Dynamic modeling and analysis of traction operation process for the shipboard helicopter

The traction operation of a shipboard helicopter on the deck is a complex force-coupling process involving multiple moving entities. To more efficiently simulate the traction process, this study introduces a dynamic model based on the independent modeling of moving subjects (IMMS) method. Initially,...

Full description

Saved in:
Bibliographic Details
Published inAerospace science and technology Vol. 142; p. 108661
Main Authors Yang, Haojie, Ni, Tao, Wang, Zihe, Wang, Zhilong, Zhao, Dingxuan
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.11.2023
Subjects
Online AccessGet full text
ISSN1270-9638
DOI10.1016/j.ast.2023.108661

Cover

Loading…
Abstract The traction operation of a shipboard helicopter on the deck is a complex force-coupling process involving multiple moving entities. To more efficiently simulate the traction process, this study introduces a dynamic model based on the independent modeling of moving subjects (IMMS) method. Initially, the forces on the tire and the articulation part are analyzed, followed by the separate establishment of dynamic models for the helicopter and tractor using the Lagrange equation. Considering the articulated states among the ship, helicopter, and tractor, and according to the active–passive relationships of each entity, a unified solution method is introduced to solve the motion equations sequentially. The model's reliability and real-time performance are subsequently assessed and validated, effectively simulating the helicopter's traction operation procedure. The results reveal that the IMMS dynamic model exhibits high reliability and requires, on average, only 0.5% of the CPU time compared to the conventional dynamic model. The IMMS approach will be useful in advancing research into the modeling of shipboard helicopter traction processes.
AbstractList The traction operation of a shipboard helicopter on the deck is a complex force-coupling process involving multiple moving entities. To more efficiently simulate the traction process, this study introduces a dynamic model based on the independent modeling of moving subjects (IMMS) method. Initially, the forces on the tire and the articulation part are analyzed, followed by the separate establishment of dynamic models for the helicopter and tractor using the Lagrange equation. Considering the articulated states among the ship, helicopter, and tractor, and according to the active–passive relationships of each entity, a unified solution method is introduced to solve the motion equations sequentially. The model's reliability and real-time performance are subsequently assessed and validated, effectively simulating the helicopter's traction operation procedure. The results reveal that the IMMS dynamic model exhibits high reliability and requires, on average, only 0.5% of the CPU time compared to the conventional dynamic model. The IMMS approach will be useful in advancing research into the modeling of shipboard helicopter traction processes.
ArticleNumber 108661
Author Yang, Haojie
Zhao, Dingxuan
Wang, Zihe
Wang, Zhilong
Ni, Tao
Author_xml – sequence: 1
  givenname: Haojie
  orcidid: 0000-0003-1054-5816
  surname: Yang
  fullname: Yang, Haojie
  email: yhaojie@yeah.net
  organization: School of Mechanical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao, Hebei 066004, China
– sequence: 2
  givenname: Tao
  surname: Ni
  fullname: Ni, Tao
  organization: School of Vehicles and Energ, Yanshan University, 438 West Hebei Street, Qinhuangdao, Hebei 066004, China
– sequence: 3
  givenname: Zihe
  surname: Wang
  fullname: Wang, Zihe
  organization: School of Mechanical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao, Hebei 066004, China
– sequence: 4
  givenname: Zhilong
  surname: Wang
  fullname: Wang, Zhilong
  organization: School of Mechanical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao, Hebei 066004, China
– sequence: 5
  givenname: Dingxuan
  surname: Zhao
  fullname: Zhao, Dingxuan
  email: zdx-yw@ysu.edu.cn
  organization: School of Mechanical Engineering, Yanshan University, 438 West Hebei Street, Qinhuangdao, Hebei 066004, China
BookMark eNp9kLtuAjEQRV0QKUDyAen8A0v8WNZrpYrIU0JKQ5HOMrPjYLSsV7YVib-PCalSUIxmpjhXumdGJkMYkJA7zhac8eZ-v7ApLwQTsvxt0_AJmXKhWKUb2V6TWUp7xpjQtZiSz6fjYA8e6CF02Pvhi9qhK2P7Y_KJBkdztJB9GGgYMdrfa4wBMCXqQqR5hzTt_LgNNnZ0VzIgjBnjDblytk94-7fnZPPyvFm9VeuP1_fV47oCoVWu6hr4FrTEtrUOFLiOLx2q2i4b4RRXiI7JpdVKctlp5pStNZMaHWhRNyDnhJ9jIYaUIjozRn-w8Wg4MycbZm-KDXOyYc42CqP-MeDzb7PS1fcXyYcziaXRt8doEngcADsfEbLpgr9A_wDRF3_2
CitedBy_id crossref_primary_10_1007_s11071_025_10994_8
crossref_primary_10_3390_act13090342
crossref_primary_10_3390_aerospace11110885
crossref_primary_10_1016_j_oceaneng_2024_117107
crossref_primary_10_1016_j_ast_2024_108909
crossref_primary_10_3390_electronics13173477
Cites_doi 10.2514/1.18711
10.2514/1.13865
10.1016/j.ast.2011.02.001
10.1016/j.ast.2023.108559
10.1016/j.paerosci.2019.02.002
10.1016/j.ast.2020.106011
10.1088/0143-0807/30/1/021
10.1007/s11465-020-0617-z
10.4028/www.scientific.net/AMM.656.171
10.3390/app12052603
10.2514/1.G005789
10.2514/1.C035973
10.2514/1.C035521
10.1017/aer.2017.112
10.2514/1.G001243
10.4050/JAHS.49.483
10.1117/12.212734
10.2514/1.G004374
10.2514/1.38345
10.3390/s22041514
10.1016/j.ast.2018.07.032
10.2514/1.C035158
10.2514/1.C032535
10.1016/j.compfluid.2020.104627
10.5194/ms-11-193-2020
ContentType Journal Article
Copyright 2023 Elsevier Masson SAS
Copyright_xml – notice: 2023 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.ast.2023.108661
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ast_2023_108661
S1270963823005588
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-44c1bc93e88afc7cfd15fe74a562f717eef035a97313d90f7a49039efc9246c3
IEDL.DBID .~1
ISSN 1270-9638
IngestDate Thu Apr 24 22:52:26 EDT 2025
Tue Jul 01 01:22:13 EDT 2025
Tue Dec 03 03:45:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Traction operation
Landing dynamics
Tire model
Shipboard helicopter
Lagrange equation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-44c1bc93e88afc7cfd15fe74a562f717eef035a97313d90f7a49039efc9246c3
ORCID 0000-0003-1054-5816
ParticipantIDs crossref_primary_10_1016_j_ast_2023_108661
crossref_citationtrail_10_1016_j_ast_2023_108661
elsevier_sciencedirect_doi_10_1016_j_ast_2023_108661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2023
2023-11-00
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: November 2023
PublicationDecade 2020
PublicationTitle Aerospace science and technology
PublicationYear 2023
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Greer, Sultan (bib0020) 2020; 43
Huang, Zhu, Zheng, Feroskhanc (bib0007) 2019; 84
Cracknell (bib0014) 1981
Zhao, Yang, GIUSEPPE, Li, Ni, Yao (bib0028) 2021; 16
Su, Xu, Huang, Shi (bib0004) 2019; 13
Wang, Zhou, Liu (bib0017) 2012; 46
Crozon, Steijl, Barakos (bib0003) 2018; 122
Stroe, Craifaleanu (bib0037) 2014; 656
Ngo, Sultan (bib0021) 2016; 39
Li, Zhao, Zhang, Liu (bib0033) 2015; 265
Mehling, Halbe, Gasparac, Vrdoljak, Hajek (bib0012) Jan, 2021
Zhao, Yang, Yao, Ni (bib0006) 2021; 15
Tho, Sparks, Sareen, Smith, Johnson (bib0027) 2004; 49
Dooley, Martin, Buchholz, Carrica (bib0008) 2020; 208
Hess (bib0039) 2006; 29
Yu, Hu, Hu, Xu, Shi (bib0018) 2023; 141
Silva, Bueno, Abreu (bib0032) 2020; 105
Zhu, Lu, Sun, Cheng, Wang, Li (bib0010) 2021; 2029
Linn, Langlois (bib0023) 2006; 43
Saetti, Horn (bib0038) 2022
Thedin, Kinzel, Horn, Schmitz (bib0002) 2019; 56
Memon, Owen, White (bib0013) 2019; 56
Langlois, Keary (bib0016) 2002
Sharma, Padthe, Friedmann (bib0030) 2020
Shukla, Sinha, Singh (bib0005) 2019; 106
Han, Wang, Gao (bib0009) 2012; 16
Siboni (bib0036) 2009; 30
He, Wang, Zhang, Liu (bib0022) 2016; 17
Zhang, Liu, Zhao, Wang, Yang (bib0025) 2022; 22
Sharma, Padthe, Friedmann (bib0011) 2021; 58
Wang, Zhao, Wei, Zhao (bib0029) 2017; 38
Zhao, Zhang, Carbone, Yang, Yao (bib0034) 2020; 11
Zhang, Liu, Zhao, Wang, Jia (bib0026) 2022; 12
Crozon, Steijl, Barakos (bib0001) 2014; 51
Zhu, LaRosa, Ma (bib0024) 2009; 46
Salt (bib0015) 1995; 2463
Ngo, Sultan (bib0019) 2022; 45
Zhang (10.1016/j.ast.2023.108661_bib0025) 2022; 22
Greer (10.1016/j.ast.2023.108661_bib0020) 2020; 43
Zhang (10.1016/j.ast.2023.108661_bib0026) 2022; 12
Wang (10.1016/j.ast.2023.108661_bib0029) 2017; 38
Thedin (10.1016/j.ast.2023.108661_bib0002) 2019; 56
Ngo (10.1016/j.ast.2023.108661_bib0019) 2022; 45
Li (10.1016/j.ast.2023.108661_bib0033) 2015; 265
Wang (10.1016/j.ast.2023.108661_bib0017) 2012; 46
Tho (10.1016/j.ast.2023.108661_bib0027) 2004; 49
Crozon (10.1016/j.ast.2023.108661_bib0003) 2018; 122
Zhao (10.1016/j.ast.2023.108661_bib0034) 2020; 11
Memon (10.1016/j.ast.2023.108661_bib0013) 2019; 56
Saetti (10.1016/j.ast.2023.108661_bib0038) 2022
Ngo (10.1016/j.ast.2023.108661_bib0021) 2016; 39
Crozon (10.1016/j.ast.2023.108661_bib0001) 2014; 51
Mehling (10.1016/j.ast.2023.108661_bib0012) 2021
Stroe (10.1016/j.ast.2023.108661_bib0037) 2014; 656
Huang (10.1016/j.ast.2023.108661_bib0007) 2019; 84
Linn (10.1016/j.ast.2023.108661_bib0023) 2006; 43
Zhu (10.1016/j.ast.2023.108661_bib0024) 2009; 46
He (10.1016/j.ast.2023.108661_bib0022) 2016; 17
Dooley (10.1016/j.ast.2023.108661_bib0008) 2020; 208
Su (10.1016/j.ast.2023.108661_bib0004) 2019; 13
Zhu (10.1016/j.ast.2023.108661_bib0010) 2021; 2029
Salt (10.1016/j.ast.2023.108661_bib0015) 1995; 2463
Shukla (10.1016/j.ast.2023.108661_bib0005) 2019; 106
Sharma (10.1016/j.ast.2023.108661_bib0011) 2021; 58
Zhao (10.1016/j.ast.2023.108661_bib0006) 2021; 15
Langlois (10.1016/j.ast.2023.108661_bib0016) 2002
Siboni (10.1016/j.ast.2023.108661_bib0036) 2009; 30
Sharma (10.1016/j.ast.2023.108661_bib0030) 2020
Silva (10.1016/j.ast.2023.108661_bib0032) 2020; 105
Han (10.1016/j.ast.2023.108661_bib0009) 2012; 16
Hess (10.1016/j.ast.2023.108661_bib0039) 2006; 29
Yu (10.1016/j.ast.2023.108661_bib0018) 2023; 141
Zhao (10.1016/j.ast.2023.108661_bib0028) 2021; 16
Cracknell (10.1016/j.ast.2023.108661_bib0014) 1981
References_xml – volume: 49
  start-page: 483
  year: 2004
  end-page: 492
  ident: bib0027
  article-title: Efficient helicopter skid landing gear dynamic drop simulation using LS-DYNA
  publication-title: J. Am. Helicopter Soc.
– volume: 11
  start-page: 193
  year: 2020
  end-page: 204
  ident: bib0034
  article-title: Dynamic parameters identification of a haptic interface for a helicopter flight simulator
  publication-title: Mech. Sci.
– volume: 43
  start-page: 1
  year: 2020
  end-page: 17
  ident: bib0020
  article-title: Shrinking horizon model predictive control method for helicopter–ship touchdown
  publication-title: J. Guid. Control Dyn.
– volume: 38
  start-page: 1595
  year: 2017
  end-page: 1600
  ident: bib0029
  article-title: Study of the landing dynamics of carrier based helicopter under complex sea conditions
  publication-title: J. Northeast. Univ., Nat. Sci.
– year: 1981
  ident: bib0014
  publication-title: LAMPS III recovery assist, securing and traversing (RAST) system
– volume: 12
  start-page: 2603
  year: 2022
  ident: bib0026
  article-title: Electrical aircraft ship integrated secure and traverse system design and key characteristics analysis
  publication-title: Appl. Sci.
– volume: 56
  year: 2019
  ident: bib0013
  article-title: Motion fidelity requirements for helicopter-ship operations in maritime rotorcraft flight simulators
  publication-title: J. Aircr.
– volume: 141
  year: 2023
  ident: bib0018
  article-title: Numerical studies on the aeroelasticity of a shipboard helicopter rotor during engagement and disengagement with ship motions using CFD/CSD coupling approach
  publication-title: Aerosp. Sci. Technol.
– volume: 46
  start-page: 1533
  year: 2009
  end-page: 1543
  ident: bib0024
  article-title: Fatigue life estimation of helicopter landing probe based on dynamic simulation
  publication-title: J. Aircr.
– volume: 13
  start-page: 309
  year: 2019
  end-page: 326
  ident: bib0004
  article-title: Numerical investigation of rotor loads of a shipborne coaxial-rotor helicopter during a vertical landing based on moving overset mesh method
  publication-title: Eng. Appl. Comp. Fluid Mech.
– volume: 46
  start-page: 1146
  year: 2012
  end-page: 1152
  ident: bib0017
  article-title: Study on stability control for tractor-helicopter system on deck
  publication-title: J. Shanghai Jiaotong Univ.
– volume: 22
  start-page: 1514
  year: 2022
  ident: bib0025
  article-title: Research on shipborne helicopter electric rapid secure device: system design, modeling, and simulation
  publication-title: Sensors
– volume: 265
  start-page: 733
  year: 2015
  end-page: 747
  ident: bib0033
  article-title: An IDRA approach for modelling helicopter based on Lagrange dynamics
  publication-title: Appl. Math. Comput.
– volume: 43
  start-page: 895
  year: 2006
  end-page: 906
  ident: bib0023
  article-title: Development and experimental validation of a shipboard helicopter on-deck maneuvering simulation
  publication-title: J. Aircr.
– volume: 30
  start-page: 201
  year: 2009
  ident: bib0036
  article-title: On the generalized potential of inertial forces
  publication-title: Eur. J. Phys.
– volume: 208
  year: 2020
  ident: bib0008
  article-title: Ship airwakes in waves and motions and effects on helicopter operation
  publication-title: Comput. Fluids
– volume: 39
  start-page: 574
  year: 2016
  end-page: 589
  ident: bib0021
  article-title: Model predictive control for helicopter shipboard operations in the ship airwakes
  publication-title: J. Guid. Control Dyn.
– year: Jan, 2021
  ident: bib0012
  publication-title: Piloted simulation of helicopter shipboard recovery with visual and control augmentation
– volume: 17
  year: 2016
  ident: bib0022
  article-title: A simulation model of a helicopter landing on a ship
  publication-title: Int. J. Simul. Syst. Sci. Technol.
– volume: 656
  start-page: 171
  year: 2014
  end-page: 180
  ident: bib0037
  article-title: Generalization of the Lagrange Equations Formalism, for Motions with Respect to Non-Inertial Reference Frames
  publication-title: Appl. Mech. Mater.
– volume: 106
  start-page: 71
  year: 2019
  end-page: 107
  ident: bib0005
  article-title: Ship-helo coupled airwake aerodynamics: a comprehensive review
  publication-title: Prog. Aeosp. Sci.
– volume: 2029
  year: 2021
  ident: bib0010
  article-title: Simulation experiment analysis and verification of ship resonance for shipboard helicopter
  publication-title: J. Phys.: Conf. Ser.
– volume: 2463
  start-page: 102
  year: 1995
  end-page: 114
  ident: bib0015
  article-title: Electro-optic precision approach and landing system
  publication-title: Proc. SPIE - Int. Soc. Optic. Eng.
– volume: 122
  start-page: 42
  year: 2018
  end-page: 82
  ident: bib0003
  article-title: Coupled flight dynamics and CFD–demonstration for helicopters in shipborne environment
  publication-title: Aeronaut. J.
– volume: 29
  start-page: 1339
  year: 2006
  end-page: 1349
  ident: bib0039
  article-title: Simplified technique for modelling piloted rotorcraft operations near ships
  publication-title: J. Guid. Control Dyn.
– volume: 45
  start-page: 774
  year: 2022
  end-page: 780
  ident: bib0019
  article-title: Variable horizon model predictive control for helicopter landing on moving decks
  publication-title: J. Guid. Control Dyn.
– volume: 51
  start-page: 1813
  year: 2014
  end-page: 1832
  ident: bib0001
  article-title: Numerical study of helicopter rotors in a ship airwake
  publication-title: J. Aircr.
– volume: 15
  start-page: 1902
  year: 2021
  end-page: 1918
  ident: bib0006
  article-title: Numerical investigation for coupled rotor/ship flowfield using two models based on the momentum source method
  publication-title: Eng. Appl. Comp. Fluid Mech.
– volume: 58
  start-page: 467
  year: 2021
  end-page: 486
  ident: bib0011
  article-title: Helicopter shipboard landing simulation including wind, deck motion and dynamic ground effect
  publication-title: J. Aircr.
– volume: 56
  start-page: 812
  year: 2019
  end-page: 824
  ident: bib0002
  article-title: Coupled simulations of atmospheric turbulence-modified ship airwakes and helicopter flight dynamics
  publication-title: J. Aircr.
– year: 2002
  ident: bib0016
  article-title: Methodology for ensuring safety of an embarked helicopter securing system probe installation
  publication-title: 23rd international congress of aeronautical sciences (ICAS 2002)
– year: 2022
  ident: bib0038
  article-title: Flight simulation and control using the Julia language
  publication-title: AIAA Scitech Forum
– volume: 16
  start-page: 1
  year: 2012
  end-page: 9
  ident: bib0009
  article-title: Aeroelastic analysis of a shipboard helicopter rotor with ship motions during engagement and disengagement operations
  publication-title: Aerosp. Sci. Technol.
– year: 2020
  ident: bib0030
  article-title: Simulation of helicopter hover and landing on a moving ship deck using a dynamic ground effect model
  publication-title: AIAA Scitech 2020 Forum
– volume: 16
  start-page: 151
  year: 2021
  end-page: 162
  ident: bib0028
  article-title: Modeling and analysis of landing collision dynamics for a shipborne helicopter
  publication-title: Front. Mech. Eng.
– volume: 105
  year: 2020
  ident: bib0032
  article-title: A strategy to suppress limit cycle oscillations in helicopter ground resonance including landing gear nonlinearities
  publication-title: Aerosp. Sci. Technol.
– volume: 84
  start-page: 18
  year: 2019
  end-page: 30
  ident: bib0007
  article-title: Fixed-time autonomous shipboard landing control of a helicopter with external disturbances
  publication-title: Aerosp. Sci. Technol.
– year: 2020
  ident: 10.1016/j.ast.2023.108661_bib0030
  article-title: Simulation of helicopter hover and landing on a moving ship deck using a dynamic ground effect model
– volume: 29
  start-page: 1339
  issue: 6
  year: 2006
  ident: 10.1016/j.ast.2023.108661_bib0039
  article-title: Simplified technique for modelling piloted rotorcraft operations near ships
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.18711
– volume: 43
  start-page: 895
  issue: 4
  year: 2006
  ident: 10.1016/j.ast.2023.108661_bib0023
  article-title: Development and experimental validation of a shipboard helicopter on-deck maneuvering simulation
  publication-title: J. Aircr.
  doi: 10.2514/1.13865
– volume: 16
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.ast.2023.108661_bib0009
  article-title: Aeroelastic analysis of a shipboard helicopter rotor with ship motions during engagement and disengagement operations
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2011.02.001
– year: 2002
  ident: 10.1016/j.ast.2023.108661_bib0016
  article-title: Methodology for ensuring safety of an embarked helicopter securing system probe installation
– volume: 141
  year: 2023
  ident: 10.1016/j.ast.2023.108661_bib0018
  article-title: Numerical studies on the aeroelasticity of a shipboard helicopter rotor during engagement and disengagement with ship motions using CFD/CSD coupling approach
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2023.108559
– volume: 106
  start-page: 71
  issue: APR
  year: 2019
  ident: 10.1016/j.ast.2023.108661_bib0005
  article-title: Ship-helo coupled airwake aerodynamics: a comprehensive review
  publication-title: Prog. Aeosp. Sci.
  doi: 10.1016/j.paerosci.2019.02.002
– volume: 105
  year: 2020
  ident: 10.1016/j.ast.2023.108661_bib0032
  article-title: A strategy to suppress limit cycle oscillations in helicopter ground resonance including landing gear nonlinearities
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.106011
– volume: 30
  start-page: 201
  issue: 1
  year: 2009
  ident: 10.1016/j.ast.2023.108661_bib0036
  article-title: On the generalized potential of inertial forces
  publication-title: Eur. J. Phys.
  doi: 10.1088/0143-0807/30/1/021
– volume: 46
  start-page: 1146
  issue: 07
  year: 2012
  ident: 10.1016/j.ast.2023.108661_bib0017
  article-title: Study on stability control for tractor-helicopter system on deck
  publication-title: J. Shanghai Jiaotong Univ.
– volume: 17
  issue: 25
  year: 2016
  ident: 10.1016/j.ast.2023.108661_bib0022
  article-title: A simulation model of a helicopter landing on a ship
  publication-title: Int. J. Simul. Syst. Sci. Technol.
– volume: 16
  start-page: 151
  issue: 1
  year: 2021
  ident: 10.1016/j.ast.2023.108661_bib0028
  article-title: Modeling and analysis of landing collision dynamics for a shipborne helicopter
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-020-0617-z
– volume: 656
  start-page: 171
  year: 2014
  ident: 10.1016/j.ast.2023.108661_bib0037
  article-title: Generalization of the Lagrange Equations Formalism, for Motions with Respect to Non-Inertial Reference Frames
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.656.171
– volume: 12
  start-page: 2603
  issue: 5
  year: 2022
  ident: 10.1016/j.ast.2023.108661_bib0026
  article-title: Electrical aircraft ship integrated secure and traverse system design and key characteristics analysis
  publication-title: Appl. Sci.
  doi: 10.3390/app12052603
– year: 1981
  ident: 10.1016/j.ast.2023.108661_bib0014
– volume: 38
  start-page: 1595
  issue: 11
  year: 2017
  ident: 10.1016/j.ast.2023.108661_bib0029
  article-title: Study of the landing dynamics of carrier based helicopter under complex sea conditions
  publication-title: J. Northeast. Univ., Nat. Sci.
– volume: 45
  start-page: 774
  issue: 4
  year: 2022
  ident: 10.1016/j.ast.2023.108661_bib0019
  article-title: Variable horizon model predictive control for helicopter landing on moving decks
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G005789
– volume: 58
  start-page: 467
  issue: 3
  year: 2021
  ident: 10.1016/j.ast.2023.108661_bib0011
  article-title: Helicopter shipboard landing simulation including wind, deck motion and dynamic ground effect
  publication-title: J. Aircr.
  doi: 10.2514/1.C035973
– volume: 56
  issue: 6
  year: 2019
  ident: 10.1016/j.ast.2023.108661_bib0013
  article-title: Motion fidelity requirements for helicopter-ship operations in maritime rotorcraft flight simulators
  publication-title: J. Aircr.
  doi: 10.2514/1.C035521
– volume: 122
  start-page: 42
  issue: 1247
  year: 2018
  ident: 10.1016/j.ast.2023.108661_bib0003
  article-title: Coupled flight dynamics and CFD–demonstration for helicopters in shipborne environment
  publication-title: Aeronaut. J.
  doi: 10.1017/aer.2017.112
– volume: 39
  start-page: 574
  issue: 3
  year: 2016
  ident: 10.1016/j.ast.2023.108661_bib0021
  article-title: Model predictive control for helicopter shipboard operations in the ship airwakes
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G001243
– volume: 49
  start-page: 483
  year: 2004
  ident: 10.1016/j.ast.2023.108661_bib0027
  article-title: Efficient helicopter skid landing gear dynamic drop simulation using LS-DYNA
  publication-title: J. Am. Helicopter Soc.
  doi: 10.4050/JAHS.49.483
– volume: 15
  start-page: 1902
  issue: 1
  year: 2021
  ident: 10.1016/j.ast.2023.108661_bib0006
  article-title: Numerical investigation for coupled rotor/ship flowfield using two models based on the momentum source method
  publication-title: Eng. Appl. Comp. Fluid Mech.
– volume: 265
  start-page: 733
  issue: 3
  year: 2015
  ident: 10.1016/j.ast.2023.108661_bib0033
  article-title: An IDRA approach for modelling helicopter based on Lagrange dynamics
  publication-title: Appl. Math. Comput.
– volume: 2463
  start-page: 102
  year: 1995
  ident: 10.1016/j.ast.2023.108661_bib0015
  article-title: Electro-optic precision approach and landing system
  publication-title: Proc. SPIE - Int. Soc. Optic. Eng.
  doi: 10.1117/12.212734
– volume: 43
  start-page: 1
  issue: 5
  year: 2020
  ident: 10.1016/j.ast.2023.108661_bib0020
  article-title: Shrinking horizon model predictive control method for helicopter–ship touchdown
  publication-title: J. Guid. Control Dyn.
  doi: 10.2514/1.G004374
– volume: 46
  start-page: 1533
  issue: 5
  year: 2009
  ident: 10.1016/j.ast.2023.108661_bib0024
  article-title: Fatigue life estimation of helicopter landing probe based on dynamic simulation
  publication-title: J. Aircr.
  doi: 10.2514/1.38345
– volume: 22
  start-page: 1514
  issue: 4
  year: 2022
  ident: 10.1016/j.ast.2023.108661_bib0025
  article-title: Research on shipborne helicopter electric rapid secure device: system design, modeling, and simulation
  publication-title: Sensors
  doi: 10.3390/s22041514
– volume: 2029
  year: 2021
  ident: 10.1016/j.ast.2023.108661_bib0010
  article-title: Simulation experiment analysis and verification of ship resonance for shipboard helicopter
  publication-title: J. Phys.: Conf. Ser.
– volume: 13
  start-page: 309
  issue: 1
  year: 2019
  ident: 10.1016/j.ast.2023.108661_bib0004
  article-title: Numerical investigation of rotor loads of a shipborne coaxial-rotor helicopter during a vertical landing based on moving overset mesh method
  publication-title: Eng. Appl. Comp. Fluid Mech.
– volume: 84
  start-page: 18
  year: 2019
  ident: 10.1016/j.ast.2023.108661_bib0007
  article-title: Fixed-time autonomous shipboard landing control of a helicopter with external disturbances
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2018.07.032
– year: 2022
  ident: 10.1016/j.ast.2023.108661_bib0038
  article-title: Flight simulation and control using the Julia language
– volume: 56
  start-page: 812
  issue: 2
  year: 2019
  ident: 10.1016/j.ast.2023.108661_bib0002
  article-title: Coupled simulations of atmospheric turbulence-modified ship airwakes and helicopter flight dynamics
  publication-title: J. Aircr.
  doi: 10.2514/1.C035158
– year: 2021
  ident: 10.1016/j.ast.2023.108661_bib0012
– volume: 51
  start-page: 1813
  issue: 6
  year: 2014
  ident: 10.1016/j.ast.2023.108661_bib0001
  article-title: Numerical study of helicopter rotors in a ship airwake
  publication-title: J. Aircr.
  doi: 10.2514/1.C032535
– volume: 208
  year: 2020
  ident: 10.1016/j.ast.2023.108661_bib0008
  article-title: Ship airwakes in waves and motions and effects on helicopter operation
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2020.104627
– volume: 11
  start-page: 193
  issue: 1
  year: 2020
  ident: 10.1016/j.ast.2023.108661_bib0034
  article-title: Dynamic parameters identification of a haptic interface for a helicopter flight simulator
  publication-title: Mech. Sci.
  doi: 10.5194/ms-11-193-2020
SSID ssj0002942
Score 2.389832
Snippet The traction operation of a shipboard helicopter on the deck is a complex force-coupling process involving multiple moving entities. To more efficiently...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108661
SubjectTerms Lagrange equation
Landing dynamics
Shipboard helicopter
Tire model
Traction operation
Title Dynamic modeling and analysis of traction operation process for the shipboard helicopter
URI https://dx.doi.org/10.1016/j.ast.2023.108661
Volume 142
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwIZk6iRPHY1WoCoguFKlbFL9EEWqiElZ-O-c4gSIBA0OGWOco-nw6n-W770PonNpUap0ERKWhJkxySYQyEZHCBCbVWqc1b8H9NJk8stt5PO-gUdsL48oqm9jvY3odrZuRQYPmoFwsBg_uztS5T-gY1-PUNfw69jrw6cv3rzKPUNQCOs6YOOv2ZrOu8cpfXTllGNV6Q0nw8960tt-Md9B2kyjiof-XXdQxyz20tUYfuI_mV15OHtdyNjCE86WGx9OM4MLiauX7FnBRGr_UuPSdARiSVQzJH3bVWrIAP8FP8A1VlAD0AZqNr2ejCWmUEogKBa8IYyqQSkQmTXOruLI6iK3hLIfsxsKBzRhLozh3MlWRFtTynAkaCWMVHL8SFR2i7rJYmiOEJY3zRHLDuRFMJqGgTCsJZx6tqIxD1kO0hShTDYu4E7N4ydpysecMUM0cqplHtYcuPqeUnkLjL2PW4p5984MMQvzv047_N-0Ebbo331t4irrV6s2cQZJRyX7tRX20Mby5m0w_AETl0kQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2V9gAcEKsoqw-ckKxmcRYfq0LV0uVCkXqL4k0UoSQq4f-x46QqEnDgkIvjiaLn0Xgsz7wHcOeomAkRupjHnsCERQxTLn3MqHRlLISIK96C2TwcvZCnZbBswaDphTFllXXstzG9itb1SK9Gs1esVr1nc2dq3MczjOtBHO9Ax7BTkTZ0-uPJaL4JyB6tNHTMfGwMmsvNqswr_TAVlZ5fSQ6F7s_b09aWMzyEgzpXRH37O0fQktkx7G8xCJ7A8sEqyqNK0UYPoTQT-rFMIyhXqFzb1gWUF9KuNipscwDS-SrS-R8yBVss166CXvU3eF5orE9hMXxcDEa4FkvA3KNRiQnhLuPUl3GcKh5xJdxAyYikOsFR-swmpXL8IDVKVb6gjopSQh2fSsX1CSzk_hm0szyT54CYE6Qhi2QUSUpY6FGHCM70sUdwhwUe6YLTQJTwmkjc6Fm8J03F2FuiUU0MqolFtQv3G5PCsmj8NZk0uCffXCHRUf53s4v_md3C7mgxmybT8XxyCXvmjW01vIJ2uf6U1zrnKNlN7VNfiZPU9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+modeling+and+analysis+of+traction+operation+process+for+the+shipboard+helicopter&rft.jtitle=Aerospace+science+and+technology&rft.au=Yang%2C+Haojie&rft.au=Ni%2C+Tao&rft.au=Wang%2C+Zihe&rft.au=Wang%2C+Zhilong&rft.date=2023-11-01&rft.issn=1270-9638&rft.volume=142&rft.spage=108661&rft_id=info:doi/10.1016%2Fj.ast.2023.108661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ast_2023_108661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon