Numerical solutions of singularly perturbed one-dimensional parabolic convection–diffusion problems by the Bessel collocation method
In this paper, we present a numerical scheme for the approximate solutions of the one-dimensional parabolic convection–diffusion model problems. This method is based on the Bessel collocation method used for some problems of ordinary differential equations. In fact, the approximate solution of the p...
Saved in:
Published in | Applied mathematics and computation Vol. 220; pp. 305 - 315 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0096-3003 1873-5649 |
DOI | 10.1016/j.amc.2013.06.027 |
Cover
Abstract | In this paper, we present a numerical scheme for the approximate solutions of the one-dimensional parabolic convection–diffusion model problems. This method is based on the Bessel collocation method used for some problems of ordinary differential equations. In fact, the approximate solution of the problem in the truncated Bessel series form is obtained by this method. By substituting truncated Bessel series solution into the problem and by using the matrix operations and the collocation points, the suggested scheme reduces the problem to a linear algebraic equation system. By solving this equation system, the unknown Bessel coefficients can be computed. An error estimation technique is given for the considered problem and the method. To show the accuracy and the efficiency of the method, numerical examples are implemented and the comparisons are given by the other methods. |
---|---|
AbstractList | In this paper, we present a numerical scheme for the approximate solutions of the one-dimensional parabolic convection–diffusion model problems. This method is based on the Bessel collocation method used for some problems of ordinary differential equations. In fact, the approximate solution of the problem in the truncated Bessel series form is obtained by this method. By substituting truncated Bessel series solution into the problem and by using the matrix operations and the collocation points, the suggested scheme reduces the problem to a linear algebraic equation system. By solving this equation system, the unknown Bessel coefficients can be computed. An error estimation technique is given for the considered problem and the method. To show the accuracy and the efficiency of the method, numerical examples are implemented and the comparisons are given by the other methods. |
Author | Yüzbaşı, Şuayip Şahin, Niyazi |
Author_xml | – sequence: 1 givenname: Şuayip surname: Yüzbaşı fullname: Yüzbaşı, Şuayip email: syuzbasi@akdeniz.edu.tr, suayipyuzbasi@gmail.com, suayip78@hotmail.com organization: Department of Mathematics, Faculty of Science, Akdeniz University, TR 07058 Antalya, Turkey – sequence: 2 givenname: Niyazi surname: Şahin fullname: Şahin, Niyazi email: nisa70@mu.edu.tr organization: Department of Mathematics, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkey |
BookMark | eNp9kDtOxDAQhi0EEsvjAHS-QMI4cRIiKkC8JAQN1JYzmbBeOfHKTpC2o-IC3JCT4LBUFFTT_N_M_N8B2x3cQIydCEgFiPJ0leoe0wxEnkKZQlbtsIU4q_KkKGW9yxYAdZnkAPk-OwhhBQBVKeSCfTxOPXmD2vLg7DQaNwTuOh7M8DpZ7e2Gr8mPk2-o5fFk0pqehhBjkVhrrxtnDXJ0wxvhTH-9f7am66Y5wtfeNZb6wJsNH5fELykEsjFtrUM9x3lP49K1R2yv0zbQ8e88ZC83189Xd8nD0-391cVDglldjYnMM9ACS0KBVBdYtwVAp7HKqZRFVheNjnWFLETT6II01Y2QWNS5lrIDKfJDJrZ70bsQPHVq7U2v_UYJULNItVJRpJpFKihVFBmZ6g-DZvx5fvTa2H_J8y1JsdKbIa8CGhqQWuOjLdU68w_9DZ-OlQw |
CitedBy_id | crossref_primary_10_1016_j_aej_2015_05_004 crossref_primary_10_1016_j_amc_2016_04_036 crossref_primary_10_1155_2022_4284060 crossref_primary_10_24107_ijeas_567374 crossref_primary_10_1007_s40010_018_0535_1 crossref_primary_10_3390_mca21020015 crossref_primary_10_1155_2020_8841718 crossref_primary_10_2478_fcds_2021_0015 crossref_primary_10_1080_16583655_2023_2255404 crossref_primary_10_1007_s40314_022_02102_y crossref_primary_10_3390_math11092034 crossref_primary_10_1108_EC_07_2020_0369 crossref_primary_10_1080_15502287_2021_1948148 crossref_primary_10_1155_2023_6496354 crossref_primary_10_1186_s40064_016_2853_6 crossref_primary_10_3389_fams_2023_1222162 crossref_primary_10_1142_S1793524518501097 crossref_primary_10_1108_HFF_09_2024_0695 crossref_primary_10_1016_j_aej_2017_04_012 crossref_primary_10_1155_2017_5691452 crossref_primary_10_1016_j_rinp_2022_105936 crossref_primary_10_1155_2023_4664866 crossref_primary_10_1002_jnm_2686 crossref_primary_10_1142_S0219876217500153 crossref_primary_10_5269_bspm_v36i2_30447 crossref_primary_10_1186_s13661_015_0364_y crossref_primary_10_24107_ijeas_644160 crossref_primary_10_1080_16583655_2023_2204808 |
Cites_doi | 10.1086/260062 10.1016/j.camwa.2011.07.016 10.1016/S0377-0427(02)00861-0 10.1016/j.mcm.2011.08.007 10.1016/j.cam.2007.08.016 10.1016/j.camwa.2011.03.097 10.1016/j.camwa.2011.05.057 10.1007/BF01395986 10.1002/mma.1519 10.1016/j.apm.2011.03.030 10.1002/nme.1620240408 10.1016/j.jmaa.2009.01.038 10.1016/S0377-0427(01)00502-7 10.1002/nme.1620241105 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. |
Copyright_xml | – notice: 2013 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.amc.2013.06.027 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-5649 |
EndPage | 315 |
ExternalDocumentID | 10_1016_j_amc_2013_06_027 S0096300313006401 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HMJ HVGLF HZ~ R2- SEW SSH TAE VH1 VOH WUQ |
ID | FETCH-LOGICAL-c297t-4320a1c6ec1ce95c9d500fac73e645295ba6491451bba5eae9b14c593a44f0413 |
IEDL.DBID | AIKHN |
ISSN | 0096-3003 |
IngestDate | Thu Apr 24 23:10:55 EDT 2025 Tue Jul 01 04:07:32 EDT 2025 Fri Feb 23 02:27:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Parabolic problems Collocation points The Bessel functions of first kind Convection–diffusion problem Singular perturbation Bessel collocation method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-4320a1c6ec1ce95c9d500fac73e645295ba6491451bba5eae9b14c593a44f0413 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1016_j_amc_2013_06_027 crossref_citationtrail_10_1016_j_amc_2013_06_027 elsevier_sciencedirect_doi_10_1016_j_amc_2013_06_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied mathematics and computation |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Yüzbaşı, Şahin, Sezer (b0085) 2011; 3 Yüzbaşı (b0100) 2011; 34 Yüzbaşı (b0105) 2011; 62 Shahmorad (b0115) 2005; 167 Baumert, Braun, Glos, Müller, Stoyan (b0130) 1981; vol. 23 Kadalbajoo, Gupta (b0050) 2009; 355 Yüzbaşı, Şahin, Sezer (b0095) 2011; 61 El-Gamel (b0060) 2006; 181 Jacob (b0015) 1959 Hirsch (b0010) 1988; vol. 1 Hahn, Bigeon, Sabonnadiere (b0025) 1987; 24 Launder, Spalding (b0035) 1972 Clavero, Jorge, Lisbona (b0040) 2003; 154 Çelik (b0125) 2006; 174 Kadalbajoo, Gupta, Awasthi (b0045) 2008; 220 Phongthanapanich, Dechaumphai (b0065) 2009; 209 Polak, Den Heiger, Schilders, Markowich (b0020) 1987; 24 Ramos (b0075) 2005; 161 Yüzbaşı, Şahin, Sezer (b0090) 2012; 55 Oliveira (b0120) 1980; 36 Lenferink (b0055) 2002; 143 Şahin, Yüzbaşı, Gülsu (b0110) 2011; 62 Du, Wu, Chen (b0080) 2011; 35 Black, Scholes (b0030) 1973; 81 Kadalbajoo, Awasthi (b0070) 2006; 183 Clavero (10.1016/j.amc.2013.06.027_b0040) 2003; 154 Yüzbaşı (10.1016/j.amc.2013.06.027_b0100) 2011; 34 Kadalbajoo (10.1016/j.amc.2013.06.027_b0070) 2006; 183 Baumert (10.1016/j.amc.2013.06.027_b0130) 1981; vol. 23 Yüzbaşı (10.1016/j.amc.2013.06.027_b0095) 2011; 61 Kadalbajoo (10.1016/j.amc.2013.06.027_b0050) 2009; 355 Lenferink (10.1016/j.amc.2013.06.027_b0055) 2002; 143 Çelik (10.1016/j.amc.2013.06.027_b0125) 2006; 174 Launder (10.1016/j.amc.2013.06.027_b0035) 1972 Hahn (10.1016/j.amc.2013.06.027_b0025) 1987; 24 Ramos (10.1016/j.amc.2013.06.027_b0075) 2005; 161 Jacob (10.1016/j.amc.2013.06.027_b0015) 1959 Phongthanapanich (10.1016/j.amc.2013.06.027_b0065) 2009; 209 Şahin (10.1016/j.amc.2013.06.027_b0110) 2011; 62 Shahmorad (10.1016/j.amc.2013.06.027_b0115) 2005; 167 Black (10.1016/j.amc.2013.06.027_b0030) 1973; 81 Oliveira (10.1016/j.amc.2013.06.027_b0120) 1980; 36 El-Gamel (10.1016/j.amc.2013.06.027_b0060) 2006; 181 Hirsch (10.1016/j.amc.2013.06.027_b0010) 1988; vol. 1 Polak (10.1016/j.amc.2013.06.027_b0020) 1987; 24 Yüzbaşı (10.1016/j.amc.2013.06.027_b0090) 2012; 55 Kadalbajoo (10.1016/j.amc.2013.06.027_b0045) 2008; 220 Yüzbaşı (10.1016/j.amc.2013.06.027_b0105) 2011; 62 Du (10.1016/j.amc.2013.06.027_b0080) 2011; 35 Yüzbaşı (10.1016/j.amc.2013.06.027_b0085) 2011; 3 |
References_xml | – volume: 220 start-page: 271 year: 2008 end-page: 289 ident: b0045 article-title: A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection–diffusion problem publication-title: J. Comput. Appl. Math. – year: 1959 ident: b0015 article-title: Heat Transfer – volume: 35 start-page: 4589 year: 2011 end-page: 4602 ident: b0080 article-title: A novel mathematical modeling of multiple scales for a class of two dimensional singular perturbed problems publication-title: Appl. Math. Modell. – volume: vol. 1 year: 1988 ident: b0010 publication-title: Numerical Computation of Internal and External Flows – volume: 62 start-page: 755 year: 2011 end-page: 769 ident: b0110 article-title: A collocation approach for solving systems of linear Volterra integral equations with variable coefficients publication-title: Comput. Math. Appl. – volume: 183 start-page: 42 year: 2006 end-page: 60 ident: b0070 article-title: A parameter uniform difference scheme for singularly perturbed parabolic problem in one space dimension publication-title: Appl. Math. Comput. – volume: 62 start-page: 2289 year: 2011 end-page: 2303 ident: b0105 article-title: A numerical approach for solving the high-order linear singular differential–difference equations publication-title: Comput. Math. Appl. – volume: 143 start-page: 49 year: 2002 end-page: 68 ident: b0055 article-title: A second order scheme for a time-dependent, singularly perturbed convection–diffusion equation publication-title: J. Comput. Appl. Math. – volume: vol. 23 year: 1981 ident: b0130 article-title: Modelling and Computation of Water Quality Problems in River Networks publication-title: Lecture Notes in Control and Inform. Sci. – volume: 55 start-page: 330 year: 2012 end-page: 341 ident: b0090 article-title: A collocation approach for solving modelling the pollution of a system of lakes publication-title: Math. Comput. Modell. – volume: 24 start-page: 763 year: 1987 end-page: 838 ident: b0020 article-title: Semiconductor device modelling from the numerical point of view publication-title: Int. J. Numer. Methods Eng. – volume: 161 start-page: 501 year: 2005 end-page: 512 ident: b0075 article-title: A piecewise-analytical method for singularly perturbed parabolic problems publication-title: Appl. Math. Comput. – volume: 3 start-page: 81 year: 2011 end-page: 101 ident: b0085 article-title: A Bessel polynomial approach for solving linear neutral delay differential equations with variable coefficients publication-title: J. Adv. Res. Diff. Equ. – volume: 24 start-page: 2071 year: 1987 end-page: 2086 ident: b0025 article-title: An ‘upwind’ finite element method for electromagnetic field problems in moving media publication-title: Int. J. Numer. Methods Eng. – volume: 154 start-page: 415 year: 2003 end-page: 429 ident: b0040 article-title: A uniformly convergent scheme on a nonuniform mesh for convection–diffusion parabolic problems publication-title: J. Comput. Appl. Math. – volume: 355 start-page: 439 year: 2009 end-page: 452 ident: b0050 article-title: Numerical solution of singularly perturbed convection–diffusion problem using parameter uniform B-spline collocation method publication-title: J. Math. Anal. Appl. – year: 1972 ident: b0035 article-title: Mathematical Models of Turbulence – volume: 181 start-page: 1635 year: 2006 end-page: 1644 ident: b0060 article-title: A Wavelet-Galerkin method for a singularly perturbed convection-dominated diffusion equation publication-title: Appl. Math. Comput. – volume: 61 start-page: 3079 year: 2011 end-page: 3096 ident: b0095 article-title: Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases publication-title: Comput. Math. Appl. – volume: 36 start-page: 27 year: 1980 end-page: 31 ident: b0120 article-title: Collacation and residual correction publication-title: Numer. Math. – volume: 81 start-page: 637 year: 1973 end-page: 659 ident: b0030 article-title: The price of options and corporate liabilities publication-title: J. Polit. Econ. – volume: 34 start-page: 2218 year: 2011 end-page: 2230 ident: b0100 article-title: A numerical approach for solving a class of the nonlinear Lane–Emden type equations arising in astrophysics publication-title: Math. Meth. Appl. Sci. – volume: 167 start-page: 1418 year: 2005 end-page: 1429 ident: b0115 article-title: Numerical solution of general form linear Fredholm. Volterra integro differantial equations by the tau method with an error estimation publication-title: Appl. Math. Comput. – volume: 174 start-page: 910 year: 2006 end-page: 920 ident: b0125 article-title: Collacation method and residual correction using Chebyshev series publication-title: Appl. Math. Comput. – volume: 209 start-page: 177 year: 2009 end-page: 185 ident: b0065 article-title: Combined finite volume element method for singularly perturbed reaction–diffusion problems publication-title: Appl. Math. Comput. – volume: 81 start-page: 637 year: 1973 ident: 10.1016/j.amc.2013.06.027_b0030 article-title: The price of options and corporate liabilities publication-title: J. Polit. Econ. doi: 10.1086/260062 – volume: 62 start-page: 2289 issue: 5 year: 2011 ident: 10.1016/j.amc.2013.06.027_b0105 article-title: A numerical approach for solving the high-order linear singular differential–difference equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.07.016 – volume: 154 start-page: 415 year: 2003 ident: 10.1016/j.amc.2013.06.027_b0040 article-title: A uniformly convergent scheme on a nonuniform mesh for convection–diffusion parabolic problems publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(02)00861-0 – volume: 55 start-page: 330 issue: 3–4 year: 2012 ident: 10.1016/j.amc.2013.06.027_b0090 article-title: A collocation approach for solving modelling the pollution of a system of lakes publication-title: Math. Comput. Modell. doi: 10.1016/j.mcm.2011.08.007 – volume: vol. 23 year: 1981 ident: 10.1016/j.amc.2013.06.027_b0130 article-title: Modelling and Computation of Water Quality Problems in River Networks – year: 1972 ident: 10.1016/j.amc.2013.06.027_b0035 – volume: 167 start-page: 1418 year: 2005 ident: 10.1016/j.amc.2013.06.027_b0115 article-title: Numerical solution of general form linear Fredholm. Volterra integro differantial equations by the tau method with an error estimation publication-title: Appl. Math. Comput. – volume: 220 start-page: 271 year: 2008 ident: 10.1016/j.amc.2013.06.027_b0045 article-title: A uniformly convergent B-spline collocation method on a nonuniform mesh for singularly perturbed one-dimensional time-dependent linear convection–diffusion problem publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2007.08.016 – volume: 61 start-page: 3079 issue: 10 year: 2011 ident: 10.1016/j.amc.2013.06.027_b0095 article-title: Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.03.097 – volume: 62 start-page: 755 issue: 2 year: 2011 ident: 10.1016/j.amc.2013.06.027_b0110 article-title: A collocation approach for solving systems of linear Volterra integral equations with variable coefficients publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.05.057 – volume: 36 start-page: 27 year: 1980 ident: 10.1016/j.amc.2013.06.027_b0120 article-title: Collacation and residual correction publication-title: Numer. Math. doi: 10.1007/BF01395986 – volume: vol. 1 year: 1988 ident: 10.1016/j.amc.2013.06.027_b0010 – volume: 34 start-page: 2218 issue: 18 year: 2011 ident: 10.1016/j.amc.2013.06.027_b0100 article-title: A numerical approach for solving a class of the nonlinear Lane–Emden type equations arising in astrophysics publication-title: Math. Meth. Appl. Sci. doi: 10.1002/mma.1519 – volume: 35 start-page: 4589 year: 2011 ident: 10.1016/j.amc.2013.06.027_b0080 article-title: A novel mathematical modeling of multiple scales for a class of two dimensional singular perturbed problems publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2011.03.030 – volume: 209 start-page: 177 year: 2009 ident: 10.1016/j.amc.2013.06.027_b0065 article-title: Combined finite volume element method for singularly perturbed reaction–diffusion problems publication-title: Appl. Math. Comput. – volume: 3 start-page: 81 issue: 1 year: 2011 ident: 10.1016/j.amc.2013.06.027_b0085 article-title: A Bessel polynomial approach for solving linear neutral delay differential equations with variable coefficients publication-title: J. Adv. Res. Diff. Equ. – volume: 24 start-page: 763 year: 1987 ident: 10.1016/j.amc.2013.06.027_b0020 article-title: Semiconductor device modelling from the numerical point of view publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620240408 – volume: 355 start-page: 439 year: 2009 ident: 10.1016/j.amc.2013.06.027_b0050 article-title: Numerical solution of singularly perturbed convection–diffusion problem using parameter uniform B-spline collocation method publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2009.01.038 – volume: 161 start-page: 501 year: 2005 ident: 10.1016/j.amc.2013.06.027_b0075 article-title: A piecewise-analytical method for singularly perturbed parabolic problems publication-title: Appl. Math. Comput. – volume: 174 start-page: 910 year: 2006 ident: 10.1016/j.amc.2013.06.027_b0125 article-title: Collacation method and residual correction using Chebyshev series publication-title: Appl. Math. Comput. – volume: 181 start-page: 1635 year: 2006 ident: 10.1016/j.amc.2013.06.027_b0060 article-title: A Wavelet-Galerkin method for a singularly perturbed convection-dominated diffusion equation publication-title: Appl. Math. Comput. – volume: 143 start-page: 49 year: 2002 ident: 10.1016/j.amc.2013.06.027_b0055 article-title: A second order scheme for a time-dependent, singularly perturbed convection–diffusion equation publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(01)00502-7 – year: 1959 ident: 10.1016/j.amc.2013.06.027_b0015 – volume: 24 start-page: 2071 year: 1987 ident: 10.1016/j.amc.2013.06.027_b0025 article-title: An ‘upwind’ finite element method for electromagnetic field problems in moving media publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620241105 – volume: 183 start-page: 42 year: 2006 ident: 10.1016/j.amc.2013.06.027_b0070 article-title: A parameter uniform difference scheme for singularly perturbed parabolic problem in one space dimension publication-title: Appl. Math. Comput. |
SSID | ssj0007614 |
Score | 2.2775 |
Snippet | In this paper, we present a numerical scheme for the approximate solutions of the one-dimensional parabolic convection–diffusion model problems. This method is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 305 |
SubjectTerms | Bessel collocation method Collocation points Convection–diffusion problem Parabolic problems Singular perturbation The Bessel functions of first kind |
Title | Numerical solutions of singularly perturbed one-dimensional parabolic convection–diffusion problems by the Bessel collocation method |
URI | https://dx.doi.org/10.1016/j.amc.2013.06.027 |
Volume | 220 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKu8CAeIryqDwwIYU6iZ3EY6moCqidqNQtsh1bKgpt1cfQBTHxB_iH_BJ8eQkkYGCNbMWyT3dn33ffh9ClNDSSMogcAQyEkFI7klF7a7WpCDMiCDWH3uHBMOiP6P2YjWuoW_bCAKyy8P25T8-8dfGlXexmez6ZQI8vB74oHwoyAYUerobn84DVUaNz99AfVg7Z3tRzMmYOMC_il8XNDOYlnoHI0PUzFk_QlvkpPH0JOb09tFvkiriTL2cf1fT0AO0MKqLV5SF6G67zkkuKKyPCM4PhBQAApukGz_XChhWpEzybaicBNv-ciQMD7bcEXmCcYc-zDoeP13fQTFnDEFyozSyx3GD7U3wDROMpBtuZ5U99OFegPkKj3u1jt-8U0gqO8ni4cqjvEeGqQCtXac4UTxghRqjQ11Dp5EyKgHJQ8ZVSMC00ly5VjPuCUkNs4DtG9ald9QnCvk2ISEK1osZQSSIJL1M260giaf2FMU1Eyh2NVcE7DvIXaVwCzJ5iewgxHEIMIDsvbKKraso8J934azAtjyn-ZjmxDQq_Tzv937QztO1lghiAMjtH9dVirS9sWrKSLbR1_eK2CuP7BLZl5P0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgAD4inK0wMTUqiT2Ek8QkVVoO3USt0i27GlotBWfQxdEBN_gH_IL8GXRwEJGFgjW7Hs093Z9933IXQhDY2kDCJHAAMhpNSOZNTeWm0qwowIQs2hd7jTDVp9ej9ggwpqlL0wAKssfH_u0zNvXXypF7tZnwyH0OPLgS_Kh4JMQKGHa40yPwRc39XzJ87D3tNzKmYOIC_il6XNDOQlnoDG0PUzDk9QlvkpOH0JOM1ttFVkivg6X8wOqujRLtrsrGhWZ3votbvICy4pXpkQHhsM93-Al6ZLPNFTG1SkTvB4pJ0EuPxzHg4MpN8SWIFxhjzP-hveX95AMWUBQ3ChNTPDcontT_EN0IynGCxnnD_04Vx_eh_1m7e9RssphBUc5fFw7lDfI8JVgVau0pwpnjBCjFChr6HOyZkUAeWg4SulYFpoLl2qGPcFpYbYsHeAqiO76kOEfZsOkYRqRY2hkkQS3qVszpFE0noLY2qIlDsaq4J1HMQv0riElz3G9hBiOIQYIHZeWEOXqymTnHLjr8G0PKb4m93ENiT8Pu3of9PO0Xqr12nH7bvuwzHa8DJpDMCbnaDqfLrQpzZBmcuzzAA_AKqL5cg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solutions+of+singularly+perturbed+one-dimensional+parabolic+convection%E2%80%93diffusion+problems+by+the+Bessel+collocation+method&rft.jtitle=Applied+mathematics+and+computation&rft.au=Y%C3%BCzba%C5%9F%C4%B1%2C+%C5%9Euayip&rft.au=%C5%9Eahin%2C+Niyazi&rft.date=2013-09-01&rft.issn=0096-3003&rft.volume=220&rft.spage=305&rft.epage=315&rft_id=info:doi/10.1016%2Fj.amc.2013.06.027&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2013_06_027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |