A mayfly optimization algorithm
•An efficient powerful optimization method (MA) is presented.•Performance of MA is checked for benchmark both continuous and discrete functions.•MA performs fine on multiobjective optimization.•MA is very competitive with other state-of-the-art optimization algorithms. This paper introduces a new me...
Saved in:
Published in | Computers & industrial engineering Vol. 145; p. 106559 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An efficient powerful optimization method (MA) is presented.•Performance of MA is checked for benchmark both continuous and discrete functions.•MA performs fine on multiobjective optimization.•MA is very competitive with other state-of-the-art optimization algorithms.
This paper introduces a new method called the Mayfly Algorithm (MA) to solve optimization problems. Inspired from the flight behavior and the mating process of mayflies, the proposed algorithm combines major advantages of swarm intelligence and evolutionary algorithms. To evaluate the performance of the proposed algorithm, 38 mathematical benchmark functions, including 13 CEC2017 test functions, are employed and the results are compared to those of seven state of the art well-known metaheuristic optimization methods. The MA’s performance is also assessed through convergence behavior in multi-objective optimization as well as using a real-world discrete flow-shop scheduling problem. The comparison results demonstrate the superiority of the proposed method in terms of convergence rate and convergence speed. The processes of nuptial dance and random flight enhance the balance between algorithm’s exploration and exploitation properties and assist its escape from local optima. |
---|---|
AbstractList | •An efficient powerful optimization method (MA) is presented.•Performance of MA is checked for benchmark both continuous and discrete functions.•MA performs fine on multiobjective optimization.•MA is very competitive with other state-of-the-art optimization algorithms.
This paper introduces a new method called the Mayfly Algorithm (MA) to solve optimization problems. Inspired from the flight behavior and the mating process of mayflies, the proposed algorithm combines major advantages of swarm intelligence and evolutionary algorithms. To evaluate the performance of the proposed algorithm, 38 mathematical benchmark functions, including 13 CEC2017 test functions, are employed and the results are compared to those of seven state of the art well-known metaheuristic optimization methods. The MA’s performance is also assessed through convergence behavior in multi-objective optimization as well as using a real-world discrete flow-shop scheduling problem. The comparison results demonstrate the superiority of the proposed method in terms of convergence rate and convergence speed. The processes of nuptial dance and random flight enhance the balance between algorithm’s exploration and exploitation properties and assist its escape from local optima. |
ArticleNumber | 106559 |
Author | Zervoudakis, Konstantinos Tsafarakis, Stelios |
Author_xml | – sequence: 1 givenname: Konstantinos orcidid: 0000-0002-2146-1493 surname: Zervoudakis fullname: Zervoudakis, Konstantinos email: kzervoudakis@isc.tuc.gr – sequence: 2 givenname: Stelios orcidid: 0000-0001-5535-4787 surname: Tsafarakis fullname: Tsafarakis, Stelios email: tsafarakis@dpem.tuc.gr |
BookMark | eNp9j81KxDAUhYOMYGf0AVw5L9B60zZNgqth0FEYcKPrkKY3mtKfIQ1CfXpb68rFrC4H7nc435qsur5DQm4pJBRocV8nxmGSQjrngjF5QSIquIyBMViRCLICYpGx9Iqsh6EGgJxJGpG73bbVo23GbX8KrnXfOri-2-rmo_cufLbX5NLqZsCbv7sh70-Pb_vn-Ph6eNnvjrFJJQ9xrjEXUkstMkNFWQioSpkjFpZXvMrRFpahyKZELdCUWlNpyTXPZVbK0tpsQ-jSa3w_DB6tOnnXaj8qCmo2VLWaDNVsqBbDieH_GOPC7_7gtWvOkg8LiZPSl0OvhumlM1g5jyaoqndn6B8yhWzW |
CitedBy_id | crossref_primary_10_1016_j_scs_2021_103489 crossref_primary_10_1016_j_est_2022_105585 crossref_primary_10_1002_2050_7038_13029 crossref_primary_10_1016_j_asoc_2022_109847 crossref_primary_10_1016_j_eswa_2021_114974 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_1007_s00500_021_06101_9 crossref_primary_10_1016_j_geoen_2023_211635 crossref_primary_10_1109_ACCESS_2021_3127940 crossref_primary_10_1016_j_cie_2020_106687 crossref_primary_10_1016_j_swevo_2024_101518 crossref_primary_10_1016_j_asoc_2022_109730 crossref_primary_10_3390_su15107982 crossref_primary_10_3390_jmse10121982 crossref_primary_10_1016_j_compeleceng_2024_109904 crossref_primary_10_1016_j_eswa_2023_119765 crossref_primary_10_1016_j_energy_2024_130606 crossref_primary_10_4018_IJSI_301229 crossref_primary_10_1007_s11831_023_09900_5 crossref_primary_10_3390_jmse12071207 crossref_primary_10_1007_s11036_023_02105_x crossref_primary_10_32604_cmc_2022_028560 crossref_primary_10_1007_s00170_024_14392_z crossref_primary_10_1016_j_egyr_2021_10_118 crossref_primary_10_3390_math10234539 crossref_primary_10_1007_s00202_023_02008_w crossref_primary_10_1016_j_health_2023_100261 crossref_primary_10_1016_j_energy_2023_127142 crossref_primary_10_1016_j_eswa_2022_119211 crossref_primary_10_1088_1742_6596_1684_1_012075 crossref_primary_10_1088_1742_6596_1684_1_012077 crossref_primary_10_1155_2021_9528664 crossref_primary_10_1016_j_jclepro_2025_144874 crossref_primary_10_1016_j_engappai_2021_104419 crossref_primary_10_1016_j_egyr_2021_03_033 crossref_primary_10_3233_XST_221136 crossref_primary_10_1016_j_asoc_2024_111581 crossref_primary_10_1007_s10915_022_01955_z crossref_primary_10_1016_j_applthermaleng_2021_117055 crossref_primary_10_1016_j_imavis_2023_104691 crossref_primary_10_32604_iasc_2024_053192 crossref_primary_10_1109_ACCESS_2022_3213805 crossref_primary_10_1155_2022_3783977 crossref_primary_10_1007_s10115_020_01503_x crossref_primary_10_1016_j_asoc_2021_108112 crossref_primary_10_3390_pr10112446 crossref_primary_10_1016_j_asoc_2023_110906 crossref_primary_10_32604_iasc_2023_039718 crossref_primary_10_3390_math11020390 crossref_primary_10_1007_s00521_022_07565_y crossref_primary_10_1155_2022_2131699 crossref_primary_10_1007_s13201_023_01913_6 crossref_primary_10_1016_j_asoc_2024_111451 crossref_primary_10_1177_0309524X211024654 crossref_primary_10_3390_s21062245 crossref_primary_10_1016_j_eswa_2023_121510 crossref_primary_10_21595_jmai_2024_23909 crossref_primary_10_3390_s23010280 crossref_primary_10_1016_j_eswa_2024_125388 crossref_primary_10_1016_j_measen_2024_101250 crossref_primary_10_32604_cmc_2022_027483 crossref_primary_10_1007_s11227_023_05177_4 crossref_primary_10_3233_WEB_220049 crossref_primary_10_3390_su15118829 crossref_primary_10_1016_j_aei_2022_101636 crossref_primary_10_1007_s12046_023_02292_z crossref_primary_10_1007_s13369_024_09807_8 crossref_primary_10_1016_j_procs_2025_01_083 crossref_primary_10_1016_j_rineng_2024_103901 crossref_primary_10_1016_j_gca_2024_06_008 crossref_primary_10_1016_j_compeleceng_2022_108176 crossref_primary_10_3389_fcomp_2024_1381850 crossref_primary_10_1016_j_seta_2022_102904 crossref_primary_10_3390_s23073698 crossref_primary_10_3390_en15124263 crossref_primary_10_3390_diagnostics13040668 crossref_primary_10_1142_S0218001423560013 crossref_primary_10_1142_S0219467823500286 crossref_primary_10_3233_JIFS_221161 crossref_primary_10_1061_JAEEEZ_ASENG_4824 crossref_primary_10_3390_aerospace10121006 crossref_primary_10_1016_j_ins_2023_119308 crossref_primary_10_3389_fenrg_2022_848966 crossref_primary_10_1007_s42979_021_00860_w crossref_primary_10_1109_TWC_2023_3257178 crossref_primary_10_1155_2021_2295920 crossref_primary_10_1080_2374068X_2024_2307152 crossref_primary_10_1007_s10489_022_04265_x crossref_primary_10_1109_ACCESS_2021_3100365 crossref_primary_10_1016_j_eswa_2023_120886 crossref_primary_10_1049_ell2_13012 crossref_primary_10_3390_biomimetics9090538 crossref_primary_10_1002_aisy_202200097 crossref_primary_10_1016_j_jobe_2024_111114 crossref_primary_10_1016_j_ijmecsci_2024_109589 crossref_primary_10_3233_JIFS_223210 crossref_primary_10_3390_app131810317 crossref_primary_10_1007_s10825_021_01711_w crossref_primary_10_3390_biomedicines11061715 crossref_primary_10_1016_j_eswa_2023_120656 crossref_primary_10_1155_2022_6461690 crossref_primary_10_1109_ACCESS_2020_3031718 crossref_primary_10_1038_s41598_024_69542_w crossref_primary_10_1016_j_egyr_2020_11_168 crossref_primary_10_1007_s11276_023_03262_3 crossref_primary_10_1007_s10462_024_10786_3 crossref_primary_10_1016_j_saa_2023_123441 crossref_primary_10_3390_math10101626 crossref_primary_10_3389_fenrg_2022_928063 crossref_primary_10_1016_j_energy_2024_132518 crossref_primary_10_1007_s12083_024_01710_1 crossref_primary_10_1038_s41598_025_91270_y crossref_primary_10_1109_TITS_2023_3270906 crossref_primary_10_1016_j_compbiomed_2021_105027 crossref_primary_10_1007_s11042_022_12539_2 crossref_primary_10_3390_math12111620 crossref_primary_10_1109_ACCESS_2024_3397402 crossref_primary_10_1007_s00521_022_07261_x crossref_primary_10_1111_exsy_13027 crossref_primary_10_1109_JSEN_2022_3190469 crossref_primary_10_1109_ACCESS_2022_3196851 crossref_primary_10_1007_s12530_022_09425_5 crossref_primary_10_1007_s40747_023_01121_4 crossref_primary_10_1109_ACCESS_2022_3213746 crossref_primary_10_1142_S0218001424570118 crossref_primary_10_1007_s11227_024_06291_7 crossref_primary_10_1016_j_ijmecsci_2024_109093 crossref_primary_10_1007_s00521_025_11073_0 crossref_primary_10_1016_j_cma_2022_114616 crossref_primary_10_1007_s12652_023_04518_8 crossref_primary_10_1016_j_egyr_2021_06_052 crossref_primary_10_32604_cmc_2023_036865 crossref_primary_10_1002_dac_5479 crossref_primary_10_1016_j_enconman_2022_116579 crossref_primary_10_32604_csse_2023_028107 crossref_primary_10_3390_drones6050134 crossref_primary_10_1016_j_eneco_2024_107986 crossref_primary_10_1007_s10586_023_04040_8 crossref_primary_10_1080_23311916_2024_2364041 crossref_primary_10_1007_s00500_021_05647_y crossref_primary_10_1016_j_enconman_2021_115086 crossref_primary_10_3390_biomimetics7040241 crossref_primary_10_3390_electronics12112505 crossref_primary_10_3390_app13137833 crossref_primary_10_1016_j_cjph_2021_10_005 crossref_primary_10_1016_j_eswa_2025_127206 crossref_primary_10_1109_LSENS_2022_3225527 crossref_primary_10_3233_JIFS_221632 crossref_primary_10_1515_mt_2022_0048 crossref_primary_10_1142_S0219455425500713 crossref_primary_10_3390_app12178778 crossref_primary_10_1080_17445302_2022_2140528 crossref_primary_10_3390_buildings12111950 crossref_primary_10_3390_app13116805 crossref_primary_10_3390_buildings13010080 crossref_primary_10_3390_math9182335 crossref_primary_10_1002_pssa_202200740 crossref_primary_10_1109_JSEN_2024_3361988 crossref_primary_10_3390_s22155659 crossref_primary_10_3390_su141912120 crossref_primary_10_1016_j_compbiomed_2022_105349 crossref_primary_10_1016_j_eswa_2024_123819 crossref_primary_10_1016_j_pmcj_2024_101918 crossref_primary_10_1155_2022_4798029 crossref_primary_10_1051_e3sconf_202340103071 crossref_primary_10_1016_j_asoc_2023_110514 crossref_primary_10_1016_j_aej_2024_04_075 crossref_primary_10_3390_s24082415 crossref_primary_10_1155_2022_4639208 crossref_primary_10_1038_s41598_024_80923_z crossref_primary_10_1016_j_advengsoft_2022_103177 crossref_primary_10_1007_s13042_022_01617_4 crossref_primary_10_3233_JIFS_222783 crossref_primary_10_31590_ejosat_1039719 crossref_primary_10_1007_s11227_022_04755_2 crossref_primary_10_1016_j_totert_2022_100020 crossref_primary_10_1016_j_ijhydene_2025_01_071 crossref_primary_10_1007_s10462_023_10416_4 crossref_primary_10_1016_j_egyr_2022_07_060 crossref_primary_10_1109_TFUZZ_2024_3440575 crossref_primary_10_3390_w15040701 crossref_primary_10_1155_2021_4454507 crossref_primary_10_3389_fenrg_2024_1394312 crossref_primary_10_1016_j_bspc_2022_103545 crossref_primary_10_1016_j_egyr_2021_05_051 crossref_primary_10_1002_dac_5652 crossref_primary_10_1016_j_asoc_2023_110527 crossref_primary_10_3390_app12136749 crossref_primary_10_4018_IJISP_315819 crossref_primary_10_1002_er_6578 crossref_primary_10_1007_s42044_024_00186_9 crossref_primary_10_1515_ijeeps_2021_0008 crossref_primary_10_1515_mt_2022_0012 crossref_primary_10_1515_mt_2022_0259 crossref_primary_10_1007_s00521_022_08179_0 crossref_primary_10_1109_TGRS_2024_3370302 crossref_primary_10_1007_s10462_024_11023_7 crossref_primary_10_1016_j_matcom_2023_04_020 crossref_primary_10_1049_ell2_12568 crossref_primary_10_7717_peerj_cs_1336 crossref_primary_10_1109_ACCESS_2021_3063053 crossref_primary_10_1007_s10462_022_10188_3 crossref_primary_10_1109_ACCESS_2022_3153727 crossref_primary_10_3390_math11092217 crossref_primary_10_3934_mbe_2022436 crossref_primary_10_3390_s23198325 crossref_primary_10_1016_j_egyr_2022_10_448 crossref_primary_10_1007_s00521_023_08834_0 crossref_primary_10_1080_0305215X_2024_2365712 crossref_primary_10_1016_j_rineng_2024_103407 crossref_primary_10_1080_01969722_2023_2177804 crossref_primary_10_1109_ACCESS_2022_3183124 crossref_primary_10_1002_ese3_70066 crossref_primary_10_1007_s13278_024_01375_x crossref_primary_10_1109_ACCESS_2022_3185780 crossref_primary_10_3390_a17010033 crossref_primary_10_3390_biomimetics8040381 crossref_primary_10_1007_s11042_023_15861_5 crossref_primary_10_1093_jigpal_jzae062 crossref_primary_10_1016_j_eswa_2021_116001 crossref_primary_10_1109_ACCESS_2023_3318129 crossref_primary_10_1109_ACCESS_2020_3042196 crossref_primary_10_3390_app13095612 crossref_primary_10_1016_j_eswa_2022_116887 crossref_primary_10_3389_fbioe_2022_830037 crossref_primary_10_1109_JSEN_2022_3151932 crossref_primary_10_1007_s11042_023_17680_0 crossref_primary_10_1007_s12065_022_00788_x crossref_primary_10_1080_15567036_2021_2008059 crossref_primary_10_1016_j_ins_2024_121224 crossref_primary_10_1007_s10462_024_10767_6 crossref_primary_10_1007_s40435_021_00892_3 crossref_primary_10_3390_app13169394 crossref_primary_10_1016_j_eswa_2023_121285 crossref_primary_10_1002_cae_22582 crossref_primary_10_1016_j_egyr_2022_09_025 crossref_primary_10_3390_electronics12040895 crossref_primary_10_1038_s41598_025_85140_w crossref_primary_10_1111_opo_13108 crossref_primary_10_3934_mbe_2022481 crossref_primary_10_3390_biomimetics9020065 crossref_primary_10_35377_saucis___1474767 crossref_primary_10_1002_cpe_7240 crossref_primary_10_1002_smr_2659 crossref_primary_10_1142_S0218126623502006 crossref_primary_10_1016_j_heliyon_2024_e26155 crossref_primary_10_1016_j_asoc_2023_110573 crossref_primary_10_1007_s12145_025_01774_4 crossref_primary_10_1155_2024_6689071 crossref_primary_10_1016_j_aei_2023_102210 crossref_primary_10_1007_s00366_021_01554_w crossref_primary_10_1016_j_ijhydene_2023_07_258 crossref_primary_10_37391_IJEER_120212 crossref_primary_10_1002_int_22524 crossref_primary_10_1016_j_eswa_2022_116509 crossref_primary_10_3390_a16050237 crossref_primary_10_1016_j_cja_2023_10_009 crossref_primary_10_1002_cpe_7235 crossref_primary_10_1093_jcde_qwac040 crossref_primary_10_1002_cpe_7236 crossref_primary_10_1080_09540091_2022_2149698 crossref_primary_10_32604_csse_2023_029603 crossref_primary_10_1007_s11227_022_04998_z crossref_primary_10_1049_sfw2_12065 crossref_primary_10_1016_j_eswa_2025_127287 crossref_primary_10_1155_2022_7140552 crossref_primary_10_1016_j_cie_2021_107224 crossref_primary_10_3390_mi13071104 crossref_primary_10_1016_j_jocs_2022_101766 crossref_primary_10_53759_7669_jmc202303024 crossref_primary_10_1007_s41939_023_00256_8 crossref_primary_10_1080_10255842_2023_2236744 crossref_primary_10_1016_j_eswa_2022_117411 crossref_primary_10_1145_3520439 crossref_primary_10_1002_ese3_1726 crossref_primary_10_1142_S0219467824500244 crossref_primary_10_1155_2022_9588610 crossref_primary_10_1002_er_6987 crossref_primary_10_1016_j_knosys_2024_112409 crossref_primary_10_1016_j_engappai_2022_105622 crossref_primary_10_3390_su14169944 crossref_primary_10_7498_aps_73_20231569 crossref_primary_10_1016_j_eswa_2021_115178 crossref_primary_10_1080_2374068X_2023_2198801 crossref_primary_10_1007_s11227_021_04255_9 crossref_primary_10_1007_s12065_022_00762_7 crossref_primary_10_1007_s10462_024_10723_4 crossref_primary_10_1007_s10489_021_02510_3 crossref_primary_10_1007_s10462_024_10747_w crossref_primary_10_3390_wevj13070120 crossref_primary_10_1007_s10462_025_11145_6 crossref_primary_10_3390_en16052086 crossref_primary_10_3390_electronics12091961 crossref_primary_10_1016_j_eswa_2024_125737 crossref_primary_10_3390_math12070965 crossref_primary_10_3390_electronics12194087 crossref_primary_10_3390_computation12010001 crossref_primary_10_1155_2022_3452413 crossref_primary_10_1007_s10489_021_02862_w crossref_primary_10_3390_s21227484 crossref_primary_10_3934_mbe_2022275 crossref_primary_10_1007_s40996_022_00931_9 crossref_primary_10_1371_journal_pone_0273155 crossref_primary_10_1007_s42835_021_00855_w crossref_primary_10_3390_su14138097 crossref_primary_10_1142_S0218126622501778 crossref_primary_10_1002_cpe_7679 crossref_primary_10_1080_03772063_2024_2352646 crossref_primary_10_1016_j_eswa_2024_123306 crossref_primary_10_30572_2018_KJE_160107 crossref_primary_10_1049_sfw2_12025 crossref_primary_10_1007_s00034_022_02141_0 crossref_primary_10_1063_5_0108278 crossref_primary_10_1007_s00500_023_08695_8 crossref_primary_10_1049_sil2_12154 crossref_primary_10_1007_s00500_023_08551_9 crossref_primary_10_1007_s11227_023_05579_4 crossref_primary_10_1142_S0218126623500561 crossref_primary_10_1016_j_advengsoft_2022_103405 crossref_primary_10_1007_s11227_023_05400_2 crossref_primary_10_3233_XST_210976 crossref_primary_10_1002_adts_202100183 crossref_primary_10_1007_s10723_023_09685_8 crossref_primary_10_1155_2023_6691214 crossref_primary_10_3390_en15207566 crossref_primary_10_1016_j_eswa_2024_123449 crossref_primary_10_1016_j_energy_2022_124340 crossref_primary_10_1007_s10489_024_05555_2 crossref_primary_10_1007_s10776_022_00586_3 crossref_primary_10_1002_ett_4869 crossref_primary_10_1002_ett_4502 crossref_primary_10_1007_s10462_022_10233_1 crossref_primary_10_1007_s10462_024_11104_7 crossref_primary_10_1016_j_egyr_2021_09_027 crossref_primary_10_12677_csa_2024_148171 crossref_primary_10_1016_j_tust_2025_106366 crossref_primary_10_1080_10255842_2023_2194476 crossref_primary_10_1109_ACCESS_2024_3406434 crossref_primary_10_1109_ACCESS_2023_3272223 crossref_primary_10_3390_su14094992 crossref_primary_10_1016_j_jmrt_2021_09_069 crossref_primary_10_3233_JIFS_237786 crossref_primary_10_1016_j_aej_2022_12_019 crossref_primary_10_1007_s10489_021_02444_w crossref_primary_10_1108_IMDS_08_2023_0581 crossref_primary_10_3390_su15010334 crossref_primary_10_1080_01969722_2022_2145655 crossref_primary_10_1002_rob_22069 crossref_primary_10_1109_ACCESS_2024_3466529 crossref_primary_10_1007_s12652_022_04422_7 crossref_primary_10_3390_su142416559 crossref_primary_10_1016_j_asoc_2024_112155 crossref_primary_10_1016_j_egyr_2020_12_032 crossref_primary_10_1016_j_eswa_2022_116574 crossref_primary_10_3390_en16020850 crossref_primary_10_1109_TIM_2023_3342227 crossref_primary_10_1155_2022_6475808 crossref_primary_10_1155_2022_7456333 crossref_primary_10_3390_e24121788 crossref_primary_10_1007_s13369_024_09218_9 crossref_primary_10_1007_s00500_024_10197_0 crossref_primary_10_1109_ACCESS_2023_3283598 crossref_primary_10_1142_S0219622022500754 crossref_primary_10_1007_s11227_022_04883_9 crossref_primary_10_1016_j_aei_2023_101908 crossref_primary_10_1002_cpe_6975 crossref_primary_10_1007_s12652_022_04098_z crossref_primary_10_1016_j_enconman_2023_117484 crossref_primary_10_1007_s00521_022_07835_9 crossref_primary_10_32604_cmc_2022_028184 crossref_primary_10_1007_s11042_023_18057_z crossref_primary_10_1155_2022_5612334 crossref_primary_10_1007_s10586_024_04619_9 crossref_primary_10_1109_JSEN_2024_3508658 crossref_primary_10_1155_2022_5191758 crossref_primary_10_1177_14759217221109882 crossref_primary_10_1016_j_measurement_2022_111160 crossref_primary_10_1002_2050_7038_13119 crossref_primary_10_1007_s10586_024_04901_w crossref_primary_10_3390_a14040122 crossref_primary_10_1007_s10462_022_10201_9 crossref_primary_10_1038_s41598_024_78781_w crossref_primary_10_1007_s00521_024_09516_1 crossref_primary_10_1007_s42835_021_00884_5 crossref_primary_10_3390_math10183405 crossref_primary_10_34133_research_0442 crossref_primary_10_1049_ccs2_12074 crossref_primary_10_1007_s12517_023_11799_y crossref_primary_10_1007_s11063_023_11394_y crossref_primary_10_1007_s12145_024_01378_4 crossref_primary_10_3390_math11204384 crossref_primary_10_1016_j_cor_2023_106436 crossref_primary_10_1016_j_compeleceng_2022_108368 crossref_primary_10_1007_s11042_022_14219_7 crossref_primary_10_1016_j_cej_2024_148830 crossref_primary_10_1016_j_asoc_2021_107698 crossref_primary_10_3390_f16030419 crossref_primary_10_1016_j_chemosphere_2021_130151 crossref_primary_10_1007_s11227_024_06606_8 crossref_primary_10_3390_s22041396 crossref_primary_10_1016_j_asoc_2022_108608 crossref_primary_10_1007_s10878_024_01243_6 crossref_primary_10_1007_s00202_023_01943_y crossref_primary_10_1007_s11227_021_04181_w crossref_primary_10_1038_s41598_024_59960_1 crossref_primary_10_1088_1742_6596_1693_1_012098 crossref_primary_10_3390_biomimetics8010070 crossref_primary_10_3390_diagnostics11050895 crossref_primary_10_1371_journal_pone_0282002 crossref_primary_10_1080_01431161_2024_2326041 crossref_primary_10_1080_02626667_2021_2012182 crossref_primary_10_1007_s10462_022_10324_z crossref_primary_10_1038_s41598_024_63826_x |
Cites_doi | 10.1002/cplx.21634 10.1109/3477.484436 10.1016/j.cie.2019.06.060 10.1007/978-3-642-04944-6_14 10.1016/j.cie.2019.06.058 10.1016/j.cie.2019.05.008 10.1007/s00521-015-1870-7 10.1016/j.advengsoft.2017.03.014 10.1504/IJMMNO.2013.055204 10.1109/4235.996017 10.1177/003754970107600201 10.1109/TEVC.2004.826067 10.1016/j.advengsoft.2017.07.002 10.1016/j.ecoinf.2006.07.003 10.1016/j.cie.2019.03.006 10.1016/j.advengsoft.2017.05.014 10.1016/j.cie.2019.04.029 10.1109/ICEC.1998.699146 10.1109/TEVC.2013.2281535 10.1016/0305-0548(86)90048-1 10.1016/j.jocs.2017.06.003 10.1016/j.asoc.2015.03.003 10.1016/j.ijresmar.2010.05.002 10.1016/j.asoc.2017.06.033 10.1016/j.asoc.2015.10.036 10.1504/IJSI.2013.055801 10.1016/0003-3472(89)90084-5 10.1016/j.compstruc.2016.03.001 10.1007/s11269-005-9001-3 10.1109/ICNN.1995.488968 10.1016/j.cie.2019.03.051 10.1016/B978-008045157-2/50081-X 10.1016/j.advengsoft.2015.11.004 10.1162/106365600568202 10.1023/A:1008202821328 10.1109/MHS.1995.494215 10.1016/j.advengsoft.2016.01.008 10.1145/1008304.1008305 10.1016/j.cie.2018.09.016 10.1142/S1469026816500115 10.1109/CEC.2002.1007013 10.1007/s00500-013-0992-z 10.1007/978-3-319-44427-7_7 10.1002/nav.3800010110 10.1016/j.cie.2018.12.033 10.1007/978-3-642-12538-6_6 10.1016/j.biosystems.2017.07.010 10.1016/j.cie.2019.07.046 10.1016/j.cie.2017.06.006 10.1016/j.compchemeng.2017.01.046 10.1016/j.asoc.2017.09.035 10.1016/j.mcm.2010.04.020 10.1007/s00265-002-0471-5 10.1016/j.cie.2018.05.056 10.1016/j.advengsoft.2017.01.004 10.1016/j.cie.2018.06.018 10.1126/science.220.4598.671 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cie.2020.106559 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1879-0550 |
ExternalDocumentID | 10_1016_j_cie_2020_106559 S036083522030293X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-4ae489a9a83c18b680db94ee6f7d7d4ef6f5e83f7d1f0121fcda97a7493b9bff3 |
IEDL.DBID | .~1 |
ISSN | 0360-8352 |
IngestDate | Tue Jul 01 02:59:49 EDT 2025 Thu Apr 24 22:54:17 EDT 2025 Fri Feb 23 02:40:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mayfly algorithm Optimization Nature-inspired algorithm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-4ae489a9a83c18b680db94ee6f7d7d4ef6f5e83f7d1f0121fcda97a7493b9bff3 |
ORCID | 0000-0002-2146-1493 0000-0001-5535-4787 |
ParticipantIDs | crossref_primary_10_1016_j_cie_2020_106559 crossref_citationtrail_10_1016_j_cie_2020_106559 elsevier_sciencedirect_doi_10_1016_j_cie_2020_106559 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationTitle | Computers & industrial engineering |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kılıç, Yüzgeç (b0140) 2019; 132 Fan, Fang, Li, Yuan, Wang, Bian (b0070) 2018; 2018 Vlašić, Ðurasević, Jakobović (b0285) 2019; 106030 Storn, Price (b0265) 1997; 11 Uymaz, Tezel, Yel (b0280) 2015; 31 Knowles, J., & Corne, D. (2002). On metrics for comparing nondominated sets. In Proceedings of the 2002 congress on evolutionary computation. CEC’02 (Cat. No.02TH8600), (Vol. 1, pp. 711–716). Peckarsky, McIntosh, Caudill, Dahl (b0230) 2002; 51 Knuth (b0155) 1974; 6 Wolpert, Macready (b0290) 1997; 67–82 Chen, Shi (b0030) 2019; 133 Saremi, Mirjalili, Lewis (b0250) 2017; 105 Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No.98TH8360) (pp. 69–73). Abedinia, Amjady, Ghasemi (b0005) 2016; 21 Zitzler, Deb, Thiele (b0330) 2000; 8 Marinakis, Marinaki (b0180) 2013; 17 Oliveira, M., Pinheiro, D., Andrade, B., Bastos-Filho, C., & Menezes, R. (2016). Communication diversity in particle swarm optimizers. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9882 LNCS (pp. 77–88). Jamil, Yang (b0115) 2013; 4 Deb, Jain (b0040) 2014; 18 Qi, Zhu, Zhang (b0245) 2017; 23 Kirkpatrick, Gelatt, Vecchi (b0145) 1983; 220 Jahani, Chizari (b0110) 2018; 62 . Feng, Zheng, Li (b0080) 2010; 52 Zhang, Li (b0320) 2014 Li, Cheng (b0165) 2017; 113 Tsafarakis, Marinakis, Matsatsinis (b0275) 2011; 28 Mirjalili, Mirjalili, Hatamlou (b0205) 2016; 27 Johnson (b0120) 1954 Báez, Angel-Bello, Alvarez, Melián-Batista (b0020) 2019; 131 Dorigo, Maniezzo, Colorni (b0060) 1996; 26 Fausto, Cuevas, Valdivia, González (b0075) 2017; 160 Spieth (b0260) 1940; 48 Glover (b0085) 1986; 13 Husseinzadeh Kashan, Tavakkoli-Moghaddam, Gen (b0105) 2019; 128 Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 - International Conference on Neural Networks, 1942−1948. Askarzadeh (b0015) 2016; 169 Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm - A novel tool for complex optimisation problems. In Intelligent Production Machines and Systems - 2nd I*PROMS Virtual International Conference 3–14 July 2006 (pp. 454–459). Allan, Flecker (b0010) 1989; 37 Mansouri, Mohammad Hasani Zade, Javidi (b0175) 2019; 130 Zong Woo Geem, Joong Hoon Kim, Loganathan (b0335) 2001; 76 Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In Springer (Ed.), Stochastic Algorithms: Foundations and Applications (pp. 169–178). Nematollahi, Rahiminejad, Vahidi (b0215) 2017; 59 Baykasoğlu, Akpinar (b0025) 2017; 56 Yang (b0295) 2008 Mccafferty (b0185) 1991; 102 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0195) 2017; 114 Mirjalili, Lewis (b0200) 2016; 95 Li, Zhao, Weng, Han (b0170) 2016; 92 Tabari, Ahmad (b0270) 2017; 103 Goldberg (b0090) 1989 Yong, Tao, Cheng-Zhi, Hua-Juan (b0315) 2016; 15 Deb, Pratap, Agarwal, Meyarivan (b0045) 2002; 6 Hakli, Ortacay (b0100) 2019; 135 Yang, He (b0300) 2013; 1 Zhou, Pang, Chen, Chou (b0325) 2018; 123 Mehrabian, Lucas (b0190) 2006; 1 Kaveh, Mesgari (b0130) 2019; 135 Laha, Gupta (b0160) 2018; 126 Haddad, Afshar, Mariño (b0095) 2006; 20 Pakzad-Moghaddam, Mina, Mostafazadeh (b0225) 2019; 136 Coello Coello, Pulido, Lechuga (b0035) 2004; 8 Kaveh, Dadras (b0125) 2017; 110 Domínguez (b0055) 2006 Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science, (pp. 39–43). Dhiman, Kumar (b0050) 2017; 114 Morton, T. E., & Pentico, D. W. (1993). Heuristic scheduling systems : with applications to production systems and project management. In Published in 1993 in New York by Wiley. Wiley. Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. In N. González, J.R. Pelta, D.A. Cruz, C. Terrazas, G. Krasnogor (Ed.), Nature inspired cooperative strategies for optimization (pp. 65–74). Springer. Peng, Pan, Gao, Zhang, Pang (b0235) 2018; 122 Zhou (10.1016/j.cie.2020.106559_b0325) 2018; 123 Abedinia (10.1016/j.cie.2020.106559_b0005) 2016; 21 10.1016/j.cie.2020.106559_b0150 Mehrabian (10.1016/j.cie.2020.106559_b0190) 2006; 1 Yang (10.1016/j.cie.2020.106559_b0300) 2013; 1 10.1016/j.cie.2020.106559_b0310 Qi (10.1016/j.cie.2020.106559_b0245) 2017; 23 Baykasoğlu (10.1016/j.cie.2020.106559_b0025) 2017; 56 Goldberg (10.1016/j.cie.2020.106559_b0090) 1989 Laha (10.1016/j.cie.2020.106559_b0160) 2018; 126 Tabari (10.1016/j.cie.2020.106559_b0270) 2017; 103 Glover (10.1016/j.cie.2020.106559_b0085) 1986; 13 Jahani (10.1016/j.cie.2020.106559_b0110) 2018; 62 Chen (10.1016/j.cie.2020.106559_b0030) 2019; 133 Fan (10.1016/j.cie.2020.106559_b0070) 2018; 2018 Nematollahi (10.1016/j.cie.2020.106559_b0215) 2017; 59 Feng (10.1016/j.cie.2020.106559_b0080) 2010; 52 Zitzler (10.1016/j.cie.2020.106559_b0330) 2000; 8 10.1016/j.cie.2020.106559_b0065 10.1016/j.cie.2020.106559_b0220 Mansouri (10.1016/j.cie.2020.106559_b0175) 2019; 130 Li (10.1016/j.cie.2020.106559_b0165) 2017; 113 Husseinzadeh Kashan (10.1016/j.cie.2020.106559_b0105) 2019; 128 10.1016/j.cie.2020.106559_b0305 Yong (10.1016/j.cie.2020.106559_b0315) 2016; 15 Peng (10.1016/j.cie.2020.106559_b0235) 2018; 122 Fausto (10.1016/j.cie.2020.106559_b0075) 2017; 160 Kılıç (10.1016/j.cie.2020.106559_b0140) 2019; 132 Tsafarakis (10.1016/j.cie.2020.106559_b0275) 2011; 28 Wolpert (10.1016/j.cie.2020.106559_b0290) 1997; 67–82 Haddad (10.1016/j.cie.2020.106559_b0095) 2006; 20 Dorigo (10.1016/j.cie.2020.106559_b0060) 1996; 26 Mirjalili (10.1016/j.cie.2020.106559_b0195) 2017; 114 Pakzad-Moghaddam (10.1016/j.cie.2020.106559_b0225) 2019; 136 Storn (10.1016/j.cie.2020.106559_b0265) 1997; 11 Dhiman (10.1016/j.cie.2020.106559_b0050) 2017; 114 Knuth (10.1016/j.cie.2020.106559_b0155) 1974; 6 Marinakis (10.1016/j.cie.2020.106559_b0180) 2013; 17 10.1016/j.cie.2020.106559_b0210 Zhang (10.1016/j.cie.2020.106559_b0320) 2014 10.1016/j.cie.2020.106559_b0255 Vlašić (10.1016/j.cie.2020.106559_b0285) 2019; 106030 10.1016/j.cie.2020.106559_b0135 Peckarsky (10.1016/j.cie.2020.106559_b0230) 2002; 51 Saremi (10.1016/j.cie.2020.106559_b0250) 2017; 105 Allan (10.1016/j.cie.2020.106559_b0010) 1989; 37 Johnson (10.1016/j.cie.2020.106559_b0120) 1954 Kirkpatrick (10.1016/j.cie.2020.106559_b0145) 1983; 220 Askarzadeh (10.1016/j.cie.2020.106559_b0015) 2016; 169 Li (10.1016/j.cie.2020.106559_b0170) 2016; 92 Domínguez (10.1016/j.cie.2020.106559_b0055) 2006 Kaveh (10.1016/j.cie.2020.106559_b0130) 2019; 135 Jamil (10.1016/j.cie.2020.106559_b0115) 2013; 4 Deb (10.1016/j.cie.2020.106559_b0045) 2002; 6 10.1016/j.cie.2020.106559_b0240 Spieth (10.1016/j.cie.2020.106559_b0260) 1940; 48 Uymaz (10.1016/j.cie.2020.106559_b0280) 2015; 31 Hakli (10.1016/j.cie.2020.106559_b0100) 2019; 135 Mirjalili (10.1016/j.cie.2020.106559_b0200) 2016; 95 Deb (10.1016/j.cie.2020.106559_b0040) 2014; 18 Zong Woo Geem (10.1016/j.cie.2020.106559_b0335) 2001; 76 Yang (10.1016/j.cie.2020.106559_b0295) 2008 Kaveh (10.1016/j.cie.2020.106559_b0125) 2017; 110 Mirjalili (10.1016/j.cie.2020.106559_b0205) 2016; 27 Báez (10.1016/j.cie.2020.106559_b0020) 2019; 131 Mccafferty (10.1016/j.cie.2020.106559_b0185) 1991; 102 Coello Coello (10.1016/j.cie.2020.106559_b0035) 2004; 8 |
References_xml | – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0045 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation – volume: 122 start-page: 235 year: 2018 end-page: 250 ident: b0235 article-title: An Improved Artificial Bee Colony algorithm for real-world hybrid flowshop rescheduling in Steelmaking-refining-Continuous Casting process publication-title: Computers and Industrial Engineering – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: b0040 article-title: An Evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b0205 article-title: Multi-Verse Optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications – volume: 128 start-page: 192 year: 2019 end-page: 218 ident: b0105 article-title: Find-Fix-Finish-Exploit-Analyze (F3EA) meta-heuristic algorithm: An effective algorithm with new evolutionary operators for global optimization publication-title: Computers and Industrial Engineering – year: 1954 ident: b0120 article-title: Optimal two- and three-stage production schedules with setup times included publication-title: Naval Research Logistics Quarterly – volume: 13 start-page: 533 year: 1986 end-page: 549 ident: b0085 article-title: Future paths for integer programming and links to artificial intelligence publication-title: Computers and Operations Research – volume: 1 start-page: 36 year: 2013 end-page: 50 ident: b0300 article-title: Firefly algorithm: Recent advances and applications publication-title: International Journal of Swarm Intelligence – reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 - International Conference on Neural Networks, 1942−1948. – volume: 106030 year: 2019 ident: b0285 article-title: Improving genetic algorithm performance by population initialisation with dispatching rules publication-title: Computers & Industrial Engineering – year: 2006 ident: b0055 article-title: Ephemeroptera of South America – volume: 62 start-page: 987 year: 2018 end-page: 1002 ident: b0110 article-title: Tackling global optimization problems with a novel algorithm – Mouth Brooding Fish algorithm publication-title: Applied Soft Computing – volume: 103 start-page: 1 year: 2017 end-page: 11 ident: b0270 article-title: A new optimization method: Electro-Search algorithm publication-title: Computers & Chemical Engineering – volume: 135 start-page: 855 year: 2019 end-page: 867 ident: b0100 article-title: An improved scatter search algorithm for the uncapacitated facility location problem publication-title: Computers and Industrial Engineering – volume: 21 start-page: 97 year: 2016 end-page: 116 ident: b0005 article-title: A new metaheuristic algorithm based on shark smell optimization publication-title: Complexity – volume: 131 start-page: 295 year: 2019 end-page: 305 ident: b0020 article-title: A hybrid metaheuristic algorithm for a parallel machine scheduling problem with dependent setup times publication-title: Computers and Industrial Engineering – reference: Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. In N. González, J.R. Pelta, D.A. Cruz, C. Terrazas, G. Krasnogor (Ed.), Nature inspired cooperative strategies for optimization (pp. 65–74). Springer. – volume: 126 start-page: 348 year: 2018 end-page: 360 ident: b0160 article-title: An improved cuckoo search algorithm for scheduling jobs on identical parallel machines publication-title: Computers and Industrial Engineering – volume: 48 start-page: 379 year: 1940 end-page: 390 ident: b0260 article-title: Studies on the Biology of the Ephemeroptera. II. The Nuptial Flight publication-title: Journal of the New York Entomological Society – volume: 26 start-page: 29 year: 1996 end-page: 41 ident: b0060 article-title: Ant system: Optimization by a colony of cooperating agents publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) – volume: 102 start-page: 205 year: 1991 end-page: 214 ident: b0185 article-title: Comparison of Old and New World Acanthametropus (Ephemeroptera: Acanthametropodidae) and other psammophilous mayflies publication-title: Entomological News – year: 2008 ident: b0295 article-title: Nature-inspired metaheuristic algorithms – volume: 8 start-page: 256 year: 2004 end-page: 279 ident: b0035 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 110 start-page: 69 year: 2017 end-page: 84 ident: b0125 article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization publication-title: Advances in Engineering Software – volume: 160 start-page: 39 year: 2017 end-page: 55 ident: b0075 article-title: A global optimization algorithm inspired in the behavior of selfish herds publication-title: Biosystems – reference: Morton, T. E., & Pentico, D. W. (1993). Heuristic scheduling systems : with applications to production systems and project management. In Published in 1993 in New York by Wiley. Wiley. – volume: 28 start-page: 13 year: 2011 end-page: 22 ident: b0275 article-title: Particle swarm optimization for optimal product line design publication-title: International Journal of Research in Marketing – volume: 92 start-page: 65 year: 2016 end-page: 88 ident: b0170 article-title: A novel nature-inspired algorithm for optimization: Virus colony search publication-title: Advances in Engineering Software – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b0145 article-title: Optimization by simulated annealing publication-title: Science – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0200 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – volume: 76 start-page: 60 year: 2001 end-page: 68 ident: b0335 article-title: A new heuristic optimization algorithm: Harmony search publication-title: Simulation – year: 1989 ident: b0090 article-title: Genetic algorithms in search, optimization, and machine learning publication-title: Addison Wesley – volume: 132 start-page: 166 year: 2019 end-page: 186 ident: b0140 article-title: Improved antlion optimization algorithm via tournament selection and its application to parallel machine scheduling publication-title: Computers and Industrial Engineering – volume: 123 start-page: 67 year: 2018 end-page: 81 ident: b0325 article-title: A modified particle swarm optimization algorithm for a batch-processing machine scheduling problem with arbitrary release times and non-identical job sizes publication-title: Computers and Industrial Engineering – volume: 2018 start-page: 1 year: 2018 end-page: 8 ident: b0070 article-title: LSHADE44 with an improved constraint-handling method for solving constrained single-objective optimization problems publication-title: IEEE Congress on Evolutionary Computation (CEC) – volume: 1 start-page: 355 year: 2006 end-page: 366 ident: b0190 article-title: A novel numerical optimization algorithm inspired from weed colonization publication-title: Ecological Informatics – reference: Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science, (pp. 39–43). – reference: Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No.98TH8360) (pp. 69–73). – volume: 8 start-page: 173 year: 2000 end-page: 195 ident: b0330 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evolutionary Computation – volume: 20 start-page: 661 year: 2006 end-page: 680 ident: b0095 article-title: Honey-bees mating optimization (HBMO) algorithm: A new heuristic approach for water resources optimization publication-title: Water Resources Management – volume: 4 start-page: 150 year: 2013 end-page: 194 ident: b0115 article-title: A literature survey of benchmark functions for global optimization problems publication-title: International Journal of Mathematical Modelling and Numerical Optimisation – volume: 6 start-page: 15 year: 1974 end-page: 16 ident: b0155 article-title: Postscript about NP-hard problems publication-title: ACM SIGACT News – volume: 23 start-page: 226 year: 2017 end-page: 239 ident: b0245 article-title: A new meta-heuristic butterfly-inspired algorithm publication-title: Journal of Computational Science – volume: 169 start-page: 1 year: 2016 end-page: 12 ident: b0015 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Computers & Structures – volume: 17 start-page: 1159 year: 2013 end-page: 1173 ident: b0180 article-title: Particle swarm optimization with expanding neighborhood topology for the permutation flowshop scheduling problem publication-title: Soft Computing – reference: Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm - A novel tool for complex optimisation problems. In Intelligent Production Machines and Systems - 2nd I*PROMS Virtual International Conference 3–14 July 2006 (pp. 454–459). – reference: Oliveira, M., Pinheiro, D., Andrade, B., Bastos-Filho, C., & Menezes, R. (2016). Communication diversity in particle swarm optimizers. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9882 LNCS (pp. 77–88). – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: b0250 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Advances in Engineering Software – volume: 31 start-page: 153 year: 2015 end-page: 171 ident: b0280 article-title: Artificial algae algorithm (AAA) for nonlinear global optimization publication-title: Applied Soft Computing – volume: 52 start-page: 1966 year: 2010 end-page: 1975 ident: b0080 article-title: Exploratory study of sorting particle swarm optimizer for multiobjective design optimization publication-title: Mathematical and Computer Modelling – volume: 135 start-page: 800 year: 2019 end-page: 813 ident: b0130 article-title: Improved biogeography-based optimization using migration process adjustment: An approach for location-allocation of ambulances publication-title: Computers and Industrial Engineering – volume: 67–82 year: 1997 ident: b0290 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – start-page: 1 year: 2014 end-page: 6 ident: b0320 article-title: A global-crowding-distance based multi-objective particle swarm optimization algorithm publication-title: Tenth International Conference on Computational Intelligence and Security – volume: 133 start-page: 95 year: 2019 end-page: 106 ident: b0030 article-title: A multi-compartment vehicle routing problem with time windows for urban distribution – A comparison study on particle swarm optimization algorithms publication-title: Computers and Industrial Engineering – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b0195 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software – reference: . – volume: 113 start-page: 831 year: 2017 end-page: 841 ident: b0165 article-title: Particle swarm optimization with fitness adjustment parameters publication-title: Computers and Industrial Engineering – volume: 59 start-page: 596 year: 2017 end-page: 621 ident: b0215 article-title: A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization publication-title: Applied Soft Computing Journal – reference: Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In Springer (Ed.), Stochastic Algorithms: Foundations and Applications (pp. 169–178). – volume: 130 start-page: 597 year: 2019 end-page: 633 ident: b0175 article-title: Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory publication-title: Computers and Industrial Engineering – volume: 136 start-page: 591 year: 2019 end-page: 613 ident: b0225 article-title: A novel optimization booster algorithm publication-title: Computers & Industrial Engineering – volume: 56 start-page: 520 year: 2017 end-page: 540 ident: b0025 article-title: Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems – Part 1: Unconstrained optimization publication-title: Applied Soft Computing – volume: 51 start-page: 530 year: 2002 end-page: 537 ident: b0230 article-title: Swarming and mating behavior of a mayfly Baetis bicaudatus suggest stabilizing selection for male body size publication-title: Behavioral Ecology and Sociobiology – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0265 article-title: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization – volume: 37 start-page: 361 year: 1989 end-page: 371 ident: b0010 article-title: The mating biology of a mass-swarming mayfly publication-title: Animal Behaviour – reference: Knowles, J., & Corne, D. (2002). On metrics for comparing nondominated sets. In Proceedings of the 2002 congress on evolutionary computation. CEC’02 (Cat. No.02TH8600), (Vol. 1, pp. 711–716). – volume: 15 start-page: 1650011 year: 2016 ident: b0315 article-title: A new stochastic optimization approach — Dolphin swarm optimization algorithm publication-title: International Journal of Computational Intelligence and Applications – volume: 114 start-page: 48 year: 2017 end-page: 70 ident: b0050 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Advances in Engineering Software – volume: 21 start-page: 97 issue: 5 year: 2016 ident: 10.1016/j.cie.2020.106559_b0005 article-title: A new metaheuristic algorithm based on shark smell optimization publication-title: Complexity doi: 10.1002/cplx.21634 – volume: 26 start-page: 29 issue: 1 year: 1996 ident: 10.1016/j.cie.2020.106559_b0060 article-title: Ant system: Optimization by a colony of cooperating agents publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) doi: 10.1109/3477.484436 – volume: 135 start-page: 855 year: 2019 ident: 10.1016/j.cie.2020.106559_b0100 article-title: An improved scatter search algorithm for the uncapacitated facility location problem publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2019.06.060 – ident: 10.1016/j.cie.2020.106559_b0305 doi: 10.1007/978-3-642-04944-6_14 – volume: 135 start-page: 800 year: 2019 ident: 10.1016/j.cie.2020.106559_b0130 article-title: Improved biogeography-based optimization using migration process adjustment: An approach for location-allocation of ambulances publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2019.06.058 – volume: 133 start-page: 95 year: 2019 ident: 10.1016/j.cie.2020.106559_b0030 article-title: A multi-compartment vehicle routing problem with time windows for urban distribution – A comparison study on particle swarm optimization algorithms publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2019.05.008 – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 10.1016/j.cie.2020.106559_b0205 article-title: Multi-Verse Optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1870-7 – volume: 110 start-page: 69 year: 2017 ident: 10.1016/j.cie.2020.106559_b0125 article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.03.014 – volume: 4 start-page: 150 issue: 2 year: 2013 ident: 10.1016/j.cie.2020.106559_b0115 article-title: A literature survey of benchmark functions for global optimization problems publication-title: International Journal of Mathematical Modelling and Numerical Optimisation doi: 10.1504/IJMMNO.2013.055204 – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.cie.2020.106559_b0070 article-title: LSHADE44 with an improved constraint-handling method for solving constrained single-objective optimization problems publication-title: IEEE Congress on Evolutionary Computation (CEC) – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.cie.2020.106559_b0045 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 10.1016/j.cie.2020.106559_b0335 article-title: A new heuristic optimization algorithm: Harmony search publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 8 start-page: 256 issue: 3 year: 2004 ident: 10.1016/j.cie.2020.106559_b0035 article-title: Handling multiple objectives with particle swarm optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2004.826067 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.cie.2020.106559_b0195 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – volume: 1 start-page: 355 issue: 4 year: 2006 ident: 10.1016/j.cie.2020.106559_b0190 article-title: A novel numerical optimization algorithm inspired from weed colonization publication-title: Ecological Informatics doi: 10.1016/j.ecoinf.2006.07.003 – volume: 130 start-page: 597 year: 2019 ident: 10.1016/j.cie.2020.106559_b0175 article-title: Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2019.03.006 – volume: 114 start-page: 48 year: 2017 ident: 10.1016/j.cie.2020.106559_b0050 article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.05.014 – volume: 132 start-page: 166 year: 2019 ident: 10.1016/j.cie.2020.106559_b0140 article-title: Improved antlion optimization algorithm via tournament selection and its application to parallel machine scheduling publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2019.04.029 – ident: 10.1016/j.cie.2020.106559_b0255 doi: 10.1109/ICEC.1998.699146 – volume: 18 start-page: 577 issue: 4 year: 2014 ident: 10.1016/j.cie.2020.106559_b0040 article-title: An Evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281535 – volume: 13 start-page: 533 issue: 5 year: 1986 ident: 10.1016/j.cie.2020.106559_b0085 article-title: Future paths for integer programming and links to artificial intelligence publication-title: Computers and Operations Research doi: 10.1016/0305-0548(86)90048-1 – volume: 23 start-page: 226 year: 2017 ident: 10.1016/j.cie.2020.106559_b0245 article-title: A new meta-heuristic butterfly-inspired algorithm publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2017.06.003 – volume: 31 start-page: 153 year: 2015 ident: 10.1016/j.cie.2020.106559_b0280 article-title: Artificial algae algorithm (AAA) for nonlinear global optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.03.003 – volume: 28 start-page: 13 issue: 1 year: 2011 ident: 10.1016/j.cie.2020.106559_b0275 article-title: Particle swarm optimization for optimal product line design publication-title: International Journal of Research in Marketing doi: 10.1016/j.ijresmar.2010.05.002 – volume: 59 start-page: 596 issue: C year: 2017 ident: 10.1016/j.cie.2020.106559_b0215 article-title: A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2017.06.033 – volume: 48 start-page: 379 issue: 4 year: 1940 ident: 10.1016/j.cie.2020.106559_b0260 article-title: Studies on the Biology of the Ephemeroptera. II. The Nuptial Flight publication-title: Journal of the New York Entomological Society – volume: 56 start-page: 520 year: 2017 ident: 10.1016/j.cie.2020.106559_b0025 article-title: Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems – Part 1: Unconstrained optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.10.036 – volume: 1 start-page: 36 year: 2013 ident: 10.1016/j.cie.2020.106559_b0300 article-title: Firefly algorithm: Recent advances and applications publication-title: International Journal of Swarm Intelligence doi: 10.1504/IJSI.2013.055801 – volume: 37 start-page: 361 year: 1989 ident: 10.1016/j.cie.2020.106559_b0010 article-title: The mating biology of a mass-swarming mayfly publication-title: Animal Behaviour doi: 10.1016/0003-3472(89)90084-5 – volume: 169 start-page: 1 year: 2016 ident: 10.1016/j.cie.2020.106559_b0015 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Computers & Structures doi: 10.1016/j.compstruc.2016.03.001 – volume: 20 start-page: 661 issue: 5 year: 2006 ident: 10.1016/j.cie.2020.106559_b0095 article-title: Honey-bees mating optimization (HBMO) algorithm: A new heuristic approach for water resources optimization publication-title: Water Resources Management doi: 10.1007/s11269-005-9001-3 – ident: 10.1016/j.cie.2020.106559_b0135 doi: 10.1109/ICNN.1995.488968 – volume: 131 start-page: 295 year: 2019 ident: 10.1016/j.cie.2020.106559_b0020 article-title: A hybrid metaheuristic algorithm for a parallel machine scheduling problem with dependent setup times publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2019.03.051 – year: 2006 ident: 10.1016/j.cie.2020.106559_b0055 – ident: 10.1016/j.cie.2020.106559_b0240 doi: 10.1016/B978-008045157-2/50081-X – volume: 92 start-page: 65 year: 2016 ident: 10.1016/j.cie.2020.106559_b0170 article-title: A novel nature-inspired algorithm for optimization: Virus colony search publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2015.11.004 – year: 1989 ident: 10.1016/j.cie.2020.106559_b0090 article-title: Genetic algorithms in search, optimization, and machine learning publication-title: Addison Wesley – volume: 8 start-page: 173 issue: 2 year: 2000 ident: 10.1016/j.cie.2020.106559_b0330 article-title: Comparison of multiobjective evolutionary algorithms: Empirical results publication-title: Evolutionary Computation doi: 10.1162/106365600568202 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.cie.2020.106559_b0265 article-title: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization doi: 10.1023/A:1008202821328 – ident: 10.1016/j.cie.2020.106559_b0065 doi: 10.1109/MHS.1995.494215 – volume: 102 start-page: 205 issue: 5 year: 1991 ident: 10.1016/j.cie.2020.106559_b0185 article-title: Comparison of Old and New World Acanthametropus (Ephemeroptera: Acanthametropodidae) and other psammophilous mayflies publication-title: Entomological News – volume: 95 start-page: 51 issue: C year: 2016 ident: 10.1016/j.cie.2020.106559_b0200 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 6 start-page: 15 issue: 2 year: 1974 ident: 10.1016/j.cie.2020.106559_b0155 article-title: Postscript about NP-hard problems publication-title: ACM SIGACT News doi: 10.1145/1008304.1008305 – volume: 126 start-page: 348 year: 2018 ident: 10.1016/j.cie.2020.106559_b0160 article-title: An improved cuckoo search algorithm for scheduling jobs on identical parallel machines publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2018.09.016 – volume: 15 start-page: 1650011 issue: 02 year: 2016 ident: 10.1016/j.cie.2020.106559_b0315 article-title: A new stochastic optimization approach — Dolphin swarm optimization algorithm publication-title: International Journal of Computational Intelligence and Applications doi: 10.1142/S1469026816500115 – volume: 106030 year: 2019 ident: 10.1016/j.cie.2020.106559_b0285 article-title: Improving genetic algorithm performance by population initialisation with dispatching rules publication-title: Computers & Industrial Engineering – ident: 10.1016/j.cie.2020.106559_b0150 doi: 10.1109/CEC.2002.1007013 – volume: 17 start-page: 1159 year: 2013 ident: 10.1016/j.cie.2020.106559_b0180 article-title: Particle swarm optimization with expanding neighborhood topology for the permutation flowshop scheduling problem publication-title: Soft Computing doi: 10.1007/s00500-013-0992-z – ident: 10.1016/j.cie.2020.106559_b0220 doi: 10.1007/978-3-319-44427-7_7 – year: 1954 ident: 10.1016/j.cie.2020.106559_b0120 article-title: Optimal two- and three-stage production schedules with setup times included publication-title: Naval Research Logistics Quarterly doi: 10.1002/nav.3800010110 – volume: 128 start-page: 192 year: 2019 ident: 10.1016/j.cie.2020.106559_b0105 article-title: Find-Fix-Finish-Exploit-Analyze (F3EA) meta-heuristic algorithm: An effective algorithm with new evolutionary operators for global optimization publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2018.12.033 – ident: 10.1016/j.cie.2020.106559_b0310 doi: 10.1007/978-3-642-12538-6_6 – volume: 160 start-page: 39 year: 2017 ident: 10.1016/j.cie.2020.106559_b0075 article-title: A global optimization algorithm inspired in the behavior of selfish herds publication-title: Biosystems doi: 10.1016/j.biosystems.2017.07.010 – ident: 10.1016/j.cie.2020.106559_b0210 – volume: 136 start-page: 591 year: 2019 ident: 10.1016/j.cie.2020.106559_b0225 article-title: A novel optimization booster algorithm publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2019.07.046 – volume: 113 start-page: 831 year: 2017 ident: 10.1016/j.cie.2020.106559_b0165 article-title: Particle swarm optimization with fitness adjustment parameters publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2017.06.006 – volume: 103 start-page: 1 year: 2017 ident: 10.1016/j.cie.2020.106559_b0270 article-title: A new optimization method: Electro-Search algorithm publication-title: Computers & Chemical Engineering doi: 10.1016/j.compchemeng.2017.01.046 – volume: 62 start-page: 987 year: 2018 ident: 10.1016/j.cie.2020.106559_b0110 article-title: Tackling global optimization problems with a novel algorithm – Mouth Brooding Fish algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2017.09.035 – start-page: 1 year: 2014 ident: 10.1016/j.cie.2020.106559_b0320 article-title: A global-crowding-distance based multi-objective particle swarm optimization algorithm – volume: 52 start-page: 1966 issue: 11–12 year: 2010 ident: 10.1016/j.cie.2020.106559_b0080 article-title: Exploratory study of sorting particle swarm optimizer for multiobjective design optimization publication-title: Mathematical and Computer Modelling doi: 10.1016/j.mcm.2010.04.020 – volume: 67–82 year: 1997 ident: 10.1016/j.cie.2020.106559_b0290 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 51 start-page: 530 issue: 6 year: 2002 ident: 10.1016/j.cie.2020.106559_b0230 article-title: Swarming and mating behavior of a mayfly Baetis bicaudatus suggest stabilizing selection for male body size publication-title: Behavioral Ecology and Sociobiology doi: 10.1007/s00265-002-0471-5 – volume: 122 start-page: 235 year: 2018 ident: 10.1016/j.cie.2020.106559_b0235 article-title: An Improved Artificial Bee Colony algorithm for real-world hybrid flowshop rescheduling in Steelmaking-refining-Continuous Casting process publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2018.05.056 – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.cie.2020.106559_b0250 article-title: Grasshopper optimisation algorithm: Theory and application publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.01.004 – year: 2008 ident: 10.1016/j.cie.2020.106559_b0295 – volume: 123 start-page: 67 year: 2018 ident: 10.1016/j.cie.2020.106559_b0325 article-title: A modified particle swarm optimization algorithm for a batch-processing machine scheduling problem with arbitrary release times and non-identical job sizes publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2018.06.018 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.cie.2020.106559_b0145 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 |
SSID | ssj0004591 |
Score | 2.6889186 |
Snippet | •An efficient powerful optimization method (MA) is presented.•Performance of MA is checked for benchmark both continuous and discrete functions.•MA performs... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 106559 |
SubjectTerms | Mayfly algorithm Nature-inspired algorithm Optimization |
Title | A mayfly optimization algorithm |
URI | https://dx.doi.org/10.1016/j.cie.2020.106559 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLamcYEDjwFiPEYPnJDK1iVtkuM0MQ0Qu8Ck3aq0TWBoL23lsAu_HadJ0ZCAA7c6tavWdR2nsT8DXPFWoqVOqa8Dwnya4VEiEoOMSBihoeak-Kf7OIj6Q3o_CkcV6Ja1MCat0vl-69MLb-1Gmk6bzcV43HxC32vjB7RTnLRGpoKdMmPlNx_BBmK47ZqHzL7hLnc2ixwvvCwuEduGjkIDV_rT3LQx3_T2YdcFil7H3ssBVNSsBnsuaPTcJ7mqwc4GouAhXHa8qVzrydqboy-YuiJLT05e5stx_jo9gmHv9rnb910PBD9tC5b7VCrKhRSSkzTgScRbWSKoUpFmGcuo0pEOFSdIBdrAs-k0k4JJRgVBnWtNjqE6m8_UCXhcmC1GjE84l3iaS4nBmRaZJkxIQkQdWuXTx6kDCDd9KiZxmQn2huMqNgqLrcLqcP0lsrDoGH8x01Kl8bdXHKP3_l3s9H9iZ7BtKJtZew7VfPmuLjB-yJNGYSAN2OrcPfQHn67Iwco |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcWAqIsjUHTkhRFzuxfawqqpQuF1qpt8hJbCjqphIO_XvGjYOKBBy4xctEycR5fonHbwDueT3SUsfU1Q3CXJrgUSQio4xIGKGe5mT7T3cw9IMxfZp4kwK0870wJqzSYn-G6Vu0tjU1683aajqtPSP2ZvwBxylOWpM9KBl1Kq8IpVa3Fwx3RMOzxHnY3zUG-eLmNswLz4xfiU1T9j2jWPrT9LQz5XRO4MhyRaeVXc4pFNSiDMeWNzr2rXwvw-GOqOAZVFvOXG70bOMsEQ7mdp-lI2cvy_U0fZ2fw7jzOGoHrk2D4MZNwVKXSkW5kEJyEjd45PN6EgmqlK9ZwhKqtK89xQmWGtootOk4kYJJRgVBt2tNLqC4WC7UJThcmFVGpCicS2zmUiI_0yLRhAlJiKhAPb_7MLYa4SZVxSzMg8HesF6FxmFh5rAKPHyZrDKBjL8609yl4benHCKA_2529T-zKuwHo0E_7HeHvWs4MC1ZoO0NFNP1h7pFOpFGd3a4fAJxd8R7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mayfly+optimization+algorithm&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Zervoudakis%2C+Konstantinos&rft.au=Tsafarakis%2C+Stelios&rft.date=2020-07-01&rft.issn=0360-8352&rft.volume=145&rft.spage=106559&rft_id=info:doi/10.1016%2Fj.cie.2020.106559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2020_106559 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |