Lattice distortion induced Ce-doped NiFe-LDH for efficient oxygen evolution
[Display omitted] •Inducing lattice distortion in NiFe-LDH nanosheets by Ce-doping towards accelerating electrocatalytic oxygen evolution reaction.•The optimal NiFeCe-LDH@CP only requires 267 mV to deliver 100 mA cm−2, which is 41 mV lower than pure NiFe-LDH@CP.•NiFeCe-LDH@CP have retained their str...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 464; p. 142669 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Inducing lattice distortion in NiFe-LDH nanosheets by Ce-doping towards accelerating electrocatalytic oxygen evolution reaction.•The optimal NiFeCe-LDH@CP only requires 267 mV to deliver 100 mA cm−2, which is 41 mV lower than pure NiFe-LDH@CP.•NiFeCe-LDH@CP have retained their structural property after 70 h stability.•DFT calculations reveal that lattice distortion could optimize the electronic structure of the Ni element in active sites and lower the energy barrier, thus accelerating the OER.
Nickel-iron layered double hydroxide (NiFe-LDH) is a promising active electrocatalyst for oxygen evolution reaction (OER). However, the development of NiFe-LDH is limited by poor electrical conductivity and inferior cycling stability. Herein, we present a structural perturbation and distinct distorted lattice strategy via Ce doping in NiFe-LDH on carbon paper (CP) (NiFeCe-LDH@CP) to boost its OER performance. Lattice distortion results in a large accessible surface area and induces more Ovac, accelerating the OER by modifying the intrinsic electronic structure and optimizing the adsorption energy of intermediates. As a result, the optimized NiFeCe-LDH@CP possesses excellent stability over 70 h and can deliver the current density of 100 mA/cm2 with the overpotentials of only 267 mV, which is 41 mV lower than pure NiFe-LDH@CP. Theoretical calculations indicate that the introduction of lattice distortion into NiFe-LDH could optimize the electronic structure of the Ni element in active sites and lower the energy barrier, thus leading to a significant increase in OER activity. This work figures out the effect of lattice distortion strategy on the improvement of OER performance, which opens new perspectives on the development of defect-rich OER electrocatalysts. |
---|---|
AbstractList | [Display omitted]
•Inducing lattice distortion in NiFe-LDH nanosheets by Ce-doping towards accelerating electrocatalytic oxygen evolution reaction.•The optimal NiFeCe-LDH@CP only requires 267 mV to deliver 100 mA cm−2, which is 41 mV lower than pure NiFe-LDH@CP.•NiFeCe-LDH@CP have retained their structural property after 70 h stability.•DFT calculations reveal that lattice distortion could optimize the electronic structure of the Ni element in active sites and lower the energy barrier, thus accelerating the OER.
Nickel-iron layered double hydroxide (NiFe-LDH) is a promising active electrocatalyst for oxygen evolution reaction (OER). However, the development of NiFe-LDH is limited by poor electrical conductivity and inferior cycling stability. Herein, we present a structural perturbation and distinct distorted lattice strategy via Ce doping in NiFe-LDH on carbon paper (CP) (NiFeCe-LDH@CP) to boost its OER performance. Lattice distortion results in a large accessible surface area and induces more Ovac, accelerating the OER by modifying the intrinsic electronic structure and optimizing the adsorption energy of intermediates. As a result, the optimized NiFeCe-LDH@CP possesses excellent stability over 70 h and can deliver the current density of 100 mA/cm2 with the overpotentials of only 267 mV, which is 41 mV lower than pure NiFe-LDH@CP. Theoretical calculations indicate that the introduction of lattice distortion into NiFe-LDH could optimize the electronic structure of the Ni element in active sites and lower the energy barrier, thus leading to a significant increase in OER activity. This work figures out the effect of lattice distortion strategy on the improvement of OER performance, which opens new perspectives on the development of defect-rich OER electrocatalysts. |
ArticleNumber | 142669 |
Author | Wang, Yingying Li, Yao Li, Yongxiu Pan, Wanghao Li, Jing Liao, Yuanyuan He, Ruchen |
Author_xml | – sequence: 1 givenname: Yuanyuan orcidid: 0000-0003-4640-5292 surname: Liao fullname: Liao, Yuanyuan organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China – sequence: 2 givenname: Ruchen surname: He fullname: He, Ruchen organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China – sequence: 3 givenname: Wanghao surname: Pan fullname: Pan, Wanghao organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China – sequence: 4 givenname: Yao surname: Li fullname: Li, Yao organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China – sequence: 5 givenname: Yingying surname: Wang fullname: Wang, Yingying organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China – sequence: 6 givenname: Jing orcidid: 0000-0001-8630-8265 surname: Li fullname: Li, Jing email: lijingbuaa@163.com organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China – sequence: 7 givenname: Yongxiu orcidid: 0000-0003-3522-3186 surname: Li fullname: Li, Yongxiu email: yxli@ncu.edu.cn organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China |
BookMark | eNp9kMtOwzAQRS1UJNrCB7DLDyT4ETu2WKFCKSKCDawt1xkjRyGuHLeif0-ismLR1dzFnNHcs0CzPvSA0C3BBcFE3LWFhbagmLKClFQIdYHmRFYsZ5TQ2ZiZ5LlUZXWFFsPQYoyFImqOXmuTkreQNX5IISYf-sz3zd5Ck60gb8JuDG9-DXn9uMlciBk4562HPmXh5_gFfQaH0O0n8BpdOtMNcPM3l-hz_fSx2uT1-_PL6qHOLVVVykvKhLKObxUVJVDGJZbKMmWxNUCUcQYqLGyFJSew5XLcBEodLxkHbrBgS1Sd7toYhiGC09YnM32QovGdJlhPTnSrRyd6cqJPTkaS_CN30X-beDzL3J8YGCsdPEQ9TPVHQT6CTboJ_gz9CxjUe0g |
CitedBy_id | crossref_primary_10_1016_j_jcis_2024_05_169 crossref_primary_10_1016_j_surfin_2024_104215 crossref_primary_10_1021_acs_inorgchem_3c03385 crossref_primary_10_1016_j_jcis_2024_10_197 crossref_primary_10_1016_j_mtadv_2025_100560 crossref_primary_10_1016_j_cej_2024_150054 crossref_primary_10_1016_j_seppur_2025_131964 crossref_primary_10_1016_j_cej_2025_161519 crossref_primary_10_1021_acsami_4c12767 crossref_primary_10_1039_D4QI02544J crossref_primary_10_1016_j_ijhydene_2024_09_047 crossref_primary_10_1016_j_jallcom_2024_177406 crossref_primary_10_1016_j_jcis_2024_04_002 crossref_primary_10_1016_j_psep_2025_106866 crossref_primary_10_1039_D4TA02924K crossref_primary_10_1016_j_cej_2023_147289 crossref_primary_10_1016_j_jallcom_2024_176671 crossref_primary_10_1039_D3QI01131C crossref_primary_10_1016_j_jallcom_2024_176310 crossref_primary_10_1016_j_jallcom_2024_177244 crossref_primary_10_1016_j_cej_2023_145896 crossref_primary_10_1016_j_jece_2024_113773 crossref_primary_10_1039_D3CY01248D crossref_primary_10_1021_acs_iecr_3c03014 crossref_primary_10_1002_ece2_29 crossref_primary_10_1016_j_snb_2024_136407 crossref_primary_10_3390_catal14080485 crossref_primary_10_1038_s44172_025_00344_2 crossref_primary_10_1002_adfm_202315080 crossref_primary_10_1016_j_ijhydene_2024_06_105 crossref_primary_10_1002_smll_202404557 crossref_primary_10_1016_j_jallcom_2024_175729 crossref_primary_10_1021_acsaem_4c00246 crossref_primary_10_1007_s10800_025_02263_8 crossref_primary_10_1016_j_ijhydene_2024_06_111 crossref_primary_10_1016_j_jhazmat_2024_136797 crossref_primary_10_1016_j_pmatsci_2024_101410 crossref_primary_10_1002_aenm_202401449 crossref_primary_10_1002_cssc_202400751 crossref_primary_10_1002_smll_202304652 crossref_primary_10_1016_j_ijhydene_2024_07_426 crossref_primary_10_1016_j_cej_2025_161000 crossref_primary_10_1002_anie_202413250 crossref_primary_10_1016_j_cej_2023_147155 crossref_primary_10_1021_acs_inorgchem_4c04507 crossref_primary_10_1039_D4NR03679D crossref_primary_10_1016_j_jece_2024_114376 crossref_primary_10_1039_D4TA03069A crossref_primary_10_1016_j_corsci_2024_112236 crossref_primary_10_1007_s11581_025_06190_8 crossref_primary_10_1016_j_ijhydene_2024_02_202 crossref_primary_10_1002_smll_202408495 crossref_primary_10_1016_j_jcis_2025_01_201 crossref_primary_10_1002_smll_202403992 crossref_primary_10_1016_j_jece_2024_113723 crossref_primary_10_1016_j_apcatb_2023_123459 crossref_primary_10_1016_j_cej_2024_152860 crossref_primary_10_1016_j_jcis_2024_06_034 crossref_primary_10_1021_acssuschemeng_4c03964 crossref_primary_10_1002_chem_202404278 crossref_primary_10_1016_j_nanoen_2024_109902 crossref_primary_10_1016_j_cej_2024_155736 crossref_primary_10_1039_D3TA05775E crossref_primary_10_1002_adfm_202410429 crossref_primary_10_1002_ange_202413250 crossref_primary_10_1016_j_electacta_2024_145231 crossref_primary_10_1016_j_jcis_2025_137413 crossref_primary_10_1002_adfm_202408732 crossref_primary_10_1007_s10562_024_04657_3 crossref_primary_10_1016_j_jssc_2023_124510 crossref_primary_10_1021_acs_langmuir_4c02640 crossref_primary_10_1039_D4TA03533J crossref_primary_10_1016_j_colsurfa_2024_133360 crossref_primary_10_1016_j_jcis_2024_06_041 crossref_primary_10_1021_acsnano_4c03153 crossref_primary_10_1039_D3QI02220J crossref_primary_10_3390_catal13091230 crossref_primary_10_1002_smll_202406071 crossref_primary_10_1016_j_jcis_2024_07_243 crossref_primary_10_1016_j_jelechem_2023_117824 crossref_primary_10_1039_D4DT00757C crossref_primary_10_1021_acsanm_4c04935 crossref_primary_10_1016_j_ijhydene_2023_10_233 crossref_primary_10_1016_j_cej_2024_148858 crossref_primary_10_1016_j_apsusc_2024_161828 crossref_primary_10_1016_j_ijhydene_2025_02_023 crossref_primary_10_1016_j_jcis_2025_02_152 crossref_primary_10_1016_j_ccr_2024_215901 crossref_primary_10_1039_D3TA06701G crossref_primary_10_1002_anie_202420488 crossref_primary_10_3390_ma18010121 crossref_primary_10_1016_j_ijhydene_2024_09_096 crossref_primary_10_1016_j_jcis_2024_09_024 crossref_primary_10_1016_j_materresbull_2024_113272 crossref_primary_10_1016_j_seppur_2024_130267 crossref_primary_10_1016_j_jcis_2024_04_164 crossref_primary_10_1039_D4QM00798K crossref_primary_10_1016_j_fuel_2024_131762 crossref_primary_10_1016_j_esci_2025_100380 crossref_primary_10_1016_j_cej_2025_161153 crossref_primary_10_1016_j_ijhydene_2023_05_342 crossref_primary_10_1039_D4TA01382D crossref_primary_10_1021_acsanm_4c06227 crossref_primary_10_1002_ange_202310973 crossref_primary_10_1002_smll_202307685 crossref_primary_10_1016_j_energy_2025_134905 crossref_primary_10_1039_D3DT01814H crossref_primary_10_1016_j_ccr_2024_216262 crossref_primary_10_1016_j_ijhydene_2024_11_474 crossref_primary_10_1039_D4NR05492J crossref_primary_10_1021_acs_iecr_4c04262 crossref_primary_10_1016_j_cej_2024_154059 crossref_primary_10_1021_acs_energyfuels_3c03021 crossref_primary_10_1039_D4TA02886D crossref_primary_10_1016_j_ijhydene_2024_07_109 crossref_primary_10_1016_j_ijhydene_2025_01_235 crossref_primary_10_1016_j_jcis_2023_07_083 crossref_primary_10_1016_j_ijhydene_2024_03_007 crossref_primary_10_1021_acsanm_3c03670 crossref_primary_10_26599_NRE_2023_9120104 crossref_primary_10_1002_anie_202310973 crossref_primary_10_1021_acs_inorgchem_4c00985 crossref_primary_10_1016_j_ensm_2025_104040 crossref_primary_10_26599_JAC_2024_9220895 crossref_primary_10_1021_acsami_4c01890 crossref_primary_10_3390_ma18040911 crossref_primary_10_1016_j_jallcom_2024_177588 crossref_primary_10_1002_cssc_202401435 crossref_primary_10_1016_j_microc_2023_109779 crossref_primary_10_1016_j_ijhydene_2023_08_155 crossref_primary_10_1002_bte2_20230052 crossref_primary_10_1002_adfm_202406999 crossref_primary_10_1016_j_jallcom_2024_178385 crossref_primary_10_1016_j_jcis_2023_11_144 crossref_primary_10_1002_ange_202420488 crossref_primary_10_1039_D4NR05248J crossref_primary_10_3390_en17225712 crossref_primary_10_1021_acsanm_4c03651 crossref_primary_10_1039_D4QM00502C crossref_primary_10_1016_j_ccr_2024_216164 crossref_primary_10_1002_elt2_63 crossref_primary_10_1016_j_jcis_2024_09_038 crossref_primary_10_1016_j_jcis_2025_01_012 crossref_primary_10_1016_j_ces_2023_119035 crossref_primary_10_1016_j_jcis_2024_07_202 crossref_primary_10_1016_j_jcis_2024_01_110 crossref_primary_10_1002_cssc_202400056 crossref_primary_10_3390_catal14040278 crossref_primary_10_3390_catal14100708 crossref_primary_10_1021_acssuschemeng_3c07722 |
Cites_doi | 10.1002/cssc.202000884 10.1016/j.nanoen.2020.105162 10.1016/j.jcis.2022.09.053 10.1002/advs.202105135 10.1016/j.ccr.2019.03.011 10.1039/C9SE00700H 10.1039/D0TA10740A 10.1016/j.apcatb.2022.121921 10.1038/ncomms11981 10.1007/s11664-022-09636-1 10.1016/j.jechem.2022.01.025 10.1016/j.jallcom.2020.156129 10.1016/j.clay.2022.106438 10.1002/cssc.202100179 10.1021/acsnano.2c04513 10.1016/j.cej.2021.132521 10.1021/acssuschemeng.0c01193 10.1002/smll.202200586 10.1039/D0TA06353C 10.1016/j.apsusc.2022.154253 10.1039/B700099E 10.1002/smll.201907029 10.1039/D2TC01985J 10.1002/cey2.215 10.1016/j.apcatb.2022.121491 10.1016/j.jmst.2022.01.022 10.1002/adfm.201706847 10.1021/acsaem.8b00990 10.1002/adfm.202206811 10.1002/adfm.201910274 10.1149/1945-7111/ac4cda 10.1002/adfm.202207536 10.1016/j.jtice.2018.11.024 10.1002/adfm.202008790 10.1016/j.colsurfa.2021.127142 10.1016/j.cej.2022.136105 10.1016/j.electacta.2020.137680 10.1002/adma.201700404 10.1039/D1TA09483A 10.1021/acsami.6b02733 10.1002/smll.202100129 10.1021/acsami.7b17939 10.1016/j.jechem.2022.02.044 10.1002/smll.202104354 10.1021/acscatal.9b00648 10.1021/acsami.2c09019 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. |
Copyright_xml | – notice: 2023 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2023.142669 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2023_142669 S1385894723014006 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SSH ZY4 |
ID | FETCH-LOGICAL-c297t-42369cf5b9264e2358089c39c0cae19afae706c70851eb58f5be22f5435e5a063 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 01:50:43 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Fri Feb 23 02:36:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Oxygen evolution reaction Lattice distortion NiFe LDH Ce doping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-42369cf5b9264e2358089c39c0cae19afae706c70851eb58f5be22f5435e5a063 |
ORCID | 0000-0001-8630-8265 0000-0003-4640-5292 0000-0003-3522-3186 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2023_142669 crossref_primary_10_1016_j_cej_2023_142669 elsevier_sciencedirect_doi_10_1016_j_cej_2023_142669 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-15 |
PublicationDateYYYYMMDD | 2023-05-15 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhai, Ren, Wang, Liu (b0005) 2022; 32 Wu, Xu, Xin, Zhang, Cao, Liu, Qiang, Zhou, Han, Cao, Xiao, Wei (b0070) 2021; 369 Wu, Lu, Zang, Lou (b0180) 2020; 30 Li, Zou, Liu, Lu, Dong (b0060) 2020; 8 Zeng, Mebrahtu, Liao, Palkovits, Beine (b0015) 2022; 69 Jadhav, Roy, Desalegan, Seo (b0145) 2020; 4 Philo, Luo, He, Wang, Ichihara, Jia, Oshikiri, Pang, Wang, Li, Yang, Ren, Lin, Ye (b0035) 2022; 32 Zhao, Xia, Yin, Luo, Yan, Du (b0125) 2019; 390 Lv, Hai, Zhang, Ding (b0210) 2022; 51 Li, Liu, Fang, Xu, Lu, Hou (b0215) 2022; 18 Zhang, Li, Zeng, Yu, Zuo, Wen, Liu, Zhong, Chen, Qiu (b0075) 2022; 319 Lai, Xiao, Tao, Gao, Zhang, Su, Dai (b0090) 2021; 14 Yu, Zheng, Guo (b0185) 2022; 70 Wu, Liu, Tan, Zhang, Cadien, Li (b0105) 2022; 442 Ying, Lin, Yang, Ye, Pan, Du (b0225) 2021; 627 Skulason, Karlberg, Rossmeisl, Bligaard, Greeley, Jonsson, Norskov (b0230) 2007; 9 Xu, Wang, Shan, Xi, Liu, Tang (b0140) 2018; 10 Jia, Hu, Qian, Yao, Zhang, Li, Zou (b0190) 2016; 8 Y. Yang, S.Y. Wei, Y.F. Li, D.G. Guo, H.J. Liu, L. Liu, Effect of cobalt doping-regulated crystallinity in nickel-iron layered double hydroxide catalyzing oxygen evolution, Appl. Catal. B: Environ. 314 (2022) 121491. https://doi.org/10.1016/j.apcatb.2022.121491. Spöri, Briois, Nong, Reier, Billard, Kühl, Teschner, Strasser (b0025) 2019; 9 M. Li, H. Li, X.C. Jiang, M.Q. Jiang, X. Zhan, G.T. Fu, J.M. Lee, Y.W. Tang, Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution, J. Mater. Chem. A. 9 (5) (2021) 2999-3006. https://doi.org/10.1039/d0ta10740a. Lin, Ju, Liu, Guo, Zhu, Zhang, Zhao, Wan, Yang, Huang, Wang (b0115) 2022; 16 Wan, Jin, Wei, Chen, Zhang, Zhu, Qu (b0170) 2022; 124 Chen, Lu, Fan, Shen (b0205) 2020; 13 Lu, Ji, Kannan, Wang, Wang, Wang (b0055) 2020; 844 Wang, Zeng (b0110) 2018; 1 Guo, Mao, Huang, Wang, Zhang, Hu, Dong, Sathasivam, Zhao, Xing, Pan, Lai, Tang (b0020) 2020; 16 Zhang, Cheng, Kuai, Sokaras, Zheng, Sainio, Lin, Dong, Nordlund, Du (b0085) 2020; 8 Manju, Jain, Rajput, Vij, Thakur (b0135) 2022; 10 T.S. Munonde, N.P. September, A. Mpupa, P.N. Nomngongo, Two agitation routes for the adsorption of Reactive Red 120 dye on NiFe LDH/AC nanosheets from wastewater and river water, Appl. Clay Sci. 219 (2022) 106438. https://doi.org/10.1016/j.clay.2022.106438. Yang, Wang, Yang, Guo, Zhu, Wang, Wang, He, Liu (b0195) 2022; 169 Lee, Park (b0050) 2022; 18 Tian, Wang, Wo, Li, Song, Li, Li, Du (b0045) 2019; 96 Yu, Jing, Zhao, Lu, Song, Wu, Wu, Liu, Lei, Hao (b0080) 2022; 10 Z. Zheng, D. Wu, G. Chen, N. Zhang, H. Wan, X. Liu, R. Ma, Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation, Carbon Energy. 4 (5) (2022) 901-913. https://doi.org/10.1002/cey2.215. Wang, Wang, Li, Yang, Ling, Gao, Lu, Shi, Lei, Wu, Hou (b0095) 2020; 77 K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, L. Sun. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation, Nat. Commun. 7. (2016). 11981. https://doi.org/10.1038/ncomms11981. Zou, Liu, Li, Wu, Liu, Li, Li, Wang, Zhang, Zou (b0065) 2017; 29 Yang, Zhang, Li, Luan, Yu, Lou (b0010) 2022; 9 Chen, Han, Zhao, Su, Li, Li, Pi, Zhou, Zhai (b0130) 2021; 31 Zheng, Deng, Feng, Luo, Tu, Zhang (b0200) 2023; 629 Ambriz-Peláez, Béjar, Ramos-Castillo, Guerra-Balcázar, Álvarez-Contreras, Arjona (b0220) 2022; 601 Zhang, Zou (b0030) 2021; 17 H.J. Zhang, X.P. Li, A. Hahnel, V. Naumann, C. Lin, S. Azimi, S.L. Schweizer, A.W. Maijenburg, R.B. Wehrspohn, Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting, Adv. Funct. Mater. 28 (14) (2018) 1706847. https://doi.org/10.1002/adfm.201706847. Lei, Cui, Huang (b0040) 2022; 14 Yao, Zhao, Wang, Zhou, Liu, Hu, Zhang, Yang, Liu, Fu, Wang, Yang, Yan (b0120) 2022; 429 Lv (10.1016/j.cej.2023.142669_b0210) 2022; 51 Li (10.1016/j.cej.2023.142669_b0060) 2020; 8 Yu (10.1016/j.cej.2023.142669_b0185) 2022; 70 Lee (10.1016/j.cej.2023.142669_b0050) 2022; 18 Zhao (10.1016/j.cej.2023.142669_b0125) 2019; 390 10.1016/j.cej.2023.142669_b0160 Li (10.1016/j.cej.2023.142669_b0215) 2022; 18 Zeng (10.1016/j.cej.2023.142669_b0015) 2022; 69 Wu (10.1016/j.cej.2023.142669_b0180) 2020; 30 10.1016/j.cej.2023.142669_b0100 Yu (10.1016/j.cej.2023.142669_b0080) 2022; 10 10.1016/j.cej.2023.142669_b0165 Chen (10.1016/j.cej.2023.142669_b0130) 2021; 31 Ambriz-Peláez (10.1016/j.cej.2023.142669_b0220) 2022; 601 Zheng (10.1016/j.cej.2023.142669_b0200) 2023; 629 Manju (10.1016/j.cej.2023.142669_b0135) 2022; 10 Skulason (10.1016/j.cej.2023.142669_b0230) 2007; 9 Spöri (10.1016/j.cej.2023.142669_b0025) 2019; 9 Wang (10.1016/j.cej.2023.142669_b0110) 2018; 1 Yang (10.1016/j.cej.2023.142669_b0195) 2022; 169 Chen (10.1016/j.cej.2023.142669_b0205) 2020; 13 Wu (10.1016/j.cej.2023.142669_b0070) 2021; 369 Lin (10.1016/j.cej.2023.142669_b0115) 2022; 16 Lu (10.1016/j.cej.2023.142669_b0055) 2020; 844 Zou (10.1016/j.cej.2023.142669_b0065) 2017; 29 Wu (10.1016/j.cej.2023.142669_b0105) 2022; 442 Zhang (10.1016/j.cej.2023.142669_b0075) 2022; 319 Xu (10.1016/j.cej.2023.142669_b0140) 2018; 10 Jia (10.1016/j.cej.2023.142669_b0190) 2016; 8 10.1016/j.cej.2023.142669_b0150 10.1016/j.cej.2023.142669_b0175 10.1016/j.cej.2023.142669_b0155 Yang (10.1016/j.cej.2023.142669_b0010) 2022; 9 Zhang (10.1016/j.cej.2023.142669_b0030) 2021; 17 Lei (10.1016/j.cej.2023.142669_b0040) 2022; 14 Guo (10.1016/j.cej.2023.142669_b0020) 2020; 16 Lai (10.1016/j.cej.2023.142669_b0090) 2021; 14 Wan (10.1016/j.cej.2023.142669_b0170) 2022; 124 Tian (10.1016/j.cej.2023.142669_b0045) 2019; 96 Wang (10.1016/j.cej.2023.142669_b0095) 2020; 77 Ying (10.1016/j.cej.2023.142669_b0225) 2021; 627 Yao (10.1016/j.cej.2023.142669_b0120) 2022; 429 Zhai (10.1016/j.cej.2023.142669_b0005) 2022; 32 Philo (10.1016/j.cej.2023.142669_b0035) 2022; 32 Jadhav (10.1016/j.cej.2023.142669_b0145) 2020; 4 Zhang (10.1016/j.cej.2023.142669_b0085) 2020; 8 |
References_xml | – volume: 9 start-page: 2105135 year: 2022 ident: b0010 article-title: Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting publication-title: Adv Sci (Weinh) – volume: 17 start-page: 2100129 year: 2021 ident: b0030 article-title: Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges publication-title: Small. – volume: 18 start-page: 2200586 year: 2022 ident: b0050 article-title: Metal-Organic Framework-Derived Hollow CoSx Nanoarray Coupled with NiFe Layered Double Hydroxides as Efficient Bifunctional Electrocatalyst for Overall Water Splitting publication-title: Small. – volume: 14 start-page: 1830 year: 2021 end-page: 1834 ident: b0090 article-title: Enhancing One-Dimensional Charge Transport in Metal-organic Framework Hexagonal Nanorods for Electrocatalytic Oxygen Evolution publication-title: Chemsuschem. – volume: 16 start-page: 9920 year: 2022 end-page: 9928 ident: b0115 article-title: Caged-Cation-Induced Lattice Distortion in Bronze TiO(2) for Cohering Nanoparticulate Hydrogen Evolution Electrocatalysts publication-title: ACS Nano. – volume: 51 start-page: 3372 year: 2022 end-page: 3378 ident: b0210 article-title: CeO publication-title: J. Electron. Mater. – volume: 8 start-page: 17471 year: 2020 end-page: 17476 ident: b0085 article-title: Unveiling the critical role of the Mn dopant in a NiFe(OH)(2)catalyst for water oxidation publication-title: J. Mater. Chem. A. – volume: 442 year: 2022 ident: b0105 article-title: Ni publication-title: Chem. Eng. J. – volume: 629 start-page: 610 year: 2023 end-page: 619 ident: b0200 article-title: Triethanolamine-assisted synthesis of NiFe layered double hydroxide ultrathin nanosheets for efficient oxygen evolution reaction publication-title: J. Colloid Interface Sci. – volume: 9 start-page: 6653 year: 2019 end-page: 6663 ident: b0025 article-title: Experimental Activity Descriptors for Iridium-Based Catalysts for the Electrochemical Oxygen Evolution Reaction (OER) publication-title: ACS Catal. – volume: 10 start-page: 2035 year: 2022 end-page: 2044 ident: b0080 article-title: Defect-rich walnut-like copper-doped Ni(PO publication-title: J. Mater. Chem. A. – volume: 18 start-page: 2104354 year: 2022 ident: b0215 article-title: Ultrafast Room-Temperature Synthesis of Self-Supported NiFe-Layered Double Hydroxide as Large-Current-Density Oxygen Evolution Electrocatalyst publication-title: Small. – reference: M. Li, H. Li, X.C. Jiang, M.Q. Jiang, X. Zhan, G.T. Fu, J.M. Lee, Y.W. Tang, Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution, J. Mater. Chem. A. 9 (5) (2021) 2999-3006. https://doi.org/10.1039/d0ta10740a. – volume: 96 start-page: 273 year: 2019 end-page: 280 ident: b0045 article-title: Construction of hierarchical bundle-like CoNi layered double hydroxides for the efficient oxygen evolution reaction publication-title: J. Taiwan Inst. Chem. Eng. – volume: 29 start-page: 1700404 year: 2017 ident: b0065 article-title: Ultrafast Formation of Amorphous Bimetallic Hydroxide Films on 3D Conductive Sulfide Nanoarrays for Large-Current-Density Oxygen Evolution Electrocatalysis publication-title: Adv Mater. – volume: 77 year: 2020 ident: b0095 article-title: Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides publication-title: Nano Energy. – reference: K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, L. Sun. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation, Nat. Commun. 7. (2016). 11981. https://doi.org/10.1038/ncomms11981. – volume: 10 start-page: 6336 year: 2018 end-page: 6345 ident: b0140 article-title: Ce-Doped NiFe-Layered Double Hydroxide Ultrathin Nanosheets/Nanocarbon Hierarchical Nanocomposite as an Efficient Oxygen Evolution Catalyst publication-title: ACS Appl. Mater. Interfaces. – volume: 8 start-page: 14527 year: 2016 end-page: 14534 ident: b0190 article-title: Formation of Hierarchical Structure Composed of (Co/Ni) Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation publication-title: ACS Appl. Mater. Interfaces. – volume: 69 start-page: 301 year: 2022 end-page: 329 ident: b0015 article-title: Stability and deactivation of OER electrocatalysts: A review publication-title: J. Energy Chem. – volume: 30 start-page: 1910274 year: 2020 ident: b0180 article-title: Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction publication-title: Adv. Funct. Mater. – volume: 70 start-page: 472 year: 2022 end-page: 479 ident: b0185 article-title: La-doped NiFe-LDH coupled with hierarchical vertically aligned MXene frameworks for efficient overall water splitting publication-title: J. Energy Chem. – volume: 16 start-page: 1907029 year: 2020 ident: b0020 article-title: Reducing Oxygen Evolution Reaction Overpotential in Cobalt-Based Electrocatalysts via Optimizing the “Microparticles-in-Spider Web” Electrode Configurations publication-title: Small. – volume: 4 start-page: 312 year: 2020 end-page: 323 ident: b0145 article-title: An advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting publication-title: Sustain. Energ. Fuels. – volume: 10 start-page: 11379 year: 2022 end-page: 11387 ident: b0135 article-title: Thakur, Ce doping induced trapping states and local electronic structure modifications in SrZnO publication-title: J. Mater. Chem. C. – volume: 13 start-page: 3893 year: 2020 end-page: 3900 ident: b0205 article-title: Integration of Oxygen-Vacancy-Rich NiFe-Layered Double Hydroxide onto Silicon as Photoanode for Enhanced Photoelectrochemical Water Oxidation publication-title: Chemsuschem. – volume: 14 start-page: 34793 year: 2022 end-page: 34801 ident: b0040 article-title: S-Doping Promotes Pyridine Nitrogen Conversion and Lattice Defects of Carbon Nitride to Enhance the Performance of Zn-Air Batteries publication-title: ACS Appl. Mater. Interfaces. – volume: 8 start-page: 10009 year: 2020 end-page: 10016 ident: b0060 article-title: Electronically Modulated CoP by Ce Doping as a Highly Efficient Electrocatalyst for Water Splitting publication-title: ACS Sustain. Chem. Eng. – volume: 844 year: 2020 ident: b0055 article-title: Hydrophilic Ni(OH) publication-title: J. Alloy. Compd. – volume: 390 start-page: 32 year: 2019 end-page: 49 ident: b0125 article-title: Rare earth incorporated electrode materials for advanced energy storage publication-title: Coord. Chem. Rev. – volume: 601 year: 2022 ident: b0220 article-title: Defected NiFe layered double hydroxides on N-doped carbon nanotubes as efficient bifunctional electrocatalyst for rechargeable zinc–air batteries publication-title: Appl. Surf. Sci. – volume: 369 year: 2021 ident: b0070 article-title: Rational construction of 3D MoNi/NiMoO publication-title: Electrochim. Acta. – volume: 1 start-page: 4998 year: 2018 end-page: 5007 ident: b0110 article-title: Three-Dimensional Hierarchical Multimetal-LDH Nanoflakes and Their Derived Spinel Oxides for Efficient Oxygen Evolution publication-title: ACS Appl. Energ. Mater. – volume: 32 start-page: 2207536 year: 2022 ident: b0005 article-title: High-Entropy Catalyst-A Novel Platform for Electrochemical Water Splitting publication-title: Adv. Funct. Mater. – volume: 169 year: 2022 ident: b0195 article-title: Ru-Doped NiFe Layered Double Hydroxide as a Highly Active Electrocatalyst for Oxygen Evolution Reaction publication-title: J. Electrochem. Soc. – volume: 9 start-page: 3241 year: 2007 end-page: 3250 ident: b0230 article-title: Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt (111) electrode publication-title: Phys. Chem. Chem. Phys. – volume: 31 start-page: 2008790 year: 2021 ident: b0130 article-title: Recent Advances in 2D Rare Earth Materials publication-title: Adv. Funct. Mater. – volume: 429 year: 2022 ident: b0120 article-title: Ni-doping induced structure distortion of MnO publication-title: Chem. Eng. J. – volume: 627 year: 2021 ident: b0225 article-title: Rich oxygen vacancies on ultrathin NiFe layered double hydroxide nanosheets raised by cerium-assisted synthesis for enhanced electrocatalytic water oxidation publication-title: Colloid Surf. A-Physicochem. Eng. Asp. – reference: Y. Yang, S.Y. Wei, Y.F. Li, D.G. Guo, H.J. Liu, L. Liu, Effect of cobalt doping-regulated crystallinity in nickel-iron layered double hydroxide catalyzing oxygen evolution, Appl. Catal. B: Environ. 314 (2022) 121491. https://doi.org/10.1016/j.apcatb.2022.121491. – reference: H.J. Zhang, X.P. Li, A. Hahnel, V. Naumann, C. Lin, S. Azimi, S.L. Schweizer, A.W. Maijenburg, R.B. Wehrspohn, Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting, Adv. Funct. Mater. 28 (14) (2018) 1706847. https://doi.org/10.1002/adfm.201706847. – reference: Z. Zheng, D. Wu, G. Chen, N. Zhang, H. Wan, X. Liu, R. Ma, Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation, Carbon Energy. 4 (5) (2022) 901-913. https://doi.org/10.1002/cey2.215. – reference: T.S. Munonde, N.P. September, A. Mpupa, P.N. Nomngongo, Two agitation routes for the adsorption of Reactive Red 120 dye on NiFe LDH/AC nanosheets from wastewater and river water, Appl. Clay Sci. 219 (2022) 106438. https://doi.org/10.1016/j.clay.2022.106438. – volume: 124 start-page: 102 year: 2022 end-page: 108 ident: b0170 article-title: Inducing the SnO publication-title: J. Mater. Sci. Technol. – volume: 32 start-page: 2206811 year: 2022 ident: b0035 article-title: Lattice Distortion Engineering over Ultrathin Monoclinic BiVO publication-title: Adv. Funct. Mater. – volume: 319 year: 2022 ident: b0075 article-title: Ferric ions leached from Fe-based catalyst to trigger the dynamic surface reconstruction of nickel foam for high-efficient OER activity publication-title: Appl. Catal. B: Environ. – volume: 13 start-page: 3893 year: 2020 ident: 10.1016/j.cej.2023.142669_b0205 article-title: Integration of Oxygen-Vacancy-Rich NiFe-Layered Double Hydroxide onto Silicon as Photoanode for Enhanced Photoelectrochemical Water Oxidation publication-title: Chemsuschem. doi: 10.1002/cssc.202000884 – volume: 77 year: 2020 ident: 10.1016/j.cej.2023.142669_b0095 article-title: Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides publication-title: Nano Energy. doi: 10.1016/j.nanoen.2020.105162 – volume: 629 start-page: 610 year: 2023 ident: 10.1016/j.cej.2023.142669_b0200 article-title: Triethanolamine-assisted synthesis of NiFe layered double hydroxide ultrathin nanosheets for efficient oxygen evolution reaction publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.09.053 – volume: 9 start-page: 2105135 issue: 9 year: 2022 ident: 10.1016/j.cej.2023.142669_b0010 article-title: Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting publication-title: Adv Sci (Weinh) doi: 10.1002/advs.202105135 – volume: 390 start-page: 32 year: 2019 ident: 10.1016/j.cej.2023.142669_b0125 article-title: Rare earth incorporated electrode materials for advanced energy storage publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.03.011 – volume: 4 start-page: 312 issue: 1 year: 2020 ident: 10.1016/j.cej.2023.142669_b0145 article-title: An advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting publication-title: Sustain. Energ. Fuels. doi: 10.1039/C9SE00700H – ident: 10.1016/j.cej.2023.142669_b0155 doi: 10.1039/D0TA10740A – volume: 319 year: 2022 ident: 10.1016/j.cej.2023.142669_b0075 article-title: Ferric ions leached from Fe-based catalyst to trigger the dynamic surface reconstruction of nickel foam for high-efficient OER activity publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2022.121921 – ident: 10.1016/j.cej.2023.142669_b0175 doi: 10.1038/ncomms11981 – volume: 51 start-page: 3372 issue: 7 year: 2022 ident: 10.1016/j.cej.2023.142669_b0210 article-title: CeO2 Nanodots@carbon Sphere/NiFe-Layered Double Hydroxides as an Efficient Electrocatalyst for Oxygen Evolution Reactions publication-title: J. Electron. Mater. doi: 10.1007/s11664-022-09636-1 – volume: 69 start-page: 301 year: 2022 ident: 10.1016/j.cej.2023.142669_b0015 article-title: Stability and deactivation of OER electrocatalysts: A review publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.01.025 – volume: 844 year: 2020 ident: 10.1016/j.cej.2023.142669_b0055 article-title: Hydrophilic Ni(OH)2@CoB nano-chains with shell-core structure as an efficient catalyst for oxygen evolution reaction publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.156129 – ident: 10.1016/j.cej.2023.142669_b0160 doi: 10.1016/j.clay.2022.106438 – volume: 14 start-page: 1830 issue: 8 year: 2021 ident: 10.1016/j.cej.2023.142669_b0090 article-title: Enhancing One-Dimensional Charge Transport in Metal-organic Framework Hexagonal Nanorods for Electrocatalytic Oxygen Evolution publication-title: Chemsuschem. doi: 10.1002/cssc.202100179 – volume: 16 start-page: 9920 issue: 6 year: 2022 ident: 10.1016/j.cej.2023.142669_b0115 article-title: Caged-Cation-Induced Lattice Distortion in Bronze TiO(2) for Cohering Nanoparticulate Hydrogen Evolution Electrocatalysts publication-title: ACS Nano. doi: 10.1021/acsnano.2c04513 – volume: 429 year: 2022 ident: 10.1016/j.cej.2023.142669_b0120 article-title: Ni-doping induced structure distortion of MnO2 for highly efficient Na+ storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132521 – volume: 8 start-page: 10009 issue: 27 year: 2020 ident: 10.1016/j.cej.2023.142669_b0060 article-title: Electronically Modulated CoP by Ce Doping as a Highly Efficient Electrocatalyst for Water Splitting publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c01193 – volume: 18 start-page: 2200586 issue: 16 year: 2022 ident: 10.1016/j.cej.2023.142669_b0050 article-title: Metal-Organic Framework-Derived Hollow CoSx Nanoarray Coupled with NiFe Layered Double Hydroxides as Efficient Bifunctional Electrocatalyst for Overall Water Splitting publication-title: Small. doi: 10.1002/smll.202200586 – volume: 8 start-page: 17471 issue: 34 year: 2020 ident: 10.1016/j.cej.2023.142669_b0085 article-title: Unveiling the critical role of the Mn dopant in a NiFe(OH)(2)catalyst for water oxidation publication-title: J. Mater. Chem. A. doi: 10.1039/D0TA06353C – volume: 601 year: 2022 ident: 10.1016/j.cej.2023.142669_b0220 article-title: Defected NiFe layered double hydroxides on N-doped carbon nanotubes as efficient bifunctional electrocatalyst for rechargeable zinc–air batteries publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.154253 – volume: 9 start-page: 3241 issue: 25 year: 2007 ident: 10.1016/j.cej.2023.142669_b0230 article-title: Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt (111) electrode publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B700099E – volume: 16 start-page: 1907029 issue: 8 year: 2020 ident: 10.1016/j.cej.2023.142669_b0020 article-title: Reducing Oxygen Evolution Reaction Overpotential in Cobalt-Based Electrocatalysts via Optimizing the “Microparticles-in-Spider Web” Electrode Configurations publication-title: Small. doi: 10.1002/smll.201907029 – volume: 10 start-page: 11379 issue: 31 year: 2022 ident: 10.1016/j.cej.2023.142669_b0135 article-title: Thakur, Ce doping induced trapping states and local electronic structure modifications in SrZnO2 nanophosphors publication-title: J. Mater. Chem. C. doi: 10.1039/D2TC01985J – ident: 10.1016/j.cej.2023.142669_b0150 doi: 10.1002/cey2.215 – ident: 10.1016/j.cej.2023.142669_b0165 doi: 10.1016/j.apcatb.2022.121491 – volume: 124 start-page: 102 year: 2022 ident: 10.1016/j.cej.2023.142669_b0170 article-title: Inducing the SnO2-based electron transport layer into NiFe LDH/NF as efficient catalyst for OER and methanol oxidation reaction publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.01.022 – ident: 10.1016/j.cej.2023.142669_b0100 doi: 10.1002/adfm.201706847 – volume: 1 start-page: 4998 issue: 9 year: 2018 ident: 10.1016/j.cej.2023.142669_b0110 article-title: Three-Dimensional Hierarchical Multimetal-LDH Nanoflakes and Their Derived Spinel Oxides for Efficient Oxygen Evolution publication-title: ACS Appl. Energ. Mater. doi: 10.1021/acsaem.8b00990 – volume: 32 start-page: 2206811 year: 2022 ident: 10.1016/j.cej.2023.142669_b0035 article-title: Lattice Distortion Engineering over Ultrathin Monoclinic BiVO4 Nanoflakes Triggering AQE up to 69.4% in Visible-Light-Driven Water Oxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202206811 – volume: 30 start-page: 1910274 issue: 15 year: 2020 ident: 10.1016/j.cej.2023.142669_b0180 article-title: Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910274 – volume: 169 issue: 2 year: 2022 ident: 10.1016/j.cej.2023.142669_b0195 article-title: Ru-Doped NiFe Layered Double Hydroxide as a Highly Active Electrocatalyst for Oxygen Evolution Reaction publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac4cda – volume: 32 start-page: 2207536 issue: 47 year: 2022 ident: 10.1016/j.cej.2023.142669_b0005 article-title: High-Entropy Catalyst-A Novel Platform for Electrochemical Water Splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202207536 – volume: 96 start-page: 273 year: 2019 ident: 10.1016/j.cej.2023.142669_b0045 article-title: Construction of hierarchical bundle-like CoNi layered double hydroxides for the efficient oxygen evolution reaction publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2018.11.024 – volume: 31 start-page: 2008790 issue: 13 year: 2021 ident: 10.1016/j.cej.2023.142669_b0130 article-title: Recent Advances in 2D Rare Earth Materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008790 – volume: 627 year: 2021 ident: 10.1016/j.cej.2023.142669_b0225 article-title: Rich oxygen vacancies on ultrathin NiFe layered double hydroxide nanosheets raised by cerium-assisted synthesis for enhanced electrocatalytic water oxidation publication-title: Colloid Surf. A-Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2021.127142 – volume: 442 year: 2022 ident: 10.1016/j.cej.2023.142669_b0105 article-title: Ni3S2-embedded NiFe LDH porous nanosheets with abundant heterointerfaces for high-current water electrolysis publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136105 – volume: 369 year: 2021 ident: 10.1016/j.cej.2023.142669_b0070 article-title: Rational construction of 3D MoNi/NiMoOx@NiFe LDH with rapid electron transfer for efficient overall water splitting publication-title: Electrochim. Acta. doi: 10.1016/j.electacta.2020.137680 – volume: 29 start-page: 1700404 issue: 22 year: 2017 ident: 10.1016/j.cej.2023.142669_b0065 article-title: Ultrafast Formation of Amorphous Bimetallic Hydroxide Films on 3D Conductive Sulfide Nanoarrays for Large-Current-Density Oxygen Evolution Electrocatalysis publication-title: Adv Mater. doi: 10.1002/adma.201700404 – volume: 10 start-page: 2035 issue: 4 year: 2022 ident: 10.1016/j.cej.2023.142669_b0080 article-title: Defect-rich walnut-like copper-doped Ni(PO3)2 catalyst towards ammonia borane electrooxidation reaction with high performance publication-title: J. Mater. Chem. A. doi: 10.1039/D1TA09483A – volume: 8 start-page: 14527 issue: 23 year: 2016 ident: 10.1016/j.cej.2023.142669_b0190 article-title: Formation of Hierarchical Structure Composed of (Co/Ni) Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.6b02733 – volume: 17 start-page: 2100129 issue: 37 year: 2021 ident: 10.1016/j.cej.2023.142669_b0030 article-title: Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges publication-title: Small. doi: 10.1002/smll.202100129 – volume: 10 start-page: 6336 issue: 7 year: 2018 ident: 10.1016/j.cej.2023.142669_b0140 article-title: Ce-Doped NiFe-Layered Double Hydroxide Ultrathin Nanosheets/Nanocarbon Hierarchical Nanocomposite as an Efficient Oxygen Evolution Catalyst publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.7b17939 – volume: 70 start-page: 472 year: 2022 ident: 10.1016/j.cej.2023.142669_b0185 article-title: La-doped NiFe-LDH coupled with hierarchical vertically aligned MXene frameworks for efficient overall water splitting publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.02.044 – volume: 18 start-page: 2104354 issue: 2 year: 2022 ident: 10.1016/j.cej.2023.142669_b0215 article-title: Ultrafast Room-Temperature Synthesis of Self-Supported NiFe-Layered Double Hydroxide as Large-Current-Density Oxygen Evolution Electrocatalyst publication-title: Small. doi: 10.1002/smll.202104354 – volume: 9 start-page: 6653 issue: 8 year: 2019 ident: 10.1016/j.cej.2023.142669_b0025 article-title: Experimental Activity Descriptors for Iridium-Based Catalysts for the Electrochemical Oxygen Evolution Reaction (OER) publication-title: ACS Catal. doi: 10.1021/acscatal.9b00648 – volume: 14 start-page: 34793 issue: 30 year: 2022 ident: 10.1016/j.cej.2023.142669_b0040 article-title: S-Doping Promotes Pyridine Nitrogen Conversion and Lattice Defects of Carbon Nitride to Enhance the Performance of Zn-Air Batteries publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.2c09019 |
SSID | ssj0006919 |
Score | 2.705059 |
Snippet | [Display omitted]
•Inducing lattice distortion in NiFe-LDH nanosheets by Ce-doping towards accelerating electrocatalytic oxygen evolution reaction.•The optimal... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 142669 |
SubjectTerms | Ce doping Lattice distortion NiFe LDH Oxygen evolution reaction |
Title | Lattice distortion induced Ce-doped NiFe-LDH for efficient oxygen evolution |
URI | https://dx.doi.org/10.1016/j.cej.2023.142669 |
Volume | 464 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14ErbNc5M9lmqJpvagFnsL2c0EWqQtUkUv_nZn8vAB6sFTHsyG8O0w8y3zYuzUlkbrUPkCMjybeHbqCp3bRjiuoaiciwyCipOvRzIae1cTf9Jg_boWhtIqK9tf2vTCWldvuhWa3eV02r21KaalvMApTglF223PC0jLO2-faR5SFcM9SFiQdB3ZLHK8DMw6ND8c7QU6KvWzb_ribwZbbLMiirxX_ss2a8B8h218aR-4y-JhuqLcNZ4VvT4IYo5HbNysjPdBZIsl3oymAxDD84gjO-VQNIxAP8MXL6-oOhyeK9XbY-PBxV0_EtVwBGEcFawE0iCpTO5rhZQGqODVCpVxlbFMCrZK8xQCS5qAKBVoP0RJcJzcR_jBT5GY7LPmfDGHA8YdLW0dSB1qQICoFNfKtabPSNcyQdpiVg1LYqrO4TTA4iGpU8RmCSKZEJJJiWSLnX0sWZZtM_4S9mqsk297n6BZ_33Z4f-WHbF1eqIMANs_Zs3V4xOcILFY6XahOW221ruMoxFd45v7-B3kScx_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhU7PsAFyTSrUx84IKAqdLnQSr2F2J1IRaitoGwXfoofZCZNWCTggMQtSmzLeR7NvJFnAdhzlTWmrEOJXfJNAjfxpUldKz3f8q2cTwyCk5MbTVVtBxedsDMBr0UuDIdV5rp_rNMzbZ2_KeVoloa9XunS5TstHURe5iU4Ko-srOHzI_ltd0fnp3TI-55XOWudVGXeWkBaT0cjSSRCaZuGRhMhQE4Xdcra-to6NkFXJ2mCkaNsxIQETVimkeh5aUibxzAhs07rTsJ0QOqC2yYcvnzElSiddRPh3UneXnGVmgWVWbw-5IblpKDIMurvjeEnA1dZgPmcmYrj8c8vwgT2l2DuU73CZajVkxEHy4luVlyEz1SQT0_S0RUnKLuDIT00exWU9dOqIDosMKtQQYZNDJ6eSVYFPuSyvgLtf4FsFab6gz6ugfCMck2kTNkgAcS5v05qDC-jfMdGyTo4BSyxzUuVc8eMm7iISbuOCcmYkYzHSK7DwfuU4bhOx2-DgwLr-IuwxWRHfp628bdpuzBTbTXqcf28WduEWf7C4QduuAVTo9t73CZWMzI7mRQJuPpvsX0DUAcFrw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lattice+distortion+induced+Ce-doped+NiFe-LDH+for+efficient+oxygen+evolution&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Liao%2C+Yuanyuan&rft.au=He%2C+Ruchen&rft.au=Pan%2C+Wanghao&rft.au=Li%2C+Yao&rft.date=2023-05-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=464&rft_id=info:doi/10.1016%2Fj.cej.2023.142669&rft.externalDocID=S1385894723014006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |