Numerical solutions of singularly perturbed one-dimensional parabolic convection–diffusion problems by the Bessel collocation method

In this paper, we present a numerical scheme for the approximate solutions of the one-dimensional parabolic convection–diffusion model problems. This method is based on the Bessel collocation method used for some problems of ordinary differential equations. In fact, the approximate solution of the p...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 220; pp. 305 - 315
Main Authors Yüzbaşı, Şuayip, Şahin, Niyazi
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2013
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/j.amc.2013.06.027

Cover

Abstract In this paper, we present a numerical scheme for the approximate solutions of the one-dimensional parabolic convection–diffusion model problems. This method is based on the Bessel collocation method used for some problems of ordinary differential equations. In fact, the approximate solution of the problem in the truncated Bessel series form is obtained by this method. By substituting truncated Bessel series solution into the problem and by using the matrix operations and the collocation points, the suggested scheme reduces the problem to a linear algebraic equation system. By solving this equation system, the unknown Bessel coefficients can be computed. An error estimation technique is given for the considered problem and the method. To show the accuracy and the efficiency of the method, numerical examples are implemented and the comparisons are given by the other methods.
AbstractList In this paper, we present a numerical scheme for the approximate solutions of the one-dimensional parabolic convection–diffusion model problems. This method is based on the Bessel collocation method used for some problems of ordinary differential equations. In fact, the approximate solution of the problem in the truncated Bessel series form is obtained by this method. By substituting truncated Bessel series solution into the problem and by using the matrix operations and the collocation points, the suggested scheme reduces the problem to a linear algebraic equation system. By solving this equation system, the unknown Bessel coefficients can be computed. An error estimation technique is given for the considered problem and the method. To show the accuracy and the efficiency of the method, numerical examples are implemented and the comparisons are given by the other methods.
Author Yüzbaşı, Şuayip
Şahin, Niyazi
Author_xml – sequence: 1
  givenname: Şuayip
  surname: Yüzbaşı
  fullname: Yüzbaşı, Şuayip
  email: syuzbasi@akdeniz.edu.tr, suayipyuzbasi@gmail.com, suayip78@hotmail.com
  organization: Department of Mathematics, Faculty of Science, Akdeniz University, TR 07058 Antalya, Turkey
– sequence: 2
  givenname: Niyazi
  surname: Şahin
  fullname: Şahin, Niyazi
  email: nisa70@mu.edu.tr
  organization: Department of Mathematics, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkey
BookMark eNp9kDtOxDAQhi0EEsvjAHS-QMI4cRIiKkC8JAQN1JYzmbBeOfHKTpC2o-IC3JCT4LBUFFTT_N_M_N8B2x3cQIydCEgFiPJ0leoe0wxEnkKZQlbtsIU4q_KkKGW9yxYAdZnkAPk-OwhhBQBVKeSCfTxOPXmD2vLg7DQaNwTuOh7M8DpZ7e2Gr8mPk2-o5fFk0pqehhBjkVhrrxtnDXJ0wxvhTH-9f7am66Y5wtfeNZb6wJsNH5fELykEsjFtrUM9x3lP49K1R2yv0zbQ8e88ZC83189Xd8nD0-391cVDglldjYnMM9ACS0KBVBdYtwVAp7HKqZRFVheNjnWFLETT6II01Y2QWNS5lrIDKfJDJrZ70bsQPHVq7U2v_UYJULNItVJRpJpFKihVFBmZ6g-DZvx5fvTa2H_J8y1JsdKbIa8CGhqQWuOjLdU68w_9DZ-OlQw
CitedBy_id crossref_primary_10_1016_j_aej_2015_05_004
crossref_primary_10_1016_j_amc_2016_04_036
crossref_primary_10_1155_2022_4284060
crossref_primary_10_24107_ijeas_567374
crossref_primary_10_1007_s40010_018_0535_1
crossref_primary_10_3390_mca21020015
crossref_primary_10_1155_2020_8841718
crossref_primary_10_2478_fcds_2021_0015
crossref_primary_10_1080_16583655_2023_2255404
crossref_primary_10_1007_s40314_022_02102_y
crossref_primary_10_3390_math11092034
crossref_primary_10_1108_EC_07_2020_0369
crossref_primary_10_1080_15502287_2021_1948148
crossref_primary_10_1155_2023_6496354
crossref_primary_10_1186_s40064_016_2853_6
crossref_primary_10_3389_fams_2023_1222162
crossref_primary_10_1142_S1793524518501097
crossref_primary_10_1108_HFF_09_2024_0695
crossref_primary_10_1016_j_aej_2017_04_012
crossref_primary_10_1155_2017_5691452
crossref_primary_10_1016_j_rinp_2022_105936
crossref_primary_10_1155_2023_4664866
crossref_primary_10_1002_jnm_2686
crossref_primary_10_1142_S0219876217500153
crossref_primary_10_5269_bspm_v36i2_30447
crossref_primary_10_1186_s13661_015_0364_y
crossref_primary_10_24107_ijeas_644160
crossref_primary_10_1080_16583655_2023_2204808
Cites_doi 10.1086/260062
10.1016/j.camwa.2011.07.016
10.1016/S0377-0427(02)00861-0
10.1016/j.mcm.2011.08.007
10.1016/j.cam.2007.08.016
10.1016/j.camwa.2011.03.097
10.1016/j.camwa.2011.05.057
10.1007/BF01395986
10.1002/mma.1519
10.1016/j.apm.2011.03.030
10.1002/nme.1620240408
10.1016/j.jmaa.2009.01.038
10.1016/S0377-0427(01)00502-7
10.1002/nme.1620241105
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright_xml – notice: 2013 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.amc.2013.06.027
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 315
ExternalDocumentID 10_1016_j_amc_2013_06_027
S0096300313006401
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
SSH
TAE
VH1
VOH
WUQ
ID FETCH-LOGICAL-c297t-4320a1c6ec1ce95c9d500fac73e645295ba6491451bba5eae9b14c593a44f0413
IEDL.DBID AIKHN
ISSN 0096-3003
IngestDate Thu Apr 24 23:10:55 EDT 2025
Tue Jul 01 04:07:32 EDT 2025
Fri Feb 23 02:27:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Parabolic problems
Collocation points
The Bessel functions of first kind
Convection–diffusion problem
Singular perturbation
Bessel collocation method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-4320a1c6ec1ce95c9d500fac73e645295ba6491451bba5eae9b14c593a44f0413
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_amc_2013_06_027
crossref_citationtrail_10_1016_j_amc_2013_06_027
elsevier_sciencedirect_doi_10_1016_j_amc_2013_06_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Yüzbaşı, Şahin, Sezer (b0085) 2011; 3
Yüzbaşı (b0100) 2011; 34
Yüzbaşı (b0105) 2011; 62
Shahmorad (b0115) 2005; 167
Baumert, Braun, Glos, Müller, Stoyan (b0130) 1981; vol. 23
Kadalbajoo, Gupta (b0050) 2009; 355
Yüzbaşı, Şahin, Sezer (b0095) 2011; 61
El-Gamel (b0060) 2006; 181
Jacob (b0015) 1959
Hirsch (b0010) 1988; vol. 1
Hahn, Bigeon, Sabonnadiere (b0025) 1987; 24
Launder, Spalding (b0035) 1972
Clavero, Jorge, Lisbona (b0040) 2003; 154
Çelik (b0125) 2006; 174
Kadalbajoo, Gupta, Awasthi (b0045) 2008; 220
Phongthanapanich, Dechaumphai (b0065) 2009; 209
Polak, Den Heiger, Schilders, Markowich (b0020) 1987; 24
Ramos (b0075) 2005; 161
Yüzbaşı, Şahin, Sezer (b0090) 2012; 55
Oliveira (b0120) 1980; 36
Lenferink (b0055) 2002; 143
Şahin, Yüzbaşı, Gülsu (b0110) 2011; 62
Du, Wu, Chen (b0080) 2011; 35
Black, Scholes (b0030) 1973; 81
Kadalbajoo, Awasthi (b0070) 2006; 183
Clavero (10.1016/j.amc.2013.06.027_b0040) 2003; 154
Yüzbaşı (10.1016/j.amc.2013.06.027_b0100) 2011; 34
Kadalbajoo (10.1016/j.amc.2013.06.027_b0070) 2006; 183
Baumert (10.1016/j.amc.2013.06.027_b0130) 1981; vol. 23
Yüzbaşı (10.1016/j.amc.2013.06.027_b0095) 2011; 61
Kadalbajoo (10.1016/j.amc.2013.06.027_b0050) 2009; 355
Lenferink (10.1016/j.amc.2013.06.027_b0055) 2002; 143
Çelik (10.1016/j.amc.2013.06.027_b0125) 2006; 174
Launder (10.1016/j.amc.2013.06.027_b0035) 1972
Hahn (10.1016/j.amc.2013.06.027_b0025) 1987; 24
Ramos (10.1016/j.amc.2013.06.027_b0075) 2005; 161
Jacob (10.1016/j.amc.2013.06.027_b0015) 1959
Phongthanapanich (10.1016/j.amc.2013.06.027_b0065) 2009; 209
Şahin (10.1016/j.amc.2013.06.027_b0110) 2011; 62
Shahmorad (10.1016/j.amc.2013.06.027_b0115) 2005; 167
Black (10.1016/j.amc.2013.06.027_b0030) 1973; 81
Oliveira (10.1016/j.amc.2013.06.027_b0120) 1980; 36
El-Gamel (10.1016/j.amc.2013.06.027_b0060) 2006; 181
Hirsch (10.1016/j.amc.2013.06.027_b0010) 1988; vol. 1
Polak (10.1016/j.amc.2013.06.027_b0020) 1987; 24
Yüzbaşı (10.1016/j.amc.2013.06.027_b0090) 2012; 55
Kadalbajoo (10.1016/j.amc.2013.06.027_b0045) 2008; 220
Yüzbaşı (10.1016/j.amc.2013.06.027_b0105) 2011; 62
Du (10.1016/j.amc.2013.06.027_b0080) 2011; 35
Yüzbaşı (10.1016/j.amc.2013.06.027_b0085) 2011; 3
References_xml – volume: 220
  start-page: 271
  year: 2008
  end-page: 289
  ident: b0045
  article-title: A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection–diffusion problem
  publication-title: J. Comput. Appl. Math.
– year: 1959
  ident: b0015
  article-title: Heat Transfer
– volume: 35
  start-page: 4589
  year: 2011
  end-page: 4602
  ident: b0080
  article-title: A novel mathematical modeling of multiple scales for a class of two dimensional singular perturbed problems
  publication-title: Appl. Math. Modell.
– volume: vol. 1
  year: 1988
  ident: b0010
  publication-title: Numerical Computation of Internal and External Flows
– volume: 62
  start-page: 755
  year: 2011
  end-page: 769
  ident: b0110
  article-title: A collocation approach for solving systems of linear Volterra integral equations with variable coefficients
  publication-title: Comput. Math. Appl.
– volume: 183
  start-page: 42
  year: 2006
  end-page: 60
  ident: b0070
  article-title: A parameter uniform difference scheme for singularly perturbed parabolic problem in one space dimension
  publication-title: Appl. Math. Comput.
– volume: 62
  start-page: 2289
  year: 2011
  end-page: 2303
  ident: b0105
  article-title: A numerical approach for solving the high-order linear singular differential–difference equations
  publication-title: Comput. Math. Appl.
– volume: 143
  start-page: 49
  year: 2002
  end-page: 68
  ident: b0055
  article-title: A second order scheme for a time-dependent, singularly perturbed convection–diffusion equation
  publication-title: J. Comput. Appl. Math.
– volume: vol. 23
  year: 1981
  ident: b0130
  article-title: Modelling and Computation of Water Quality Problems in River Networks
  publication-title: Lecture Notes in Control and Inform. Sci.
– volume: 55
  start-page: 330
  year: 2012
  end-page: 341
  ident: b0090
  article-title: A collocation approach for solving modelling the pollution of a system of lakes
  publication-title: Math. Comput. Modell.
– volume: 24
  start-page: 763
  year: 1987
  end-page: 838
  ident: b0020
  article-title: Semiconductor device modelling from the numerical point of view
  publication-title: Int. J. Numer. Methods Eng.
– volume: 161
  start-page: 501
  year: 2005
  end-page: 512
  ident: b0075
  article-title: A piecewise-analytical method for singularly perturbed parabolic problems
  publication-title: Appl. Math. Comput.
– volume: 3
  start-page: 81
  year: 2011
  end-page: 101
  ident: b0085
  article-title: A Bessel polynomial approach for solving linear neutral delay differential equations with variable coefficients
  publication-title: J. Adv. Res. Diff. Equ.
– volume: 24
  start-page: 2071
  year: 1987
  end-page: 2086
  ident: b0025
  article-title: An ‘upwind’ finite element method for electromagnetic field problems in moving media
  publication-title: Int. J. Numer. Methods Eng.
– volume: 154
  start-page: 415
  year: 2003
  end-page: 429
  ident: b0040
  article-title: A uniformly convergent scheme on a nonuniform mesh for convection–diffusion parabolic problems
  publication-title: J. Comput. Appl. Math.
– volume: 355
  start-page: 439
  year: 2009
  end-page: 452
  ident: b0050
  article-title: Numerical solution of singularly perturbed convection–diffusion problem using parameter uniform B-spline collocation method
  publication-title: J. Math. Anal. Appl.
– year: 1972
  ident: b0035
  article-title: Mathematical Models of Turbulence
– volume: 181
  start-page: 1635
  year: 2006
  end-page: 1644
  ident: b0060
  article-title: A Wavelet-Galerkin method for a singularly perturbed convection-dominated diffusion equation
  publication-title: Appl. Math. Comput.
– volume: 61
  start-page: 3079
  year: 2011
  end-page: 3096
  ident: b0095
  article-title: Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases
  publication-title: Comput. Math. Appl.
– volume: 36
  start-page: 27
  year: 1980
  end-page: 31
  ident: b0120
  article-title: Collacation and residual correction
  publication-title: Numer. Math.
– volume: 81
  start-page: 637
  year: 1973
  end-page: 659
  ident: b0030
  article-title: The price of options and corporate liabilities
  publication-title: J. Polit. Econ.
– volume: 34
  start-page: 2218
  year: 2011
  end-page: 2230
  ident: b0100
  article-title: A numerical approach for solving a class of the nonlinear Lane–Emden type equations arising in astrophysics
  publication-title: Math. Meth. Appl. Sci.
– volume: 167
  start-page: 1418
  year: 2005
  end-page: 1429
  ident: b0115
  article-title: Numerical solution of general form linear Fredholm. Volterra integro differantial equations by the tau method with an error estimation
  publication-title: Appl. Math. Comput.
– volume: 174
  start-page: 910
  year: 2006
  end-page: 920
  ident: b0125
  article-title: Collacation method and residual correction using Chebyshev series
  publication-title: Appl. Math. Comput.
– volume: 209
  start-page: 177
  year: 2009
  end-page: 185
  ident: b0065
  article-title: Combined finite volume element method for singularly perturbed reaction–diffusion problems
  publication-title: Appl. Math. Comput.
– volume: 81
  start-page: 637
  year: 1973
  ident: 10.1016/j.amc.2013.06.027_b0030
  article-title: The price of options and corporate liabilities
  publication-title: J. Polit. Econ.
  doi: 10.1086/260062
– volume: 62
  start-page: 2289
  issue: 5
  year: 2011
  ident: 10.1016/j.amc.2013.06.027_b0105
  article-title: A numerical approach for solving the high-order linear singular differential–difference equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.07.016
– volume: 154
  start-page: 415
  year: 2003
  ident: 10.1016/j.amc.2013.06.027_b0040
  article-title: A uniformly convergent scheme on a nonuniform mesh for convection–diffusion parabolic problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00861-0
– volume: 55
  start-page: 330
  issue: 3–4
  year: 2012
  ident: 10.1016/j.amc.2013.06.027_b0090
  article-title: A collocation approach for solving modelling the pollution of a system of lakes
  publication-title: Math. Comput. Modell.
  doi: 10.1016/j.mcm.2011.08.007
– volume: vol. 23
  year: 1981
  ident: 10.1016/j.amc.2013.06.027_b0130
  article-title: Modelling and Computation of Water Quality Problems in River Networks
– year: 1972
  ident: 10.1016/j.amc.2013.06.027_b0035
– volume: 167
  start-page: 1418
  year: 2005
  ident: 10.1016/j.amc.2013.06.027_b0115
  article-title: Numerical solution of general form linear Fredholm. Volterra integro differantial equations by the tau method with an error estimation
  publication-title: Appl. Math. Comput.
– volume: 220
  start-page: 271
  year: 2008
  ident: 10.1016/j.amc.2013.06.027_b0045
  article-title: A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection–diffusion problem
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2007.08.016
– volume: 61
  start-page: 3079
  issue: 10
  year: 2011
  ident: 10.1016/j.amc.2013.06.027_b0095
  article-title: Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.03.097
– volume: 62
  start-page: 755
  issue: 2
  year: 2011
  ident: 10.1016/j.amc.2013.06.027_b0110
  article-title: A collocation approach for solving systems of linear Volterra integral equations with variable coefficients
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.05.057
– volume: 36
  start-page: 27
  year: 1980
  ident: 10.1016/j.amc.2013.06.027_b0120
  article-title: Collacation and residual correction
  publication-title: Numer. Math.
  doi: 10.1007/BF01395986
– volume: vol. 1
  year: 1988
  ident: 10.1016/j.amc.2013.06.027_b0010
– volume: 34
  start-page: 2218
  issue: 18
  year: 2011
  ident: 10.1016/j.amc.2013.06.027_b0100
  article-title: A numerical approach for solving a class of the nonlinear Lane–Emden type equations arising in astrophysics
  publication-title: Math. Meth. Appl. Sci.
  doi: 10.1002/mma.1519
– volume: 35
  start-page: 4589
  year: 2011
  ident: 10.1016/j.amc.2013.06.027_b0080
  article-title: A novel mathematical modeling of multiple scales for a class of two dimensional singular perturbed problems
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2011.03.030
– volume: 209
  start-page: 177
  year: 2009
  ident: 10.1016/j.amc.2013.06.027_b0065
  article-title: Combined finite volume element method for singularly perturbed reaction–diffusion problems
  publication-title: Appl. Math. Comput.
– volume: 3
  start-page: 81
  issue: 1
  year: 2011
  ident: 10.1016/j.amc.2013.06.027_b0085
  article-title: A Bessel polynomial approach for solving linear neutral delay differential equations with variable coefficients
  publication-title: J. Adv. Res. Diff. Equ.
– volume: 24
  start-page: 763
  year: 1987
  ident: 10.1016/j.amc.2013.06.027_b0020
  article-title: Semiconductor device modelling from the numerical point of view
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620240408
– volume: 355
  start-page: 439
  year: 2009
  ident: 10.1016/j.amc.2013.06.027_b0050
  article-title: Numerical solution of singularly perturbed convection–diffusion problem using parameter uniform B-spline collocation method
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2009.01.038
– volume: 161
  start-page: 501
  year: 2005
  ident: 10.1016/j.amc.2013.06.027_b0075
  article-title: A piecewise-analytical method for singularly perturbed parabolic problems
  publication-title: Appl. Math. Comput.
– volume: 174
  start-page: 910
  year: 2006
  ident: 10.1016/j.amc.2013.06.027_b0125
  article-title: Collacation method and residual correction using Chebyshev series
  publication-title: Appl. Math. Comput.
– volume: 181
  start-page: 1635
  year: 2006
  ident: 10.1016/j.amc.2013.06.027_b0060
  article-title: A Wavelet-Galerkin method for a singularly perturbed convection-dominated diffusion equation
  publication-title: Appl. Math. Comput.
– volume: 143
  start-page: 49
  year: 2002
  ident: 10.1016/j.amc.2013.06.027_b0055
  article-title: A second order scheme for a time-dependent, singularly perturbed convection–diffusion equation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(01)00502-7
– year: 1959
  ident: 10.1016/j.amc.2013.06.027_b0015
– volume: 24
  start-page: 2071
  year: 1987
  ident: 10.1016/j.amc.2013.06.027_b0025
  article-title: An ‘upwind’ finite element method for electromagnetic field problems in moving media
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620241105
– volume: 183
  start-page: 42
  year: 2006
  ident: 10.1016/j.amc.2013.06.027_b0070
  article-title: A parameter uniform difference scheme for singularly perturbed parabolic problem in one space dimension
  publication-title: Appl. Math. Comput.
SSID ssj0007614
Score 2.2775
Snippet In this paper, we present a numerical scheme for the approximate solutions of the one-dimensional parabolic convection–diffusion model problems. This method is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 305
SubjectTerms Bessel collocation method
Collocation points
Convection–diffusion problem
Parabolic problems
Singular perturbation
The Bessel functions of first kind
Title Numerical solutions of singularly perturbed one-dimensional parabolic convection–diffusion problems by the Bessel collocation method
URI https://dx.doi.org/10.1016/j.amc.2013.06.027
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKu8CAeIryqDwwIYU6iZ3EY6moCqidqNQtsh1bKgpt1cfQBTHxB_iH_BJ8eQkkYGCNbMWyT3dn33ffh9ClNDSSMogcAQyEkFI7klF7a7WpCDMiCDWH3uHBMOiP6P2YjWuoW_bCAKyy8P25T8-8dfGlXexmez6ZQI8vB74oHwoyAYUerobn84DVUaNz99AfVg7Z3tRzMmYOMC_il8XNDOYlnoHI0PUzFk_QlvkpPH0JOb09tFvkiriTL2cf1fT0AO0MKqLV5SF6G67zkkuKKyPCM4PhBQAApukGz_XChhWpEzybaicBNv-ciQMD7bcEXmCcYc-zDoeP13fQTFnDEFyozSyx3GD7U3wDROMpBtuZ5U99OFegPkKj3u1jt-8U0gqO8ni4cqjvEeGqQCtXac4UTxghRqjQ11Dp5EyKgHJQ8ZVSMC00ly5VjPuCUkNs4DtG9ald9QnCvk2ISEK1osZQSSIJL1M260giaf2FMU1Eyh2NVcE7DvIXaVwCzJ5iewgxHEIMIDsvbKKraso8J934azAtjyn-ZjmxDQq_Tzv937QztO1lghiAMjtH9dVirS9sWrKSLbR1_eK2CuP7BLZl5P0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMTUqiT2Ek8QkVVoO3USt0i27GlotBWfQxdEBN_gH_IL8GXRwEJGFgjW7Hs093Z9933IXQhDY2kDCJHAAMhpNSOZNTeWm0qwowIQs2hd7jTDVp9ej9ggwpqlL0wAKssfH_u0zNvXXypF7tZnwyH0OPLgS_Kh4JMQKGHa40yPwRc39XzJ87D3tNzKmYOIC_il6XNDOQlnoDG0PUzDk9QlvkpOH0JOM1ttFVkivg6X8wOqujRLtrsrGhWZ3votbvICy4pXpkQHhsM93-Al6ZLPNFTG1SkTvB4pJ0EuPxzHg4MpN8SWIFxhjzP-hveX95AMWUBQ3ChNTPDcontT_EN0IynGCxnnD_04Vx_eh_1m7e9RssphBUc5fFw7lDfI8JVgVau0pwpnjBCjFChr6HOyZkUAeWg4SulYFpoLl2qGPcFpYbYsHeAqiO76kOEfZsOkYRqRY2hkkQS3qVszpFE0noLY2qIlDsaq4J1HMQv0riElz3G9hBiOIQYIHZeWEOXqymTnHLjr8G0PKb4m93ENiT8Pu3of9PO0Xqr12nH7bvuwzHa8DJpDMCbnaDqfLrQpzZBmcuzzAA_AKqL5cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solutions+of+singularly+perturbed+one-dimensional+parabolic+convection%E2%80%93diffusion+problems+by+the+Bessel+collocation+method&rft.jtitle=Applied+mathematics+and+computation&rft.au=Y%C3%BCzba%C5%9F%C4%B1%2C+%C5%9Euayip&rft.au=%C5%9Eahin%2C+Niyazi&rft.date=2013-09-01&rft.issn=0096-3003&rft.volume=220&rft.spage=305&rft.epage=315&rft_id=info:doi/10.1016%2Fj.amc.2013.06.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2013_06_027
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon