Inter-subject transfer learning for EEG-based mental fatigue recognition

Mental fatigue is one of the major factors leading to human errors. To avoid failures caused by mental fatigue, researchers are working on ways to detect/monitor fatigue using different types of signals. Electroencephalography (EEG) signal is one of the most popular methods to recognize mental fatig...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering informatics Vol. 46; p. 101157
Main Authors Liu, Yisi, Lan, Zirui, Cui, Jian, Sourina, Olga, Müller-Wittig, Wolfgang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mental fatigue is one of the major factors leading to human errors. To avoid failures caused by mental fatigue, researchers are working on ways to detect/monitor fatigue using different types of signals. Electroencephalography (EEG) signal is one of the most popular methods to recognize mental fatigue since it directly measures the neurophysiological activities in the brain. Current EEG-based fatigue recognition algorithms are usually subject-specific, which means a classifier needs to be trained per subject. However, as fatigue may need a relatively long period to induce, collecting training data from each new user could be time-consuming and troublesome. Calibration-free methods are desired but also challenging since significant variability of physiological signals exists among different subjects. In this paper, we proposed algorithms using inter-subject transfer learning for EEG-based mental fatigue recognition, which did not need a calibration. To explore the influence of the number of EEG channels on the algorithms’ accuracy, we also compared the cases of using one channel only and multiple channels. Random forest was applied to choose the channel that has the most distinguishable features. A public EEG fatigue dataset recorded during driving was used to validate the algorithms. EEG data from 11 subjects were selected from the dataset and leave-one-subject-out cross-validation was employed. The channel from the occipital lobe is selected when only one channel is desired. The proposed transfer learning-based algorithms using Maximum Independence Domain Adaptation (MIDA) achieved an accuracy of 73.01% with all thirty channels, and using Transfer Component Analysis (TCA) achieved 68.00% with the one selected channel.
AbstractList Mental fatigue is one of the major factors leading to human errors. To avoid failures caused by mental fatigue, researchers are working on ways to detect/monitor fatigue using different types of signals. Electroencephalography (EEG) signal is one of the most popular methods to recognize mental fatigue since it directly measures the neurophysiological activities in the brain. Current EEG-based fatigue recognition algorithms are usually subject-specific, which means a classifier needs to be trained per subject. However, as fatigue may need a relatively long period to induce, collecting training data from each new user could be time-consuming and troublesome. Calibration-free methods are desired but also challenging since significant variability of physiological signals exists among different subjects. In this paper, we proposed algorithms using inter-subject transfer learning for EEG-based mental fatigue recognition, which did not need a calibration. To explore the influence of the number of EEG channels on the algorithms’ accuracy, we also compared the cases of using one channel only and multiple channels. Random forest was applied to choose the channel that has the most distinguishable features. A public EEG fatigue dataset recorded during driving was used to validate the algorithms. EEG data from 11 subjects were selected from the dataset and leave-one-subject-out cross-validation was employed. The channel from the occipital lobe is selected when only one channel is desired. The proposed transfer learning-based algorithms using Maximum Independence Domain Adaptation (MIDA) achieved an accuracy of 73.01% with all thirty channels, and using Transfer Component Analysis (TCA) achieved 68.00% with the one selected channel.
ArticleNumber 101157
Author Müller-Wittig, Wolfgang
Cui, Jian
Liu, Yisi
Lan, Zirui
Sourina, Olga
Author_xml – sequence: 1
  givenname: Yisi
  surname: Liu
  fullname: Liu, Yisi
  email: LiuYS@ntu.edu.sg
– sequence: 2
  givenname: Zirui
  surname: Lan
  fullname: Lan, Zirui
  email: lan.zirui@fraunhofer.sg
– sequence: 3
  givenname: Jian
  surname: Cui
  fullname: Cui, Jian
  email: Cuijian@ntu.edu.sg
– sequence: 4
  givenname: Olga
  surname: Sourina
  fullname: Sourina, Olga
  email: EOSourina@ntu.edu.sg
– sequence: 5
  givenname: Wolfgang
  surname: Müller-Wittig
  fullname: Müller-Wittig, Wolfgang
  email: Wolfgang.Mueller-wittig@fraunhofer.sg
BookMark eNp9kMFOAyEQhompiW31AbzxAlRg2YWNJ9PUtkkTL3omlB0aNlvWADXx7aXWk4eeZubwTf7_m6FJGAMg9MjoglHWPPULA37BKf-9WS1v0JQpWZG64nRSdiEFoZVo7tAspZ4WRrVyijbbkCGSdNr3YDPO0YTkIOIBTAw-HLAbI16t1mRvEnT4CCGbATuT_eEEOIIdD8FnP4Z7dOvMkODhb87Rx-vqfbkhu7f1dvmyI5a3MhPBOycqpxSlHLixDCSXrWoZr9VeUMOUbbmowPFadFwaJ20jGe9ELZpGKlXNkbz8tXFMKYLT1mdzTlCy-0Ezqs9CdK-LEH0Woi9CCsn-kZ_RH038vso8Xxgolb48RJ2sh2Ch86V71t3or9A_DmV5XQ
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3293421
crossref_primary_10_1109_TIM_2023_3276515
crossref_primary_10_1016_j_ymeth_2021_04_009
crossref_primary_10_3390_app13085205
crossref_primary_10_1109_JSEN_2024_3492176
crossref_primary_10_3390_ijerph182211891
crossref_primary_10_1016_j_bspc_2021_103023
crossref_primary_10_1016_j_engappai_2023_106604
crossref_primary_10_1016_j_ymssp_2023_110766
crossref_primary_10_1109_TCDS_2023_3257428
crossref_primary_10_3389_fnins_2021_733546
crossref_primary_10_1016_j_bspc_2023_105756
crossref_primary_10_1016_j_engappai_2024_109642
crossref_primary_10_1007_s10548_023_01016_0
crossref_primary_10_1016_j_bspc_2023_105638
crossref_primary_10_1061__ASCE_CO_1943_7862_0002341
crossref_primary_10_1016_j_ins_2022_12_088
crossref_primary_10_1016_j_eswa_2024_126286
crossref_primary_10_1007_s11571_024_10215_9
crossref_primary_10_32604_iasc_2023_029698
crossref_primary_10_1016_j_aei_2024_103089
crossref_primary_10_3390_su14052941
crossref_primary_10_1016_j_bspc_2023_105832
crossref_primary_10_1016_j_dibe_2024_100513
crossref_primary_10_1016_j_iot_2023_100681
crossref_primary_10_1016_j_aei_2024_102564
crossref_primary_10_1016_j_compbiomed_2023_107652
crossref_primary_10_1109_TNSRE_2021_3079505
crossref_primary_10_3389_fnhum_2021_706270
crossref_primary_10_3390_s24103017
crossref_primary_10_3390_app13052785
crossref_primary_10_1515_bmt_2022_0354
crossref_primary_10_1007_s11227_025_06947_y
crossref_primary_10_1016_j_aei_2024_102575
crossref_primary_10_1016_j_aei_2024_102971
crossref_primary_10_1016_j_bspc_2024_106044
crossref_primary_10_1016_j_bspc_2024_107132
crossref_primary_10_1016_j_ymeth_2021_04_017
crossref_primary_10_1063_5_0133092
crossref_primary_10_3390_app122010252
crossref_primary_10_1016_j_aei_2022_101735
crossref_primary_10_1016_j_bspc_2023_105892
crossref_primary_10_3390_electronics13183742
crossref_primary_10_3389_fphys_2023_1196919
crossref_primary_10_1007_s00500_023_09077_w
crossref_primary_10_1142_S0129065723500090
crossref_primary_10_3389_fnins_2022_976437
crossref_primary_10_1016_j_compag_2024_109265
crossref_primary_10_1016_j_compbiomed_2022_106088
crossref_primary_10_1109_TNNLS_2022_3147208
crossref_primary_10_1007_s11277_024_11102_6
Cites_doi 10.1093/sleep/15.6.550
10.7551/mitpress/7503.003.0069
10.1088/1741-2552/ab260c
10.1016/j.clinph.2010.10.044
10.1109/TCYB.2016.2633306
10.1016/0013-4694(87)90096-4
10.1109/CW.2019.00048
10.1093/sleep/14.3.221
10.1007/s11571-018-9485-1
10.1109/TNNLS.2018.2886414
10.1109/EMBC.2017.8037196
10.1007/s11571-018-9496-y
10.1016/j.micpro.2018.02.004
10.1590/2446-4740.0693
10.3390/s18124477
10.1109/EMBC.2018.8512205
10.1109/TKDE.2009.191
10.3389/fnins.2012.00039
10.1076/0271-3683(200007)2111-ZFT535
10.1016/j.bspc.2019.02.005
10.1155/2008/519480
10.1016/j.eswa.2007.12.043
10.1016/j.jneumeth.2003.10.009
10.1017/S0048577201393095
10.1007/978-3-540-75225-7_5
10.1016/j.eswa.2008.09.030
10.1016/S0165-0173(98)00056-3
10.1109/TBCAS.2010.2046415
10.1142/S021800141854023X
10.1088/1741-2552/aace8c
10.1038/s41597-019-0027-4
10.1109/TNN.2010.2091281
10.1109/TNSRE.2018.2790359
10.1016/j.ssci.2008.01.007
10.1027/0269-8803.23.3.143
10.1016/j.ergon.2004.09.006
10.1186/s13634-015-0251-9
10.1088/1741-2552/aaf3f6
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aei.2020.101157
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-5320
ExternalDocumentID 10_1016_j_aei_2020_101157
S1474034620301282
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
UHS
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-42df43f88002e2ac1e7279891258b40a18c9243ef254d27af7c6712d454667883
IEDL.DBID .~1
ISSN 1474-0346
IngestDate Thu Apr 24 23:07:22 EDT 2025
Tue Jul 01 02:02:37 EDT 2025
Fri Feb 23 02:48:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Transfer learning
EEG
Mental fatigue recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-42df43f88002e2ac1e7279891258b40a18c9243ef254d27af7c6712d454667883
ParticipantIDs crossref_citationtrail_10_1016_j_aei_2020_101157
crossref_primary_10_1016_j_aei_2020_101157
elsevier_sciencedirect_doi_10_1016_j_aei_2020_101157
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationTitle Advanced engineering informatics
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yeo, Li, Shen, Wilder-Smith (b0090) 2009; 47
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (b0110) 2018; 15
Zeng, Yang, Dai, Qin, Zhang, Kong (b0135) 2018; 12
Belakhdar, Kaaniche, Djemal, Ouni (b0170) 2018; 58
Ang, Chin, Wang, Guan, Zhang (b0115) 2012; 6
Morad, Lemberg, Yofe, Dagan (b0025) 2000; 21
R. Chai, G.R. Naik, S.H. Ling, Y. Tran, A. Craig, H.T. Nguyen, Channels selection using independent component analysis and scalp map projection for EEG-based driver fatigue classification, in: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2017, pp. 1808–1811.
Hu, Min (b0095) 2018; 12
Simon (b0085) 2011; 122
W.W. Wierwille, S. Wreggit, C. Kirn, L. Ellsworth, R. Fairbanks, Research on vehicle-based driver status/performance monitoring; development, validation, and refinement of algorithms for detection of driver drowsiness, National Highway Traffic Safety Administration, Washington, DOT HS 808 247, Oct 1994, Available
Fatigue – You're More Than Just Tired, National Safety Council, Available
Alotaiby, El-Samie, Alshebeili, Ahmad (b0145) 2015; 2015
(accessed on: 1 Mar 2019).
Jap, Lal, Fischer, Bekiaris (b0035) 2009; 36
Multi-channel EEG recordings during a sustained-attention driving task, (raw dataset), Available
Pan, Tsang, Kwok, Yang (b0040) 2010; 22
Luo, Qiu, Liu, Huang (b0100) 2019; 51
Wang, Li, Liu (b0105) 2018; 32
A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, A.J. Smola, A kernel method for the two-sample-problem, in: Advances in neural information processing systems, 2007, pp. 513–520.
A. Smola, A. Gretton, L. Song, B. Schölkopf, A Hilbert space embedding for distributions, in: International Conference on Algorithmic Learning Theory, 2007, pp. 13–31.
Silveira, Kozakevicius, Rodrigues (b0155) 2015; 31
Lin, Chang, Lin, Hung, Chao, Wang (b0150) 2010; 4
Pal (b0175) 2008; 2008
Tran, Wijesuriya, Tarvainen, Karjalainen, Craig (b0030) 2009; 23
Klimesch (b0080) 1999; 29
Hu, Zheng (b0015) 2009; 36
Wei, Wang, Lin, Jung (b0210) 2018; 26
F. Pedregosa, et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., vol. 12, no. Oct, 2011, pp. 2825–2830.
H. Albalawi, X. Li, Single-channel real-time drowsiness detection based on electroencephalography, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2018, pp. 98–101.
Lal, Craig (b0070) 2002; 39
Cao, Chuang, King, Lin (b0190) 2019; 6
(accessed on: 1 Mar 2020).
Eoh, Chung, Kim (b0075) 2005; 35
Delorme, Makeig (b0205) 2004; 134
Corsi-Cabrera, Ramos, Arce, Guevara, Ponce-de Leon, Lorenzo (b0060) 1992; 15
Ogino, Mitsukura (b0160) 2018; 18
Multi-channel EEG recordings during a sustained-attention driving task (pre-processed dataset), Available
NHTSA, “2018 Fatal motor vehicle crashes: overview,” in “Traffic Safety Facts Resesarch Note,” NHTSA's National Center for Statistics and Analysis, Washington, DOT HS 812 826, Oct 2019, Available
Roy, Banville, Albuquerque, Gramfort, Falk, Faubert (b0125) 2019; 16
Fernández-Delgado, Cernadas, Barro, Amorim (b0185) 2014; 15
Gao (b0130) 2019; 30
Torsvall (b0065) 1987; 66
Åkerstedt, Kecklund, Knutsson (b0055) 1991; 14
Pan, Yang (b0140) 2010; 22
Yan, Kou, Zhang (b0045) 2017; 48
Y. Liu, Z. Lan, J. Cui, O. Sourina, W. Müller-Wittig, EEG-based cross-subject mental fatigue recognition, in: 2019 International Conference on Cyberworlds (CW), IEEE, 2019, pp. 247–252.
Fahimi, Zhang, Goh, Lee, Ang, Guan (b0120) 2019; 16
Pan (10.1016/j.aei.2020.101157_b0140) 2010; 22
Fernández-Delgado (10.1016/j.aei.2020.101157_b0185) 2014; 15
Pal (10.1016/j.aei.2020.101157_b0175) 2008; 2008
Pan (10.1016/j.aei.2020.101157_b0040) 2010; 22
Corsi-Cabrera (10.1016/j.aei.2020.101157_b0060) 1992; 15
Gao (10.1016/j.aei.2020.101157_b0130) 2019; 30
10.1016/j.aei.2020.101157_b0195
Luo (10.1016/j.aei.2020.101157_b0100) 2019; 51
10.1016/j.aei.2020.101157_b0050
Hu (10.1016/j.aei.2020.101157_b0015) 2009; 36
Wang (10.1016/j.aei.2020.101157_b0105) 2018; 32
Zeng (10.1016/j.aei.2020.101157_b0135) 2018; 12
Lin (10.1016/j.aei.2020.101157_b0150) 2010; 4
10.1016/j.aei.2020.101157_b0010
Eoh (10.1016/j.aei.2020.101157_b0075) 2005; 35
10.1016/j.aei.2020.101157_b0215
Ogino (10.1016/j.aei.2020.101157_b0160) 2018; 18
Hu (10.1016/j.aei.2020.101157_b0095) 2018; 12
Yeo (10.1016/j.aei.2020.101157_b0090) 2009; 47
Jap (10.1016/j.aei.2020.101157_b0035) 2009; 36
Ang (10.1016/j.aei.2020.101157_b0115) 2012; 6
Alotaiby (10.1016/j.aei.2020.101157_b0145) 2015; 2015
10.1016/j.aei.2020.101157_b0180
Morad (10.1016/j.aei.2020.101157_b0025) 2000; 21
Roy (10.1016/j.aei.2020.101157_b0125) 2019; 16
10.1016/j.aei.2020.101157_b0020
Lawhern (10.1016/j.aei.2020.101157_b0110) 2018; 15
Lal (10.1016/j.aei.2020.101157_b0070) 2002; 39
Fahimi (10.1016/j.aei.2020.101157_b0120) 2019; 16
10.1016/j.aei.2020.101157_b0200
Yan (10.1016/j.aei.2020.101157_b0045) 2017; 48
Belakhdar (10.1016/j.aei.2020.101157_b0170) 2018; 58
Simon (10.1016/j.aei.2020.101157_b0085) 2011; 122
10.1016/j.aei.2020.101157_b0165
Delorme (10.1016/j.aei.2020.101157_b0205) 2004; 134
10.1016/j.aei.2020.101157_b0220
10.1016/j.aei.2020.101157_b0005
Torsvall (10.1016/j.aei.2020.101157_b0065) 1987; 66
10.1016/j.aei.2020.101157_b0225
Tran (10.1016/j.aei.2020.101157_b0030) 2009; 23
Silveira (10.1016/j.aei.2020.101157_b0155) 2015; 31
Åkerstedt (10.1016/j.aei.2020.101157_b0055) 1991; 14
Wei (10.1016/j.aei.2020.101157_b0210) 2018; 26
Klimesch (10.1016/j.aei.2020.101157_b0080) 1999; 29
Cao (10.1016/j.aei.2020.101157_b0190) 2019; 6
References_xml – volume: 31
  start-page: 107
  year: 2015
  end-page: 115
  ident: b0155
  article-title: Drowsiness detection for single channel EEG by DWT best m-term approximation
  publication-title: Res. Biomed. Eng.
– volume: 22
  start-page: 199
  year: 2010
  end-page: 210
  ident: b0040
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Networks
– reference: Multi-channel EEG recordings during a sustained-attention driving task (pre-processed dataset), Available:
– volume: 48
  start-page: 288
  year: 2017
  end-page: 299
  ident: b0045
  article-title: Learning domain-invariant subspace using domain features and independence maximization
  publication-title: IEEE Trans. Cybernet.
– volume: 35
  start-page: 307
  year: 2005
  end-page: 320
  ident: b0075
  article-title: Electroencephalographic study of drowsiness in simulated driving with sleep deprivation
  publication-title: Int. J. Industr. Ergon.
– volume: 122
  start-page: 1168
  year: 2011
  end-page: 1178
  ident: b0085
  article-title: EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions
  publication-title: Clin. Neurophysiol.
– reference: Fatigue – You're More Than Just Tired, National Safety Council, Available:
– volume: 15
  start-page: 1
  year: 2018
  end-page: 17
  ident: b0110
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: b0205
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neuroscience Methods
– volume: 23
  start-page: 143
  year: 2009
  end-page: 151
  ident: b0030
  article-title: The relationship between spectral changes in heart rate variability and fatigue
  publication-title: J. Psychophysiol.
– reference: R. Chai, G.R. Naik, S.H. Ling, Y. Tran, A. Craig, H.T. Nguyen, Channels selection using independent component analysis and scalp map projection for EEG-based driver fatigue classification, in: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2017, pp. 1808–1811.
– reference: Multi-channel EEG recordings during a sustained-attention driving task, (raw dataset), Available:
– volume: 16
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0120
  article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI
  publication-title: J. Neural Eng.
– reference: (accessed on: 1 Mar 2019).
– volume: 26
  start-page: 400
  year: 2018
  end-page: 406
  ident: b0210
  article-title: Toward drowsiness detection using non-hair-bearing EEG-based brain-computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 21
  ident: b0145
  article-title: A review of channel selection algorithms for EEG signal processing
  publication-title: EURASIP J. Adv. Signal Process.
– volume: 14
  start-page: 221
  year: 1991
  end-page: 225
  ident: b0055
  article-title: Manifest sleepiness and the spectral content of the EEG during shift work
  publication-title: Sleep
– reference: Y. Liu, Z. Lan, J. Cui, O. Sourina, W. Müller-Wittig, EEG-based cross-subject mental fatigue recognition, in: 2019 International Conference on Cyberworlds (CW), IEEE, 2019, pp. 247–252.
– volume: 47
  start-page: 115
  year: 2009
  end-page: 124
  ident: b0090
  article-title: Can SVM be used for automatic EEG detection of drowsiness during car driving?
  publication-title: Safety Sci.
– reference: A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, A.J. Smola, A kernel method for the two-sample-problem, in: Advances in neural information processing systems, 2007, pp. 513–520.
– volume: 4
  start-page: 214
  year: 2010
  end-page: 222
  ident: b0150
  article-title: A real-time wireless brain–computer interface system for drowsiness detection
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 36
  start-page: 7651
  year: 2009
  end-page: 7658
  ident: b0015
  article-title: Driver drowsiness detection with eyelid related parameters by Support Vector Machine
  publication-title: Expert Syst. Appl.
– volume: 29
  start-page: 169
  year: 1999
  end-page: 195
  ident: b0080
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain Res. Rev.
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: b0185
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: 15
  start-page: 550
  year: 1992
  end-page: 555
  ident: b0060
  article-title: Changes in the waking EEG as a consequence of sleep and sleep deprivation
  publication-title: Sleep
– volume: 12
  start-page: 597
  year: 2018
  end-page: 606
  ident: b0135
  article-title: EEG classification of driver mental states by deep learning
  publication-title: Cognitive neurodynamics
– volume: 12
  start-page: 431
  year: 2018
  end-page: 440
  ident: b0095
  article-title: Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model
  publication-title: Cognitive Neurodyn.
– volume: 51
  start-page: 50
  year: 2019
  end-page: 58
  ident: b0100
  article-title: Research on fatigue driving detection using forehead EEG based on adaptive multi-scale entropy
  publication-title: Biomed. Signal Process. Control
– reference: A. Smola, A. Gretton, L. Song, B. Schölkopf, A Hilbert space embedding for distributions, in: International Conference on Algorithmic Learning Theory, 2007, pp. 13–31.
– volume: 36
  start-page: 2352
  year: 2009
  end-page: 2359
  ident: b0035
  article-title: Using EEG spectral components to assess algorithms for detecting fatigue
  publication-title: Expert Syst. Appl.
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 11
  ident: b0175
  article-title: EEG-based subject-and session-independent drowsiness detection: an unsupervised approach
  publication-title: EURASIP J. Adv. Signal Process.
– reference: W.W. Wierwille, S. Wreggit, C. Kirn, L. Ellsworth, R. Fairbanks, Research on vehicle-based driver status/performance monitoring; development, validation, and refinement of algorithms for detection of driver drowsiness, National Highway Traffic Safety Administration, Washington, DOT HS 808 247, Oct 1994, Available:
– volume: 21
  start-page: 535
  year: 2000
  end-page: 542
  ident: b0025
  article-title: Pupillography as an objective indicator of fatigue
  publication-title: Curr. Eye Res.
– volume: 6
  start-page: 1
  year: 2012
  end-page: 9
  ident: b0115
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Front. Neurosci.
– volume: 66
  start-page: 502
  year: 1987
  end-page: 511
  ident: b0065
  article-title: Sleepiness on the job: continuously measured EEG changes in train drivers
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 30
  start-page: 2755
  year: 2019
  end-page: 2763
  ident: b0130
  article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation
  publication-title: IEEE Trans. Neural Networks Learning Syst.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 19
  ident: b0160
  article-title: Portable drowsiness detection through use of a prefrontal single-channel electroencephalogram
  publication-title: Sensors
– volume: 39
  start-page: 313
  year: 2002
  end-page: 321
  ident: b0070
  article-title: Driver fatigue: electroencephalography and psychological assessment
  publication-title: Psychophysiology
– volume: 16
  start-page: 1
  year: 2019
  end-page: 37
  ident: b0125
  article-title: Deep learning-based electroencephalography analysis: a systematic review
  publication-title: J. Neural Eng.
– reference: H. Albalawi, X. Li, Single-channel real-time drowsiness detection based on electroencephalography, in: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2018, pp. 98–101.
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: b0140
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowledge Data Eng.
– volume: 32
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0105
  article-title: Analysis of feature fatigue EEG signals based on wavelet entropy
  publication-title: Int. J. Pattern Recognit. Artificial Intelligence
– reference: NHTSA, “2018 Fatal motor vehicle crashes: overview,” in “Traffic Safety Facts Resesarch Note,” NHTSA's National Center for Statistics and Analysis, Washington, DOT HS 812 826, Oct 2019, Available:
– reference: F. Pedregosa, et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., vol. 12, no. Oct, 2011, pp. 2825–2830.
– reference: (accessed on: 1 Mar 2020).
– volume: 6
  start-page: 1
  year: 2019
  end-page: 8
  ident: b0190
  article-title: Multi-channel EEG recordings during a sustained-attention driving task
  publication-title: Scientific Data
– volume: 58
  start-page: 13
  year: 2018
  end-page: 23
  ident: b0170
  article-title: Single-channel-based automatic drowsiness detection architecture with a reduced number of EEG features
  publication-title: Microprocessors Microsyst.
– volume: 15
  start-page: 550
  issue: 6
  year: 1992
  ident: 10.1016/j.aei.2020.101157_b0060
  article-title: Changes in the waking EEG as a consequence of sleep and sleep deprivation
  publication-title: Sleep
  doi: 10.1093/sleep/15.6.550
– ident: 10.1016/j.aei.2020.101157_b0200
– ident: 10.1016/j.aei.2020.101157_b0220
  doi: 10.7551/mitpress/7503.003.0069
– volume: 16
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.aei.2020.101157_b0125
  article-title: Deep learning-based electroencephalography analysis: a systematic review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab260c
– ident: 10.1016/j.aei.2020.101157_b0195
– volume: 122
  start-page: 1168
  issue: 6
  year: 2011
  ident: 10.1016/j.aei.2020.101157_b0085
  article-title: EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2010.10.044
– volume: 48
  start-page: 288
  issue: 1
  year: 2017
  ident: 10.1016/j.aei.2020.101157_b0045
  article-title: Learning domain-invariant subspace using domain features and independence maximization
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TCYB.2016.2633306
– volume: 66
  start-page: 502
  issue: 6
  year: 1987
  ident: 10.1016/j.aei.2020.101157_b0065
  article-title: Sleepiness on the job: continuously measured EEG changes in train drivers
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(87)90096-4
– ident: 10.1016/j.aei.2020.101157_b0050
  doi: 10.1109/CW.2019.00048
– volume: 14
  start-page: 221
  issue: 3
  year: 1991
  ident: 10.1016/j.aei.2020.101157_b0055
  article-title: Manifest sleepiness and the spectral content of the EEG during shift work
  publication-title: Sleep
  doi: 10.1093/sleep/14.3.221
– volume: 12
  start-page: 431
  issue: 4
  year: 2018
  ident: 10.1016/j.aei.2020.101157_b0095
  article-title: Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model
  publication-title: Cognitive Neurodyn.
  doi: 10.1007/s11571-018-9485-1
– volume: 30
  start-page: 2755
  issue: 9
  year: 2019
  ident: 10.1016/j.aei.2020.101157_b0130
  article-title: EEG-based spatio–temporal convolutional neural network for driver fatigue evaluation
  publication-title: IEEE Trans. Neural Networks Learning Syst.
  doi: 10.1109/TNNLS.2018.2886414
– ident: 10.1016/j.aei.2020.101157_b0180
  doi: 10.1109/EMBC.2017.8037196
– volume: 12
  start-page: 597
  issue: 6
  year: 2018
  ident: 10.1016/j.aei.2020.101157_b0135
  article-title: EEG classification of driver mental states by deep learning
  publication-title: Cognitive neurodynamics
  doi: 10.1007/s11571-018-9496-y
– volume: 58
  start-page: 13
  year: 2018
  ident: 10.1016/j.aei.2020.101157_b0170
  article-title: Single-channel-based automatic drowsiness detection architecture with a reduced number of EEG features
  publication-title: Microprocessors Microsyst.
  doi: 10.1016/j.micpro.2018.02.004
– volume: 31
  start-page: 107
  issue: 2
  year: 2015
  ident: 10.1016/j.aei.2020.101157_b0155
  article-title: Drowsiness detection for single channel EEG by DWT best m-term approximation
  publication-title: Res. Biomed. Eng.
  doi: 10.1590/2446-4740.0693
– volume: 18
  start-page: 1
  issue: 12
  year: 2018
  ident: 10.1016/j.aei.2020.101157_b0160
  article-title: Portable drowsiness detection through use of a prefrontal single-channel electroencephalogram
  publication-title: Sensors
  doi: 10.3390/s18124477
– ident: 10.1016/j.aei.2020.101157_b0165
  doi: 10.1109/EMBC.2018.8512205
– volume: 22
  start-page: 1345
  issue: 10
  year: 2010
  ident: 10.1016/j.aei.2020.101157_b0140
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowledge Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 6
  start-page: 1
  year: 2012
  ident: 10.1016/j.aei.2020.101157_b0115
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00039
– volume: 21
  start-page: 535
  issue: 1
  year: 2000
  ident: 10.1016/j.aei.2020.101157_b0025
  article-title: Pupillography as an objective indicator of fatigue
  publication-title: Curr. Eye Res.
  doi: 10.1076/0271-3683(200007)2111-ZFT535
– volume: 51
  start-page: 50
  year: 2019
  ident: 10.1016/j.aei.2020.101157_b0100
  article-title: Research on fatigue driving detection using forehead EEG based on adaptive multi-scale entropy
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.02.005
– volume: 2008
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.aei.2020.101157_b0175
  article-title: EEG-based subject-and session-independent drowsiness detection: an unsupervised approach
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/2008/519480
– volume: 15
  start-page: 3133
  year: 2014
  ident: 10.1016/j.aei.2020.101157_b0185
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J. Mach. Learn. Res.
– volume: 36
  start-page: 2352
  issue: 2
  year: 2009
  ident: 10.1016/j.aei.2020.101157_b0035
  article-title: Using EEG spectral components to assess algorithms for detecting fatigue
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.12.043
– ident: 10.1016/j.aei.2020.101157_b0010
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 10.1016/j.aei.2020.101157_b0205
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neuroscience Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: 10.1016/j.aei.2020.101157_b0215
– volume: 39
  start-page: 313
  issue: 3
  year: 2002
  ident: 10.1016/j.aei.2020.101157_b0070
  article-title: Driver fatigue: electroencephalography and psychological assessment
  publication-title: Psychophysiology
  doi: 10.1017/S0048577201393095
– ident: 10.1016/j.aei.2020.101157_b0225
  doi: 10.1007/978-3-540-75225-7_5
– volume: 36
  start-page: 7651
  issue: 4
  year: 2009
  ident: 10.1016/j.aei.2020.101157_b0015
  article-title: Driver drowsiness detection with eyelid related parameters by Support Vector Machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.09.030
– volume: 29
  start-page: 169
  issue: 2–3
  year: 1999
  ident: 10.1016/j.aei.2020.101157_b0080
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain Res. Rev.
  doi: 10.1016/S0165-0173(98)00056-3
– volume: 4
  start-page: 214
  issue: 4
  year: 2010
  ident: 10.1016/j.aei.2020.101157_b0150
  article-title: A real-time wireless brain–computer interface system for drowsiness detection
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2010.2046415
– volume: 32
  start-page: 1
  issue: 08
  year: 2018
  ident: 10.1016/j.aei.2020.101157_b0105
  article-title: Analysis of feature fatigue EEG signals based on wavelet entropy
  publication-title: Int. J. Pattern Recognit. Artificial Intelligence
  doi: 10.1142/S021800141854023X
– volume: 15
  start-page: 1
  issue: 5
  year: 2018
  ident: 10.1016/j.aei.2020.101157_b0110
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.aei.2020.101157_b0190
  article-title: Multi-channel EEG recordings during a sustained-attention driving task
  publication-title: Scientific Data
  doi: 10.1038/s41597-019-0027-4
– volume: 22
  start-page: 199
  issue: 2
  year: 2010
  ident: 10.1016/j.aei.2020.101157_b0040
  article-title: Domain adaptation via transfer component analysis
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2010.2091281
– volume: 26
  start-page: 400
  issue: 2
  year: 2018
  ident: 10.1016/j.aei.2020.101157_b0210
  article-title: Toward drowsiness detection using non-hair-bearing EEG-based brain-computer interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2790359
– ident: 10.1016/j.aei.2020.101157_b0005
– volume: 47
  start-page: 115
  issue: 1
  year: 2009
  ident: 10.1016/j.aei.2020.101157_b0090
  article-title: Can SVM be used for automatic EEG detection of drowsiness during car driving?
  publication-title: Safety Sci.
  doi: 10.1016/j.ssci.2008.01.007
– volume: 23
  start-page: 143
  issue: 3
  year: 2009
  ident: 10.1016/j.aei.2020.101157_b0030
  article-title: The relationship between spectral changes in heart rate variability and fatigue
  publication-title: J. Psychophysiol.
  doi: 10.1027/0269-8803.23.3.143
– volume: 35
  start-page: 307
  issue: 4
  year: 2005
  ident: 10.1016/j.aei.2020.101157_b0075
  article-title: Electroencephalographic study of drowsiness in simulated driving with sleep deprivation
  publication-title: Int. J. Industr. Ergon.
  doi: 10.1016/j.ergon.2004.09.006
– volume: 2015
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.aei.2020.101157_b0145
  article-title: A review of channel selection algorithms for EEG signal processing
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-015-0251-9
– ident: 10.1016/j.aei.2020.101157_b0020
– volume: 16
  start-page: 1
  issue: 2
  year: 2019
  ident: 10.1016/j.aei.2020.101157_b0120
  article-title: Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaf3f6
SSID ssj0016897
Score 2.4939137
Snippet Mental fatigue is one of the major factors leading to human errors. To avoid failures caused by mental fatigue, researchers are working on ways to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 101157
SubjectTerms EEG
Mental fatigue recognition
Transfer learning
Title Inter-subject transfer learning for EEG-based mental fatigue recognition
URI https://dx.doi.org/10.1016/j.aei.2020.101157
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqsrDwRrRA5YEJyTR2HDsZq6olgOgClbpF8asqQmnVpiu_HTtxKpCAgdHRnRSdnbvvnO_uALgJE8EwIwpJJSSi0jAkckKRjriMRKRs0uGKk58nLJ3Sx1k0a4FhUwvjaJXe99c-vfLW_knfW7O_Wiz6L5hyGoSUEYfqbebgKtgpd6f87mNH88AsrgesWGHkpJs_mxXHK9cLmyKSao1dhPopNn2JN-MjcOCBIhzU73IMWro4AYceNEL_SW5OQVrd6aHNVrgbFVhWQFSvoR8HMYcWlcLR6B65eKVg3csfGrsh862GO_7QsjgD0_HodZgiPx4BSZLwElGiDA1N7CCfJrnE2mKRJE4sZIkFDXIcS5tchdrYHFARnhsuGcdE0YgyG6Li8By0i2WhLwBUUhrNSOJ6_9AoZoLLnOHcJBZsSMmDDggaw2TS9w53Iyzes4Yk9pZZW2bOllltyw643ams6sYZfwnTxtrZt93PrGP_Xa37P7VLsO9WNSXvCrTL9VZfW2hRil51dnpgb_DwlE4-AQyZyww
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PTAhmSaOYycjqloCtF1opW5W7NhVEUqrNl357diJU4EEDIxJfFL0HN-9c57vALgNYkF9ijMkMyERkZoikWKCVMhkKMLMJB32cPJgSJMxeZ6Ekwbo1GdhrKzS-f7Kp5fe2t1pOzTbi9ms_eoTRryAUGxZvckctsA2McvXtjG4_9joPHwaVR1WzGhkh9e_NkuRV6pmJkfE5bVvQ9RPwelLwOkdgD3HFOFD9TKHoKHyI7DvWCN0a3J1DJJyUw-t1sJuqcCiZKJqCV0_iCk0tBR2u4_IBqwMVsX8oTYzMl0ruBEQzfMTMO51R50Euf4ISOKYFYjgTJNAR5bzKZxKXxkyEkex4SyRIF7qR9JkV4HSJgnMMEs1k5T5OCMhoSZGRcEpaObzXJ0BmEmpFcWxLf5DwogKJlPqpzo2bENK5rWAVwPDpSsebntYvPNaJfbGDZbcYskrLFvgbmOyqCpn_DWY1Gjzb9PPjWf_3ez8f2Y3YCcZDfq8_zR8uQC79kmlz7sEzWK5VleGZxTiuvyOPgHmtMya
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inter-subject+transfer+learning+for+EEG-based+mental+fatigue+recognition&rft.jtitle=Advanced+engineering+informatics&rft.au=Liu%2C+Yisi&rft.au=Lan%2C+Zirui&rft.au=Cui%2C+Jian&rft.au=Sourina%2C+Olga&rft.date=2020-10-01&rft.issn=1474-0346&rft.volume=46&rft.spage=101157&rft_id=info:doi/10.1016%2Fj.aei.2020.101157&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aei_2020_101157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon