Dynamic modeling and analysis of traction operation process for the shipboard helicopter
The traction operation of a shipboard helicopter on the deck is a complex force-coupling process involving multiple moving entities. To more efficiently simulate the traction process, this study introduces a dynamic model based on the independent modeling of moving subjects (IMMS) method. Initially,...
Saved in:
Published in | Aerospace science and technology Vol. 142; p. 108661 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1270-9638 |
DOI | 10.1016/j.ast.2023.108661 |
Cover
Loading…
Abstract | The traction operation of a shipboard helicopter on the deck is a complex force-coupling process involving multiple moving entities. To more efficiently simulate the traction process, this study introduces a dynamic model based on the independent modeling of moving subjects (IMMS) method. Initially, the forces on the tire and the articulation part are analyzed, followed by the separate establishment of dynamic models for the helicopter and tractor using the Lagrange equation. Considering the articulated states among the ship, helicopter, and tractor, and according to the active–passive relationships of each entity, a unified solution method is introduced to solve the motion equations sequentially. The model's reliability and real-time performance are subsequently assessed and validated, effectively simulating the helicopter's traction operation procedure. The results reveal that the IMMS dynamic model exhibits high reliability and requires, on average, only 0.5% of the CPU time compared to the conventional dynamic model. The IMMS approach will be useful in advancing research into the modeling of shipboard helicopter traction processes. |
---|---|
AbstractList | The traction operation of a shipboard helicopter on the deck is a complex force-coupling process involving multiple moving entities. To more efficiently simulate the traction process, this study introduces a dynamic model based on the independent modeling of moving subjects (IMMS) method. Initially, the forces on the tire and the articulation part are analyzed, followed by the separate establishment of dynamic models for the helicopter and tractor using the Lagrange equation. Considering the articulated states among the ship, helicopter, and tractor, and according to the active–passive relationships of each entity, a unified solution method is introduced to solve the motion equations sequentially. The model's reliability and real-time performance are subsequently assessed and validated, effectively simulating the helicopter's traction operation procedure. The results reveal that the IMMS dynamic model exhibits high reliability and requires, on average, only 0.5% of the CPU time compared to the conventional dynamic model. The IMMS approach will be useful in advancing research into the modeling of shipboard helicopter traction processes. |
ArticleNumber | 108661 |
Author | Yang, Haojie Zhao, Dingxuan Wang, Zihe Wang, Zhilong Ni, Tao |
Author_xml | – sequence: 1 givenname: Haojie orcidid: 0000-0003-1054-5816 surname: Yang fullname: Yang, Haojie email: yhaojie@yeah.net organization: School of Mechanical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao, Hebei 066004, China – sequence: 2 givenname: Tao surname: Ni fullname: Ni, Tao organization: School of Vehicles and Energ, Yanshan University, 438 West Hebei Street, Qinhuangdao, Hebei 066004, China – sequence: 3 givenname: Zihe surname: Wang fullname: Wang, Zihe organization: School of Mechanical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao, Hebei 066004, China – sequence: 4 givenname: Zhilong surname: Wang fullname: Wang, Zhilong organization: School of Mechanical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao, Hebei 066004, China – sequence: 5 givenname: Dingxuan surname: Zhao fullname: Zhao, Dingxuan email: zdx-yw@ysu.edu.cn organization: School of Mechanical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao, Hebei 066004, China |
BookMark | eNp9kLtuAjEQRV0QKUDyAen8A0v8WNZrpYrIU0JKQ5HOMrPjYLSsV7YVib-PCalSUIxmpjhXumdGJkMYkJA7zhac8eZ-v7ApLwQTsvxt0_AJmXKhWKUb2V6TWUp7xpjQtZiSz6fjYA8e6CF02Pvhi9qhK2P7Y_KJBkdztJB9GGgYMdrfa4wBMCXqQqR5hzTt_LgNNnZ0VzIgjBnjDblytk94-7fnZPPyvFm9VeuP1_fV47oCoVWu6hr4FrTEtrUOFLiOLx2q2i4b4RRXiI7JpdVKctlp5pStNZMaHWhRNyDnhJ9jIYaUIjozRn-w8Wg4MycbZm-KDXOyYc42CqP-MeDzb7PS1fcXyYcziaXRt8doEngcADsfEbLpgr9A_wDRF3_2 |
CitedBy_id | crossref_primary_10_1007_s11071_025_10994_8 crossref_primary_10_3390_act13090342 crossref_primary_10_3390_aerospace11110885 crossref_primary_10_1016_j_oceaneng_2024_117107 crossref_primary_10_1016_j_ast_2024_108909 crossref_primary_10_3390_electronics13173477 |
Cites_doi | 10.2514/1.18711 10.2514/1.13865 10.1016/j.ast.2011.02.001 10.1016/j.ast.2023.108559 10.1016/j.paerosci.2019.02.002 10.1016/j.ast.2020.106011 10.1088/0143-0807/30/1/021 10.1007/s11465-020-0617-z 10.4028/www.scientific.net/AMM.656.171 10.3390/app12052603 10.2514/1.G005789 10.2514/1.C035973 10.2514/1.C035521 10.1017/aer.2017.112 10.2514/1.G001243 10.4050/JAHS.49.483 10.1117/12.212734 10.2514/1.G004374 10.2514/1.38345 10.3390/s22041514 10.1016/j.ast.2018.07.032 10.2514/1.C035158 10.2514/1.C032535 10.1016/j.compfluid.2020.104627 10.5194/ms-11-193-2020 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Masson SAS |
Copyright_xml | – notice: 2023 Elsevier Masson SAS |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ast.2023.108661 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_ast_2023_108661 S1270963823005588 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABJNI ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSZ T5K T9H VH1 XPP ZMT ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-44c1bc93e88afc7cfd15fe74a562f717eef035a97313d90f7a49039efc9246c3 |
IEDL.DBID | .~1 |
ISSN | 1270-9638 |
IngestDate | Thu Apr 24 22:52:26 EDT 2025 Tue Jul 01 01:22:13 EDT 2025 Tue Dec 03 03:45:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Traction operation Landing dynamics Tire model Shipboard helicopter Lagrange equation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-44c1bc93e88afc7cfd15fe74a562f717eef035a97313d90f7a49039efc9246c3 |
ORCID | 0000-0003-1054-5816 |
ParticipantIDs | crossref_primary_10_1016_j_ast_2023_108661 crossref_citationtrail_10_1016_j_ast_2023_108661 elsevier_sciencedirect_doi_10_1016_j_ast_2023_108661 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2023 2023-11-00 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: November 2023 |
PublicationDecade | 2020 |
PublicationTitle | Aerospace science and technology |
PublicationYear | 2023 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Greer, Sultan (bib0020) 2020; 43 Huang, Zhu, Zheng, Feroskhanc (bib0007) 2019; 84 Cracknell (bib0014) 1981 Zhao, Yang, GIUSEPPE, Li, Ni, Yao (bib0028) 2021; 16 Su, Xu, Huang, Shi (bib0004) 2019; 13 Wang, Zhou, Liu (bib0017) 2012; 46 Crozon, Steijl, Barakos (bib0003) 2018; 122 Stroe, Craifaleanu (bib0037) 2014; 656 Ngo, Sultan (bib0021) 2016; 39 Li, Zhao, Zhang, Liu (bib0033) 2015; 265 Mehling, Halbe, Gasparac, Vrdoljak, Hajek (bib0012) Jan, 2021 Zhao, Yang, Yao, Ni (bib0006) 2021; 15 Tho, Sparks, Sareen, Smith, Johnson (bib0027) 2004; 49 Dooley, Martin, Buchholz, Carrica (bib0008) 2020; 208 Hess (bib0039) 2006; 29 Yu, Hu, Hu, Xu, Shi (bib0018) 2023; 141 Silva, Bueno, Abreu (bib0032) 2020; 105 Zhu, Lu, Sun, Cheng, Wang, Li (bib0010) 2021; 2029 Linn, Langlois (bib0023) 2006; 43 Saetti, Horn (bib0038) 2022 Thedin, Kinzel, Horn, Schmitz (bib0002) 2019; 56 Memon, Owen, White (bib0013) 2019; 56 Langlois, Keary (bib0016) 2002 Sharma, Padthe, Friedmann (bib0030) 2020 Shukla, Sinha, Singh (bib0005) 2019; 106 Han, Wang, Gao (bib0009) 2012; 16 Siboni (bib0036) 2009; 30 He, Wang, Zhang, Liu (bib0022) 2016; 17 Zhang, Liu, Zhao, Wang, Yang (bib0025) 2022; 22 Sharma, Padthe, Friedmann (bib0011) 2021; 58 Wang, Zhao, Wei, Zhao (bib0029) 2017; 38 Zhao, Zhang, Carbone, Yang, Yao (bib0034) 2020; 11 Zhang, Liu, Zhao, Wang, Jia (bib0026) 2022; 12 Crozon, Steijl, Barakos (bib0001) 2014; 51 Zhu, LaRosa, Ma (bib0024) 2009; 46 Salt (bib0015) 1995; 2463 Ngo, Sultan (bib0019) 2022; 45 Zhang (10.1016/j.ast.2023.108661_bib0025) 2022; 22 Greer (10.1016/j.ast.2023.108661_bib0020) 2020; 43 Zhang (10.1016/j.ast.2023.108661_bib0026) 2022; 12 Wang (10.1016/j.ast.2023.108661_bib0029) 2017; 38 Thedin (10.1016/j.ast.2023.108661_bib0002) 2019; 56 Ngo (10.1016/j.ast.2023.108661_bib0019) 2022; 45 Li (10.1016/j.ast.2023.108661_bib0033) 2015; 265 Wang (10.1016/j.ast.2023.108661_bib0017) 2012; 46 Tho (10.1016/j.ast.2023.108661_bib0027) 2004; 49 Crozon (10.1016/j.ast.2023.108661_bib0003) 2018; 122 Zhao (10.1016/j.ast.2023.108661_bib0034) 2020; 11 Memon (10.1016/j.ast.2023.108661_bib0013) 2019; 56 Saetti (10.1016/j.ast.2023.108661_bib0038) 2022 Ngo (10.1016/j.ast.2023.108661_bib0021) 2016; 39 Crozon (10.1016/j.ast.2023.108661_bib0001) 2014; 51 Mehling (10.1016/j.ast.2023.108661_bib0012) 2021 Stroe (10.1016/j.ast.2023.108661_bib0037) 2014; 656 Huang (10.1016/j.ast.2023.108661_bib0007) 2019; 84 Linn (10.1016/j.ast.2023.108661_bib0023) 2006; 43 Zhu (10.1016/j.ast.2023.108661_bib0024) 2009; 46 He (10.1016/j.ast.2023.108661_bib0022) 2016; 17 Dooley (10.1016/j.ast.2023.108661_bib0008) 2020; 208 Su (10.1016/j.ast.2023.108661_bib0004) 2019; 13 Zhu (10.1016/j.ast.2023.108661_bib0010) 2021; 2029 Salt (10.1016/j.ast.2023.108661_bib0015) 1995; 2463 Shukla (10.1016/j.ast.2023.108661_bib0005) 2019; 106 Sharma (10.1016/j.ast.2023.108661_bib0011) 2021; 58 Zhao (10.1016/j.ast.2023.108661_bib0006) 2021; 15 Langlois (10.1016/j.ast.2023.108661_bib0016) 2002 Siboni (10.1016/j.ast.2023.108661_bib0036) 2009; 30 Sharma (10.1016/j.ast.2023.108661_bib0030) 2020 Silva (10.1016/j.ast.2023.108661_bib0032) 2020; 105 Han (10.1016/j.ast.2023.108661_bib0009) 2012; 16 Hess (10.1016/j.ast.2023.108661_bib0039) 2006; 29 Yu (10.1016/j.ast.2023.108661_bib0018) 2023; 141 Zhao (10.1016/j.ast.2023.108661_bib0028) 2021; 16 Cracknell (10.1016/j.ast.2023.108661_bib0014) 1981 |
References_xml | – volume: 49 start-page: 483 year: 2004 end-page: 492 ident: bib0027 article-title: Efficient helicopter skid landing gear dynamic drop simulation using LS-DYNA publication-title: J. Am. Helicopter Soc. – volume: 11 start-page: 193 year: 2020 end-page: 204 ident: bib0034 article-title: Dynamic parameters identification of a haptic interface for a helicopter flight simulator publication-title: Mech. Sci. – volume: 43 start-page: 1 year: 2020 end-page: 17 ident: bib0020 article-title: Shrinking horizon model predictive control method for helicopter–ship touchdown publication-title: J. Guid. Control Dyn. – volume: 38 start-page: 1595 year: 2017 end-page: 1600 ident: bib0029 article-title: Study of the landing dynamics of carrier based helicopter under complex sea conditions publication-title: J. Northeast. Univ., Nat. Sci. – year: 1981 ident: bib0014 publication-title: LAMPS III recovery assist, securing and traversing (RAST) system – volume: 12 start-page: 2603 year: 2022 ident: bib0026 article-title: Electrical aircraft ship integrated secure and traverse system design and key characteristics analysis publication-title: Appl. Sci. – volume: 56 year: 2019 ident: bib0013 article-title: Motion fidelity requirements for helicopter-ship operations in maritime rotorcraft flight simulators publication-title: J. Aircr. – volume: 141 year: 2023 ident: bib0018 article-title: Numerical studies on the aeroelasticity of a shipboard helicopter rotor during engagement and disengagement with ship motions using CFD/CSD coupling approach publication-title: Aerosp. Sci. Technol. – volume: 46 start-page: 1533 year: 2009 end-page: 1543 ident: bib0024 article-title: Fatigue life estimation of helicopter landing probe based on dynamic simulation publication-title: J. Aircr. – volume: 13 start-page: 309 year: 2019 end-page: 326 ident: bib0004 article-title: Numerical investigation of rotor loads of a shipborne coaxial-rotor helicopter during a vertical landing based on moving overset mesh method publication-title: Eng. Appl. Comp. Fluid Mech. – volume: 46 start-page: 1146 year: 2012 end-page: 1152 ident: bib0017 article-title: Study on stability control for tractor-helicopter system on deck publication-title: J. Shanghai Jiaotong Univ. – volume: 22 start-page: 1514 year: 2022 ident: bib0025 article-title: Research on shipborne helicopter electric rapid secure device: system design, modeling, and simulation publication-title: Sensors – volume: 265 start-page: 733 year: 2015 end-page: 747 ident: bib0033 article-title: An IDRA approach for modelling helicopter based on Lagrange dynamics publication-title: Appl. Math. Comput. – volume: 43 start-page: 895 year: 2006 end-page: 906 ident: bib0023 article-title: Development and experimental validation of a shipboard helicopter on-deck maneuvering simulation publication-title: J. Aircr. – volume: 30 start-page: 201 year: 2009 ident: bib0036 article-title: On the generalized potential of inertial forces publication-title: Eur. J. Phys. – volume: 208 year: 2020 ident: bib0008 article-title: Ship airwakes in waves and motions and effects on helicopter operation publication-title: Comput. Fluids – volume: 39 start-page: 574 year: 2016 end-page: 589 ident: bib0021 article-title: Model predictive control for helicopter shipboard operations in the ship airwakes publication-title: J. Guid. Control Dyn. – year: Jan, 2021 ident: bib0012 publication-title: Piloted simulation of helicopter shipboard recovery with visual and control augmentation – volume: 17 year: 2016 ident: bib0022 article-title: A simulation model of a helicopter landing on a ship publication-title: Int. J. Simul. Syst. Sci. Technol. – volume: 656 start-page: 171 year: 2014 end-page: 180 ident: bib0037 article-title: Generalization of the Lagrange Equations Formalism, for Motions with Respect to Non-Inertial Reference Frames publication-title: Appl. Mech. Mater. – volume: 106 start-page: 71 year: 2019 end-page: 107 ident: bib0005 article-title: Ship-helo coupled airwake aerodynamics: a comprehensive review publication-title: Prog. Aeosp. Sci. – volume: 2029 year: 2021 ident: bib0010 article-title: Simulation experiment analysis and verification of ship resonance for shipboard helicopter publication-title: J. Phys.: Conf. Ser. – volume: 2463 start-page: 102 year: 1995 end-page: 114 ident: bib0015 article-title: Electro-optic precision approach and landing system publication-title: Proc. SPIE - Int. Soc. Optic. Eng. – volume: 122 start-page: 42 year: 2018 end-page: 82 ident: bib0003 article-title: Coupled flight dynamics and CFD–demonstration for helicopters in shipborne environment publication-title: Aeronaut. J. – volume: 29 start-page: 1339 year: 2006 end-page: 1349 ident: bib0039 article-title: Simplified technique for modelling piloted rotorcraft operations near ships publication-title: J. Guid. Control Dyn. – volume: 45 start-page: 774 year: 2022 end-page: 780 ident: bib0019 article-title: Variable horizon model predictive control for helicopter landing on moving decks publication-title: J. Guid. Control Dyn. – volume: 51 start-page: 1813 year: 2014 end-page: 1832 ident: bib0001 article-title: Numerical study of helicopter rotors in a ship airwake publication-title: J. Aircr. – volume: 15 start-page: 1902 year: 2021 end-page: 1918 ident: bib0006 article-title: Numerical investigation for coupled rotor/ship flowfield using two models based on the momentum source method publication-title: Eng. Appl. Comp. Fluid Mech. – volume: 58 start-page: 467 year: 2021 end-page: 486 ident: bib0011 article-title: Helicopter shipboard landing simulation including wind, deck motion and dynamic ground effect publication-title: J. Aircr. – volume: 56 start-page: 812 year: 2019 end-page: 824 ident: bib0002 article-title: Coupled simulations of atmospheric turbulence-modified ship airwakes and helicopter flight dynamics publication-title: J. Aircr. – year: 2002 ident: bib0016 article-title: Methodology for ensuring safety of an embarked helicopter securing system probe installation publication-title: 23rd international congress of aeronautical sciences (ICAS 2002) – year: 2022 ident: bib0038 article-title: Flight simulation and control using the Julia language publication-title: AIAA Scitech Forum – volume: 16 start-page: 1 year: 2012 end-page: 9 ident: bib0009 article-title: Aeroelastic analysis of a shipboard helicopter rotor with ship motions during engagement and disengagement operations publication-title: Aerosp. Sci. Technol. – year: 2020 ident: bib0030 article-title: Simulation of helicopter hover and landing on a moving ship deck using a dynamic ground effect model publication-title: AIAA Scitech 2020 Forum – volume: 16 start-page: 151 year: 2021 end-page: 162 ident: bib0028 article-title: Modeling and analysis of landing collision dynamics for a shipborne helicopter publication-title: Front. Mech. Eng. – volume: 105 year: 2020 ident: bib0032 article-title: A strategy to suppress limit cycle oscillations in helicopter ground resonance including landing gear nonlinearities publication-title: Aerosp. Sci. Technol. – volume: 84 start-page: 18 year: 2019 end-page: 30 ident: bib0007 article-title: Fixed-time autonomous shipboard landing control of a helicopter with external disturbances publication-title: Aerosp. Sci. Technol. – year: 2020 ident: 10.1016/j.ast.2023.108661_bib0030 article-title: Simulation of helicopter hover and landing on a moving ship deck using a dynamic ground effect model – volume: 29 start-page: 1339 issue: 6 year: 2006 ident: 10.1016/j.ast.2023.108661_bib0039 article-title: Simplified technique for modelling piloted rotorcraft operations near ships publication-title: J. Guid. Control Dyn. doi: 10.2514/1.18711 – volume: 43 start-page: 895 issue: 4 year: 2006 ident: 10.1016/j.ast.2023.108661_bib0023 article-title: Development and experimental validation of a shipboard helicopter on-deck maneuvering simulation publication-title: J. Aircr. doi: 10.2514/1.13865 – volume: 16 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.ast.2023.108661_bib0009 article-title: Aeroelastic analysis of a shipboard helicopter rotor with ship motions during engagement and disengagement operations publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2011.02.001 – year: 2002 ident: 10.1016/j.ast.2023.108661_bib0016 article-title: Methodology for ensuring safety of an embarked helicopter securing system probe installation – volume: 141 year: 2023 ident: 10.1016/j.ast.2023.108661_bib0018 article-title: Numerical studies on the aeroelasticity of a shipboard helicopter rotor during engagement and disengagement with ship motions using CFD/CSD coupling approach publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2023.108559 – volume: 106 start-page: 71 issue: APR year: 2019 ident: 10.1016/j.ast.2023.108661_bib0005 article-title: Ship-helo coupled airwake aerodynamics: a comprehensive review publication-title: Prog. Aeosp. Sci. doi: 10.1016/j.paerosci.2019.02.002 – volume: 105 year: 2020 ident: 10.1016/j.ast.2023.108661_bib0032 article-title: A strategy to suppress limit cycle oscillations in helicopter ground resonance including landing gear nonlinearities publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106011 – volume: 30 start-page: 201 issue: 1 year: 2009 ident: 10.1016/j.ast.2023.108661_bib0036 article-title: On the generalized potential of inertial forces publication-title: Eur. J. Phys. doi: 10.1088/0143-0807/30/1/021 – volume: 46 start-page: 1146 issue: 07 year: 2012 ident: 10.1016/j.ast.2023.108661_bib0017 article-title: Study on stability control for tractor-helicopter system on deck publication-title: J. Shanghai Jiaotong Univ. – volume: 17 issue: 25 year: 2016 ident: 10.1016/j.ast.2023.108661_bib0022 article-title: A simulation model of a helicopter landing on a ship publication-title: Int. J. Simul. Syst. Sci. Technol. – volume: 16 start-page: 151 issue: 1 year: 2021 ident: 10.1016/j.ast.2023.108661_bib0028 article-title: Modeling and analysis of landing collision dynamics for a shipborne helicopter publication-title: Front. Mech. Eng. doi: 10.1007/s11465-020-0617-z – volume: 656 start-page: 171 year: 2014 ident: 10.1016/j.ast.2023.108661_bib0037 article-title: Generalization of the Lagrange Equations Formalism, for Motions with Respect to Non-Inertial Reference Frames publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.656.171 – volume: 12 start-page: 2603 issue: 5 year: 2022 ident: 10.1016/j.ast.2023.108661_bib0026 article-title: Electrical aircraft ship integrated secure and traverse system design and key characteristics analysis publication-title: Appl. Sci. doi: 10.3390/app12052603 – year: 1981 ident: 10.1016/j.ast.2023.108661_bib0014 – volume: 38 start-page: 1595 issue: 11 year: 2017 ident: 10.1016/j.ast.2023.108661_bib0029 article-title: Study of the landing dynamics of carrier based helicopter under complex sea conditions publication-title: J. Northeast. Univ., Nat. Sci. – volume: 45 start-page: 774 issue: 4 year: 2022 ident: 10.1016/j.ast.2023.108661_bib0019 article-title: Variable horizon model predictive control for helicopter landing on moving decks publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G005789 – volume: 58 start-page: 467 issue: 3 year: 2021 ident: 10.1016/j.ast.2023.108661_bib0011 article-title: Helicopter shipboard landing simulation including wind, deck motion and dynamic ground effect publication-title: J. Aircr. doi: 10.2514/1.C035973 – volume: 56 issue: 6 year: 2019 ident: 10.1016/j.ast.2023.108661_bib0013 article-title: Motion fidelity requirements for helicopter-ship operations in maritime rotorcraft flight simulators publication-title: J. Aircr. doi: 10.2514/1.C035521 – volume: 122 start-page: 42 issue: 1247 year: 2018 ident: 10.1016/j.ast.2023.108661_bib0003 article-title: Coupled flight dynamics and CFD–demonstration for helicopters in shipborne environment publication-title: Aeronaut. J. doi: 10.1017/aer.2017.112 – volume: 39 start-page: 574 issue: 3 year: 2016 ident: 10.1016/j.ast.2023.108661_bib0021 article-title: Model predictive control for helicopter shipboard operations in the ship airwakes publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G001243 – volume: 49 start-page: 483 year: 2004 ident: 10.1016/j.ast.2023.108661_bib0027 article-title: Efficient helicopter skid landing gear dynamic drop simulation using LS-DYNA publication-title: J. Am. Helicopter Soc. doi: 10.4050/JAHS.49.483 – volume: 15 start-page: 1902 issue: 1 year: 2021 ident: 10.1016/j.ast.2023.108661_bib0006 article-title: Numerical investigation for coupled rotor/ship flowfield using two models based on the momentum source method publication-title: Eng. Appl. Comp. Fluid Mech. – volume: 265 start-page: 733 issue: 3 year: 2015 ident: 10.1016/j.ast.2023.108661_bib0033 article-title: An IDRA approach for modelling helicopter based on Lagrange dynamics publication-title: Appl. Math. Comput. – volume: 2463 start-page: 102 year: 1995 ident: 10.1016/j.ast.2023.108661_bib0015 article-title: Electro-optic precision approach and landing system publication-title: Proc. SPIE - Int. Soc. Optic. Eng. doi: 10.1117/12.212734 – volume: 43 start-page: 1 issue: 5 year: 2020 ident: 10.1016/j.ast.2023.108661_bib0020 article-title: Shrinking horizon model predictive control method for helicopter–ship touchdown publication-title: J. Guid. Control Dyn. doi: 10.2514/1.G004374 – volume: 46 start-page: 1533 issue: 5 year: 2009 ident: 10.1016/j.ast.2023.108661_bib0024 article-title: Fatigue life estimation of helicopter landing probe based on dynamic simulation publication-title: J. Aircr. doi: 10.2514/1.38345 – volume: 22 start-page: 1514 issue: 4 year: 2022 ident: 10.1016/j.ast.2023.108661_bib0025 article-title: Research on shipborne helicopter electric rapid secure device: system design, modeling, and simulation publication-title: Sensors doi: 10.3390/s22041514 – volume: 2029 year: 2021 ident: 10.1016/j.ast.2023.108661_bib0010 article-title: Simulation experiment analysis and verification of ship resonance for shipboard helicopter publication-title: J. Phys.: Conf. Ser. – volume: 13 start-page: 309 issue: 1 year: 2019 ident: 10.1016/j.ast.2023.108661_bib0004 article-title: Numerical investigation of rotor loads of a shipborne coaxial-rotor helicopter during a vertical landing based on moving overset mesh method publication-title: Eng. Appl. Comp. Fluid Mech. – volume: 84 start-page: 18 year: 2019 ident: 10.1016/j.ast.2023.108661_bib0007 article-title: Fixed-time autonomous shipboard landing control of a helicopter with external disturbances publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.07.032 – year: 2022 ident: 10.1016/j.ast.2023.108661_bib0038 article-title: Flight simulation and control using the Julia language – volume: 56 start-page: 812 issue: 2 year: 2019 ident: 10.1016/j.ast.2023.108661_bib0002 article-title: Coupled simulations of atmospheric turbulence-modified ship airwakes and helicopter flight dynamics publication-title: J. Aircr. doi: 10.2514/1.C035158 – year: 2021 ident: 10.1016/j.ast.2023.108661_bib0012 – volume: 51 start-page: 1813 issue: 6 year: 2014 ident: 10.1016/j.ast.2023.108661_bib0001 article-title: Numerical study of helicopter rotors in a ship airwake publication-title: J. Aircr. doi: 10.2514/1.C032535 – volume: 208 year: 2020 ident: 10.1016/j.ast.2023.108661_bib0008 article-title: Ship airwakes in waves and motions and effects on helicopter operation publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2020.104627 – volume: 11 start-page: 193 issue: 1 year: 2020 ident: 10.1016/j.ast.2023.108661_bib0034 article-title: Dynamic parameters identification of a haptic interface for a helicopter flight simulator publication-title: Mech. Sci. doi: 10.5194/ms-11-193-2020 |
SSID | ssj0002942 |
Score | 2.389832 |
Snippet | The traction operation of a shipboard helicopter on the deck is a complex force-coupling process involving multiple moving entities. To more efficiently... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108661 |
SubjectTerms | Lagrange equation Landing dynamics Shipboard helicopter Tire model Traction operation |
Title | Dynamic modeling and analysis of traction operation process for the shipboard helicopter |
URI | https://dx.doi.org/10.1016/j.ast.2023.108661 |
Volume | 142 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwIZk6iRPHY1WoCoguFKlbFL9EEWqiElZ-O-c4gSIBA0OGWOco-nw6n-W770PonNpUap0ERKWhJkxySYQyEZHCBCbVWqc1b8H9NJk8stt5PO-gUdsL48oqm9jvY3odrZuRQYPmoFwsBg_uztS5T-gY1-PUNfw69jrw6cv3rzKPUNQCOs6YOOv2ZrOu8cpfXTllGNV6Q0nw8960tt-Md9B2kyjiof-XXdQxyz20tUYfuI_mV15OHtdyNjCE86WGx9OM4MLiauX7FnBRGr_UuPSdARiSVQzJH3bVWrIAP8FP8A1VlAD0AZqNr2ejCWmUEogKBa8IYyqQSkQmTXOruLI6iK3hLIfsxsKBzRhLozh3MlWRFtTynAkaCWMVHL8SFR2i7rJYmiOEJY3zRHLDuRFMJqGgTCsJZx6tqIxD1kO0hShTDYu4E7N4ydpysecMUM0cqplHtYcuPqeUnkLjL2PW4p5984MMQvzv047_N-0Ebbo331t4irrV6s2cQZJRyX7tRX20Mby5m0w_AETl0kQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw-ckKxmcRYfq0LV0uVCkXqL4k0UoSQq4f-x46QqEnDgkIvjiaLn0Xgsz7wHcOeomAkRupjHnsCERQxTLn3MqHRlLISIK96C2TwcvZCnZbBswaDphTFllXXstzG9itb1SK9Gs1esVr1nc2dq3MczjOtBHO9Ax7BTkTZ0-uPJaL4JyB6tNHTMfGwMmsvNqswr_TAVlZ5fSQ6F7s_b09aWMzyEgzpXRH37O0fQktkx7G8xCJ7A8sEqyqNK0UYPoTQT-rFMIyhXqFzb1gWUF9KuNipscwDS-SrS-R8yBVss166CXvU3eF5orE9hMXxcDEa4FkvA3KNRiQnhLuPUl3GcKh5xJdxAyYikOsFR-swmpXL8IDVKVb6gjopSQh2fSsX1CSzk_hm0szyT54CYE6Qhi2QUSUpY6FGHCM70sUdwhwUe6YLTQJTwmkjc6Fm8J03F2FuiUU0MqolFtQv3G5PCsmj8NZk0uCffXCHRUf53s4v_md3C7mgxmybT8XxyCXvmjW01vIJ2uf6U1zrnKNlN7VNfiZPU9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+modeling+and+analysis+of+traction+operation+process+for+the+shipboard+helicopter&rft.jtitle=Aerospace+science+and+technology&rft.au=Yang%2C+Haojie&rft.au=Ni%2C+Tao&rft.au=Wang%2C+Zihe&rft.au=Wang%2C+Zhilong&rft.date=2023-11-01&rft.issn=1270-9638&rft.volume=142&rft.spage=108661&rft_id=info:doi/10.1016%2Fj.ast.2023.108661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ast_2023_108661 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon |