A mayfly optimization algorithm

•An efficient powerful optimization method (MA) is presented.•Performance of MA is checked for benchmark both continuous and discrete functions.•MA performs fine on multiobjective optimization.•MA is very competitive with other state-of-the-art optimization algorithms. This paper introduces a new me...

Full description

Saved in:
Bibliographic Details
Published inComputers & industrial engineering Vol. 145; p. 106559
Main Authors Zervoudakis, Konstantinos, Tsafarakis, Stelios
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An efficient powerful optimization method (MA) is presented.•Performance of MA is checked for benchmark both continuous and discrete functions.•MA performs fine on multiobjective optimization.•MA is very competitive with other state-of-the-art optimization algorithms. This paper introduces a new method called the Mayfly Algorithm (MA) to solve optimization problems. Inspired from the flight behavior and the mating process of mayflies, the proposed algorithm combines major advantages of swarm intelligence and evolutionary algorithms. To evaluate the performance of the proposed algorithm, 38 mathematical benchmark functions, including 13 CEC2017 test functions, are employed and the results are compared to those of seven state of the art well-known metaheuristic optimization methods. The MA’s performance is also assessed through convergence behavior in multi-objective optimization as well as using a real-world discrete flow-shop scheduling problem. The comparison results demonstrate the superiority of the proposed method in terms of convergence rate and convergence speed. The processes of nuptial dance and random flight enhance the balance between algorithm’s exploration and exploitation properties and assist its escape from local optima.
AbstractList •An efficient powerful optimization method (MA) is presented.•Performance of MA is checked for benchmark both continuous and discrete functions.•MA performs fine on multiobjective optimization.•MA is very competitive with other state-of-the-art optimization algorithms. This paper introduces a new method called the Mayfly Algorithm (MA) to solve optimization problems. Inspired from the flight behavior and the mating process of mayflies, the proposed algorithm combines major advantages of swarm intelligence and evolutionary algorithms. To evaluate the performance of the proposed algorithm, 38 mathematical benchmark functions, including 13 CEC2017 test functions, are employed and the results are compared to those of seven state of the art well-known metaheuristic optimization methods. The MA’s performance is also assessed through convergence behavior in multi-objective optimization as well as using a real-world discrete flow-shop scheduling problem. The comparison results demonstrate the superiority of the proposed method in terms of convergence rate and convergence speed. The processes of nuptial dance and random flight enhance the balance between algorithm’s exploration and exploitation properties and assist its escape from local optima.
ArticleNumber 106559
Author Zervoudakis, Konstantinos
Tsafarakis, Stelios
Author_xml – sequence: 1
  givenname: Konstantinos
  orcidid: 0000-0002-2146-1493
  surname: Zervoudakis
  fullname: Zervoudakis, Konstantinos
  email: kzervoudakis@isc.tuc.gr
– sequence: 2
  givenname: Stelios
  orcidid: 0000-0001-5535-4787
  surname: Tsafarakis
  fullname: Tsafarakis, Stelios
  email: tsafarakis@dpem.tuc.gr
BookMark eNp9j81KxDAUhYOMYGf0AVw5L9B60zZNgqth0FEYcKPrkKY3mtKfIQ1CfXpb68rFrC4H7nc435qsur5DQm4pJBRocV8nxmGSQjrngjF5QSIquIyBMViRCLICYpGx9Iqsh6EGgJxJGpG73bbVo23GbX8KrnXfOri-2-rmo_cufLbX5NLqZsCbv7sh70-Pb_vn-Ph6eNnvjrFJJQ9xrjEXUkstMkNFWQioSpkjFpZXvMrRFpahyKZELdCUWlNpyTXPZVbK0tpsQ-jSa3w_DB6tOnnXaj8qCmo2VLWaDNVsqBbDieH_GOPC7_7gtWvOkg8LiZPSl0OvhumlM1g5jyaoqndn6B8yhWzW
CitedBy_id crossref_primary_10_1016_j_scs_2021_103489
crossref_primary_10_1016_j_est_2022_105585
crossref_primary_10_1002_2050_7038_13029
crossref_primary_10_1016_j_asoc_2022_109847
crossref_primary_10_1016_j_eswa_2021_114974
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_1007_s00500_021_06101_9
crossref_primary_10_1016_j_geoen_2023_211635
crossref_primary_10_1109_ACCESS_2021_3127940
crossref_primary_10_1016_j_cie_2020_106687
crossref_primary_10_1016_j_swevo_2024_101518
crossref_primary_10_1016_j_asoc_2022_109730
crossref_primary_10_3390_su15107982
crossref_primary_10_3390_jmse10121982
crossref_primary_10_1016_j_compeleceng_2024_109904
crossref_primary_10_1016_j_eswa_2023_119765
crossref_primary_10_1016_j_energy_2024_130606
crossref_primary_10_4018_IJSI_301229
crossref_primary_10_1007_s11831_023_09900_5
crossref_primary_10_3390_jmse12071207
crossref_primary_10_1007_s11036_023_02105_x
crossref_primary_10_32604_cmc_2022_028560
crossref_primary_10_1007_s00170_024_14392_z
crossref_primary_10_1016_j_egyr_2021_10_118
crossref_primary_10_3390_math10234539
crossref_primary_10_1007_s00202_023_02008_w
crossref_primary_10_1016_j_health_2023_100261
crossref_primary_10_1016_j_energy_2023_127142
crossref_primary_10_1016_j_eswa_2022_119211
crossref_primary_10_1088_1742_6596_1684_1_012075
crossref_primary_10_1088_1742_6596_1684_1_012077
crossref_primary_10_1155_2021_9528664
crossref_primary_10_1016_j_jclepro_2025_144874
crossref_primary_10_1016_j_engappai_2021_104419
crossref_primary_10_1016_j_egyr_2021_03_033
crossref_primary_10_3233_XST_221136
crossref_primary_10_1016_j_asoc_2024_111581
crossref_primary_10_1007_s10915_022_01955_z
crossref_primary_10_1016_j_applthermaleng_2021_117055
crossref_primary_10_1016_j_imavis_2023_104691
crossref_primary_10_32604_iasc_2024_053192
crossref_primary_10_1109_ACCESS_2022_3213805
crossref_primary_10_1155_2022_3783977
crossref_primary_10_1007_s10115_020_01503_x
crossref_primary_10_1016_j_asoc_2021_108112
crossref_primary_10_3390_pr10112446
crossref_primary_10_1016_j_asoc_2023_110906
crossref_primary_10_32604_iasc_2023_039718
crossref_primary_10_3390_math11020390
crossref_primary_10_1007_s00521_022_07565_y
crossref_primary_10_1155_2022_2131699
crossref_primary_10_1007_s13201_023_01913_6
crossref_primary_10_1016_j_asoc_2024_111451
crossref_primary_10_1177_0309524X211024654
crossref_primary_10_3390_s21062245
crossref_primary_10_1016_j_eswa_2023_121510
crossref_primary_10_21595_jmai_2024_23909
crossref_primary_10_3390_s23010280
crossref_primary_10_1016_j_eswa_2024_125388
crossref_primary_10_1016_j_measen_2024_101250
crossref_primary_10_32604_cmc_2022_027483
crossref_primary_10_1007_s11227_023_05177_4
crossref_primary_10_3233_WEB_220049
crossref_primary_10_3390_su15118829
crossref_primary_10_1016_j_aei_2022_101636
crossref_primary_10_1007_s12046_023_02292_z
crossref_primary_10_1007_s13369_024_09807_8
crossref_primary_10_1016_j_procs_2025_01_083
crossref_primary_10_1016_j_rineng_2024_103901
crossref_primary_10_1016_j_gca_2024_06_008
crossref_primary_10_1016_j_compeleceng_2022_108176
crossref_primary_10_3389_fcomp_2024_1381850
crossref_primary_10_1016_j_seta_2022_102904
crossref_primary_10_3390_s23073698
crossref_primary_10_3390_en15124263
crossref_primary_10_3390_diagnostics13040668
crossref_primary_10_1142_S0218001423560013
crossref_primary_10_1142_S0219467823500286
crossref_primary_10_3233_JIFS_221161
crossref_primary_10_1061_JAEEEZ_ASENG_4824
crossref_primary_10_3390_aerospace10121006
crossref_primary_10_1016_j_ins_2023_119308
crossref_primary_10_3389_fenrg_2022_848966
crossref_primary_10_1007_s42979_021_00860_w
crossref_primary_10_1109_TWC_2023_3257178
crossref_primary_10_1155_2021_2295920
crossref_primary_10_1080_2374068X_2024_2307152
crossref_primary_10_1007_s10489_022_04265_x
crossref_primary_10_1109_ACCESS_2021_3100365
crossref_primary_10_1016_j_eswa_2023_120886
crossref_primary_10_1049_ell2_13012
crossref_primary_10_3390_biomimetics9090538
crossref_primary_10_1002_aisy_202200097
crossref_primary_10_1016_j_jobe_2024_111114
crossref_primary_10_1016_j_ijmecsci_2024_109589
crossref_primary_10_3233_JIFS_223210
crossref_primary_10_3390_app131810317
crossref_primary_10_1007_s10825_021_01711_w
crossref_primary_10_3390_biomedicines11061715
crossref_primary_10_1016_j_eswa_2023_120656
crossref_primary_10_1155_2022_6461690
crossref_primary_10_1109_ACCESS_2020_3031718
crossref_primary_10_1038_s41598_024_69542_w
crossref_primary_10_1016_j_egyr_2020_11_168
crossref_primary_10_1007_s11276_023_03262_3
crossref_primary_10_1007_s10462_024_10786_3
crossref_primary_10_1016_j_saa_2023_123441
crossref_primary_10_3390_math10101626
crossref_primary_10_3389_fenrg_2022_928063
crossref_primary_10_1016_j_energy_2024_132518
crossref_primary_10_1007_s12083_024_01710_1
crossref_primary_10_1038_s41598_025_91270_y
crossref_primary_10_1109_TITS_2023_3270906
crossref_primary_10_1016_j_compbiomed_2021_105027
crossref_primary_10_1007_s11042_022_12539_2
crossref_primary_10_3390_math12111620
crossref_primary_10_1109_ACCESS_2024_3397402
crossref_primary_10_1007_s00521_022_07261_x
crossref_primary_10_1111_exsy_13027
crossref_primary_10_1109_JSEN_2022_3190469
crossref_primary_10_1109_ACCESS_2022_3196851
crossref_primary_10_1007_s12530_022_09425_5
crossref_primary_10_1007_s40747_023_01121_4
crossref_primary_10_1109_ACCESS_2022_3213746
crossref_primary_10_1142_S0218001424570118
crossref_primary_10_1007_s11227_024_06291_7
crossref_primary_10_1016_j_ijmecsci_2024_109093
crossref_primary_10_1007_s00521_025_11073_0
crossref_primary_10_1016_j_cma_2022_114616
crossref_primary_10_1007_s12652_023_04518_8
crossref_primary_10_1016_j_egyr_2021_06_052
crossref_primary_10_32604_cmc_2023_036865
crossref_primary_10_1002_dac_5479
crossref_primary_10_1016_j_enconman_2022_116579
crossref_primary_10_32604_csse_2023_028107
crossref_primary_10_3390_drones6050134
crossref_primary_10_1016_j_eneco_2024_107986
crossref_primary_10_1007_s10586_023_04040_8
crossref_primary_10_1080_23311916_2024_2364041
crossref_primary_10_1007_s00500_021_05647_y
crossref_primary_10_1016_j_enconman_2021_115086
crossref_primary_10_3390_biomimetics7040241
crossref_primary_10_3390_electronics12112505
crossref_primary_10_3390_app13137833
crossref_primary_10_1016_j_cjph_2021_10_005
crossref_primary_10_1016_j_eswa_2025_127206
crossref_primary_10_1109_LSENS_2022_3225527
crossref_primary_10_3233_JIFS_221632
crossref_primary_10_1515_mt_2022_0048
crossref_primary_10_1142_S0219455425500713
crossref_primary_10_3390_app12178778
crossref_primary_10_1080_17445302_2022_2140528
crossref_primary_10_3390_buildings12111950
crossref_primary_10_3390_app13116805
crossref_primary_10_3390_buildings13010080
crossref_primary_10_3390_math9182335
crossref_primary_10_1002_pssa_202200740
crossref_primary_10_1109_JSEN_2024_3361988
crossref_primary_10_3390_s22155659
crossref_primary_10_3390_su141912120
crossref_primary_10_1016_j_compbiomed_2022_105349
crossref_primary_10_1016_j_eswa_2024_123819
crossref_primary_10_1016_j_pmcj_2024_101918
crossref_primary_10_1155_2022_4798029
crossref_primary_10_1051_e3sconf_202340103071
crossref_primary_10_1016_j_asoc_2023_110514
crossref_primary_10_1016_j_aej_2024_04_075
crossref_primary_10_3390_s24082415
crossref_primary_10_1155_2022_4639208
crossref_primary_10_1038_s41598_024_80923_z
crossref_primary_10_1016_j_advengsoft_2022_103177
crossref_primary_10_1007_s13042_022_01617_4
crossref_primary_10_3233_JIFS_222783
crossref_primary_10_31590_ejosat_1039719
crossref_primary_10_1007_s11227_022_04755_2
crossref_primary_10_1016_j_totert_2022_100020
crossref_primary_10_1016_j_ijhydene_2025_01_071
crossref_primary_10_1007_s10462_023_10416_4
crossref_primary_10_1016_j_egyr_2022_07_060
crossref_primary_10_1109_TFUZZ_2024_3440575
crossref_primary_10_3390_w15040701
crossref_primary_10_1155_2021_4454507
crossref_primary_10_3389_fenrg_2024_1394312
crossref_primary_10_1016_j_bspc_2022_103545
crossref_primary_10_1016_j_egyr_2021_05_051
crossref_primary_10_1002_dac_5652
crossref_primary_10_1016_j_asoc_2023_110527
crossref_primary_10_3390_app12136749
crossref_primary_10_4018_IJISP_315819
crossref_primary_10_1002_er_6578
crossref_primary_10_1007_s42044_024_00186_9
crossref_primary_10_1515_ijeeps_2021_0008
crossref_primary_10_1515_mt_2022_0012
crossref_primary_10_1515_mt_2022_0259
crossref_primary_10_1007_s00521_022_08179_0
crossref_primary_10_1109_TGRS_2024_3370302
crossref_primary_10_1007_s10462_024_11023_7
crossref_primary_10_1016_j_matcom_2023_04_020
crossref_primary_10_1049_ell2_12568
crossref_primary_10_7717_peerj_cs_1336
crossref_primary_10_1109_ACCESS_2021_3063053
crossref_primary_10_1007_s10462_022_10188_3
crossref_primary_10_1109_ACCESS_2022_3153727
crossref_primary_10_3390_math11092217
crossref_primary_10_3934_mbe_2022436
crossref_primary_10_3390_s23198325
crossref_primary_10_1016_j_egyr_2022_10_448
crossref_primary_10_1007_s00521_023_08834_0
crossref_primary_10_1080_0305215X_2024_2365712
crossref_primary_10_1016_j_rineng_2024_103407
crossref_primary_10_1080_01969722_2023_2177804
crossref_primary_10_1109_ACCESS_2022_3183124
crossref_primary_10_1002_ese3_70066
crossref_primary_10_1007_s13278_024_01375_x
crossref_primary_10_1109_ACCESS_2022_3185780
crossref_primary_10_3390_a17010033
crossref_primary_10_3390_biomimetics8040381
crossref_primary_10_1007_s11042_023_15861_5
crossref_primary_10_1093_jigpal_jzae062
crossref_primary_10_1016_j_eswa_2021_116001
crossref_primary_10_1109_ACCESS_2023_3318129
crossref_primary_10_1109_ACCESS_2020_3042196
crossref_primary_10_3390_app13095612
crossref_primary_10_1016_j_eswa_2022_116887
crossref_primary_10_3389_fbioe_2022_830037
crossref_primary_10_1109_JSEN_2022_3151932
crossref_primary_10_1007_s11042_023_17680_0
crossref_primary_10_1007_s12065_022_00788_x
crossref_primary_10_1080_15567036_2021_2008059
crossref_primary_10_1016_j_ins_2024_121224
crossref_primary_10_1007_s10462_024_10767_6
crossref_primary_10_1007_s40435_021_00892_3
crossref_primary_10_3390_app13169394
crossref_primary_10_1016_j_eswa_2023_121285
crossref_primary_10_1002_cae_22582
crossref_primary_10_1016_j_egyr_2022_09_025
crossref_primary_10_3390_electronics12040895
crossref_primary_10_1038_s41598_025_85140_w
crossref_primary_10_1111_opo_13108
crossref_primary_10_3934_mbe_2022481
crossref_primary_10_3390_biomimetics9020065
crossref_primary_10_35377_saucis___1474767
crossref_primary_10_1002_cpe_7240
crossref_primary_10_1002_smr_2659
crossref_primary_10_1142_S0218126623502006
crossref_primary_10_1016_j_heliyon_2024_e26155
crossref_primary_10_1016_j_asoc_2023_110573
crossref_primary_10_1007_s12145_025_01774_4
crossref_primary_10_1155_2024_6689071
crossref_primary_10_1016_j_aei_2023_102210
crossref_primary_10_1007_s00366_021_01554_w
crossref_primary_10_1016_j_ijhydene_2023_07_258
crossref_primary_10_37391_IJEER_120212
crossref_primary_10_1002_int_22524
crossref_primary_10_1016_j_eswa_2022_116509
crossref_primary_10_3390_a16050237
crossref_primary_10_1016_j_cja_2023_10_009
crossref_primary_10_1002_cpe_7235
crossref_primary_10_1093_jcde_qwac040
crossref_primary_10_1002_cpe_7236
crossref_primary_10_1080_09540091_2022_2149698
crossref_primary_10_32604_csse_2023_029603
crossref_primary_10_1007_s11227_022_04998_z
crossref_primary_10_1049_sfw2_12065
crossref_primary_10_1016_j_eswa_2025_127287
crossref_primary_10_1155_2022_7140552
crossref_primary_10_1016_j_cie_2021_107224
crossref_primary_10_3390_mi13071104
crossref_primary_10_1016_j_jocs_2022_101766
crossref_primary_10_53759_7669_jmc202303024
crossref_primary_10_1007_s41939_023_00256_8
crossref_primary_10_1080_10255842_2023_2236744
crossref_primary_10_1016_j_eswa_2022_117411
crossref_primary_10_1145_3520439
crossref_primary_10_1002_ese3_1726
crossref_primary_10_1142_S0219467824500244
crossref_primary_10_1155_2022_9588610
crossref_primary_10_1002_er_6987
crossref_primary_10_1016_j_knosys_2024_112409
crossref_primary_10_1016_j_engappai_2022_105622
crossref_primary_10_3390_su14169944
crossref_primary_10_7498_aps_73_20231569
crossref_primary_10_1016_j_eswa_2021_115178
crossref_primary_10_1080_2374068X_2023_2198801
crossref_primary_10_1007_s11227_021_04255_9
crossref_primary_10_1007_s12065_022_00762_7
crossref_primary_10_1007_s10462_024_10723_4
crossref_primary_10_1007_s10489_021_02510_3
crossref_primary_10_1007_s10462_024_10747_w
crossref_primary_10_3390_wevj13070120
crossref_primary_10_1007_s10462_025_11145_6
crossref_primary_10_3390_en16052086
crossref_primary_10_3390_electronics12091961
crossref_primary_10_1016_j_eswa_2024_125737
crossref_primary_10_3390_math12070965
crossref_primary_10_3390_electronics12194087
crossref_primary_10_3390_computation12010001
crossref_primary_10_1155_2022_3452413
crossref_primary_10_1007_s10489_021_02862_w
crossref_primary_10_3390_s21227484
crossref_primary_10_3934_mbe_2022275
crossref_primary_10_1007_s40996_022_00931_9
crossref_primary_10_1371_journal_pone_0273155
crossref_primary_10_1007_s42835_021_00855_w
crossref_primary_10_3390_su14138097
crossref_primary_10_1142_S0218126622501778
crossref_primary_10_1002_cpe_7679
crossref_primary_10_1080_03772063_2024_2352646
crossref_primary_10_1016_j_eswa_2024_123306
crossref_primary_10_30572_2018_KJE_160107
crossref_primary_10_1049_sfw2_12025
crossref_primary_10_1007_s00034_022_02141_0
crossref_primary_10_1063_5_0108278
crossref_primary_10_1007_s00500_023_08695_8
crossref_primary_10_1049_sil2_12154
crossref_primary_10_1007_s00500_023_08551_9
crossref_primary_10_1007_s11227_023_05579_4
crossref_primary_10_1142_S0218126623500561
crossref_primary_10_1016_j_advengsoft_2022_103405
crossref_primary_10_1007_s11227_023_05400_2
crossref_primary_10_3233_XST_210976
crossref_primary_10_1002_adts_202100183
crossref_primary_10_1007_s10723_023_09685_8
crossref_primary_10_1155_2023_6691214
crossref_primary_10_3390_en15207566
crossref_primary_10_1016_j_eswa_2024_123449
crossref_primary_10_1016_j_energy_2022_124340
crossref_primary_10_1007_s10489_024_05555_2
crossref_primary_10_1007_s10776_022_00586_3
crossref_primary_10_1002_ett_4869
crossref_primary_10_1002_ett_4502
crossref_primary_10_1007_s10462_022_10233_1
crossref_primary_10_1007_s10462_024_11104_7
crossref_primary_10_1016_j_egyr_2021_09_027
crossref_primary_10_12677_csa_2024_148171
crossref_primary_10_1016_j_tust_2025_106366
crossref_primary_10_1080_10255842_2023_2194476
crossref_primary_10_1109_ACCESS_2024_3406434
crossref_primary_10_1109_ACCESS_2023_3272223
crossref_primary_10_3390_su14094992
crossref_primary_10_1016_j_jmrt_2021_09_069
crossref_primary_10_3233_JIFS_237786
crossref_primary_10_1016_j_aej_2022_12_019
crossref_primary_10_1007_s10489_021_02444_w
crossref_primary_10_1108_IMDS_08_2023_0581
crossref_primary_10_3390_su15010334
crossref_primary_10_1080_01969722_2022_2145655
crossref_primary_10_1002_rob_22069
crossref_primary_10_1109_ACCESS_2024_3466529
crossref_primary_10_1007_s12652_022_04422_7
crossref_primary_10_3390_su142416559
crossref_primary_10_1016_j_asoc_2024_112155
crossref_primary_10_1016_j_egyr_2020_12_032
crossref_primary_10_1016_j_eswa_2022_116574
crossref_primary_10_3390_en16020850
crossref_primary_10_1109_TIM_2023_3342227
crossref_primary_10_1155_2022_6475808
crossref_primary_10_1155_2022_7456333
crossref_primary_10_3390_e24121788
crossref_primary_10_1007_s13369_024_09218_9
crossref_primary_10_1007_s00500_024_10197_0
crossref_primary_10_1109_ACCESS_2023_3283598
crossref_primary_10_1142_S0219622022500754
crossref_primary_10_1007_s11227_022_04883_9
crossref_primary_10_1016_j_aei_2023_101908
crossref_primary_10_1002_cpe_6975
crossref_primary_10_1007_s12652_022_04098_z
crossref_primary_10_1016_j_enconman_2023_117484
crossref_primary_10_1007_s00521_022_07835_9
crossref_primary_10_32604_cmc_2022_028184
crossref_primary_10_1007_s11042_023_18057_z
crossref_primary_10_1155_2022_5612334
crossref_primary_10_1007_s10586_024_04619_9
crossref_primary_10_1109_JSEN_2024_3508658
crossref_primary_10_1155_2022_5191758
crossref_primary_10_1177_14759217221109882
crossref_primary_10_1016_j_measurement_2022_111160
crossref_primary_10_1002_2050_7038_13119
crossref_primary_10_1007_s10586_024_04901_w
crossref_primary_10_3390_a14040122
crossref_primary_10_1007_s10462_022_10201_9
crossref_primary_10_1038_s41598_024_78781_w
crossref_primary_10_1007_s00521_024_09516_1
crossref_primary_10_1007_s42835_021_00884_5
crossref_primary_10_3390_math10183405
crossref_primary_10_34133_research_0442
crossref_primary_10_1049_ccs2_12074
crossref_primary_10_1007_s12517_023_11799_y
crossref_primary_10_1007_s11063_023_11394_y
crossref_primary_10_1007_s12145_024_01378_4
crossref_primary_10_3390_math11204384
crossref_primary_10_1016_j_cor_2023_106436
crossref_primary_10_1016_j_compeleceng_2022_108368
crossref_primary_10_1007_s11042_022_14219_7
crossref_primary_10_1016_j_cej_2024_148830
crossref_primary_10_1016_j_asoc_2021_107698
crossref_primary_10_3390_f16030419
crossref_primary_10_1016_j_chemosphere_2021_130151
crossref_primary_10_1007_s11227_024_06606_8
crossref_primary_10_3390_s22041396
crossref_primary_10_1016_j_asoc_2022_108608
crossref_primary_10_1007_s10878_024_01243_6
crossref_primary_10_1007_s00202_023_01943_y
crossref_primary_10_1007_s11227_021_04181_w
crossref_primary_10_1038_s41598_024_59960_1
crossref_primary_10_1088_1742_6596_1693_1_012098
crossref_primary_10_3390_biomimetics8010070
crossref_primary_10_3390_diagnostics11050895
crossref_primary_10_1371_journal_pone_0282002
crossref_primary_10_1080_01431161_2024_2326041
crossref_primary_10_1080_02626667_2021_2012182
crossref_primary_10_1007_s10462_022_10324_z
crossref_primary_10_1038_s41598_024_63826_x
Cites_doi 10.1002/cplx.21634
10.1109/3477.484436
10.1016/j.cie.2019.06.060
10.1007/978-3-642-04944-6_14
10.1016/j.cie.2019.06.058
10.1016/j.cie.2019.05.008
10.1007/s00521-015-1870-7
10.1016/j.advengsoft.2017.03.014
10.1504/IJMMNO.2013.055204
10.1109/4235.996017
10.1177/003754970107600201
10.1109/TEVC.2004.826067
10.1016/j.advengsoft.2017.07.002
10.1016/j.ecoinf.2006.07.003
10.1016/j.cie.2019.03.006
10.1016/j.advengsoft.2017.05.014
10.1016/j.cie.2019.04.029
10.1109/ICEC.1998.699146
10.1109/TEVC.2013.2281535
10.1016/0305-0548(86)90048-1
10.1016/j.jocs.2017.06.003
10.1016/j.asoc.2015.03.003
10.1016/j.ijresmar.2010.05.002
10.1016/j.asoc.2017.06.033
10.1016/j.asoc.2015.10.036
10.1504/IJSI.2013.055801
10.1016/0003-3472(89)90084-5
10.1016/j.compstruc.2016.03.001
10.1007/s11269-005-9001-3
10.1109/ICNN.1995.488968
10.1016/j.cie.2019.03.051
10.1016/B978-008045157-2/50081-X
10.1016/j.advengsoft.2015.11.004
10.1162/106365600568202
10.1023/A:1008202821328
10.1109/MHS.1995.494215
10.1016/j.advengsoft.2016.01.008
10.1145/1008304.1008305
10.1016/j.cie.2018.09.016
10.1142/S1469026816500115
10.1109/CEC.2002.1007013
10.1007/s00500-013-0992-z
10.1007/978-3-319-44427-7_7
10.1002/nav.3800010110
10.1016/j.cie.2018.12.033
10.1007/978-3-642-12538-6_6
10.1016/j.biosystems.2017.07.010
10.1016/j.cie.2019.07.046
10.1016/j.cie.2017.06.006
10.1016/j.compchemeng.2017.01.046
10.1016/j.asoc.2017.09.035
10.1016/j.mcm.2010.04.020
10.1007/s00265-002-0471-5
10.1016/j.cie.2018.05.056
10.1016/j.advengsoft.2017.01.004
10.1016/j.cie.2018.06.018
10.1126/science.220.4598.671
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2020.106559
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2020_106559
S036083522030293X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-4ae489a9a83c18b680db94ee6f7d7d4ef6f5e83f7d1f0121fcda97a7493b9bff3
IEDL.DBID .~1
ISSN 0360-8352
IngestDate Tue Jul 01 02:59:49 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Fri Feb 23 02:40:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Mayfly algorithm
Optimization
Nature-inspired algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-4ae489a9a83c18b680db94ee6f7d7d4ef6f5e83f7d1f0121fcda97a7493b9bff3
ORCID 0000-0002-2146-1493
0000-0001-5535-4787
ParticipantIDs crossref_primary_10_1016_j_cie_2020_106559
crossref_citationtrail_10_1016_j_cie_2020_106559
elsevier_sciencedirect_doi_10_1016_j_cie_2020_106559
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kılıç, Yüzgeç (b0140) 2019; 132
Fan, Fang, Li, Yuan, Wang, Bian (b0070) 2018; 2018
Vlašić, Ðurasević, Jakobović (b0285) 2019; 106030
Storn, Price (b0265) 1997; 11
Uymaz, Tezel, Yel (b0280) 2015; 31
Knowles, J., & Corne, D. (2002). On metrics for comparing nondominated sets. In Proceedings of the 2002 congress on evolutionary computation. CEC’02 (Cat. No.02TH8600), (Vol. 1, pp. 711–716).
Peckarsky, McIntosh, Caudill, Dahl (b0230) 2002; 51
Knuth (b0155) 1974; 6
Wolpert, Macready (b0290) 1997; 67–82
Chen, Shi (b0030) 2019; 133
Saremi, Mirjalili, Lewis (b0250) 2017; 105
Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No.98TH8360) (pp. 69–73).
Abedinia, Amjady, Ghasemi (b0005) 2016; 21
Zitzler, Deb, Thiele (b0330) 2000; 8
Marinakis, Marinaki (b0180) 2013; 17
Oliveira, M., Pinheiro, D., Andrade, B., Bastos-Filho, C., & Menezes, R. (2016). Communication diversity in particle swarm optimizers. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9882 LNCS (pp. 77–88).
Jamil, Yang (b0115) 2013; 4
Deb, Jain (b0040) 2014; 18
Qi, Zhu, Zhang (b0245) 2017; 23
Kirkpatrick, Gelatt, Vecchi (b0145) 1983; 220
Jahani, Chizari (b0110) 2018; 62
.
Feng, Zheng, Li (b0080) 2010; 52
Zhang, Li (b0320) 2014
Li, Cheng (b0165) 2017; 113
Tsafarakis, Marinakis, Matsatsinis (b0275) 2011; 28
Mirjalili, Mirjalili, Hatamlou (b0205) 2016; 27
Johnson (b0120) 1954
Báez, Angel-Bello, Alvarez, Melián-Batista (b0020) 2019; 131
Dorigo, Maniezzo, Colorni (b0060) 1996; 26
Fausto, Cuevas, Valdivia, González (b0075) 2017; 160
Spieth (b0260) 1940; 48
Glover (b0085) 1986; 13
Husseinzadeh Kashan, Tavakkoli-Moghaddam, Gen (b0105) 2019; 128
Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 - International Conference on Neural Networks, 1942−1948.
Askarzadeh (b0015) 2016; 169
Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm - A novel tool for complex optimisation problems. In Intelligent Production Machines and Systems - 2nd I*PROMS Virtual International Conference 3–14 July 2006 (pp. 454–459).
Allan, Flecker (b0010) 1989; 37
Mansouri, Mohammad Hasani Zade, Javidi (b0175) 2019; 130
Zong Woo Geem, Joong Hoon Kim, Loganathan (b0335) 2001; 76
Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In Springer (Ed.), Stochastic Algorithms: Foundations and Applications (pp. 169–178).
Nematollahi, Rahiminejad, Vahidi (b0215) 2017; 59
Baykasoğlu, Akpinar (b0025) 2017; 56
Yang (b0295) 2008
Mccafferty (b0185) 1991; 102
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b0195) 2017; 114
Mirjalili, Lewis (b0200) 2016; 95
Li, Zhao, Weng, Han (b0170) 2016; 92
Tabari, Ahmad (b0270) 2017; 103
Goldberg (b0090) 1989
Yong, Tao, Cheng-Zhi, Hua-Juan (b0315) 2016; 15
Deb, Pratap, Agarwal, Meyarivan (b0045) 2002; 6
Hakli, Ortacay (b0100) 2019; 135
Yang, He (b0300) 2013; 1
Zhou, Pang, Chen, Chou (b0325) 2018; 123
Mehrabian, Lucas (b0190) 2006; 1
Kaveh, Mesgari (b0130) 2019; 135
Laha, Gupta (b0160) 2018; 126
Haddad, Afshar, Mariño (b0095) 2006; 20
Pakzad-Moghaddam, Mina, Mostafazadeh (b0225) 2019; 136
Coello Coello, Pulido, Lechuga (b0035) 2004; 8
Kaveh, Dadras (b0125) 2017; 110
Domínguez (b0055) 2006
Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science, (pp. 39–43).
Dhiman, Kumar (b0050) 2017; 114
Morton, T. E., & Pentico, D. W. (1993). Heuristic scheduling systems : with applications to production systems and project management. In Published in 1993 in New York by Wiley. Wiley.
Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. In N. González, J.R. Pelta, D.A. Cruz, C. Terrazas, G. Krasnogor (Ed.), Nature inspired cooperative strategies for optimization (pp. 65–74). Springer.
Peng, Pan, Gao, Zhang, Pang (b0235) 2018; 122
Zhou (10.1016/j.cie.2020.106559_b0325) 2018; 123
Abedinia (10.1016/j.cie.2020.106559_b0005) 2016; 21
10.1016/j.cie.2020.106559_b0150
Mehrabian (10.1016/j.cie.2020.106559_b0190) 2006; 1
Yang (10.1016/j.cie.2020.106559_b0300) 2013; 1
10.1016/j.cie.2020.106559_b0310
Qi (10.1016/j.cie.2020.106559_b0245) 2017; 23
Baykasoğlu (10.1016/j.cie.2020.106559_b0025) 2017; 56
Goldberg (10.1016/j.cie.2020.106559_b0090) 1989
Laha (10.1016/j.cie.2020.106559_b0160) 2018; 126
Tabari (10.1016/j.cie.2020.106559_b0270) 2017; 103
Glover (10.1016/j.cie.2020.106559_b0085) 1986; 13
Jahani (10.1016/j.cie.2020.106559_b0110) 2018; 62
Chen (10.1016/j.cie.2020.106559_b0030) 2019; 133
Fan (10.1016/j.cie.2020.106559_b0070) 2018; 2018
Nematollahi (10.1016/j.cie.2020.106559_b0215) 2017; 59
Feng (10.1016/j.cie.2020.106559_b0080) 2010; 52
Zitzler (10.1016/j.cie.2020.106559_b0330) 2000; 8
10.1016/j.cie.2020.106559_b0065
10.1016/j.cie.2020.106559_b0220
Mansouri (10.1016/j.cie.2020.106559_b0175) 2019; 130
Li (10.1016/j.cie.2020.106559_b0165) 2017; 113
Husseinzadeh Kashan (10.1016/j.cie.2020.106559_b0105) 2019; 128
10.1016/j.cie.2020.106559_b0305
Yong (10.1016/j.cie.2020.106559_b0315) 2016; 15
Peng (10.1016/j.cie.2020.106559_b0235) 2018; 122
Fausto (10.1016/j.cie.2020.106559_b0075) 2017; 160
Kılıç (10.1016/j.cie.2020.106559_b0140) 2019; 132
Tsafarakis (10.1016/j.cie.2020.106559_b0275) 2011; 28
Wolpert (10.1016/j.cie.2020.106559_b0290) 1997; 67–82
Haddad (10.1016/j.cie.2020.106559_b0095) 2006; 20
Dorigo (10.1016/j.cie.2020.106559_b0060) 1996; 26
Mirjalili (10.1016/j.cie.2020.106559_b0195) 2017; 114
Pakzad-Moghaddam (10.1016/j.cie.2020.106559_b0225) 2019; 136
Storn (10.1016/j.cie.2020.106559_b0265) 1997; 11
Dhiman (10.1016/j.cie.2020.106559_b0050) 2017; 114
Knuth (10.1016/j.cie.2020.106559_b0155) 1974; 6
Marinakis (10.1016/j.cie.2020.106559_b0180) 2013; 17
10.1016/j.cie.2020.106559_b0210
Zhang (10.1016/j.cie.2020.106559_b0320) 2014
10.1016/j.cie.2020.106559_b0255
Vlašić (10.1016/j.cie.2020.106559_b0285) 2019; 106030
10.1016/j.cie.2020.106559_b0135
Peckarsky (10.1016/j.cie.2020.106559_b0230) 2002; 51
Saremi (10.1016/j.cie.2020.106559_b0250) 2017; 105
Allan (10.1016/j.cie.2020.106559_b0010) 1989; 37
Johnson (10.1016/j.cie.2020.106559_b0120) 1954
Kirkpatrick (10.1016/j.cie.2020.106559_b0145) 1983; 220
Askarzadeh (10.1016/j.cie.2020.106559_b0015) 2016; 169
Li (10.1016/j.cie.2020.106559_b0170) 2016; 92
Domínguez (10.1016/j.cie.2020.106559_b0055) 2006
Kaveh (10.1016/j.cie.2020.106559_b0130) 2019; 135
Jamil (10.1016/j.cie.2020.106559_b0115) 2013; 4
Deb (10.1016/j.cie.2020.106559_b0045) 2002; 6
10.1016/j.cie.2020.106559_b0240
Spieth (10.1016/j.cie.2020.106559_b0260) 1940; 48
Uymaz (10.1016/j.cie.2020.106559_b0280) 2015; 31
Hakli (10.1016/j.cie.2020.106559_b0100) 2019; 135
Mirjalili (10.1016/j.cie.2020.106559_b0200) 2016; 95
Deb (10.1016/j.cie.2020.106559_b0040) 2014; 18
Zong Woo Geem (10.1016/j.cie.2020.106559_b0335) 2001; 76
Yang (10.1016/j.cie.2020.106559_b0295) 2008
Kaveh (10.1016/j.cie.2020.106559_b0125) 2017; 110
Mirjalili (10.1016/j.cie.2020.106559_b0205) 2016; 27
Báez (10.1016/j.cie.2020.106559_b0020) 2019; 131
Mccafferty (10.1016/j.cie.2020.106559_b0185) 1991; 102
Coello Coello (10.1016/j.cie.2020.106559_b0035) 2004; 8
References_xml – volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0045
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 122
  start-page: 235
  year: 2018
  end-page: 250
  ident: b0235
  article-title: An Improved Artificial Bee Colony algorithm for real-world hybrid flowshop rescheduling in Steelmaking-refining-Continuous Casting process
  publication-title: Computers and Industrial Engineering
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: b0040
  article-title: An Evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: b0205
  article-title: Multi-Verse Optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
– volume: 128
  start-page: 192
  year: 2019
  end-page: 218
  ident: b0105
  article-title: Find-Fix-Finish-Exploit-Analyze (F3EA) meta-heuristic algorithm: An effective algorithm with new evolutionary operators for global optimization
  publication-title: Computers and Industrial Engineering
– year: 1954
  ident: b0120
  article-title: Optimal two- and three-stage production schedules with setup times included
  publication-title: Naval Research Logistics Quarterly
– volume: 13
  start-page: 533
  year: 1986
  end-page: 549
  ident: b0085
  article-title: Future paths for integer programming and links to artificial intelligence
  publication-title: Computers and Operations Research
– volume: 1
  start-page: 36
  year: 2013
  end-page: 50
  ident: b0300
  article-title: Firefly algorithm: Recent advances and applications
  publication-title: International Journal of Swarm Intelligence
– reference: Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 - International Conference on Neural Networks, 1942−1948.
– volume: 106030
  year: 2019
  ident: b0285
  article-title: Improving genetic algorithm performance by population initialisation with dispatching rules
  publication-title: Computers & Industrial Engineering
– year: 2006
  ident: b0055
  article-title: Ephemeroptera of South America
– volume: 62
  start-page: 987
  year: 2018
  end-page: 1002
  ident: b0110
  article-title: Tackling global optimization problems with a novel algorithm – Mouth Brooding Fish algorithm
  publication-title: Applied Soft Computing
– volume: 103
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0270
  article-title: A new optimization method: Electro-Search algorithm
  publication-title: Computers & Chemical Engineering
– volume: 135
  start-page: 855
  year: 2019
  end-page: 867
  ident: b0100
  article-title: An improved scatter search algorithm for the uncapacitated facility location problem
  publication-title: Computers and Industrial Engineering
– volume: 21
  start-page: 97
  year: 2016
  end-page: 116
  ident: b0005
  article-title: A new metaheuristic algorithm based on shark smell optimization
  publication-title: Complexity
– volume: 131
  start-page: 295
  year: 2019
  end-page: 305
  ident: b0020
  article-title: A hybrid metaheuristic algorithm for a parallel machine scheduling problem with dependent setup times
  publication-title: Computers and Industrial Engineering
– reference: Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. In N. González, J.R. Pelta, D.A. Cruz, C. Terrazas, G. Krasnogor (Ed.), Nature inspired cooperative strategies for optimization (pp. 65–74). Springer.
– volume: 126
  start-page: 348
  year: 2018
  end-page: 360
  ident: b0160
  article-title: An improved cuckoo search algorithm for scheduling jobs on identical parallel machines
  publication-title: Computers and Industrial Engineering
– volume: 48
  start-page: 379
  year: 1940
  end-page: 390
  ident: b0260
  article-title: Studies on the Biology of the Ephemeroptera. II. The Nuptial Flight
  publication-title: Journal of the New York Entomological Society
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: b0060
  article-title: Ant system: Optimization by a colony of cooperating agents
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
– volume: 102
  start-page: 205
  year: 1991
  end-page: 214
  ident: b0185
  article-title: Comparison of Old and New World Acanthametropus (Ephemeroptera: Acanthametropodidae) and other psammophilous mayflies
  publication-title: Entomological News
– year: 2008
  ident: b0295
  article-title: Nature-inspired metaheuristic algorithms
– volume: 8
  start-page: 256
  year: 2004
  end-page: 279
  ident: b0035
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 110
  start-page: 69
  year: 2017
  end-page: 84
  ident: b0125
  article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization
  publication-title: Advances in Engineering Software
– volume: 160
  start-page: 39
  year: 2017
  end-page: 55
  ident: b0075
  article-title: A global optimization algorithm inspired in the behavior of selfish herds
  publication-title: Biosystems
– reference: Morton, T. E., & Pentico, D. W. (1993). Heuristic scheduling systems : with applications to production systems and project management. In Published in 1993 in New York by Wiley. Wiley.
– volume: 28
  start-page: 13
  year: 2011
  end-page: 22
  ident: b0275
  article-title: Particle swarm optimization for optimal product line design
  publication-title: International Journal of Research in Marketing
– volume: 92
  start-page: 65
  year: 2016
  end-page: 88
  ident: b0170
  article-title: A novel nature-inspired algorithm for optimization: Virus colony search
  publication-title: Advances in Engineering Software
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b0145
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0200
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: b0335
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
– year: 1989
  ident: b0090
  article-title: Genetic algorithms in search, optimization, and machine learning
  publication-title: Addison Wesley
– volume: 132
  start-page: 166
  year: 2019
  end-page: 186
  ident: b0140
  article-title: Improved antlion optimization algorithm via tournament selection and its application to parallel machine scheduling
  publication-title: Computers and Industrial Engineering
– volume: 123
  start-page: 67
  year: 2018
  end-page: 81
  ident: b0325
  article-title: A modified particle swarm optimization algorithm for a batch-processing machine scheduling problem with arbitrary release times and non-identical job sizes
  publication-title: Computers and Industrial Engineering
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 8
  ident: b0070
  article-title: LSHADE44 with an improved constraint-handling method for solving constrained single-objective optimization problems
  publication-title: IEEE Congress on Evolutionary Computation (CEC)
– volume: 1
  start-page: 355
  year: 2006
  end-page: 366
  ident: b0190
  article-title: A novel numerical optimization algorithm inspired from weed colonization
  publication-title: Ecological Informatics
– reference: Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In Proceedings of the sixth international symposium on micro machine and human science, (pp. 39–43).
– reference: Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No.98TH8360) (pp. 69–73).
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b0330
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
– volume: 20
  start-page: 661
  year: 2006
  end-page: 680
  ident: b0095
  article-title: Honey-bees mating optimization (HBMO) algorithm: A new heuristic approach for water resources optimization
  publication-title: Water Resources Management
– volume: 4
  start-page: 150
  year: 2013
  end-page: 194
  ident: b0115
  article-title: A literature survey of benchmark functions for global optimization problems
  publication-title: International Journal of Mathematical Modelling and Numerical Optimisation
– volume: 6
  start-page: 15
  year: 1974
  end-page: 16
  ident: b0155
  article-title: Postscript about NP-hard problems
  publication-title: ACM SIGACT News
– volume: 23
  start-page: 226
  year: 2017
  end-page: 239
  ident: b0245
  article-title: A new meta-heuristic butterfly-inspired algorithm
  publication-title: Journal of Computational Science
– volume: 169
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0015
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Computers & Structures
– volume: 17
  start-page: 1159
  year: 2013
  end-page: 1173
  ident: b0180
  article-title: Particle swarm optimization with expanding neighborhood topology for the permutation flowshop scheduling problem
  publication-title: Soft Computing
– reference: Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2006). The bees algorithm - A novel tool for complex optimisation problems. In Intelligent Production Machines and Systems - 2nd I*PROMS Virtual International Conference 3–14 July 2006 (pp. 454–459).
– reference: Oliveira, M., Pinheiro, D., Andrade, B., Bastos-Filho, C., & Menezes, R. (2016). Communication diversity in particle swarm optimizers. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9882 LNCS (pp. 77–88).
– volume: 105
  start-page: 30
  year: 2017
  end-page: 47
  ident: b0250
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Advances in Engineering Software
– volume: 31
  start-page: 153
  year: 2015
  end-page: 171
  ident: b0280
  article-title: Artificial algae algorithm (AAA) for nonlinear global optimization
  publication-title: Applied Soft Computing
– volume: 52
  start-page: 1966
  year: 2010
  end-page: 1975
  ident: b0080
  article-title: Exploratory study of sorting particle swarm optimizer for multiobjective design optimization
  publication-title: Mathematical and Computer Modelling
– volume: 135
  start-page: 800
  year: 2019
  end-page: 813
  ident: b0130
  article-title: Improved biogeography-based optimization using migration process adjustment: An approach for location-allocation of ambulances
  publication-title: Computers and Industrial Engineering
– volume: 67–82
  year: 1997
  ident: b0290
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 1
  year: 2014
  end-page: 6
  ident: b0320
  article-title: A global-crowding-distance based multi-objective particle swarm optimization algorithm
  publication-title: Tenth International Conference on Computational Intelligence and Security
– volume: 133
  start-page: 95
  year: 2019
  end-page: 106
  ident: b0030
  article-title: A multi-compartment vehicle routing problem with time windows for urban distribution – A comparison study on particle swarm optimization algorithms
  publication-title: Computers and Industrial Engineering
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: b0195
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
– reference: .
– volume: 113
  start-page: 831
  year: 2017
  end-page: 841
  ident: b0165
  article-title: Particle swarm optimization with fitness adjustment parameters
  publication-title: Computers and Industrial Engineering
– volume: 59
  start-page: 596
  year: 2017
  end-page: 621
  ident: b0215
  article-title: A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization
  publication-title: Applied Soft Computing Journal
– reference: Yang, X.-S. (2009). Firefly algorithms for multimodal optimization. In Springer (Ed.), Stochastic Algorithms: Foundations and Applications (pp. 169–178).
– volume: 130
  start-page: 597
  year: 2019
  end-page: 633
  ident: b0175
  article-title: Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory
  publication-title: Computers and Industrial Engineering
– volume: 136
  start-page: 591
  year: 2019
  end-page: 613
  ident: b0225
  article-title: A novel optimization booster algorithm
  publication-title: Computers & Industrial Engineering
– volume: 56
  start-page: 520
  year: 2017
  end-page: 540
  ident: b0025
  article-title: Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems – Part 1: Unconstrained optimization
  publication-title: Applied Soft Computing
– volume: 51
  start-page: 530
  year: 2002
  end-page: 537
  ident: b0230
  article-title: Swarming and mating behavior of a mayfly Baetis bicaudatus suggest stabilizing selection for male body size
  publication-title: Behavioral Ecology and Sociobiology
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0265
  article-title: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 37
  start-page: 361
  year: 1989
  end-page: 371
  ident: b0010
  article-title: The mating biology of a mass-swarming mayfly
  publication-title: Animal Behaviour
– reference: Knowles, J., & Corne, D. (2002). On metrics for comparing nondominated sets. In Proceedings of the 2002 congress on evolutionary computation. CEC’02 (Cat. No.02TH8600), (Vol. 1, pp. 711–716).
– volume: 15
  start-page: 1650011
  year: 2016
  ident: b0315
  article-title: A new stochastic optimization approach — Dolphin swarm optimization algorithm
  publication-title: International Journal of Computational Intelligence and Applications
– volume: 114
  start-page: 48
  year: 2017
  end-page: 70
  ident: b0050
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Advances in Engineering Software
– volume: 21
  start-page: 97
  issue: 5
  year: 2016
  ident: 10.1016/j.cie.2020.106559_b0005
  article-title: A new metaheuristic algorithm based on shark smell optimization
  publication-title: Complexity
  doi: 10.1002/cplx.21634
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: 10.1016/j.cie.2020.106559_b0060
  article-title: Ant system: Optimization by a colony of cooperating agents
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/3477.484436
– volume: 135
  start-page: 855
  year: 2019
  ident: 10.1016/j.cie.2020.106559_b0100
  article-title: An improved scatter search algorithm for the uncapacitated facility location problem
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2019.06.060
– ident: 10.1016/j.cie.2020.106559_b0305
  doi: 10.1007/978-3-642-04944-6_14
– volume: 135
  start-page: 800
  year: 2019
  ident: 10.1016/j.cie.2020.106559_b0130
  article-title: Improved biogeography-based optimization using migration process adjustment: An approach for location-allocation of ambulances
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2019.06.058
– volume: 133
  start-page: 95
  year: 2019
  ident: 10.1016/j.cie.2020.106559_b0030
  article-title: A multi-compartment vehicle routing problem with time windows for urban distribution – A comparison study on particle swarm optimization algorithms
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2019.05.008
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 10.1016/j.cie.2020.106559_b0205
  article-title: Multi-Verse Optimizer: A nature-inspired algorithm for global optimization
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1870-7
– volume: 110
  start-page: 69
  year: 2017
  ident: 10.1016/j.cie.2020.106559_b0125
  article-title: A novel meta-heuristic optimization algorithm: Thermal exchange optimization
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.03.014
– volume: 4
  start-page: 150
  issue: 2
  year: 2013
  ident: 10.1016/j.cie.2020.106559_b0115
  article-title: A literature survey of benchmark functions for global optimization problems
  publication-title: International Journal of Mathematical Modelling and Numerical Optimisation
  doi: 10.1504/IJMMNO.2013.055204
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.cie.2020.106559_b0070
  article-title: LSHADE44 with an improved constraint-handling method for solving constrained single-objective optimization problems
  publication-title: IEEE Congress on Evolutionary Computation (CEC)
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.cie.2020.106559_b0045
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.cie.2020.106559_b0335
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: Simulation
  doi: 10.1177/003754970107600201
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10.1016/j.cie.2020.106559_b0035
  article-title: Handling multiple objectives with particle swarm optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2004.826067
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.cie.2020.106559_b0195
  article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 1
  start-page: 355
  issue: 4
  year: 2006
  ident: 10.1016/j.cie.2020.106559_b0190
  article-title: A novel numerical optimization algorithm inspired from weed colonization
  publication-title: Ecological Informatics
  doi: 10.1016/j.ecoinf.2006.07.003
– volume: 130
  start-page: 597
  year: 2019
  ident: 10.1016/j.cie.2020.106559_b0175
  article-title: Hybrid task scheduling strategy for cloud computing by modified particle swarm optimization and fuzzy theory
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2019.03.006
– volume: 114
  start-page: 48
  year: 2017
  ident: 10.1016/j.cie.2020.106559_b0050
  article-title: Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.05.014
– volume: 132
  start-page: 166
  year: 2019
  ident: 10.1016/j.cie.2020.106559_b0140
  article-title: Improved antlion optimization algorithm via tournament selection and its application to parallel machine scheduling
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2019.04.029
– ident: 10.1016/j.cie.2020.106559_b0255
  doi: 10.1109/ICEC.1998.699146
– volume: 18
  start-page: 577
  issue: 4
  year: 2014
  ident: 10.1016/j.cie.2020.106559_b0040
  article-title: An Evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– volume: 13
  start-page: 533
  issue: 5
  year: 1986
  ident: 10.1016/j.cie.2020.106559_b0085
  article-title: Future paths for integer programming and links to artificial intelligence
  publication-title: Computers and Operations Research
  doi: 10.1016/0305-0548(86)90048-1
– volume: 23
  start-page: 226
  year: 2017
  ident: 10.1016/j.cie.2020.106559_b0245
  article-title: A new meta-heuristic butterfly-inspired algorithm
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2017.06.003
– volume: 31
  start-page: 153
  year: 2015
  ident: 10.1016/j.cie.2020.106559_b0280
  article-title: Artificial algae algorithm (AAA) for nonlinear global optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.03.003
– volume: 28
  start-page: 13
  issue: 1
  year: 2011
  ident: 10.1016/j.cie.2020.106559_b0275
  article-title: Particle swarm optimization for optimal product line design
  publication-title: International Journal of Research in Marketing
  doi: 10.1016/j.ijresmar.2010.05.002
– volume: 59
  start-page: 596
  issue: C
  year: 2017
  ident: 10.1016/j.cie.2020.106559_b0215
  article-title: A novel physical based meta-heuristic optimization method known as Lightning Attachment Procedure Optimization
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2017.06.033
– volume: 48
  start-page: 379
  issue: 4
  year: 1940
  ident: 10.1016/j.cie.2020.106559_b0260
  article-title: Studies on the Biology of the Ephemeroptera. II. The Nuptial Flight
  publication-title: Journal of the New York Entomological Society
– volume: 56
  start-page: 520
  year: 2017
  ident: 10.1016/j.cie.2020.106559_b0025
  article-title: Weighted Superposition Attraction (WSA): A swarm intelligence algorithm for optimization problems – Part 1: Unconstrained optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.10.036
– volume: 1
  start-page: 36
  year: 2013
  ident: 10.1016/j.cie.2020.106559_b0300
  article-title: Firefly algorithm: Recent advances and applications
  publication-title: International Journal of Swarm Intelligence
  doi: 10.1504/IJSI.2013.055801
– volume: 37
  start-page: 361
  year: 1989
  ident: 10.1016/j.cie.2020.106559_b0010
  article-title: The mating biology of a mass-swarming mayfly
  publication-title: Animal Behaviour
  doi: 10.1016/0003-3472(89)90084-5
– volume: 169
  start-page: 1
  year: 2016
  ident: 10.1016/j.cie.2020.106559_b0015
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 20
  start-page: 661
  issue: 5
  year: 2006
  ident: 10.1016/j.cie.2020.106559_b0095
  article-title: Honey-bees mating optimization (HBMO) algorithm: A new heuristic approach for water resources optimization
  publication-title: Water Resources Management
  doi: 10.1007/s11269-005-9001-3
– ident: 10.1016/j.cie.2020.106559_b0135
  doi: 10.1109/ICNN.1995.488968
– volume: 131
  start-page: 295
  year: 2019
  ident: 10.1016/j.cie.2020.106559_b0020
  article-title: A hybrid metaheuristic algorithm for a parallel machine scheduling problem with dependent setup times
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2019.03.051
– year: 2006
  ident: 10.1016/j.cie.2020.106559_b0055
– ident: 10.1016/j.cie.2020.106559_b0240
  doi: 10.1016/B978-008045157-2/50081-X
– volume: 92
  start-page: 65
  year: 2016
  ident: 10.1016/j.cie.2020.106559_b0170
  article-title: A novel nature-inspired algorithm for optimization: Virus colony search
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2015.11.004
– year: 1989
  ident: 10.1016/j.cie.2020.106559_b0090
  article-title: Genetic algorithms in search, optimization, and machine learning
  publication-title: Addison Wesley
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: 10.1016/j.cie.2020.106559_b0330
  article-title: Comparison of multiobjective evolutionary algorithms: Empirical results
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568202
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.cie.2020.106559_b0265
  article-title: Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– ident: 10.1016/j.cie.2020.106559_b0065
  doi: 10.1109/MHS.1995.494215
– volume: 102
  start-page: 205
  issue: 5
  year: 1991
  ident: 10.1016/j.cie.2020.106559_b0185
  article-title: Comparison of Old and New World Acanthametropus (Ephemeroptera: Acanthametropodidae) and other psammophilous mayflies
  publication-title: Entomological News
– volume: 95
  start-page: 51
  issue: C
  year: 2016
  ident: 10.1016/j.cie.2020.106559_b0200
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 6
  start-page: 15
  issue: 2
  year: 1974
  ident: 10.1016/j.cie.2020.106559_b0155
  article-title: Postscript about NP-hard problems
  publication-title: ACM SIGACT News
  doi: 10.1145/1008304.1008305
– volume: 126
  start-page: 348
  year: 2018
  ident: 10.1016/j.cie.2020.106559_b0160
  article-title: An improved cuckoo search algorithm for scheduling jobs on identical parallel machines
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2018.09.016
– volume: 15
  start-page: 1650011
  issue: 02
  year: 2016
  ident: 10.1016/j.cie.2020.106559_b0315
  article-title: A new stochastic optimization approach — Dolphin swarm optimization algorithm
  publication-title: International Journal of Computational Intelligence and Applications
  doi: 10.1142/S1469026816500115
– volume: 106030
  year: 2019
  ident: 10.1016/j.cie.2020.106559_b0285
  article-title: Improving genetic algorithm performance by population initialisation with dispatching rules
  publication-title: Computers & Industrial Engineering
– ident: 10.1016/j.cie.2020.106559_b0150
  doi: 10.1109/CEC.2002.1007013
– volume: 17
  start-page: 1159
  year: 2013
  ident: 10.1016/j.cie.2020.106559_b0180
  article-title: Particle swarm optimization with expanding neighborhood topology for the permutation flowshop scheduling problem
  publication-title: Soft Computing
  doi: 10.1007/s00500-013-0992-z
– ident: 10.1016/j.cie.2020.106559_b0220
  doi: 10.1007/978-3-319-44427-7_7
– year: 1954
  ident: 10.1016/j.cie.2020.106559_b0120
  article-title: Optimal two- and three-stage production schedules with setup times included
  publication-title: Naval Research Logistics Quarterly
  doi: 10.1002/nav.3800010110
– volume: 128
  start-page: 192
  year: 2019
  ident: 10.1016/j.cie.2020.106559_b0105
  article-title: Find-Fix-Finish-Exploit-Analyze (F3EA) meta-heuristic algorithm: An effective algorithm with new evolutionary operators for global optimization
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2018.12.033
– ident: 10.1016/j.cie.2020.106559_b0310
  doi: 10.1007/978-3-642-12538-6_6
– volume: 160
  start-page: 39
  year: 2017
  ident: 10.1016/j.cie.2020.106559_b0075
  article-title: A global optimization algorithm inspired in the behavior of selfish herds
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2017.07.010
– ident: 10.1016/j.cie.2020.106559_b0210
– volume: 136
  start-page: 591
  year: 2019
  ident: 10.1016/j.cie.2020.106559_b0225
  article-title: A novel optimization booster algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2019.07.046
– volume: 113
  start-page: 831
  year: 2017
  ident: 10.1016/j.cie.2020.106559_b0165
  article-title: Particle swarm optimization with fitness adjustment parameters
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2017.06.006
– volume: 103
  start-page: 1
  year: 2017
  ident: 10.1016/j.cie.2020.106559_b0270
  article-title: A new optimization method: Electro-Search algorithm
  publication-title: Computers & Chemical Engineering
  doi: 10.1016/j.compchemeng.2017.01.046
– volume: 62
  start-page: 987
  year: 2018
  ident: 10.1016/j.cie.2020.106559_b0110
  article-title: Tackling global optimization problems with a novel algorithm – Mouth Brooding Fish algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2017.09.035
– start-page: 1
  year: 2014
  ident: 10.1016/j.cie.2020.106559_b0320
  article-title: A global-crowding-distance based multi-objective particle swarm optimization algorithm
– volume: 52
  start-page: 1966
  issue: 11–12
  year: 2010
  ident: 10.1016/j.cie.2020.106559_b0080
  article-title: Exploratory study of sorting particle swarm optimizer for multiobjective design optimization
  publication-title: Mathematical and Computer Modelling
  doi: 10.1016/j.mcm.2010.04.020
– volume: 67–82
  year: 1997
  ident: 10.1016/j.cie.2020.106559_b0290
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 51
  start-page: 530
  issue: 6
  year: 2002
  ident: 10.1016/j.cie.2020.106559_b0230
  article-title: Swarming and mating behavior of a mayfly Baetis bicaudatus suggest stabilizing selection for male body size
  publication-title: Behavioral Ecology and Sociobiology
  doi: 10.1007/s00265-002-0471-5
– volume: 122
  start-page: 235
  year: 2018
  ident: 10.1016/j.cie.2020.106559_b0235
  article-title: An Improved Artificial Bee Colony algorithm for real-world hybrid flowshop rescheduling in Steelmaking-refining-Continuous Casting process
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2018.05.056
– volume: 105
  start-page: 30
  year: 2017
  ident: 10.1016/j.cie.2020.106559_b0250
  article-title: Grasshopper optimisation algorithm: Theory and application
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2017.01.004
– year: 2008
  ident: 10.1016/j.cie.2020.106559_b0295
– volume: 123
  start-page: 67
  year: 2018
  ident: 10.1016/j.cie.2020.106559_b0325
  article-title: A modified particle swarm optimization algorithm for a batch-processing machine scheduling problem with arbitrary release times and non-identical job sizes
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2018.06.018
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.cie.2020.106559_b0145
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
SSID ssj0004591
Score 2.6889186
Snippet •An efficient powerful optimization method (MA) is presented.•Performance of MA is checked for benchmark both continuous and discrete functions.•MA performs...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106559
SubjectTerms Mayfly algorithm
Nature-inspired algorithm
Optimization
Title A mayfly optimization algorithm
URI https://dx.doi.org/10.1016/j.cie.2020.106559
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLamcYEDjwFiPEYPnJDK1iVtkuM0MQ0Qu8Ck3aq0TWBoL23lsAu_HadJ0ZCAA7c6tavWdR2nsT8DXPFWoqVOqa8Dwnya4VEiEoOMSBihoeak-Kf7OIj6Q3o_CkcV6Ja1MCat0vl-69MLb-1Gmk6bzcV43HxC32vjB7RTnLRGpoKdMmPlNx_BBmK47ZqHzL7hLnc2ixwvvCwuEduGjkIDV_rT3LQx3_T2YdcFil7H3ssBVNSsBnsuaPTcJ7mqwc4GouAhXHa8qVzrydqboy-YuiJLT05e5stx_jo9gmHv9rnb910PBD9tC5b7VCrKhRSSkzTgScRbWSKoUpFmGcuo0pEOFSdIBdrAs-k0k4JJRgVBnWtNjqE6m8_UCXhcmC1GjE84l3iaS4nBmRaZJkxIQkQdWuXTx6kDCDd9KiZxmQn2huMqNgqLrcLqcP0lsrDoGH8x01Kl8bdXHKP3_l3s9H9iZ7BtKJtZew7VfPmuLjB-yJNGYSAN2OrcPfQHn67Iwco
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcWAqIsjUHTkhRFzuxfawqqpQuF1qpt8hJbCjqphIO_XvGjYOKBBy4xctEycR5fonHbwDueT3SUsfU1Q3CXJrgUSQio4xIGKGe5mT7T3cw9IMxfZp4kwK0870wJqzSYn-G6Vu0tjU1683aajqtPSP2ZvwBxylOWpM9KBl1Kq8IpVa3Fwx3RMOzxHnY3zUG-eLmNswLz4xfiU1T9j2jWPrT9LQz5XRO4MhyRaeVXc4pFNSiDMeWNzr2rXwvw-GOqOAZVFvOXG70bOMsEQ7mdp-lI2cvy_U0fZ2fw7jzOGoHrk2D4MZNwVKXSkW5kEJyEjd45PN6EgmqlK9ZwhKqtK89xQmWGtootOk4kYJJRgVBt2tNLqC4WC7UJThcmFVGpCicS2zmUiI_0yLRhAlJiKhAPb_7MLYa4SZVxSzMg8HesF6FxmFh5rAKPHyZrDKBjL8609yl4benHCKA_2529T-zKuwHo0E_7HeHvWs4MC1ZoO0NFNP1h7pFOpFGd3a4fAJxd8R7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mayfly+optimization+algorithm&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Zervoudakis%2C+Konstantinos&rft.au=Tsafarakis%2C+Stelios&rft.date=2020-07-01&rft.issn=0360-8352&rft.volume=145&rft.spage=106559&rft_id=info:doi/10.1016%2Fj.cie.2020.106559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cie_2020_106559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon