Inter-subject transfer learning for EEG-based mental fatigue recognition
Mental fatigue is one of the major factors leading to human errors. To avoid failures caused by mental fatigue, researchers are working on ways to detect/monitor fatigue using different types of signals. Electroencephalography (EEG) signal is one of the most popular methods to recognize mental fatig...
Saved in:
Published in | Advanced engineering informatics Vol. 46; p. 101157 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mental fatigue is one of the major factors leading to human errors. To avoid failures caused by mental fatigue, researchers are working on ways to detect/monitor fatigue using different types of signals. Electroencephalography (EEG) signal is one of the most popular methods to recognize mental fatigue since it directly measures the neurophysiological activities in the brain. Current EEG-based fatigue recognition algorithms are usually subject-specific, which means a classifier needs to be trained per subject. However, as fatigue may need a relatively long period to induce, collecting training data from each new user could be time-consuming and troublesome. Calibration-free methods are desired but also challenging since significant variability of physiological signals exists among different subjects. In this paper, we proposed algorithms using inter-subject transfer learning for EEG-based mental fatigue recognition, which did not need a calibration. To explore the influence of the number of EEG channels on the algorithms’ accuracy, we also compared the cases of using one channel only and multiple channels. Random forest was applied to choose the channel that has the most distinguishable features. A public EEG fatigue dataset recorded during driving was used to validate the algorithms. EEG data from 11 subjects were selected from the dataset and leave-one-subject-out cross-validation was employed. The channel from the occipital lobe is selected when only one channel is desired. The proposed transfer learning-based algorithms using Maximum Independence Domain Adaptation (MIDA) achieved an accuracy of 73.01% with all thirty channels, and using Transfer Component Analysis (TCA) achieved 68.00% with the one selected channel. |
---|---|
AbstractList | Mental fatigue is one of the major factors leading to human errors. To avoid failures caused by mental fatigue, researchers are working on ways to detect/monitor fatigue using different types of signals. Electroencephalography (EEG) signal is one of the most popular methods to recognize mental fatigue since it directly measures the neurophysiological activities in the brain. Current EEG-based fatigue recognition algorithms are usually subject-specific, which means a classifier needs to be trained per subject. However, as fatigue may need a relatively long period to induce, collecting training data from each new user could be time-consuming and troublesome. Calibration-free methods are desired but also challenging since significant variability of physiological signals exists among different subjects. In this paper, we proposed algorithms using inter-subject transfer learning for EEG-based mental fatigue recognition, which did not need a calibration. To explore the influence of the number of EEG channels on the algorithms’ accuracy, we also compared the cases of using one channel only and multiple channels. Random forest was applied to choose the channel that has the most distinguishable features. A public EEG fatigue dataset recorded during driving was used to validate the algorithms. EEG data from 11 subjects were selected from the dataset and leave-one-subject-out cross-validation was employed. The channel from the occipital lobe is selected when only one channel is desired. The proposed transfer learning-based algorithms using Maximum Independence Domain Adaptation (MIDA) achieved an accuracy of 73.01% with all thirty channels, and using Transfer Component Analysis (TCA) achieved 68.00% with the one selected channel. |
ArticleNumber | 101157 |
Author | Müller-Wittig, Wolfgang Cui, Jian Liu, Yisi Lan, Zirui Sourina, Olga |
Author_xml | – sequence: 1 givenname: Yisi surname: Liu fullname: Liu, Yisi email: LiuYS@ntu.edu.sg – sequence: 2 givenname: Zirui surname: Lan fullname: Lan, Zirui email: lan.zirui@fraunhofer.sg – sequence: 3 givenname: Jian surname: Cui fullname: Cui, Jian email: Cuijian@ntu.edu.sg – sequence: 4 givenname: Olga surname: Sourina fullname: Sourina, Olga email: EOSourina@ntu.edu.sg – sequence: 5 givenname: Wolfgang surname: Müller-Wittig fullname: Müller-Wittig, Wolfgang email: Wolfgang.Mueller-wittig@fraunhofer.sg |
BookMark | eNp9kMFOAyEQhompiW31AbzxAlRg2YWNJ9PUtkkTL3omlB0aNlvWADXx7aXWk4eeZubwTf7_m6FJGAMg9MjoglHWPPULA37BKf-9WS1v0JQpWZG64nRSdiEFoZVo7tAspZ4WRrVyijbbkCGSdNr3YDPO0YTkIOIBTAw-HLAbI16t1mRvEnT4CCGbATuT_eEEOIIdD8FnP4Z7dOvMkODhb87Rx-vqfbkhu7f1dvmyI5a3MhPBOycqpxSlHLixDCSXrWoZr9VeUMOUbbmowPFadFwaJ20jGe9ELZpGKlXNkbz8tXFMKYLT1mdzTlCy-0Ezqs9CdK-LEH0Woi9CCsn-kZ_RH038vso8Xxgolb48RJ2sh2Ch86V71t3or9A_DmV5XQ |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3293421 crossref_primary_10_1109_TIM_2023_3276515 crossref_primary_10_1016_j_ymeth_2021_04_009 crossref_primary_10_3390_app13085205 crossref_primary_10_1109_JSEN_2024_3492176 crossref_primary_10_3390_ijerph182211891 crossref_primary_10_1016_j_bspc_2021_103023 crossref_primary_10_1016_j_engappai_2023_106604 crossref_primary_10_1016_j_ymssp_2023_110766 crossref_primary_10_1109_TCDS_2023_3257428 crossref_primary_10_3389_fnins_2021_733546 crossref_primary_10_1016_j_bspc_2023_105756 crossref_primary_10_1016_j_engappai_2024_109642 crossref_primary_10_1007_s10548_023_01016_0 crossref_primary_10_1016_j_bspc_2023_105638 crossref_primary_10_1061__ASCE_CO_1943_7862_0002341 crossref_primary_10_1016_j_ins_2022_12_088 crossref_primary_10_1016_j_eswa_2024_126286 crossref_primary_10_1007_s11571_024_10215_9 crossref_primary_10_32604_iasc_2023_029698 crossref_primary_10_1016_j_aei_2024_103089 crossref_primary_10_3390_su14052941 crossref_primary_10_1016_j_bspc_2023_105832 crossref_primary_10_1016_j_dibe_2024_100513 crossref_primary_10_1016_j_iot_2023_100681 crossref_primary_10_1016_j_aei_2024_102564 crossref_primary_10_1016_j_compbiomed_2023_107652 crossref_primary_10_1109_TNSRE_2021_3079505 crossref_primary_10_3389_fnhum_2021_706270 crossref_primary_10_3390_s24103017 crossref_primary_10_3390_app13052785 crossref_primary_10_1515_bmt_2022_0354 crossref_primary_10_1007_s11227_025_06947_y crossref_primary_10_1016_j_aei_2024_102575 crossref_primary_10_1016_j_aei_2024_102971 crossref_primary_10_1016_j_bspc_2024_106044 crossref_primary_10_1016_j_bspc_2024_107132 crossref_primary_10_1016_j_ymeth_2021_04_017 crossref_primary_10_1063_5_0133092 crossref_primary_10_3390_app122010252 crossref_primary_10_1016_j_aei_2022_101735 crossref_primary_10_1016_j_bspc_2023_105892 crossref_primary_10_3390_electronics13183742 crossref_primary_10_3389_fphys_2023_1196919 crossref_primary_10_1007_s00500_023_09077_w crossref_primary_10_1142_S0129065723500090 crossref_primary_10_3389_fnins_2022_976437 crossref_primary_10_1016_j_compag_2024_109265 crossref_primary_10_1016_j_compbiomed_2022_106088 crossref_primary_10_1109_TNNLS_2022_3147208 crossref_primary_10_1007_s11277_024_11102_6 |
Cites_doi | 10.1093/sleep/15.6.550 10.7551/mitpress/7503.003.0069 10.1088/1741-2552/ab260c 10.1016/j.clinph.2010.10.044 10.1109/TCYB.2016.2633306 10.1016/0013-4694(87)90096-4 10.1109/CW.2019.00048 10.1093/sleep/14.3.221 10.1007/s11571-018-9485-1 10.1109/TNNLS.2018.2886414 10.1109/EMBC.2017.8037196 10.1007/s11571-018-9496-y 10.1016/j.micpro.2018.02.004 10.1590/2446-4740.0693 10.3390/s18124477 10.1109/EMBC.2018.8512205 10.1109/TKDE.2009.191 10.3389/fnins.2012.00039 10.1076/0271-3683(200007)2111-ZFT535 10.1016/j.bspc.2019.02.005 10.1155/2008/519480 10.1016/j.eswa.2007.12.043 10.1016/j.jneumeth.2003.10.009 10.1017/S0048577201393095 10.1007/978-3-540-75225-7_5 10.1016/j.eswa.2008.09.030 10.1016/S0165-0173(98)00056-3 10.1109/TBCAS.2010.2046415 10.1142/S021800141854023X 10.1088/1741-2552/aace8c 10.1038/s41597-019-0027-4 10.1109/TNN.2010.2091281 10.1109/TNSRE.2018.2790359 10.1016/j.ssci.2008.01.007 10.1027/0269-8803.23.3.143 10.1016/j.ergon.2004.09.006 10.1186/s13634-015-0251-9 10.1088/1741-2552/aaf3f6 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.aei.2020.101157 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1873-5320 |
ExternalDocumentID | 10_1016_j_aei_2020_101157 S1474034620301282 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAAKF AAAKG AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SST SSV SSZ T5K UHS XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-42df43f88002e2ac1e7279891258b40a18c9243ef254d27af7c6712d454667883 |
IEDL.DBID | .~1 |
ISSN | 1474-0346 |
IngestDate | Thu Apr 24 23:07:22 EDT 2025 Tue Jul 01 02:02:37 EDT 2025 Fri Feb 23 02:48:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Transfer learning EEG Mental fatigue recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-42df43f88002e2ac1e7279891258b40a18c9243ef254d27af7c6712d454667883 |
ParticipantIDs | crossref_citationtrail_10_1016_j_aei_2020_101157 crossref_primary_10_1016_j_aei_2020_101157 elsevier_sciencedirect_doi_10_1016_j_aei_2020_101157 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationTitle | Advanced engineering informatics |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yeo, Li, Shen, Wilder-Smith (b0090) 2009; 47 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b0110) 2018; 15 Zeng, Yang, Dai, Qin, Zhang, Kong (b0135) 2018; 12 Belakhdar, Kaaniche, Djemal, Ouni (b0170) 2018; 58 Ang, Chin, Wang, Guan, Zhang (b0115) 2012; 6 Morad, Lemberg, Yofe, Dagan (b0025) 2000; 21 R. Chai, G.R. Naik, S.H. Ling, Y. Tran, A. Craig, H.T. Nguyen, Channels selection using independent component analysis and scalp map projection for EEG-based driver fatigue classification, in: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2017, pp. 1808–1811. Hu, Min (b0095) 2018; 12 Simon (b0085) 2011; 122 W.W. Wierwille, S. Wreggit, C. Kirn, L. Ellsworth, R. Fairbanks, Research on vehicle-based driver status/performance monitoring; development, validation, and refinement of algorithms for detection of driver drowsiness, National Highway Traffic Safety Administration, Washington, DOT HS 808 247, Oct 1994, Available Fatigue – You're More Than Just Tired, National Safety Council, Available Alotaiby, El-Samie, Alshebeili, Ahmad (b0145) 2015; 2015 (accessed on: 1 Mar 2019). Jap, Lal, Fischer, Bekiaris (b0035) 2009; 36 Multi-channel EEG recordings during a sustained-attention driving task, (raw dataset), Available Pan, Tsang, Kwok, Yang (b0040) 2010; 22 Luo, Qiu, Liu, Huang (b0100) 2019; 51 Wang, Li, Liu (b0105) 2018; 32 A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, A.J. Smola, A kernel method for the two-sample-problem, in: Advances in neural information processing systems, 2007, pp. 513–520. A. Smola, A. Gretton, L. Song, B. Schölkopf, A Hilbert space embedding for distributions, in: International Conference on Algorithmic Learning Theory, 2007, pp. 13–31. Silveira, Kozakevicius, Rodrigues (b0155) 2015; 31 Lin, Chang, Lin, Hung, Chao, Wang (b0150) 2010; 4 Pal (b0175) 2008; 2008 Tran, Wijesuriya, Tarvainen, Karjalainen, Craig (b0030) 2009; 23 Klimesch (b0080) 1999; 29 Hu, Zheng (b0015) 2009; 36 Wei, Wang, Lin, Jung (b0210) 2018; 26 F. Pedregosa, et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., vol. 12, no. Oct, 2011, pp. 2825–2830. H. Albalawi, X. Li, Single-channel real-time drowsiness detection based on electroencephalography, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2018, pp. 98–101. Lal, Craig (b0070) 2002; 39 Cao, Chuang, King, Lin (b0190) 2019; 6 (accessed on: 1 Mar 2020). Eoh, Chung, Kim (b0075) 2005; 35 Delorme, Makeig (b0205) 2004; 134 Corsi-Cabrera, Ramos, Arce, Guevara, Ponce-de Leon, Lorenzo (b0060) 1992; 15 Ogino, Mitsukura (b0160) 2018; 18 Multi-channel EEG recordings during a sustained-attention driving task (pre-processed dataset), Available NHTSA, “2018 Fatal motor vehicle crashes: overview,” in “Traffic Safety Facts Resesarch Note,” NHTSA's National Center for Statistics and Analysis, Washington, DOT HS 812 826, Oct 2019, Available Roy, Banville, Albuquerque, Gramfort, Falk, Faubert (b0125) 2019; 16 Fernández-Delgado, Cernadas, Barro, Amorim (b0185) 2014; 15 Gao (b0130) 2019; 30 Torsvall (b0065) 1987; 66 Åkerstedt, Kecklund, Knutsson (b0055) 1991; 14 Pan, Yang (b0140) 2010; 22 Yan, Kou, Zhang (b0045) 2017; 48 Y. Liu, Z. Lan, J. Cui, O. Sourina, W. Müller-Wittig, EEG-based cross-subject mental fatigue recognition, in: 2019 International Conference on Cyberworlds (CW), IEEE, 2019, pp. 247–252. Fahimi, Zhang, Goh, Lee, Ang, Guan (b0120) 2019; 16 Pan (10.1016/j.aei.2020.101157_b0140) 2010; 22 Fernández-Delgado (10.1016/j.aei.2020.101157_b0185) 2014; 15 Pal (10.1016/j.aei.2020.101157_b0175) 2008; 2008 Pan (10.1016/j.aei.2020.101157_b0040) 2010; 22 Corsi-Cabrera (10.1016/j.aei.2020.101157_b0060) 1992; 15 Gao (10.1016/j.aei.2020.101157_b0130) 2019; 30 10.1016/j.aei.2020.101157_b0195 Luo (10.1016/j.aei.2020.101157_b0100) 2019; 51 10.1016/j.aei.2020.101157_b0050 Hu (10.1016/j.aei.2020.101157_b0015) 2009; 36 Wang (10.1016/j.aei.2020.101157_b0105) 2018; 32 Zeng (10.1016/j.aei.2020.101157_b0135) 2018; 12 Lin (10.1016/j.aei.2020.101157_b0150) 2010; 4 10.1016/j.aei.2020.101157_b0010 Eoh (10.1016/j.aei.2020.101157_b0075) 2005; 35 10.1016/j.aei.2020.101157_b0215 Ogino (10.1016/j.aei.2020.101157_b0160) 2018; 18 Hu (10.1016/j.aei.2020.101157_b0095) 2018; 12 Yeo (10.1016/j.aei.2020.101157_b0090) 2009; 47 Jap (10.1016/j.aei.2020.101157_b0035) 2009; 36 Ang (10.1016/j.aei.2020.101157_b0115) 2012; 6 Alotaiby (10.1016/j.aei.2020.101157_b0145) 2015; 2015 10.1016/j.aei.2020.101157_b0180 Morad (10.1016/j.aei.2020.101157_b0025) 2000; 21 Roy (10.1016/j.aei.2020.101157_b0125) 2019; 16 10.1016/j.aei.2020.101157_b0020 Lawhern (10.1016/j.aei.2020.101157_b0110) 2018; 15 Lal (10.1016/j.aei.2020.101157_b0070) 2002; 39 Fahimi (10.1016/j.aei.2020.101157_b0120) 2019; 16 10.1016/j.aei.2020.101157_b0200 Yan (10.1016/j.aei.2020.101157_b0045) 2017; 48 Belakhdar (10.1016/j.aei.2020.101157_b0170) 2018; 58 Simon (10.1016/j.aei.2020.101157_b0085) 2011; 122 10.1016/j.aei.2020.101157_b0165 Delorme (10.1016/j.aei.2020.101157_b0205) 2004; 134 10.1016/j.aei.2020.101157_b0220 10.1016/j.aei.2020.101157_b0005 Torsvall (10.1016/j.aei.2020.101157_b0065) 1987; 66 10.1016/j.aei.2020.101157_b0225 Tran (10.1016/j.aei.2020.101157_b0030) 2009; 23 Silveira (10.1016/j.aei.2020.101157_b0155) 2015; 31 Åkerstedt (10.1016/j.aei.2020.101157_b0055) 1991; 14 Wei (10.1016/j.aei.2020.101157_b0210) 2018; 26 Klimesch (10.1016/j.aei.2020.101157_b0080) 1999; 29 Cao (10.1016/j.aei.2020.101157_b0190) 2019; 6 |
References_xml | – volume: 31 start-page: 107 year: 2015 end-page: 115 ident: b0155 article-title: Drowsiness detection for single channel EEG by DWT best m-term approximation publication-title: Res. Biomed. Eng. – volume: 22 start-page: 199 year: 2010 end-page: 210 ident: b0040 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Networks – reference: Multi-channel EEG recordings during a sustained-attention driving task (pre-processed dataset), Available: – volume: 48 start-page: 288 year: 2017 end-page: 299 ident: b0045 article-title: Learning domain-invariant subspace using domain features and independence maximization publication-title: IEEE Trans. Cybernet. – volume: 35 start-page: 307 year: 2005 end-page: 320 ident: b0075 article-title: Electroencephalographic study of drowsiness in simulated driving with sleep deprivation publication-title: Int. J. Industr. Ergon. – volume: 122 start-page: 1168 year: 2011 end-page: 1178 ident: b0085 article-title: EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions publication-title: Clin. Neurophysiol. – reference: Fatigue – You're More Than Just Tired, National Safety Council, Available: – volume: 15 start-page: 1 year: 2018 end-page: 17 ident: b0110 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: b0205 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neuroscience Methods – volume: 23 start-page: 143 year: 2009 end-page: 151 ident: b0030 article-title: The relationship between spectral changes in heart rate variability and fatigue publication-title: J. Psychophysiol. – reference: R. Chai, G.R. Naik, S.H. Ling, Y. Tran, A. Craig, H.T. Nguyen, Channels selection using independent component analysis and scalp map projection for EEG-based driver fatigue classification, in: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2017, pp. 1808–1811. – reference: Multi-channel EEG recordings during a sustained-attention driving task, (raw dataset), Available: – volume: 16 start-page: 1 year: 2019 end-page: 12 ident: b0120 article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI publication-title: J. Neural Eng. – reference: (accessed on: 1 Mar 2019). – volume: 26 start-page: 400 year: 2018 end-page: 406 ident: b0210 article-title: Toward drowsiness detection using non-hair-bearing EEG-based brain-computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 2015 start-page: 1 year: 2015 end-page: 21 ident: b0145 article-title: A review of channel selection algorithms for EEG signal processing publication-title: EURASIP J. Adv. Signal Process. – volume: 14 start-page: 221 year: 1991 end-page: 225 ident: b0055 article-title: Manifest sleepiness and the spectral content of the EEG during shift work publication-title: Sleep – reference: Y. Liu, Z. Lan, J. Cui, O. Sourina, W. Müller-Wittig, EEG-based cross-subject mental fatigue recognition, in: 2019 International Conference on Cyberworlds (CW), IEEE, 2019, pp. 247–252. – volume: 47 start-page: 115 year: 2009 end-page: 124 ident: b0090 article-title: Can SVM be used for automatic EEG detection of drowsiness during car driving? publication-title: Safety Sci. – reference: A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, A.J. Smola, A kernel method for the two-sample-problem, in: Advances in neural information processing systems, 2007, pp. 513–520. – volume: 4 start-page: 214 year: 2010 end-page: 222 ident: b0150 article-title: A real-time wireless brain–computer interface system for drowsiness detection publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 36 start-page: 7651 year: 2009 end-page: 7658 ident: b0015 article-title: Driver drowsiness detection with eyelid related parameters by Support Vector Machine publication-title: Expert Syst. Appl. – volume: 29 start-page: 169 year: 1999 end-page: 195 ident: b0080 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis publication-title: Brain Res. Rev. – volume: 15 start-page: 3133 year: 2014 end-page: 3181 ident: b0185 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – volume: 15 start-page: 550 year: 1992 end-page: 555 ident: b0060 article-title: Changes in the waking EEG as a consequence of sleep and sleep deprivation publication-title: Sleep – volume: 12 start-page: 597 year: 2018 end-page: 606 ident: b0135 article-title: EEG classification of driver mental states by deep learning publication-title: Cognitive neurodynamics – volume: 12 start-page: 431 year: 2018 end-page: 440 ident: b0095 article-title: Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model publication-title: Cognitive Neurodyn. – volume: 51 start-page: 50 year: 2019 end-page: 58 ident: b0100 article-title: Research on fatigue driving detection using forehead EEG based on adaptive multi-scale entropy publication-title: Biomed. Signal Process. Control – reference: A. Smola, A. Gretton, L. Song, B. Schölkopf, A Hilbert space embedding for distributions, in: International Conference on Algorithmic Learning Theory, 2007, pp. 13–31. – volume: 36 start-page: 2352 year: 2009 end-page: 2359 ident: b0035 article-title: Using EEG spectral components to assess algorithms for detecting fatigue publication-title: Expert Syst. Appl. – volume: 2008 start-page: 1 year: 2008 end-page: 11 ident: b0175 article-title: EEG-based subject-and session-independent drowsiness detection: an unsupervised approach publication-title: EURASIP J. Adv. Signal Process. – reference: W.W. Wierwille, S. Wreggit, C. Kirn, L. Ellsworth, R. Fairbanks, Research on vehicle-based driver status/performance monitoring; development, validation, and refinement of algorithms for detection of driver drowsiness, National Highway Traffic Safety Administration, Washington, DOT HS 808 247, Oct 1994, Available: – volume: 21 start-page: 535 year: 2000 end-page: 542 ident: b0025 article-title: Pupillography as an objective indicator of fatigue publication-title: Curr. Eye Res. – volume: 6 start-page: 1 year: 2012 end-page: 9 ident: b0115 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Front. Neurosci. – volume: 66 start-page: 502 year: 1987 end-page: 511 ident: b0065 article-title: Sleepiness on the job: continuously measured EEG changes in train drivers publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 30 start-page: 2755 year: 2019 end-page: 2763 ident: b0130 article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation publication-title: IEEE Trans. Neural Networks Learning Syst. – volume: 18 start-page: 1 year: 2018 end-page: 19 ident: b0160 article-title: Portable drowsiness detection through use of a prefrontal single-channel electroencephalogram publication-title: Sensors – volume: 39 start-page: 313 year: 2002 end-page: 321 ident: b0070 article-title: Driver fatigue: electroencephalography and psychological assessment publication-title: Psychophysiology – volume: 16 start-page: 1 year: 2019 end-page: 37 ident: b0125 article-title: Deep learning-based electroencephalography analysis: a systematic review publication-title: J. Neural Eng. – reference: H. Albalawi, X. Li, Single-channel real-time drowsiness detection based on electroencephalography, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2018, pp. 98–101. – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: b0140 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowledge Data Eng. – volume: 32 start-page: 1 year: 2018 end-page: 15 ident: b0105 article-title: Analysis of feature fatigue EEG signals based on wavelet entropy publication-title: Int. J. Pattern Recognit. Artificial Intelligence – reference: NHTSA, “2018 Fatal motor vehicle crashes: overview,” in “Traffic Safety Facts Resesarch Note,” NHTSA's National Center for Statistics and Analysis, Washington, DOT HS 812 826, Oct 2019, Available: – reference: F. Pedregosa, et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., vol. 12, no. Oct, 2011, pp. 2825–2830. – reference: (accessed on: 1 Mar 2020). – volume: 6 start-page: 1 year: 2019 end-page: 8 ident: b0190 article-title: Multi-channel EEG recordings during a sustained-attention driving task publication-title: Scientific Data – volume: 58 start-page: 13 year: 2018 end-page: 23 ident: b0170 article-title: Single-channel-based automatic drowsiness detection architecture with a reduced number of EEG features publication-title: Microprocessors Microsyst. – volume: 15 start-page: 550 issue: 6 year: 1992 ident: 10.1016/j.aei.2020.101157_b0060 article-title: Changes in the waking EEG as a consequence of sleep and sleep deprivation publication-title: Sleep doi: 10.1093/sleep/15.6.550 – ident: 10.1016/j.aei.2020.101157_b0200 – ident: 10.1016/j.aei.2020.101157_b0220 doi: 10.7551/mitpress/7503.003.0069 – volume: 16 start-page: 1 issue: 5 year: 2019 ident: 10.1016/j.aei.2020.101157_b0125 article-title: Deep learning-based electroencephalography analysis: a systematic review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab260c – ident: 10.1016/j.aei.2020.101157_b0195 – volume: 122 start-page: 1168 issue: 6 year: 2011 ident: 10.1016/j.aei.2020.101157_b0085 article-title: EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2010.10.044 – volume: 48 start-page: 288 issue: 1 year: 2017 ident: 10.1016/j.aei.2020.101157_b0045 article-title: Learning domain-invariant subspace using domain features and independence maximization publication-title: IEEE Trans. Cybernet. doi: 10.1109/TCYB.2016.2633306 – volume: 66 start-page: 502 issue: 6 year: 1987 ident: 10.1016/j.aei.2020.101157_b0065 article-title: Sleepiness on the job: continuously measured EEG changes in train drivers publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(87)90096-4 – ident: 10.1016/j.aei.2020.101157_b0050 doi: 10.1109/CW.2019.00048 – volume: 14 start-page: 221 issue: 3 year: 1991 ident: 10.1016/j.aei.2020.101157_b0055 article-title: Manifest sleepiness and the spectral content of the EEG during shift work publication-title: Sleep doi: 10.1093/sleep/14.3.221 – volume: 12 start-page: 431 issue: 4 year: 2018 ident: 10.1016/j.aei.2020.101157_b0095 article-title: Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model publication-title: Cognitive Neurodyn. doi: 10.1007/s11571-018-9485-1 – volume: 30 start-page: 2755 issue: 9 year: 2019 ident: 10.1016/j.aei.2020.101157_b0130 article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation publication-title: IEEE Trans. Neural Networks Learning Syst. doi: 10.1109/TNNLS.2018.2886414 – ident: 10.1016/j.aei.2020.101157_b0180 doi: 10.1109/EMBC.2017.8037196 – volume: 12 start-page: 597 issue: 6 year: 2018 ident: 10.1016/j.aei.2020.101157_b0135 article-title: EEG classification of driver mental states by deep learning publication-title: Cognitive neurodynamics doi: 10.1007/s11571-018-9496-y – volume: 58 start-page: 13 year: 2018 ident: 10.1016/j.aei.2020.101157_b0170 article-title: Single-channel-based automatic drowsiness detection architecture with a reduced number of EEG features publication-title: Microprocessors Microsyst. doi: 10.1016/j.micpro.2018.02.004 – volume: 31 start-page: 107 issue: 2 year: 2015 ident: 10.1016/j.aei.2020.101157_b0155 article-title: Drowsiness detection for single channel EEG by DWT best m-term approximation publication-title: Res. Biomed. Eng. doi: 10.1590/2446-4740.0693 – volume: 18 start-page: 1 issue: 12 year: 2018 ident: 10.1016/j.aei.2020.101157_b0160 article-title: Portable drowsiness detection through use of a prefrontal single-channel electroencephalogram publication-title: Sensors doi: 10.3390/s18124477 – ident: 10.1016/j.aei.2020.101157_b0165 doi: 10.1109/EMBC.2018.8512205 – volume: 22 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.aei.2020.101157_b0140 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowledge Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 6 start-page: 1 year: 2012 ident: 10.1016/j.aei.2020.101157_b0115 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00039 – volume: 21 start-page: 535 issue: 1 year: 2000 ident: 10.1016/j.aei.2020.101157_b0025 article-title: Pupillography as an objective indicator of fatigue publication-title: Curr. Eye Res. doi: 10.1076/0271-3683(200007)2111-ZFT535 – volume: 51 start-page: 50 year: 2019 ident: 10.1016/j.aei.2020.101157_b0100 article-title: Research on fatigue driving detection using forehead EEG based on adaptive multi-scale entropy publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.02.005 – volume: 2008 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.aei.2020.101157_b0175 article-title: EEG-based subject-and session-independent drowsiness detection: an unsupervised approach publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/2008/519480 – volume: 15 start-page: 3133 year: 2014 ident: 10.1016/j.aei.2020.101157_b0185 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – volume: 36 start-page: 2352 issue: 2 year: 2009 ident: 10.1016/j.aei.2020.101157_b0035 article-title: Using EEG spectral components to assess algorithms for detecting fatigue publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.12.043 – ident: 10.1016/j.aei.2020.101157_b0010 – volume: 134 start-page: 9 issue: 1 year: 2004 ident: 10.1016/j.aei.2020.101157_b0205 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neuroscience Methods doi: 10.1016/j.jneumeth.2003.10.009 – ident: 10.1016/j.aei.2020.101157_b0215 – volume: 39 start-page: 313 issue: 3 year: 2002 ident: 10.1016/j.aei.2020.101157_b0070 article-title: Driver fatigue: electroencephalography and psychological assessment publication-title: Psychophysiology doi: 10.1017/S0048577201393095 – ident: 10.1016/j.aei.2020.101157_b0225 doi: 10.1007/978-3-540-75225-7_5 – volume: 36 start-page: 7651 issue: 4 year: 2009 ident: 10.1016/j.aei.2020.101157_b0015 article-title: Driver drowsiness detection with eyelid related parameters by Support Vector Machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.09.030 – volume: 29 start-page: 169 issue: 2–3 year: 1999 ident: 10.1016/j.aei.2020.101157_b0080 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis publication-title: Brain Res. Rev. doi: 10.1016/S0165-0173(98)00056-3 – volume: 4 start-page: 214 issue: 4 year: 2010 ident: 10.1016/j.aei.2020.101157_b0150 article-title: A real-time wireless brain–computer interface system for drowsiness detection publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2010.2046415 – volume: 32 start-page: 1 issue: 08 year: 2018 ident: 10.1016/j.aei.2020.101157_b0105 article-title: Analysis of feature fatigue EEG signals based on wavelet entropy publication-title: Int. J. Pattern Recognit. Artificial Intelligence doi: 10.1142/S021800141854023X – volume: 15 start-page: 1 issue: 5 year: 2018 ident: 10.1016/j.aei.2020.101157_b0110 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.aei.2020.101157_b0190 article-title: Multi-channel EEG recordings during a sustained-attention driving task publication-title: Scientific Data doi: 10.1038/s41597-019-0027-4 – volume: 22 start-page: 199 issue: 2 year: 2010 ident: 10.1016/j.aei.2020.101157_b0040 article-title: Domain adaptation via transfer component analysis publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2010.2091281 – volume: 26 start-page: 400 issue: 2 year: 2018 ident: 10.1016/j.aei.2020.101157_b0210 article-title: Toward drowsiness detection using non-hair-bearing EEG-based brain-computer interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2790359 – ident: 10.1016/j.aei.2020.101157_b0005 – volume: 47 start-page: 115 issue: 1 year: 2009 ident: 10.1016/j.aei.2020.101157_b0090 article-title: Can SVM be used for automatic EEG detection of drowsiness during car driving? publication-title: Safety Sci. doi: 10.1016/j.ssci.2008.01.007 – volume: 23 start-page: 143 issue: 3 year: 2009 ident: 10.1016/j.aei.2020.101157_b0030 article-title: The relationship between spectral changes in heart rate variability and fatigue publication-title: J. Psychophysiol. doi: 10.1027/0269-8803.23.3.143 – volume: 35 start-page: 307 issue: 4 year: 2005 ident: 10.1016/j.aei.2020.101157_b0075 article-title: Electroencephalographic study of drowsiness in simulated driving with sleep deprivation publication-title: Int. J. Industr. Ergon. doi: 10.1016/j.ergon.2004.09.006 – volume: 2015 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.aei.2020.101157_b0145 article-title: A review of channel selection algorithms for EEG signal processing publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-015-0251-9 – ident: 10.1016/j.aei.2020.101157_b0020 – volume: 16 start-page: 1 issue: 2 year: 2019 ident: 10.1016/j.aei.2020.101157_b0120 article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaf3f6 |
SSID | ssj0016897 |
Score | 2.4939137 |
Snippet | Mental fatigue is one of the major factors leading to human errors. To avoid failures caused by mental fatigue, researchers are working on ways to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 101157 |
SubjectTerms | EEG Mental fatigue recognition Transfer learning |
Title | Inter-subject transfer learning for EEG-based mental fatigue recognition |
URI | https://dx.doi.org/10.1016/j.aei.2020.101157 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRrRA5YEJyTR2HDsZq6olgOgClbpF8asqQmnVpiu_HTtxKpCAgdHRnRSdnbvvnO_uALgJE8EwIwpJJSSi0jAkckKRjriMRKRs0uGKk58nLJ3Sx1k0a4FhUwvjaJXe99c-vfLW_knfW7O_Wiz6L5hyGoSUEYfqbebgKtgpd6f87mNH88AsrgesWGHkpJs_mxXHK9cLmyKSao1dhPopNn2JN-MjcOCBIhzU73IMWro4AYceNEL_SW5OQVrd6aHNVrgbFVhWQFSvoR8HMYcWlcLR6B65eKVg3csfGrsh862GO_7QsjgD0_HodZgiPx4BSZLwElGiDA1N7CCfJrnE2mKRJE4sZIkFDXIcS5tchdrYHFARnhsuGcdE0YgyG6Li8By0i2WhLwBUUhrNSOJ6_9AoZoLLnOHcJBZsSMmDDggaw2TS9w53Iyzes4Yk9pZZW2bOllltyw643ams6sYZfwnTxtrZt93PrGP_Xa37P7VLsO9WNSXvCrTL9VZfW2hRil51dnpgb_DwlE4-AQyZyww |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PTAhmSaOYycjqloCtF1opW5W7NhVEUqrNl357diJU4EEDIxJfFL0HN-9c57vALgNYkF9ijMkMyERkZoikWKCVMhkKMLMJB32cPJgSJMxeZ6Ekwbo1GdhrKzS-f7Kp5fe2t1pOzTbi9ms_eoTRryAUGxZvckctsA2McvXtjG4_9joPHwaVR1WzGhkh9e_NkuRV6pmJkfE5bVvQ9RPwelLwOkdgD3HFOFD9TKHoKHyI7DvWCN0a3J1DJJyUw-t1sJuqcCiZKJqCV0_iCk0tBR2u4_IBqwMVsX8oTYzMl0ruBEQzfMTMO51R50Euf4ISOKYFYjgTJNAR5bzKZxKXxkyEkex4SyRIF7qR9JkV4HSJgnMMEs1k5T5OCMhoSZGRcEpaObzXJ0BmEmpFcWxLf5DwogKJlPqpzo2bENK5rWAVwPDpSsebntYvPNaJfbGDZbcYskrLFvgbmOyqCpn_DWY1Gjzb9PPjWf_3ez8f2Y3YCcZDfq8_zR8uQC79kmlz7sEzWK5VleGZxTiuvyOPgHmtMya |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-subject+transfer+learning+for+EEG-based+mental+fatigue+recognition&rft.jtitle=Advanced+engineering+informatics&rft.au=Liu%2C+Yisi&rft.au=Lan%2C+Zirui&rft.au=Cui%2C+Jian&rft.au=Sourina%2C+Olga&rft.date=2020-10-01&rft.issn=1474-0346&rft.volume=46&rft.spage=101157&rft_id=info:doi/10.1016%2Fj.aei.2020.101157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aei_2020_101157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon |