169
Meng, Chen, Gu, Wu, Meng, Zhang, Chen, Fu, Liu, Lei (b0195) 2021; 285
Huang, Li, Fang, Chen, Luo, Shi (b0285) 2019; 254
Y.J. Bao S.Q. Song G.J. Yao S.J. Jiang S-Scheme Photocatalytic Systems Sol. Rrl 5 2021 https://doi.org/solr.202100118.
Shi, Hao, Fu, Guo, Tang, Yan (b0295) 2022; 433
Shi, Sun, Liu, Zhang, Sun, Lin, Hong, Guo (b0220) 2022; 436
Shi, Dai, Wang, Hu, Zhang, Zheng, Mao, Zheng, Zhu (b0250) 2022; 13
Yang, Mei, Fan, Zhang, Zhu, Amal, Yin, Zeng (b0245) 2021; 5
Zhang, Gong, Mahmood, Pan, Zhang, Zou (b0355) 2018; 221
Wang, Liu, Wu, Gao, Li, Xing, Li, Zhou (b0105) 2022; 18
Sun, Shi, Lu, Shi, Guo (b0215) 2022; 606
Yang, Gao, Hong, Ho (b0005) 2018; 30
Lu, Zhang, Fan, Chen, Yang (b0060) 2022; 423
Guo, Huang, Chen, Shi, Sun, Cheng, Shi, Chen (b0255) 2021; 602
Chen, Liao, Zhou, Yang, Gao, Cai, Peng, Fang, Zhang (b0370) 2021; 291
Gao, Zhu, Peh, Ho (b0035) 2019; 12
Wang, Tang, Sun, Wu, Liang, Qu, Jing (b0345) 2022; 319
Hong, Xu, Deng, Gao, Zhu, Zhang, Zhang (b0015) 2022; 9
Chen, Shi, Shu, Luo, Shi, Guo (b0040) 2023; 454
Lu, Shi, Chen, Sun, Yuan, Guo, Shi (b0055) 2023; 453
Li, Li, gao, Jia (b0275) 2022; 47
Li, Yue, Yang, Qiu, Xue, Xu, Wang (b0200) 2016; 42
Wang, Shi, Sun, Shi, Guo (b0335) 2023; 930
Zhu, Zhou (b0260) 2021; 281
Zhang, Zhang, Yu, Yu (b0080) 2022; 34
Zhang, Chen, Li, Xu, Li, Lu (b0145) 2023; 610
Guo, Li, Li, Wei (b0025) 2021; 12
Li, Sun, Chen, Yao, Cong, Liu (b0030) 2021; 298
Li, Li, Zhu, Jin (b0150) 2022; 46
Ai, Huang, Shi, Yang, Hu, Zhang, Shao, Shen, Wu, Hao (b0310) 2022; 315
Xing, Cheng, Zhang, Liu, Chen, Huang (b0280) 2021; 285
Gu, Ding, Tong, Yao, Yang, Zhong (b0110) 2022; 61
Kong, Fan, Yin, Zhang, Pu, Yao, Su (b0125) 2021; 9
Yue, Cheng, Fan, Xiang (b0085) 2022; 304
Li, Wu, Li, Dong, Zhao, Wang (b0090) 2022; 43
Yuan, Shi, Lu, Wang, Shi, Guo, Kang (b0360) 2023; 454
Suguro, Kishimoto, Kariya, Fukui, Nakabayashi, Shibata, Takata, Domen, Takanabe (b0070) 2022; 13
Du, Zhang, Lin, Yan, Xia, Yang (b0170) 2019; 248
Sun, Shi, Shi, Guo (b0315) 2022; 593
Huang, Hu, Hu, Liu, He, Zhou, Hu, Yang, Zhang, Zhou, Zou (b0340) 2022; 9
Ravishankar, Bisquert, Kirchartz (b0265) 2022; 13
Cai, Shi, Shi, Bai, Yang, Guo (b0235) 2022; 238
Hu, Shi, Luo, Ai, Jing (b0045) 2022; 608
Tao, Wang, Liu, Liu, Lu, Wan, Tang, Qiao (b0130) 2022; 11
Xu, Shi, Shi, Sun, Li, Guo, Wen (b0325) 2022; 595
Cheng, He, Fan, Cheng, Cao, Yu (b0095) 2021; 33
Wei, Zhang, Gao, Wang, Zhang, Bao, He (b0180) 2022; 295
Luo, Tian, Liu, Zhang (b0075) 2022; 593
Nasir, Yang, Ayub, Wang, Yan (b0300) 2020; 270
Qin, Li, Lu, Feng, Meng, Ma, Yan, Meng (b0175) 2020; 277
Jin, Jing, Wang, Hu, Zhou (b0135) 2022; 11
Huang, Song, Wang, Pan, Li, Zhang, Wang, Zou (b0320) 2017; 40
Yue (10.1016/j.cej.2023.141549_b0085) 2022; 304
Du (10.1016/j.cej.2023.141549_b0170) 2019; 248
Cai (10.1016/j.cej.2023.141549_b0235) 2022; 238
Yang (10.1016/j.cej.2023.141549_b0245) 2021; 5
Shi (10.1016/j.cej.2023.141549_b0230) 2023; 630
Nasir (10.1016/j.cej.2023.141549_b0300) 2020; 270
Shi (10.1016/j.cej.2023.141549_b0365) 2023; 304
Shi (10.1016/j.cej.2023.141549_b0295) 2022; 433
Gao (10.1016/j.cej.2023.141549_b0035) 2019; 12
Wang (10.1016/j.cej.2023.141549_b0240) 2017; 29
Zhu (10.1016/j.cej.2023.141549_b0065) 2018; 5
Sun (10.1016/j.cej.2023.141549_b0215) 2022; 606
Shi (10.1016/j.cej.2023.141549_b0250) 2022; 13
Chen (10.1016/j.cej.2023.141549_b0305) 2021; 607
Tao (10.1016/j.cej.2023.141549_b0130) 2022; 11
Xing (10.1016/j.cej.2023.141549_b0280) 2021; 285
Cheng (10.1016/j.cej.2023.141549_b0095) 2021; 33
Guo (10.1016/j.cej.2023.141549_b0025) 2021; 12
Zhang (10.1016/j.cej.2023.141549_b0165) 2020; 59
Qin (10.1016/j.cej.2023.141549_b0175) 2020; 277
Li (10.1016/j.cej.2023.141549_b0150) 2022; 46
Wang (10.1016/j.cej.2023.141549_b0105) 2022; 18
Li (10.1016/j.cej.2023.141549_b0200) 2016; 42
Zhang (10.1016/j.cej.2023.141549_b0350) 2022; 435
Wang (10.1016/j.cej.2023.141549_b0335) 2023; 930
Sun (10.1016/j.cej.2023.141549_b0315) 2022; 593
Suguro (10.1016/j.cej.2023.141549_b0070) 2022; 13
Huang (10.1016/j.cej.2023.141549_b0320) 2017; 40
Cheng (10.1016/j.cej.2023.141549_b0010) 2022; 6
Chen (10.1016/j.cej.2023.141549_b0370) 2021; 291
Ma (10.1016/j.cej.2023.141549_b0290) 2021; 46
Zhang (10.1016/j.cej.2023.141549_b0355) 2018; 221
Meng (10.1016/j.cej.2023.141549_b0195) 2021; 285
Guo (10.1016/j.cej.2023.141549_b0050) 2022; 95
Du (10.1016/j.cej.2023.141549_b0120) 2020; 76
Wu (10.1016/j.cej.2023.141549_b0155) 2020; 510
Hong (10.1016/j.cej.2023.141549_b0015) 2022; 9
Hu (10.1016/j.cej.2023.141549_b0045) 2022; 608
Jin (10.1016/j.cej.2023.141549_b0135) 2022; 11
Wang (10.1016/j.cej.2023.141549_b0345) 2022; 319
Luo (10.1016/j.cej.2023.141549_b0075) 2022; 593
Zhang (10.1016/j.cej.2023.141549_b0145) 2023; 610
Song (10.1016/j.cej.2023.141549_b0185) 2021; 275
Huang (10.1016/j.cej.2023.141549_b0285) 2019; 254
10.1016/j.cej.2023.141549_b0330
Wei (10.1016/j.cej.2023.141549_b0180) 2022; 295
Yuan (10.1016/j.cej.2023.141549_b0360) 2023; 454
Hu (10.1016/j.cej.2023.141549_b0225) 2021; 33
Shi (10.1016/j.cej.2023.141549_b0020) 2022; 292
Ravishankar (10.1016/j.cej.2023.141549_b0265) 2022; 13
Xu (10.1016/j.cej.2023.141549_b0325) 2022; 595
Zhu (10.1016/j.cej.2023.141549_b0260) 2021; 281
Lu (10.1016/j.cej.2023.141549_b0210) 2020; 379
Li (10.1016/j.cej.2023.141549_b0275) 2022; 47
Kong (10.1016/j.cej.2023.141549_b0125) 2021; 9
Shi (10.1016/j.cej.2023.141549_b0220) 2022; 436
Chen (10.1016/j.cej.2023.141549_b0040) 2023; 454
Zhang (10.1016/j.cej.2023.141549_b0080) 2022; 34
Zhang (10.1016/j.cej.2023.141549_b0270) 2022; 14
Huang (10.1016/j.cej.2023.141549_b0340) 2022; 9
Gu (10.1016/j.cej.2023.141549_b0110) 2022; 61
Lu (10.1016/j.cej.2023.141549_b0055) 2023; 453
Wang (10.1016/j.cej.2023.141549_b0160) 2019; 356
Chen (10.1016/j.cej.2023.141549_b0190) 2015; 168–169
Yang (10.1016/j.cej.2023.141549_b0115) 2022; 315
Guo (10.1016/j.cej.2023.141549_b0255) 2021; 602
Li (10.1016/j.cej.2023.141549_b0030) 2021; 298
Chen (10.1016/j.cej.2023.141549_b0205) 2021; 297
Li (10.1016/j.cej.2023.141549_b0090) 2022; 43
Lu (10.1016/j.cej.2023.141549_b0060) 2022; 423
Shao (10.1016/j.cej.2023.141549_b0140) 2021; 42
Ai (10.1016/j.cej.2023.141549_b0310) 2022; 315
Bi (10.1016/j.cej.2023.141549_b0100) 2022; 306
Yang (10.1016/j.cej.2023.141549_b0005) 2018; 30
References_xml – volume: 593
  year: 2022
  ident: b0315
  article-title: High-crystalline/amorphous g-C
  publication-title: Appl. Surf. Sci.
– volume: 436
  year: 2022
  ident: b0220
  article-title: A self-sufficient photo-Fenton system with coupling in-situ production H
  publication-title: J. Hazard. Mater.
– volume: 277
  year: 2020
  ident: b0175
  article-title: Synergy between van der waals heterojunction and vacancy in ZnIn
  publication-title: Appl. Cataly. B-Environ.
– volume: 315
  year: 2022
  ident: b0310
  article-title: Phase engineering of CdS optimized by BP with p-n junction: Establishing spatial-gradient charges transmission mode toward efficient photocatalytic water reduction
  publication-title: Appl. Cataly. B-Environ.
– volume: 454
  start-page: 1400442
  year: 2023
  ident: b0360
  article-title: Dual-channels separated mechanism of photo-generated charges over semiconductor photocatalyst for hydrogen evolution: Interfacial charge transfer and transport dynamics insight
  publication-title: Chem. Eng. J.
– volume: 510
  year: 2020
  ident: b0155
  article-title: Co
  publication-title: Appl. Surf. Sci.
– volume: 33
  year: 2021
  ident: b0095
  article-title: An Inorganic/Organic S-Scheme Heterojunction H
  publication-title: Adv. Mater.
– volume: 42
  start-page: 439
  year: 2021
  end-page: 449
  ident: b0140
  article-title: Coralline-like Ni
  publication-title: Chin. J. Catal.
– volume: 315
  year: 2022
  ident: b0115
  article-title: Highly efficient photothermal catalysis of toluene over Co
  publication-title: Appl. Cataly. B-Environ.
– volume: 306
  year: 2022
  ident: b0100
  article-title: Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation
  publication-title: Appl. Cataly. B Environ.
– volume: 435
  year: 2022
  ident: b0350
  article-title: A novel S-scheme heterojunction of CsPbBr 3 nanocrystals/AgBr nanorods for artificial photosynthesis
  publication-title: Chem. Eng. J.
– volume: 33
  year: 2021
  ident: b0225
  article-title: Exceptional Cocatalyst-Free Photo-Enhanced Piezocatalytic Hydrogen Evolution of Carbon Nitride Nanosheets from Strong In-Plane Polarization
  publication-title: Adv. Mater.
– volume: 281
  year: 2021
  ident: b0260
  article-title: Nitrogen doped g-C
  publication-title: Appl. Cataly. B-Environ.
– volume: 606
  year: 2022
  ident: b0215
  article-title: Template-free self-assembly of three-dimensional porous graphitic carbon nitride nanovesicles with size-dependent photocatalytic activity for hydrogen evolution
  publication-title: Appl. Surf. Sci.
– volume: 285
  year: 2021
  ident: b0280
  article-title: Tunable charge transfer efficiency in H
  publication-title: Appl. Cataly. B-Environ.
– volume: 319
  year: 2022
  ident: b0345
  article-title: BiFeO
  publication-title: Appl. Cataly. B-Environ.
– volume: 18
  year: 2022
  ident: b0105
  article-title: Hollow Nanoboxes Cu
  publication-title: Small
– volume: 610
  year: 2023
  ident: b0145
  article-title: Fabricating 1D/2D Co
  publication-title: Appl. Surf. Sci.
– volume: 11
  start-page: 1117
  year: 2022
  end-page: 1130
  ident: b0130
  article-title: Efficient photocatalytic hydrogen evolution coupled with benzaldehyde production over 0D Cd
  publication-title: J Adv. Ceram.
– volume: 42
  start-page: 3121
  year: 2016
  end-page: 3129
  ident: b0200
  article-title: Porous nanotubes derived from a metal-organic framework as high-performance supercapacitor electrodes
  publication-title: Ceram. Int.
– volume: 6
  start-page: 2200115
  year: 2022
  ident: b0010
  article-title: A review on photothermal conversion of solar energy with nanomaterials and nanostructures: from fundamentals to applications
  publication-title: Adv. Sustain. Syst.
– volume: 30
  start-page: 1802894
  year: 2018
  ident: b0005
  article-title: Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production
  publication-title: Adv. Mater.
– volume: 9
  start-page: 2103926
  year: 2022
  ident: b0015
  article-title: Photothermal chemistry based on solar energy: from synergistic effects to practical applications
  publication-title: Adv. Sci. (Weinh).
– volume: 295
  year: 2022
  ident: b0180
  article-title: Self-template synthesis of Co
  publication-title: Sep. Purif. Technol.
– volume: 297
  year: 2021
  ident: b0205
  article-title: Constructing oxide/sulfide in-plane heterojunctions with enlarged internal electric field for efficient CO
  publication-title: Appl. Cataly. B-Environ.
– volume: 59
  start-page: 8255
  year: 2020
  end-page: 8261
  ident: b0165
  article-title: Construction of Hierarchical Hollow Co
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 12
  start-page: 1343
  year: 2021
  ident: b0025
  article-title: Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems
  publication-title: Nat. Commun.
– volume: 168–169
  start-page: 266
  year: 2015
  end-page: 273
  ident: b0190
  article-title: Cross-linked ZnIn
  publication-title: Appl. Cataly. B-Environ.
– volume: 12
  start-page: 841
  year: 2019
  end-page: 864
  ident: b0035
  article-title: Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production
  publication-title: Energ. Environ. Sci.
– volume: 292
  year: 2022
  ident: b0020
  article-title: Magnetically retrievable CdS/reduced graphene oxide/ZnFe
  publication-title: Sep. Purif. Technol.
– volume: 9
  start-page: 2673
  year: 2021
  end-page: 2683
  ident: b0125
  article-title: AgFeO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 595
  year: 2022
  ident: b0325
  article-title: Carbon dots as solid-state electron mediator and electron acceptor in S-scheme heterojunction for boosted photocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci.
– volume: 270
  year: 2020
  ident: b0300
  article-title: Tin diselinide a stable co-catalyst coupled with branched TiO
  publication-title: Appl. Cataly. B-Environ.
– volume: 13
  start-page: 5698
  year: 2022
  ident: b0070
  article-title: A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting
  publication-title: Nat. Commun.
– volume: 356
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0160
  article-title: Template-free synthesis of multifunctional Co
  publication-title: Chem. Eng. J.
– volume: 453
  year: 2023
  ident: b0055
  article-title: Photothermal effect of carbon dots for boosted photothermal-assisted photocatalytic water/seawater splitting into hydrogen
  publication-title: Chem. Eng. J.
– volume: 608
  start-page: 2058
  year: 2022
  end-page: 2065
  ident: b0045
  article-title: Significantly enhanced photothermal catalytic hydrogen evolution over Cu
  publication-title: J. Colloid Interf. Sci.
– volume: 47
  start-page: 36397
  year: 2022
  end-page: 36407
  ident: b0275
  article-title: Self-construction of pea-like Cu/Cu
  publication-title: Int. J. Hydrogen Energ.
– volume: 34
  year: 2022
  ident: b0080
  article-title: Emerging S-Scheme Photocatalyst
  publication-title: Adv. Mater.
– volume: 248
  start-page: 193
  year: 2019
  end-page: 201
  ident: b0170
  article-title: Half-unit-cell ZnIn
  publication-title: Appl. Cataly. B-Environ.
– volume: 95
  year: 2022
  ident: b0050
  article-title: Concentrating electron and activating H-OH bond of absorbed water on metallic NiCo
  publication-title: Nano Energy
– volume: 433
  year: 2022
  ident: b0295
  article-title: Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots
  publication-title: Chem. Eng. J.
– volume: 423
  year: 2022
  ident: b0060
  article-title: Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment
  publication-title: J. Hazard. Mater.
– volume: 930
  year: 2023
  ident: b0335
  article-title: Fabrication of Bi
  publication-title: J. Alloy. Compd.
– volume: 221
  start-page: 9
  year: 2018
  end-page: 16
  ident: b0355
  article-title: Oxygen-doped nanoporous carbon nitride via water-based homogeneous supramolecular assembly for photocatalytic hydrogen evolution
  publication-title: Appl. Cataly. B-Environ.
– volume: 11
  start-page: 1431
  year: 2022
  end-page: 1444
  ident: b0135
  article-title: Construction and performance of CdS/MoO
  publication-title: J. Adv. Ceram.
– volume: 593
  year: 2022
  ident: b0075
  article-title: An integrated photothermal-photocatalytic materials for efficient photocatalytic performance boosting by synergistic photothermally
  publication-title: Appl. Surf. Sci.
– volume: 40
  start-page: 308
  year: 2017
  end-page: 316
  ident: b0320
  article-title: Switching charge transfer of C
  publication-title: Nano Energy
– volume: 298
  year: 2021
  ident: b0030
  article-title: Construction photothermal/pyroelectric property of hollow FeS
  publication-title: Appl. Catal. B Environ.
– volume: 454
  year: 2023
  ident: b0040
  article-title: Construction of core–shell FeS
  publication-title: Chem. Eng. J.
– volume: 304
  year: 2023
  ident: b0365
  article-title: Effect of different carbon dots positions on the transfer of photo-induced charges in type I heterojunction for significantly enhanced photocatalytic activity
  publication-title: Sep. Purif. Technol.
– volume: 304
  year: 2022
  ident: b0085
  article-title: 2D/2D BiVO
  publication-title: Appl. Catal. B Environ.
– volume: 43
  start-page: 339
  year: 2022
  end-page: 349
  ident: b0090
  article-title: 1D/2D TiO
  publication-title: Chin. J. Catal.
– volume: 630
  start-page: 274
  year: 2023
  end-page: 285
  ident: b0230
  article-title: Coupled internal electric field with hydrogen release kinetics for promoted photocatalytic hydrogen production through employing carbon coated transition metal as co-catalyst
  publication-title: J. Colloid Interf. Sci.
– volume: 254
  start-page: 128
  year: 2019
  end-page: 134
  ident: b0285
  article-title: Controlling carbon self-doping site of g-C
  publication-title: Appl. Cataly. B-Environ.
– volume: 275
  year: 2021
  ident: b0185
  article-title: Rational design of direct Z-scheme heterostructure NiCoP/ZIS for highly efficient photocatalytic hydrogen evolution under visible light irradiation
  publication-title: Sep. Purif. Technol.
– reference: Y.J. Bao S.Q. Song G.J. Yao S.J. Jiang S-Scheme Photocatalytic Systems Sol. Rrl 5 2021 https://doi.org/solr.202100118.
– volume: 13
  start-page: 1287
  year: 2022
  ident: b0250
  article-title: Protruding Pt single-sites on hexagonal ZnIn
  publication-title: Nat. Commun.
– volume: 607
  start-page: 1391
  year: 2021
  end-page: 1401
  ident: b0305
  article-title: Well-designed three-dimensional hierarchical hollow tubular g-C
  publication-title: J. Colloid Interf. Sci.
– volume: 13
  start-page: 4828
  year: 2022
  end-page: 4837
  ident: b0265
  article-title: Interpretation of Mott-Schottky plots of photoanodes for water splitting
  publication-title: Chem. Sci.
– volume: 61
  year: 2022
  ident: b0110
  article-title: Photothermal catalyzed hydrogenation of carbon dioxide over porous nanosheet Co
  publication-title: J. CO
– volume: 76
  year: 2020
  ident: b0120
  article-title: Self-integrated effects of 2D ZnIn
  publication-title: Nano Energy
– volume: 285
  year: 2021
  ident: b0195
  article-title: Efficient photocatalytic H
  publication-title: Appl. Cataly. B-Environ.
– volume: 9
  start-page: 4433
  year: 2022
  end-page: 4444
  ident: b0340
  article-title: Simultaneously enhanced photocatalytic cleanup of Cr(vi) and tetracycline via a ZnIn
  publication-title: Environ. Sci-Nano
– volume: 238
  year: 2022
  ident: b0235
  article-title: A one-photon excitation pathway in 0D/3D CoS
  publication-title: Compos. Part. B-Eng.
– volume: 29
  start-page: 1603730
  year: 2017
  ident: b0240
  article-title: High-Performance Photothermal Conversion of Narrow-Bandgap Ti
  publication-title: Adv. Mater.
– volume: 5
  start-page: 323
  year: 2018
  end-page: 343
  ident: b0065
  article-title: Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications
  publication-title: Mater. Horiz.
– volume: 379
  year: 2020
  ident: b0210
  article-title: Photothermal-assisted photocatalytic degradation with ultrahigh solar utilization: Towards practical application
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 23546
  year: 2022
  end-page: 23557
  ident: b0270
  article-title: ZnFe
  publication-title: ACS Appl. Mater. Interf.
– volume: 5
  year: 2021
  ident: b0245
  article-title: ZnIn
  publication-title: Small Methods
– volume: 46
  start-page: 33809
  year: 2021
  end-page: 33822
  ident: b0290
  article-title: Co
  publication-title: Int. J. Hydrogen Energ.
– volume: 602
  start-page: 889
  year: 2021
  end-page: 897
  ident: b0255
  article-title: Formation of unique hollow ZnSnO
  publication-title: J. Colloid Interf. Sci.
– volume: 291
  year: 2021
  ident: b0370
  article-title: Boosting photocatalytic hydrogen evolution using a noble-metal-free co-catalyst: CuNi@C with oxygen-containing functional groups
  publication-title: Appl. Catal. B-Environ.
– volume: 46
  start-page: 15589
  year: 2022
  end-page: 15601
  ident: b0150
  article-title: Integrating Co
  publication-title: Int. J. Energ. Res.
– volume: 379
  year: 2020
  ident: 10.1016/j.cej.2023.141549_b0210
  article-title: Photothermal-assisted photocatalytic degradation with ultrahigh solar utilization: Towards practical application
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122382
– volume: 9
  start-page: 4433
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0340
  article-title: Simultaneously enhanced photocatalytic cleanup of Cr(vi) and tetracycline via a ZnIn2S4 nanoflake-decorated 24-faceted concave MIL-88B(Fe) polyhedron S-scheme system
  publication-title: Environ. Sci-Nano
  doi: 10.1039/D2EN00781A
– volume: 423
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0060
  article-title: Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127128
– volume: 285
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0280
  article-title: Tunable charge transfer efficiency in HxMoO3@ZnIn2S4 hierarchical direct Z-scheme heterojunction toward efficient visible-light-driven hydrogen evolution
  publication-title: Appl. Cataly. B-Environ.
  doi: 10.1016/j.apcatb.2020.119818
– volume: 18
  issue: 31
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0105
  article-title: Hollow Nanoboxes Cu2-x S@ZnIn2 S4 Core-Shell S-Scheme Heterojunction with Broad-Spectrum Response and Enhanced Photothermal-Photocatalytic Performance
  publication-title: Small
– volume: 40
  start-page: 308
  year: 2017
  ident: 10.1016/j.cej.2023.141549_b0320
  article-title: Switching charge transfer of C3N4/W18O49 from type-II to Z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.032
– volume: 5
  issue: 10
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0245
  article-title: ZnIn2S4 -Based Photocatalysts for Energy and Environmental Applications
  publication-title: Small Methods
  doi: 10.1002/smtd.202100887
– volume: 356
  start-page: 1
  year: 2019
  ident: 10.1016/j.cej.2023.141549_b0160
  article-title: Template-free synthesis of multifunctional Co3O4 nanotubes as excellent performance electrode materials for superior energy storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.014
– volume: 602
  start-page: 889
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0255
  article-title: Formation of unique hollow ZnSnO3@ZnIn2S4 core-shell heterojunction to boost visible-light-driven photocatalytic water splitting for hydrogen production
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.06.074
– volume: 595
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0325
  article-title: Carbon dots as solid-state electron mediator and electron acceptor in S-scheme heterojunction for boosted photocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153482
– volume: 454
  year: 2023
  ident: 10.1016/j.cej.2023.141549_b0040
  article-title: Construction of core–shell FeS2@ZnIn2S4 hollow hierarchical structure S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production
  publication-title: Chem. Eng. J.
– volume: 433
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0295
  article-title: Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133741
– volume: 221
  start-page: 9
  year: 2018
  ident: 10.1016/j.cej.2023.141549_b0355
  article-title: Oxygen-doped nanoporous carbon nitride via water-based homogeneous supramolecular assembly for photocatalytic hydrogen evolution
  publication-title: Appl. Cataly. B-Environ.
  doi: 10.1016/j.apcatb.2017.09.003
– volume: 13
  start-page: 1287
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0250
  article-title: Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28995-1
– volume: 168–169
  start-page: 266
  year: 2015
  ident: 10.1016/j.cej.2023.141549_b0190
  article-title: Cross-linked ZnIn2S4 /rGO composite photocatalyst for sunlight-driven photocatalytic degradation of 4-nitrophenol
  publication-title: Appl. Cataly. B-Environ.
  doi: 10.1016/j.apcatb.2014.12.048
– volume: 306
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0100
  article-title: Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation
  publication-title: Appl. Cataly. B Environ.
  doi: 10.1016/j.apcatb.2022.121109
– volume: 61
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0110
  article-title: Photothermal catalyzed hydrogenation of carbon dioxide over porous nanosheet Co3O4
  publication-title: J. CO2 Util.
  doi: 10.1016/j.jcou.2022.102003
– volume: 285
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0195
  article-title: Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering
  publication-title: Appl. Cataly. B-Environ.
  doi: 10.1016/j.apcatb.2020.119789
– volume: 14
  start-page: 23546
  issue: 20
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0270
  article-title: ZnFe2O4-Ni5P4 Mott-Schottky Heterojunctions to Promote Kinetics for Advanced Li-S Batteries
  publication-title: ACS Appl. Mater. Interf.
  doi: 10.1021/acsami.2c04734
– volume: 13
  start-page: 5698
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0070
  article-title: A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33439-x
– volume: 319
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0345
  article-title: BiFeO3/Bi2Fe4O9 S-scheme heterojunction hollow nanospheres for high-efficiency photocatalytic o-chlorophenol degradation
  publication-title: Appl. Cataly. B-Environ.
  doi: 10.1016/j.apcatb.2022.121893
– volume: 12
  start-page: 841
  year: 2019
  ident: 10.1016/j.cej.2023.141549_b0035
  article-title: Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C8EE01146J
– volume: 30
  start-page: 1802894
  year: 2018
  ident: 10.1016/j.cej.2023.141549_b0005
  article-title: Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802894
– volume: 42
  start-page: 439
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0140
  article-title: Coralline-like Ni2P decorated novel tetrapod-bundle Cd0.9Zn0.1S ZB/WZ homojunctions for highly efficient visible-light photocatalytic hydrogen evolution
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(20)63597-5
– volume: 46
  start-page: 33809
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0290
  article-title: Co3O4/CeO2 p-n heterojunction construction and application for efficient photocatalytic hydrogen evolution
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2021.07.201
– volume: 292
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0020
  article-title: Magnetically retrievable CdS/reduced graphene oxide/ZnFe2O4 ternary nanocomposite for self-generated H2O2 towards photo-Fenton removal of tetracycline under visible light irradiation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.120987
– volume: 277
  year: 2020
  ident: 10.1016/j.cej.2023.141549_b0175
  article-title: Synergy between van der waals heterojunction and vacancy in ZnIn2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution
  publication-title: Appl. Cataly. B-Environ.
  doi: 10.1016/j.apcatb.2020.119254
– volume: 6
  start-page: 2200115
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0010
  article-title: A review on photothermal conversion of solar energy with nanomaterials and nanostructures: from fundamentals to applications
  publication-title: Adv. Sustain. Syst.
  doi: 10.1002/adsu.202200115
– volume: 453
  year: 2023
  ident: 10.1016/j.cej.2023.141549_b0055
  article-title: Photothermal effect of carbon dots for boosted photothermal-assisted photocatalytic water/seawater splitting into hydrogen
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139834
– volume: 34
  issue: 11
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0080
  article-title: Emerging S-Scheme Photocatalyst
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202107668
– volume: 593
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0315
  article-title: High-crystalline/amorphous g-C3N4 S-scheme homojunction for boosted photocatalytic H2 production in water/simulated seawater: Interfacial charge transfer and mechanism insight
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153281
– volume: 5
  start-page: 323
  year: 2018
  ident: 10.1016/j.cej.2023.141549_b0065
  article-title: Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications
  publication-title: Mater. Horiz.
  doi: 10.1039/C7MH01064H
– ident: 10.1016/j.cej.2023.141549_b0330
  doi: 10.1002/solr.202100118
– volume: 304
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0085
  article-title: 2D/2D BiVO4/CsPbBr 3 S-scheme heterojunction for photocatalytic CO2 reduction: Insights into structure regulation and Fermi level modulation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120979
– volume: 275
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0185
  article-title: Rational design of direct Z-scheme heterostructure NiCoP/ZIS for highly efficient photocatalytic hydrogen evolution under visible light irradiation
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2021.119153
– volume: 9
  start-page: 2673
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0125
  article-title: AgFeO2 Nanoparticle/ZnIn2S4 Microsphere p–n Heterojunctions with Hierarchical Nanostructures for Efficient Visible-Light-Driven H2 Evolution
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c07638
– volume: 298
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0030
  article-title: Construction photothermal/pyroelectric property of hollow FeS2/Bi2S3 nanostructure with enhanced full spectrum photocatalytic activity
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120573
– volume: 46
  start-page: 15589
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0150
  article-title: Integrating Co3O4 with ZnIn2S4 p-n heterojunction for efficient photocatalytic hydrogen production
  publication-title: Int. J. Energ. Res.
  doi: 10.1002/er.8254
– volume: 315
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0310
  article-title: Phase engineering of CdS optimized by BP with p-n junction: Establishing spatial-gradient charges transmission mode toward efficient photocatalytic water reduction
  publication-title: Appl. Cataly. B-Environ.
  doi: 10.1016/j.apcatb.2022.121577
– volume: 291
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0370
  article-title: Boosting photocatalytic hydrogen evolution using a noble-metal-free co-catalyst: CuNi@C with oxygen-containing functional groups
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2021.120139
– volume: 281
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0260
  article-title: Nitrogen doped g-C3N4 with the extremely narrow band gap for excellent photocatalytic activities under visible light
  publication-title: Appl. Cataly. B-Environ.
  doi: 10.1016/j.apcatb.2020.119474
– volume: 304
  year: 2023
  ident: 10.1016/j.cej.2023.141549_b0365
  article-title: Effect of different carbon dots positions on the transfer of photo-induced charges in type I heterojunction for significantly enhanced photocatalytic activity
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.122337
– volume: 12
  start-page: 1343
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0025
  article-title: Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21526-4
– volume: 11
  start-page: 1431
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0135
  article-title: Construction and performance of CdS/MoO2@Mo2C-MXene photocatalyst for H2 production
  publication-title: J. Adv. Ceram.
  doi: 10.1007/s40145-022-0621-3
– volume: 11
  start-page: 1117
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0130
  article-title: Efficient photocatalytic hydrogen evolution coupled with benzaldehyde production over 0D Cd0.5Zn0.5S/2D Ti3C2 Schottky heterojunction
  publication-title: J Adv. Ceram.
  doi: 10.1007/s40145-022-0598-y
– volume: 47
  start-page: 36397
  issue: 86
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0275
  article-title: Self-construction of pea-like Cu/Cu2S Mott-Schottky electrocatalyst for the oxygen evolution reaction
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2022.08.232
– volume: 435
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0350
  article-title: A novel S-scheme heterojunction of CsPbBr 3 nanocrystals/AgBr nanorods for artificial photosynthesis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135014
– volume: 29
  start-page: 1603730
  year: 2017
  ident: 10.1016/j.cej.2023.141549_b0240
  article-title: High-Performance Photothermal Conversion of Narrow-Bandgap Ti2O3 Nanoparticles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603730
– volume: 610
  year: 2023
  ident: 10.1016/j.cej.2023.141549_b0145
  article-title: Fabricating 1D/2D Co3O4/ZnIn2S4 core–shell heterostructures with boosted charge transfer for photocatalytic hydrogen production
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.155272
– volume: 248
  start-page: 193
  year: 2019
  ident: 10.1016/j.cej.2023.141549_b0170
  article-title: Half-unit-cell ZnIn2S4 monolayer with sulfur vacancies for photocatalytic hydrogen evolution
  publication-title: Appl. Cataly. B-Environ.
  doi: 10.1016/j.apcatb.2019.02.027
– volume: 454
  start-page: 1400442
  year: 2023
  ident: 10.1016/j.cej.2023.141549_b0360
  article-title: Dual-channels separated mechanism of photo-generated charges over semiconductor photocatalyst for hydrogen evolution: Interfacial charge transfer and transport dynamics insight
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.140442
– volume: 510
  year: 2020
  ident: 10.1016/j.cej.2023.141549_b0155
  article-title: Co3O4 hollow microspheres on polypyrrole nanotubes network enabling long-term cyclability sulfur cathode
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2020.145529
– volume: 43
  start-page: 339
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0090
  article-title: 1D/2D TiO2/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient hydrogen evolution
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63875-5
– volume: 930
  year: 2023
  ident: 10.1016/j.cej.2023.141549_b0335
  article-title: Fabrication of Bi4Ti3O12/ZnIn2S4 S-scheme heterojunction for achieving efficient photocatalytic hydrogen production
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2022.167450
– volume: 13
  start-page: 4828
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0265
  article-title: Interpretation of Mott-Schottky plots of photoanodes for water splitting
  publication-title: Chem. Sci.
  doi: 10.1039/D1SC06401K
– volume: 297
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0205
  article-title: Constructing oxide/sulfide in-plane heterojunctions with enlarged internal electric field for efficient CO2 photoreduction
  publication-title: Appl. Cataly. B-Environ.
  doi: 10.1016/j.apcatb.2021.120394
– volume: 9
  start-page: 2103926
  issue: 3
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0015
  article-title: Photothermal chemistry based on solar energy: from synergistic effects to practical applications
  publication-title: Adv. Sci. (Weinh).
  doi: 10.1002/advs.202103926
– volume: 59
  start-page: 8255
  year: 2020
  ident: 10.1016/j.cej.2023.141549_b0165
  article-title: Construction of Hierarchical Hollow Co9S8 /ZnIn2S4 Tubular Heterostructures for Highly Efficient Solar Energy Conversion and Environmental Remediation
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202000503
– volume: 270
  year: 2020
  ident: 10.1016/j.cej.2023.141549_b0300
  article-title: Tin diselinide a stable co-catalyst coupled with branched TiO2 fiber and g-C3N4 quantum dots for photocatalytic hydrogen evolution
  publication-title: Appl. Cataly. B-Environ.
  doi: 10.1016/j.apcatb.2020.118900
– volume: 608
  start-page: 2058
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0045
  article-title: Significantly enhanced photothermal catalytic hydrogen evolution over Cu2O-rGO/TiO2 composite with full spectrum solar light
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.10.136
– volume: 606
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0215
  article-title: Template-free self-assembly of three-dimensional porous graphitic carbon nitride nanovesicles with size-dependent photocatalytic activity for hydrogen evolution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.154841
– volume: 33
  issue: 24
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0225
  article-title: Exceptional Cocatalyst-Free Photo-Enhanced Piezocatalytic Hydrogen Evolution of Carbon Nitride Nanosheets from Strong In-Plane Polarization
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101751
– volume: 607
  start-page: 1391
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0305
  article-title: Well-designed three-dimensional hierarchical hollow tubular g-C3N4/ZnIn2S4 nanosheets heterostructure for achieving efficient visible-light photocatalytic hydrogen evolution
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2021.09.095
– volume: 315
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0115
  article-title: Highly efficient photothermal catalysis of toluene over Co3O4/TiO2 p-n heterojunction: The crucial roles of interface defects and band structure
  publication-title: Appl. Cataly. B-Environ.
  doi: 10.1016/j.apcatb.2022.121550
– volume: 436
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0220
  article-title: A self-sufficient photo-Fenton system with coupling in-situ production H2O2 of ultrathin porous g-C3N4 nanosheets and amorphous FeOOH quantum dots
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.129141
– volume: 33
  issue: 22
  year: 2021
  ident: 10.1016/j.cej.2023.141549_b0095
  article-title: An Inorganic/Organic S-Scheme Heterojunction H2-Production Photocatalyst and its Charge Transfer Mechanism
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100317
– volume: 76
  year: 2020
  ident: 10.1016/j.cej.2023.141549_b0120
  article-title: Self-integrated effects of 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite for promoting solar hydrogen generation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105031
– volume: 295
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0180
  article-title: Self-template synthesis of Co3O4 nanotube for efficient Hg0 removal from flue gas
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.121240
– volume: 254
  start-page: 128
  year: 2019
  ident: 10.1016/j.cej.2023.141549_b0285
  article-title: Controlling carbon self-doping site of g-C3N4 for highly enhanced visible-light-driven hydrogen evolution
  publication-title: Appl. Cataly. B-Environ.
  doi: 10.1016/j.apcatb.2019.04.082
– volume: 593
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0075
  article-title: An integrated photothermal-photocatalytic materials for efficient photocatalytic performance boosting by synergistic photothermally
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.153382
– volume: 630
  start-page: 274
  year: 2023
  ident: 10.1016/j.cej.2023.141549_b0230
  article-title: Coupled internal electric field with hydrogen release kinetics for promoted photocatalytic hydrogen production through employing carbon coated transition metal as co-catalyst
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/j.jcis.2022.10.022
– volume: 42
  start-page: 3121
  year: 2016
  ident: 10.1016/j.cej.2023.141549_b0200
  article-title: Porous nanotubes derived from a metal-organic framework as high-performance supercapacitor electrodes
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.10.101
– volume: 238
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0235
  article-title: A one-photon excitation pathway in 0D/3D CoS2/ZnIn2S4 composite with nanoparticles on micro-flowers structure for boosted visible-light-driven photocatalytic hydrogen evolution
  publication-title: Compos. Part. B-Eng.
  doi: 10.1016/j.compositesb.2022.109955
– volume: 95
  year: 2022
  ident: 10.1016/j.cej.2023.141549_b0050
  article-title: Concentrating electron and activating H-OH bond of absorbed water on metallic NiCo2S4 boosting photocatalytic hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107028
SSID ssj0006919
Score 2.7112486
Snippet [Display omitted] •Co3O4 as a heat source in composite system can generate heat by absorbing Vis-NIR light.•High-frequency photons are converted into heat to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 141549
SubjectTerms Full solar-spectrum
Hydrogen
Photocatalysis
Photothermal-assisted
S-scheme heterojunction
Title Construction of full solar-spectrum available S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production
URI https://dx.doi.org/10.1016/j.cej.2023.141549
Volume 459
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpn5YEJyW0eTpyMVUVVqNSBFtEtShxbTdVHBAWJhYkfzp2T0CIBA1OUyCdZPufuO_vuO0KuHAfrfhOPCak540K7LNTSYYnCHqoxF3Fq2D4Hfu-B3429cY10qloYTKssbX9h0421Lr-0ytVs5VnWGtp4pxVyASAa7wfRDnMucJc339dpHn5omnvgYIajq5tNk-Ml1bSJ_cPBXiBV2c--acPfdPfIbgkUabuYyz6pqcUB2dmgDzwkH9hts-J_pUtN8SydPmOwykwF5dPLnMavcTbD-ig6ZBDJqrmiE0yBWU7BoxlBgK0UsDaee9J8slyZmqx5PGOAq7P1V3PQ8wazoT2H5gVRLIgfkVH3ZtTpsbKrApNOKFaMp0L6EOVox8LwV_rS1gH89RKQg-16GjGWsrULkVSSJm6c2CnXlpXEnvaF5u4xqS-WC3VCKE9EoDQgKBF6GAfGPreCUKtUpK4OeHpKrGo5I1kyjmPji1lUpZZNI9BAhBqICg2ckusvkbyg2_hrMK90FH3bMxG4g9_Fzv4ndk628a3IP7sgddChugRAskoaZsc1yFb7tt8b4LN__9j_BKng4ww
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOFRQQtDx8KBcks4njxJsDB8RDS6Fc2ErcrMSxtbval8pCxaWn_qL-QmachAUJekDaq5OJHM9o5hvPC-CbEFT3m8dcGSe5VC7iqTOC55ZmqGZSZYXv9nmVtH7K7zfxzRz8q2thKK2y0v2lTvfaulppVKfZGHe7jeuQYlqpVAiiKT4oqszKC_vwG_2228PzE2TynhBnp-3jFq9GC3AjUjXhslAmQajvREA-oElM6Joo-gbNZxjFjoCGDV2E7kRe5FGWh4V0QZBnsUuUkxF-9gMsSNQWNDXh4M80rSRJ_TAR2hyn3dWRVJ9TZmzvgOaVo36i1miv28Jn9u1sGT5VwJQdlf--AnN2-BmWnrUrXIW_NN2z7jfLRo7R3T27JeeY-4rNX3cDlt1n3T7VY7Frjp6zHVjWoZSbUQ8tqCdEmMwQ29M9Kxt3RhNfAzbI-hxxfHe66i-WHnA3rCXYuGxMi-Rr0J7FUa_D_HA0tBvAZK6a1iFiU2lMfmeWyKCZOluoInJNWWxCUB-nNlWHcxq00dd1KltPIwc0cUCXHNiE_SeScdne438vy5pH-oWMajQ_b5N9eR_ZLiy22j8u9eX51cVX-EhPyty3LZhHftptBEOTfMdLHwM9Y2l_BLOnG1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+full+solar-spectrum+available+S-scheme+heterojunction+for+boosted+photothermal-assisted+photocatalytic+H2+production&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Shi%2C+Yuxing&rft.au=Li%2C+Lingling&rft.au=Xu%2C+Zheng&rft.au=Guo%2C+Feng&rft.date=2023-03-01&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=459&rft_id=info:doi/10.1016%2Fj.cej.2023.141549&rft.externalDocID=S1385894723002802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon