Lattice distortion induced Ce-doped NiFe-LDH for efficient oxygen evolution

[Display omitted] •Inducing lattice distortion in NiFe-LDH nanosheets by Ce-doping towards accelerating electrocatalytic oxygen evolution reaction.•The optimal NiFeCe-LDH@CP only requires 267 mV to deliver 100 mA cm−2, which is 41 mV lower than pure NiFe-LDH@CP.•NiFeCe-LDH@CP have retained their str...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 464; p. 142669
Main Authors Liao, Yuanyuan, He, Ruchen, Pan, Wanghao, Li, Yao, Wang, Yingying, Li, Jing, Li, Yongxiu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Inducing lattice distortion in NiFe-LDH nanosheets by Ce-doping towards accelerating electrocatalytic oxygen evolution reaction.•The optimal NiFeCe-LDH@CP only requires 267 mV to deliver 100 mA cm−2, which is 41 mV lower than pure NiFe-LDH@CP.•NiFeCe-LDH@CP have retained their structural property after 70 h stability.•DFT calculations reveal that lattice distortion could optimize the electronic structure of the Ni element in active sites and lower the energy barrier, thus accelerating the OER. Nickel-iron layered double hydroxide (NiFe-LDH) is a promising active electrocatalyst for oxygen evolution reaction (OER). However, the development of NiFe-LDH is limited by poor electrical conductivity and inferior cycling stability. Herein, we present a structural perturbation and distinct distorted lattice strategy via Ce doping in NiFe-LDH on carbon paper (CP) (NiFeCe-LDH@CP) to boost its OER performance. Lattice distortion results in a large accessible surface area and induces more Ovac, accelerating the OER by modifying the intrinsic electronic structure and optimizing the adsorption energy of intermediates. As a result, the optimized NiFeCe-LDH@CP possesses excellent stability over 70 h and can deliver the current density of 100 mA/cm2 with the overpotentials of only 267 mV, which is 41 mV lower than pure NiFe-LDH@CP. Theoretical calculations indicate that the introduction of lattice distortion into NiFe-LDH could optimize the electronic structure of the Ni element in active sites and lower the energy barrier, thus leading to a significant increase in OER activity. This work figures out the effect of lattice distortion strategy on the improvement of OER performance, which opens new perspectives on the development of defect-rich OER electrocatalysts.
AbstractList [Display omitted] •Inducing lattice distortion in NiFe-LDH nanosheets by Ce-doping towards accelerating electrocatalytic oxygen evolution reaction.•The optimal NiFeCe-LDH@CP only requires 267 mV to deliver 100 mA cm−2, which is 41 mV lower than pure NiFe-LDH@CP.•NiFeCe-LDH@CP have retained their structural property after 70 h stability.•DFT calculations reveal that lattice distortion could optimize the electronic structure of the Ni element in active sites and lower the energy barrier, thus accelerating the OER. Nickel-iron layered double hydroxide (NiFe-LDH) is a promising active electrocatalyst for oxygen evolution reaction (OER). However, the development of NiFe-LDH is limited by poor electrical conductivity and inferior cycling stability. Herein, we present a structural perturbation and distinct distorted lattice strategy via Ce doping in NiFe-LDH on carbon paper (CP) (NiFeCe-LDH@CP) to boost its OER performance. Lattice distortion results in a large accessible surface area and induces more Ovac, accelerating the OER by modifying the intrinsic electronic structure and optimizing the adsorption energy of intermediates. As a result, the optimized NiFeCe-LDH@CP possesses excellent stability over 70 h and can deliver the current density of 100 mA/cm2 with the overpotentials of only 267 mV, which is 41 mV lower than pure NiFe-LDH@CP. Theoretical calculations indicate that the introduction of lattice distortion into NiFe-LDH could optimize the electronic structure of the Ni element in active sites and lower the energy barrier, thus leading to a significant increase in OER activity. This work figures out the effect of lattice distortion strategy on the improvement of OER performance, which opens new perspectives on the development of defect-rich OER electrocatalysts.
ArticleNumber 142669
Author Wang, Yingying
Li, Yao
Li, Yongxiu
Pan, Wanghao
Li, Jing
Liao, Yuanyuan
He, Ruchen
Author_xml – sequence: 1
  givenname: Yuanyuan
  orcidid: 0000-0003-4640-5292
  surname: Liao
  fullname: Liao, Yuanyuan
  organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
– sequence: 2
  givenname: Ruchen
  surname: He
  fullname: He, Ruchen
  organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
– sequence: 3
  givenname: Wanghao
  surname: Pan
  fullname: Pan, Wanghao
  organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
– sequence: 4
  givenname: Yao
  surname: Li
  fullname: Li, Yao
  organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
– sequence: 5
  givenname: Yingying
  surname: Wang
  fullname: Wang, Yingying
  organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
– sequence: 6
  givenname: Jing
  orcidid: 0000-0001-8630-8265
  surname: Li
  fullname: Li, Jing
  email: lijingbuaa@163.com
  organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
– sequence: 7
  givenname: Yongxiu
  orcidid: 0000-0003-3522-3186
  surname: Li
  fullname: Li, Yongxiu
  email: yxli@ncu.edu.cn
  organization: School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
BookMark eNp9kMtOwzAQRS1UJNrCB7DLDyT4ETu2WKFCKSKCDawt1xkjRyGuHLeif0-ismLR1dzFnNHcs0CzPvSA0C3BBcFE3LWFhbagmLKClFQIdYHmRFYsZ5TQ2ZiZ5LlUZXWFFsPQYoyFImqOXmuTkreQNX5IISYf-sz3zd5Ck60gb8JuDG9-DXn9uMlciBk4562HPmXh5_gFfQaH0O0n8BpdOtMNcPM3l-hz_fSx2uT1-_PL6qHOLVVVykvKhLKObxUVJVDGJZbKMmWxNUCUcQYqLGyFJSew5XLcBEodLxkHbrBgS1Sd7toYhiGC09YnM32QovGdJlhPTnSrRyd6cqJPTkaS_CN30X-beDzL3J8YGCsdPEQ9TPVHQT6CTboJ_gz9CxjUe0g
CitedBy_id crossref_primary_10_1016_j_jcis_2024_05_169
crossref_primary_10_1016_j_surfin_2024_104215
crossref_primary_10_1021_acs_inorgchem_3c03385
crossref_primary_10_1016_j_jcis_2024_10_197
crossref_primary_10_1016_j_mtadv_2025_100560
crossref_primary_10_1016_j_cej_2024_150054
crossref_primary_10_1016_j_seppur_2025_131964
crossref_primary_10_1016_j_cej_2025_161519
crossref_primary_10_1021_acsami_4c12767
crossref_primary_10_1039_D4QI02544J
crossref_primary_10_1016_j_ijhydene_2024_09_047
crossref_primary_10_1016_j_jallcom_2024_177406
crossref_primary_10_1016_j_jcis_2024_04_002
crossref_primary_10_1016_j_psep_2025_106866
crossref_primary_10_1039_D4TA02924K
crossref_primary_10_1016_j_cej_2023_147289
crossref_primary_10_1016_j_jallcom_2024_176671
crossref_primary_10_1039_D3QI01131C
crossref_primary_10_1016_j_jallcom_2024_176310
crossref_primary_10_1016_j_jallcom_2024_177244
crossref_primary_10_1016_j_cej_2023_145896
crossref_primary_10_1016_j_jece_2024_113773
crossref_primary_10_1039_D3CY01248D
crossref_primary_10_1021_acs_iecr_3c03014
crossref_primary_10_1002_ece2_29
crossref_primary_10_1016_j_snb_2024_136407
crossref_primary_10_3390_catal14080485
crossref_primary_10_1038_s44172_025_00344_2
crossref_primary_10_1002_adfm_202315080
crossref_primary_10_1016_j_ijhydene_2024_06_105
crossref_primary_10_1002_smll_202404557
crossref_primary_10_1016_j_jallcom_2024_175729
crossref_primary_10_1021_acsaem_4c00246
crossref_primary_10_1007_s10800_025_02263_8
crossref_primary_10_1016_j_ijhydene_2024_06_111
crossref_primary_10_1016_j_jhazmat_2024_136797
crossref_primary_10_1016_j_pmatsci_2024_101410
crossref_primary_10_1002_aenm_202401449
crossref_primary_10_1002_cssc_202400751
crossref_primary_10_1002_smll_202304652
crossref_primary_10_1016_j_ijhydene_2024_07_426
crossref_primary_10_1016_j_cej_2025_161000
crossref_primary_10_1002_anie_202413250
crossref_primary_10_1016_j_cej_2023_147155
crossref_primary_10_1021_acs_inorgchem_4c04507
crossref_primary_10_1039_D4NR03679D
crossref_primary_10_1016_j_jece_2024_114376
crossref_primary_10_1039_D4TA03069A
crossref_primary_10_1016_j_corsci_2024_112236
crossref_primary_10_1007_s11581_025_06190_8
crossref_primary_10_1016_j_ijhydene_2024_02_202
crossref_primary_10_1002_smll_202408495
crossref_primary_10_1016_j_jcis_2025_01_201
crossref_primary_10_1002_smll_202403992
crossref_primary_10_1016_j_jece_2024_113723
crossref_primary_10_1016_j_apcatb_2023_123459
crossref_primary_10_1016_j_cej_2024_152860
crossref_primary_10_1016_j_jcis_2024_06_034
crossref_primary_10_1021_acssuschemeng_4c03964
crossref_primary_10_1002_chem_202404278
crossref_primary_10_1016_j_nanoen_2024_109902
crossref_primary_10_1016_j_cej_2024_155736
crossref_primary_10_1039_D3TA05775E
crossref_primary_10_1002_adfm_202410429
crossref_primary_10_1002_ange_202413250
crossref_primary_10_1016_j_electacta_2024_145231
crossref_primary_10_1016_j_jcis_2025_137413
crossref_primary_10_1002_adfm_202408732
crossref_primary_10_1007_s10562_024_04657_3
crossref_primary_10_1016_j_jssc_2023_124510
crossref_primary_10_1021_acs_langmuir_4c02640
crossref_primary_10_1039_D4TA03533J
crossref_primary_10_1016_j_colsurfa_2024_133360
crossref_primary_10_1016_j_jcis_2024_06_041
crossref_primary_10_1021_acsnano_4c03153
crossref_primary_10_1039_D3QI02220J
crossref_primary_10_3390_catal13091230
crossref_primary_10_1002_smll_202406071
crossref_primary_10_1016_j_jcis_2024_07_243
crossref_primary_10_1016_j_jelechem_2023_117824
crossref_primary_10_1039_D4DT00757C
crossref_primary_10_1021_acsanm_4c04935
crossref_primary_10_1016_j_ijhydene_2023_10_233
crossref_primary_10_1016_j_cej_2024_148858
crossref_primary_10_1016_j_apsusc_2024_161828
crossref_primary_10_1016_j_ijhydene_2025_02_023
crossref_primary_10_1016_j_jcis_2025_02_152
crossref_primary_10_1016_j_ccr_2024_215901
crossref_primary_10_1039_D3TA06701G
crossref_primary_10_1002_anie_202420488
crossref_primary_10_3390_ma18010121
crossref_primary_10_1016_j_ijhydene_2024_09_096
crossref_primary_10_1016_j_jcis_2024_09_024
crossref_primary_10_1016_j_materresbull_2024_113272
crossref_primary_10_1016_j_seppur_2024_130267
crossref_primary_10_1016_j_jcis_2024_04_164
crossref_primary_10_1039_D4QM00798K
crossref_primary_10_1016_j_fuel_2024_131762
crossref_primary_10_1016_j_esci_2025_100380
crossref_primary_10_1016_j_cej_2025_161153
crossref_primary_10_1016_j_ijhydene_2023_05_342
crossref_primary_10_1039_D4TA01382D
crossref_primary_10_1021_acsanm_4c06227
crossref_primary_10_1002_ange_202310973
crossref_primary_10_1002_smll_202307685
crossref_primary_10_1016_j_energy_2025_134905
crossref_primary_10_1039_D3DT01814H
crossref_primary_10_1016_j_ccr_2024_216262
crossref_primary_10_1016_j_ijhydene_2024_11_474
crossref_primary_10_1039_D4NR05492J
crossref_primary_10_1021_acs_iecr_4c04262
crossref_primary_10_1016_j_cej_2024_154059
crossref_primary_10_1021_acs_energyfuels_3c03021
crossref_primary_10_1039_D4TA02886D
crossref_primary_10_1016_j_ijhydene_2024_07_109
crossref_primary_10_1016_j_ijhydene_2025_01_235
crossref_primary_10_1016_j_jcis_2023_07_083
crossref_primary_10_1016_j_ijhydene_2024_03_007
crossref_primary_10_1021_acsanm_3c03670
crossref_primary_10_26599_NRE_2023_9120104
crossref_primary_10_1002_anie_202310973
crossref_primary_10_1021_acs_inorgchem_4c00985
crossref_primary_10_1016_j_ensm_2025_104040
crossref_primary_10_26599_JAC_2024_9220895
crossref_primary_10_1021_acsami_4c01890
crossref_primary_10_3390_ma18040911
crossref_primary_10_1016_j_jallcom_2024_177588
crossref_primary_10_1002_cssc_202401435
crossref_primary_10_1016_j_microc_2023_109779
crossref_primary_10_1016_j_ijhydene_2023_08_155
crossref_primary_10_1002_bte2_20230052
crossref_primary_10_1002_adfm_202406999
crossref_primary_10_1016_j_jallcom_2024_178385
crossref_primary_10_1016_j_jcis_2023_11_144
crossref_primary_10_1002_ange_202420488
crossref_primary_10_1039_D4NR05248J
crossref_primary_10_3390_en17225712
crossref_primary_10_1021_acsanm_4c03651
crossref_primary_10_1039_D4QM00502C
crossref_primary_10_1016_j_ccr_2024_216164
crossref_primary_10_1002_elt2_63
crossref_primary_10_1016_j_jcis_2024_09_038
crossref_primary_10_1016_j_jcis_2025_01_012
crossref_primary_10_1016_j_ces_2023_119035
crossref_primary_10_1016_j_jcis_2024_07_202
crossref_primary_10_1016_j_jcis_2024_01_110
crossref_primary_10_1002_cssc_202400056
crossref_primary_10_3390_catal14040278
crossref_primary_10_3390_catal14100708
crossref_primary_10_1021_acssuschemeng_3c07722
Cites_doi 10.1002/cssc.202000884
10.1016/j.nanoen.2020.105162
10.1016/j.jcis.2022.09.053
10.1002/advs.202105135
10.1016/j.ccr.2019.03.011
10.1039/C9SE00700H
10.1039/D0TA10740A
10.1016/j.apcatb.2022.121921
10.1038/ncomms11981
10.1007/s11664-022-09636-1
10.1016/j.jechem.2022.01.025
10.1016/j.jallcom.2020.156129
10.1016/j.clay.2022.106438
10.1002/cssc.202100179
10.1021/acsnano.2c04513
10.1016/j.cej.2021.132521
10.1021/acssuschemeng.0c01193
10.1002/smll.202200586
10.1039/D0TA06353C
10.1016/j.apsusc.2022.154253
10.1039/B700099E
10.1002/smll.201907029
10.1039/D2TC01985J
10.1002/cey2.215
10.1016/j.apcatb.2022.121491
10.1016/j.jmst.2022.01.022
10.1002/adfm.201706847
10.1021/acsaem.8b00990
10.1002/adfm.202206811
10.1002/adfm.201910274
10.1149/1945-7111/ac4cda
10.1002/adfm.202207536
10.1016/j.jtice.2018.11.024
10.1002/adfm.202008790
10.1016/j.colsurfa.2021.127142
10.1016/j.cej.2022.136105
10.1016/j.electacta.2020.137680
10.1002/adma.201700404
10.1039/D1TA09483A
10.1021/acsami.6b02733
10.1002/smll.202100129
10.1021/acsami.7b17939
10.1016/j.jechem.2022.02.044
10.1002/smll.202104354
10.1021/acscatal.9b00648
10.1021/acsami.2c09019
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2023.142669
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2023_142669
S1385894723014006
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SSH
ZY4
ID FETCH-LOGICAL-c297t-42369cf5b9264e2358089c39c0cae19afae706c70851eb58f5be22f5435e5a063
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 01:50:43 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Fri Feb 23 02:36:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oxygen evolution reaction
Lattice distortion
NiFe LDH
Ce doping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-42369cf5b9264e2358089c39c0cae19afae706c70851eb58f5be22f5435e5a063
ORCID 0000-0001-8630-8265
0000-0003-4640-5292
0000-0003-3522-3186
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2023_142669
crossref_primary_10_1016_j_cej_2023_142669
elsevier_sciencedirect_doi_10_1016_j_cej_2023_142669
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhai, Ren, Wang, Liu (b0005) 2022; 32
Wu, Xu, Xin, Zhang, Cao, Liu, Qiang, Zhou, Han, Cao, Xiao, Wei (b0070) 2021; 369
Wu, Lu, Zang, Lou (b0180) 2020; 30
Li, Zou, Liu, Lu, Dong (b0060) 2020; 8
Zeng, Mebrahtu, Liao, Palkovits, Beine (b0015) 2022; 69
Jadhav, Roy, Desalegan, Seo (b0145) 2020; 4
Philo, Luo, He, Wang, Ichihara, Jia, Oshikiri, Pang, Wang, Li, Yang, Ren, Lin, Ye (b0035) 2022; 32
Zhao, Xia, Yin, Luo, Yan, Du (b0125) 2019; 390
Lv, Hai, Zhang, Ding (b0210) 2022; 51
Li, Liu, Fang, Xu, Lu, Hou (b0215) 2022; 18
Zhang, Li, Zeng, Yu, Zuo, Wen, Liu, Zhong, Chen, Qiu (b0075) 2022; 319
Lai, Xiao, Tao, Gao, Zhang, Su, Dai (b0090) 2021; 14
Yu, Zheng, Guo (b0185) 2022; 70
Wu, Liu, Tan, Zhang, Cadien, Li (b0105) 2022; 442
Ying, Lin, Yang, Ye, Pan, Du (b0225) 2021; 627
Skulason, Karlberg, Rossmeisl, Bligaard, Greeley, Jonsson, Norskov (b0230) 2007; 9
Xu, Wang, Shan, Xi, Liu, Tang (b0140) 2018; 10
Jia, Hu, Qian, Yao, Zhang, Li, Zou (b0190) 2016; 8
Y. Yang, S.Y. Wei, Y.F. Li, D.G. Guo, H.J. Liu, L. Liu, Effect of cobalt doping-regulated crystallinity in nickel-iron layered double hydroxide catalyzing oxygen evolution, Appl. Catal. B: Environ. 314 (2022) 121491. https://doi.org/10.1016/j.apcatb.2022.121491.
Spöri, Briois, Nong, Reier, Billard, Kühl, Teschner, Strasser (b0025) 2019; 9
M. Li, H. Li, X.C. Jiang, M.Q. Jiang, X. Zhan, G.T. Fu, J.M. Lee, Y.W. Tang, Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution, J. Mater. Chem. A. 9 (5) (2021) 2999-3006. https://doi.org/10.1039/d0ta10740a.
Lin, Ju, Liu, Guo, Zhu, Zhang, Zhao, Wan, Yang, Huang, Wang (b0115) 2022; 16
Wan, Jin, Wei, Chen, Zhang, Zhu, Qu (b0170) 2022; 124
Chen, Lu, Fan, Shen (b0205) 2020; 13
Lu, Ji, Kannan, Wang, Wang, Wang (b0055) 2020; 844
Wang, Zeng (b0110) 2018; 1
Guo, Mao, Huang, Wang, Zhang, Hu, Dong, Sathasivam, Zhao, Xing, Pan, Lai, Tang (b0020) 2020; 16
Zhang, Cheng, Kuai, Sokaras, Zheng, Sainio, Lin, Dong, Nordlund, Du (b0085) 2020; 8
Manju, Jain, Rajput, Vij, Thakur (b0135) 2022; 10
T.S. Munonde, N.P. September, A. Mpupa, P.N. Nomngongo, Two agitation routes for the adsorption of Reactive Red 120 dye on NiFe LDH/AC nanosheets from wastewater and river water, Appl. Clay Sci. 219 (2022) 106438. https://doi.org/10.1016/j.clay.2022.106438.
Yang, Wang, Yang, Guo, Zhu, Wang, Wang, He, Liu (b0195) 2022; 169
Lee, Park (b0050) 2022; 18
Tian, Wang, Wo, Li, Song, Li, Li, Du (b0045) 2019; 96
Yu, Jing, Zhao, Lu, Song, Wu, Wu, Liu, Lei, Hao (b0080) 2022; 10
Z. Zheng, D. Wu, G. Chen, N. Zhang, H. Wan, X. Liu, R. Ma, Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation, Carbon Energy. 4 (5) (2022) 901-913. https://doi.org/10.1002/cey2.215.
Wang, Wang, Li, Yang, Ling, Gao, Lu, Shi, Lei, Wu, Hou (b0095) 2020; 77
K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, L. Sun. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation, Nat. Commun. 7. (2016). 11981. https://doi.org/10.1038/ncomms11981.
Zou, Liu, Li, Wu, Liu, Li, Li, Wang, Zhang, Zou (b0065) 2017; 29
Yang, Zhang, Li, Luan, Yu, Lou (b0010) 2022; 9
Chen, Han, Zhao, Su, Li, Li, Pi, Zhou, Zhai (b0130) 2021; 31
Zheng, Deng, Feng, Luo, Tu, Zhang (b0200) 2023; 629
Ambriz-Peláez, Béjar, Ramos-Castillo, Guerra-Balcázar, Álvarez-Contreras, Arjona (b0220) 2022; 601
Zhang, Zou (b0030) 2021; 17
H.J. Zhang, X.P. Li, A. Hahnel, V. Naumann, C. Lin, S. Azimi, S.L. Schweizer, A.W. Maijenburg, R.B. Wehrspohn, Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting, Adv. Funct. Mater. 28 (14) (2018) 1706847. https://doi.org/10.1002/adfm.201706847.
Lei, Cui, Huang (b0040) 2022; 14
Yao, Zhao, Wang, Zhou, Liu, Hu, Zhang, Yang, Liu, Fu, Wang, Yang, Yan (b0120) 2022; 429
Lv (10.1016/j.cej.2023.142669_b0210) 2022; 51
Li (10.1016/j.cej.2023.142669_b0060) 2020; 8
Yu (10.1016/j.cej.2023.142669_b0185) 2022; 70
Lee (10.1016/j.cej.2023.142669_b0050) 2022; 18
Zhao (10.1016/j.cej.2023.142669_b0125) 2019; 390
10.1016/j.cej.2023.142669_b0160
Li (10.1016/j.cej.2023.142669_b0215) 2022; 18
Zeng (10.1016/j.cej.2023.142669_b0015) 2022; 69
Wu (10.1016/j.cej.2023.142669_b0180) 2020; 30
10.1016/j.cej.2023.142669_b0100
Yu (10.1016/j.cej.2023.142669_b0080) 2022; 10
10.1016/j.cej.2023.142669_b0165
Chen (10.1016/j.cej.2023.142669_b0130) 2021; 31
Ambriz-Peláez (10.1016/j.cej.2023.142669_b0220) 2022; 601
Zheng (10.1016/j.cej.2023.142669_b0200) 2023; 629
Manju (10.1016/j.cej.2023.142669_b0135) 2022; 10
Skulason (10.1016/j.cej.2023.142669_b0230) 2007; 9
Spöri (10.1016/j.cej.2023.142669_b0025) 2019; 9
Wang (10.1016/j.cej.2023.142669_b0110) 2018; 1
Yang (10.1016/j.cej.2023.142669_b0195) 2022; 169
Chen (10.1016/j.cej.2023.142669_b0205) 2020; 13
Wu (10.1016/j.cej.2023.142669_b0070) 2021; 369
Lin (10.1016/j.cej.2023.142669_b0115) 2022; 16
Lu (10.1016/j.cej.2023.142669_b0055) 2020; 844
Zou (10.1016/j.cej.2023.142669_b0065) 2017; 29
Wu (10.1016/j.cej.2023.142669_b0105) 2022; 442
Zhang (10.1016/j.cej.2023.142669_b0075) 2022; 319
Xu (10.1016/j.cej.2023.142669_b0140) 2018; 10
Jia (10.1016/j.cej.2023.142669_b0190) 2016; 8
10.1016/j.cej.2023.142669_b0150
10.1016/j.cej.2023.142669_b0175
10.1016/j.cej.2023.142669_b0155
Yang (10.1016/j.cej.2023.142669_b0010) 2022; 9
Zhang (10.1016/j.cej.2023.142669_b0030) 2021; 17
Lei (10.1016/j.cej.2023.142669_b0040) 2022; 14
Guo (10.1016/j.cej.2023.142669_b0020) 2020; 16
Lai (10.1016/j.cej.2023.142669_b0090) 2021; 14
Wan (10.1016/j.cej.2023.142669_b0170) 2022; 124
Tian (10.1016/j.cej.2023.142669_b0045) 2019; 96
Wang (10.1016/j.cej.2023.142669_b0095) 2020; 77
Ying (10.1016/j.cej.2023.142669_b0225) 2021; 627
Yao (10.1016/j.cej.2023.142669_b0120) 2022; 429
Zhai (10.1016/j.cej.2023.142669_b0005) 2022; 32
Philo (10.1016/j.cej.2023.142669_b0035) 2022; 32
Jadhav (10.1016/j.cej.2023.142669_b0145) 2020; 4
Zhang (10.1016/j.cej.2023.142669_b0085) 2020; 8
References_xml – volume: 9
  start-page: 2105135
  year: 2022
  ident: b0010
  article-title: Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting
  publication-title: Adv Sci (Weinh)
– volume: 17
  start-page: 2100129
  year: 2021
  ident: b0030
  article-title: Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges
  publication-title: Small.
– volume: 18
  start-page: 2200586
  year: 2022
  ident: b0050
  article-title: Metal-Organic Framework-Derived Hollow CoSx Nanoarray Coupled with NiFe Layered Double Hydroxides as Efficient Bifunctional Electrocatalyst for Overall Water Splitting
  publication-title: Small.
– volume: 14
  start-page: 1830
  year: 2021
  end-page: 1834
  ident: b0090
  article-title: Enhancing One-Dimensional Charge Transport in Metal-organic Framework Hexagonal Nanorods for Electrocatalytic Oxygen Evolution
  publication-title: Chemsuschem.
– volume: 16
  start-page: 9920
  year: 2022
  end-page: 9928
  ident: b0115
  article-title: Caged-Cation-Induced Lattice Distortion in Bronze TiO(2) for Cohering Nanoparticulate Hydrogen Evolution Electrocatalysts
  publication-title: ACS Nano.
– volume: 51
  start-page: 3372
  year: 2022
  end-page: 3378
  ident: b0210
  article-title: CeO
  publication-title: J. Electron. Mater.
– volume: 8
  start-page: 17471
  year: 2020
  end-page: 17476
  ident: b0085
  article-title: Unveiling the critical role of the Mn dopant in a NiFe(OH)(2)catalyst for water oxidation
  publication-title: J. Mater. Chem. A.
– volume: 442
  year: 2022
  ident: b0105
  article-title: Ni
  publication-title: Chem. Eng. J.
– volume: 629
  start-page: 610
  year: 2023
  end-page: 619
  ident: b0200
  article-title: Triethanolamine-assisted synthesis of NiFe layered double hydroxide ultrathin nanosheets for efficient oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
– volume: 9
  start-page: 6653
  year: 2019
  end-page: 6663
  ident: b0025
  article-title: Experimental Activity Descriptors for Iridium-Based Catalysts for the Electrochemical Oxygen Evolution Reaction (OER)
  publication-title: ACS Catal.
– volume: 10
  start-page: 2035
  year: 2022
  end-page: 2044
  ident: b0080
  article-title: Defect-rich walnut-like copper-doped Ni(PO
  publication-title: J. Mater. Chem. A.
– volume: 18
  start-page: 2104354
  year: 2022
  ident: b0215
  article-title: Ultrafast Room-Temperature Synthesis of Self-Supported NiFe-Layered Double Hydroxide as Large-Current-Density Oxygen Evolution Electrocatalyst
  publication-title: Small.
– reference: M. Li, H. Li, X.C. Jiang, M.Q. Jiang, X. Zhan, G.T. Fu, J.M. Lee, Y.W. Tang, Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution, J. Mater. Chem. A. 9 (5) (2021) 2999-3006. https://doi.org/10.1039/d0ta10740a.
– volume: 96
  start-page: 273
  year: 2019
  end-page: 280
  ident: b0045
  article-title: Construction of hierarchical bundle-like CoNi layered double hydroxides for the efficient oxygen evolution reaction
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 29
  start-page: 1700404
  year: 2017
  ident: b0065
  article-title: Ultrafast Formation of Amorphous Bimetallic Hydroxide Films on 3D Conductive Sulfide Nanoarrays for Large-Current-Density Oxygen Evolution Electrocatalysis
  publication-title: Adv Mater.
– volume: 77
  year: 2020
  ident: b0095
  article-title: Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides
  publication-title: Nano Energy.
– reference: K. Fan, H. Chen, Y. Ji, H. Huang, P.M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, L. Sun. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation, Nat. Commun. 7. (2016). 11981. https://doi.org/10.1038/ncomms11981.
– volume: 10
  start-page: 6336
  year: 2018
  end-page: 6345
  ident: b0140
  article-title: Ce-Doped NiFe-Layered Double Hydroxide Ultrathin Nanosheets/Nanocarbon Hierarchical Nanocomposite as an Efficient Oxygen Evolution Catalyst
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 8
  start-page: 14527
  year: 2016
  end-page: 14534
  ident: b0190
  article-title: Formation of Hierarchical Structure Composed of (Co/Ni) Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 69
  start-page: 301
  year: 2022
  end-page: 329
  ident: b0015
  article-title: Stability and deactivation of OER electrocatalysts: A review
  publication-title: J. Energy Chem.
– volume: 30
  start-page: 1910274
  year: 2020
  ident: b0180
  article-title: Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction
  publication-title: Adv. Funct. Mater.
– volume: 70
  start-page: 472
  year: 2022
  end-page: 479
  ident: b0185
  article-title: La-doped NiFe-LDH coupled with hierarchical vertically aligned MXene frameworks for efficient overall water splitting
  publication-title: J. Energy Chem.
– volume: 16
  start-page: 1907029
  year: 2020
  ident: b0020
  article-title: Reducing Oxygen Evolution Reaction Overpotential in Cobalt-Based Electrocatalysts via Optimizing the “Microparticles-in-Spider Web” Electrode Configurations
  publication-title: Small.
– volume: 4
  start-page: 312
  year: 2020
  end-page: 323
  ident: b0145
  article-title: An advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting
  publication-title: Sustain. Energ. Fuels.
– volume: 10
  start-page: 11379
  year: 2022
  end-page: 11387
  ident: b0135
  article-title: Thakur, Ce doping induced trapping states and local electronic structure modifications in SrZnO
  publication-title: J. Mater. Chem. C.
– volume: 13
  start-page: 3893
  year: 2020
  end-page: 3900
  ident: b0205
  article-title: Integration of Oxygen-Vacancy-Rich NiFe-Layered Double Hydroxide onto Silicon as Photoanode for Enhanced Photoelectrochemical Water Oxidation
  publication-title: Chemsuschem.
– volume: 14
  start-page: 34793
  year: 2022
  end-page: 34801
  ident: b0040
  article-title: S-Doping Promotes Pyridine Nitrogen Conversion and Lattice Defects of Carbon Nitride to Enhance the Performance of Zn-Air Batteries
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 8
  start-page: 10009
  year: 2020
  end-page: 10016
  ident: b0060
  article-title: Electronically Modulated CoP by Ce Doping as a Highly Efficient Electrocatalyst for Water Splitting
  publication-title: ACS Sustain. Chem. Eng.
– volume: 844
  year: 2020
  ident: b0055
  article-title: Hydrophilic Ni(OH)
  publication-title: J. Alloy. Compd.
– volume: 390
  start-page: 32
  year: 2019
  end-page: 49
  ident: b0125
  article-title: Rare earth incorporated electrode materials for advanced energy storage
  publication-title: Coord. Chem. Rev.
– volume: 601
  year: 2022
  ident: b0220
  article-title: Defected NiFe layered double hydroxides on N-doped carbon nanotubes as efficient bifunctional electrocatalyst for rechargeable zinc–air batteries
  publication-title: Appl. Surf. Sci.
– volume: 369
  year: 2021
  ident: b0070
  article-title: Rational construction of 3D MoNi/NiMoO
  publication-title: Electrochim. Acta.
– volume: 1
  start-page: 4998
  year: 2018
  end-page: 5007
  ident: b0110
  article-title: Three-Dimensional Hierarchical Multimetal-LDH Nanoflakes and Their Derived Spinel Oxides for Efficient Oxygen Evolution
  publication-title: ACS Appl. Energ. Mater.
– volume: 32
  start-page: 2207536
  year: 2022
  ident: b0005
  article-title: High-Entropy Catalyst-A Novel Platform for Electrochemical Water Splitting
  publication-title: Adv. Funct. Mater.
– volume: 169
  year: 2022
  ident: b0195
  article-title: Ru-Doped NiFe Layered Double Hydroxide as a Highly Active Electrocatalyst for Oxygen Evolution Reaction
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 3241
  year: 2007
  end-page: 3250
  ident: b0230
  article-title: Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt (111) electrode
  publication-title: Phys. Chem. Chem. Phys.
– volume: 31
  start-page: 2008790
  year: 2021
  ident: b0130
  article-title: Recent Advances in 2D Rare Earth Materials
  publication-title: Adv. Funct. Mater.
– volume: 429
  year: 2022
  ident: b0120
  article-title: Ni-doping induced structure distortion of MnO
  publication-title: Chem. Eng. J.
– volume: 627
  year: 2021
  ident: b0225
  article-title: Rich oxygen vacancies on ultrathin NiFe layered double hydroxide nanosheets raised by cerium-assisted synthesis for enhanced electrocatalytic water oxidation
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
– reference: Y. Yang, S.Y. Wei, Y.F. Li, D.G. Guo, H.J. Liu, L. Liu, Effect of cobalt doping-regulated crystallinity in nickel-iron layered double hydroxide catalyzing oxygen evolution, Appl. Catal. B: Environ. 314 (2022) 121491. https://doi.org/10.1016/j.apcatb.2022.121491.
– reference: H.J. Zhang, X.P. Li, A. Hahnel, V. Naumann, C. Lin, S. Azimi, S.L. Schweizer, A.W. Maijenburg, R.B. Wehrspohn, Bifunctional Heterostructure Assembly of NiFe LDH Nanosheets on NiCoP Nanowires for Highly Efficient and Stable Overall Water Splitting, Adv. Funct. Mater. 28 (14) (2018) 1706847. https://doi.org/10.1002/adfm.201706847.
– reference: Z. Zheng, D. Wu, G. Chen, N. Zhang, H. Wan, X. Liu, R. Ma, Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation, Carbon Energy. 4 (5) (2022) 901-913. https://doi.org/10.1002/cey2.215.
– reference: T.S. Munonde, N.P. September, A. Mpupa, P.N. Nomngongo, Two agitation routes for the adsorption of Reactive Red 120 dye on NiFe LDH/AC nanosheets from wastewater and river water, Appl. Clay Sci. 219 (2022) 106438. https://doi.org/10.1016/j.clay.2022.106438.
– volume: 124
  start-page: 102
  year: 2022
  end-page: 108
  ident: b0170
  article-title: Inducing the SnO
  publication-title: J. Mater. Sci. Technol.
– volume: 32
  start-page: 2206811
  year: 2022
  ident: b0035
  article-title: Lattice Distortion Engineering over Ultrathin Monoclinic BiVO
  publication-title: Adv. Funct. Mater.
– volume: 319
  year: 2022
  ident: b0075
  article-title: Ferric ions leached from Fe-based catalyst to trigger the dynamic surface reconstruction of nickel foam for high-efficient OER activity
  publication-title: Appl. Catal. B: Environ.
– volume: 13
  start-page: 3893
  year: 2020
  ident: 10.1016/j.cej.2023.142669_b0205
  article-title: Integration of Oxygen-Vacancy-Rich NiFe-Layered Double Hydroxide onto Silicon as Photoanode for Enhanced Photoelectrochemical Water Oxidation
  publication-title: Chemsuschem.
  doi: 10.1002/cssc.202000884
– volume: 77
  year: 2020
  ident: 10.1016/j.cej.2023.142669_b0095
  article-title: Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides
  publication-title: Nano Energy.
  doi: 10.1016/j.nanoen.2020.105162
– volume: 629
  start-page: 610
  year: 2023
  ident: 10.1016/j.cej.2023.142669_b0200
  article-title: Triethanolamine-assisted synthesis of NiFe layered double hydroxide ultrathin nanosheets for efficient oxygen evolution reaction
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.09.053
– volume: 9
  start-page: 2105135
  issue: 9
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0010
  article-title: Design and Synthesis of Hollow Nanostructures for Electrochemical Water Splitting
  publication-title: Adv Sci (Weinh)
  doi: 10.1002/advs.202105135
– volume: 390
  start-page: 32
  year: 2019
  ident: 10.1016/j.cej.2023.142669_b0125
  article-title: Rare earth incorporated electrode materials for advanced energy storage
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.03.011
– volume: 4
  start-page: 312
  issue: 1
  year: 2020
  ident: 10.1016/j.cej.2023.142669_b0145
  article-title: An advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting
  publication-title: Sustain. Energ. Fuels.
  doi: 10.1039/C9SE00700H
– ident: 10.1016/j.cej.2023.142669_b0155
  doi: 10.1039/D0TA10740A
– volume: 319
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0075
  article-title: Ferric ions leached from Fe-based catalyst to trigger the dynamic surface reconstruction of nickel foam for high-efficient OER activity
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2022.121921
– ident: 10.1016/j.cej.2023.142669_b0175
  doi: 10.1038/ncomms11981
– volume: 51
  start-page: 3372
  issue: 7
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0210
  article-title: CeO2 Nanodots@carbon Sphere/NiFe-Layered Double Hydroxides as an Efficient Electrocatalyst for Oxygen Evolution Reactions
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-022-09636-1
– volume: 69
  start-page: 301
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0015
  article-title: Stability and deactivation of OER electrocatalysts: A review
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.01.025
– volume: 844
  year: 2020
  ident: 10.1016/j.cej.2023.142669_b0055
  article-title: Hydrophilic Ni(OH)2@CoB nano-chains with shell-core structure as an efficient catalyst for oxygen evolution reaction
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.156129
– ident: 10.1016/j.cej.2023.142669_b0160
  doi: 10.1016/j.clay.2022.106438
– volume: 14
  start-page: 1830
  issue: 8
  year: 2021
  ident: 10.1016/j.cej.2023.142669_b0090
  article-title: Enhancing One-Dimensional Charge Transport in Metal-organic Framework Hexagonal Nanorods for Electrocatalytic Oxygen Evolution
  publication-title: Chemsuschem.
  doi: 10.1002/cssc.202100179
– volume: 16
  start-page: 9920
  issue: 6
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0115
  article-title: Caged-Cation-Induced Lattice Distortion in Bronze TiO(2) for Cohering Nanoparticulate Hydrogen Evolution Electrocatalysts
  publication-title: ACS Nano.
  doi: 10.1021/acsnano.2c04513
– volume: 429
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0120
  article-title: Ni-doping induced structure distortion of MnO2 for highly efficient Na+ storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132521
– volume: 8
  start-page: 10009
  issue: 27
  year: 2020
  ident: 10.1016/j.cej.2023.142669_b0060
  article-title: Electronically Modulated CoP by Ce Doping as a Highly Efficient Electrocatalyst for Water Splitting
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01193
– volume: 18
  start-page: 2200586
  issue: 16
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0050
  article-title: Metal-Organic Framework-Derived Hollow CoSx Nanoarray Coupled with NiFe Layered Double Hydroxides as Efficient Bifunctional Electrocatalyst for Overall Water Splitting
  publication-title: Small.
  doi: 10.1002/smll.202200586
– volume: 8
  start-page: 17471
  issue: 34
  year: 2020
  ident: 10.1016/j.cej.2023.142669_b0085
  article-title: Unveiling the critical role of the Mn dopant in a NiFe(OH)(2)catalyst for water oxidation
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D0TA06353C
– volume: 601
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0220
  article-title: Defected NiFe layered double hydroxides on N-doped carbon nanotubes as efficient bifunctional electrocatalyst for rechargeable zinc–air batteries
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.154253
– volume: 9
  start-page: 3241
  issue: 25
  year: 2007
  ident: 10.1016/j.cej.2023.142669_b0230
  article-title: Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt (111) electrode
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B700099E
– volume: 16
  start-page: 1907029
  issue: 8
  year: 2020
  ident: 10.1016/j.cej.2023.142669_b0020
  article-title: Reducing Oxygen Evolution Reaction Overpotential in Cobalt-Based Electrocatalysts via Optimizing the “Microparticles-in-Spider Web” Electrode Configurations
  publication-title: Small.
  doi: 10.1002/smll.201907029
– volume: 10
  start-page: 11379
  issue: 31
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0135
  article-title: Thakur, Ce doping induced trapping states and local electronic structure modifications in SrZnO2 nanophosphors
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/D2TC01985J
– ident: 10.1016/j.cej.2023.142669_b0150
  doi: 10.1002/cey2.215
– ident: 10.1016/j.cej.2023.142669_b0165
  doi: 10.1016/j.apcatb.2022.121491
– volume: 124
  start-page: 102
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0170
  article-title: Inducing the SnO2-based electron transport layer into NiFe LDH/NF as efficient catalyst for OER and methanol oxidation reaction
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.01.022
– ident: 10.1016/j.cej.2023.142669_b0100
  doi: 10.1002/adfm.201706847
– volume: 1
  start-page: 4998
  issue: 9
  year: 2018
  ident: 10.1016/j.cej.2023.142669_b0110
  article-title: Three-Dimensional Hierarchical Multimetal-LDH Nanoflakes and Their Derived Spinel Oxides for Efficient Oxygen Evolution
  publication-title: ACS Appl. Energ. Mater.
  doi: 10.1021/acsaem.8b00990
– volume: 32
  start-page: 2206811
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0035
  article-title: Lattice Distortion Engineering over Ultrathin Monoclinic BiVO4 Nanoflakes Triggering AQE up to 69.4% in Visible-Light-Driven Water Oxidation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202206811
– volume: 30
  start-page: 1910274
  issue: 15
  year: 2020
  ident: 10.1016/j.cej.2023.142669_b0180
  article-title: Non-Noble-Metal-Based Electrocatalysts toward the Oxygen Evolution Reaction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910274
– volume: 169
  issue: 2
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0195
  article-title: Ru-Doped NiFe Layered Double Hydroxide as a Highly Active Electrocatalyst for Oxygen Evolution Reaction
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac4cda
– volume: 32
  start-page: 2207536
  issue: 47
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0005
  article-title: High-Entropy Catalyst-A Novel Platform for Electrochemical Water Splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202207536
– volume: 96
  start-page: 273
  year: 2019
  ident: 10.1016/j.cej.2023.142669_b0045
  article-title: Construction of hierarchical bundle-like CoNi layered double hydroxides for the efficient oxygen evolution reaction
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2018.11.024
– volume: 31
  start-page: 2008790
  issue: 13
  year: 2021
  ident: 10.1016/j.cej.2023.142669_b0130
  article-title: Recent Advances in 2D Rare Earth Materials
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202008790
– volume: 627
  year: 2021
  ident: 10.1016/j.cej.2023.142669_b0225
  article-title: Rich oxygen vacancies on ultrathin NiFe layered double hydroxide nanosheets raised by cerium-assisted synthesis for enhanced electrocatalytic water oxidation
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2021.127142
– volume: 442
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0105
  article-title: Ni3S2-embedded NiFe LDH porous nanosheets with abundant heterointerfaces for high-current water electrolysis
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136105
– volume: 369
  year: 2021
  ident: 10.1016/j.cej.2023.142669_b0070
  article-title: Rational construction of 3D MoNi/NiMoOx@NiFe LDH with rapid electron transfer for efficient overall water splitting
  publication-title: Electrochim. Acta.
  doi: 10.1016/j.electacta.2020.137680
– volume: 29
  start-page: 1700404
  issue: 22
  year: 2017
  ident: 10.1016/j.cej.2023.142669_b0065
  article-title: Ultrafast Formation of Amorphous Bimetallic Hydroxide Films on 3D Conductive Sulfide Nanoarrays for Large-Current-Density Oxygen Evolution Electrocatalysis
  publication-title: Adv Mater.
  doi: 10.1002/adma.201700404
– volume: 10
  start-page: 2035
  issue: 4
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0080
  article-title: Defect-rich walnut-like copper-doped Ni(PO3)2 catalyst towards ammonia borane electrooxidation reaction with high performance
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/D1TA09483A
– volume: 8
  start-page: 14527
  issue: 23
  year: 2016
  ident: 10.1016/j.cej.2023.142669_b0190
  article-title: Formation of Hierarchical Structure Composed of (Co/Ni) Mn-LDH Nanosheets on MWCNT Backbones for Efficient Electrocatalytic Water Oxidation
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.6b02733
– volume: 17
  start-page: 2100129
  issue: 37
  year: 2021
  ident: 10.1016/j.cej.2023.142669_b0030
  article-title: Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges
  publication-title: Small.
  doi: 10.1002/smll.202100129
– volume: 10
  start-page: 6336
  issue: 7
  year: 2018
  ident: 10.1016/j.cej.2023.142669_b0140
  article-title: Ce-Doped NiFe-Layered Double Hydroxide Ultrathin Nanosheets/Nanocarbon Hierarchical Nanocomposite as an Efficient Oxygen Evolution Catalyst
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.7b17939
– volume: 70
  start-page: 472
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0185
  article-title: La-doped NiFe-LDH coupled with hierarchical vertically aligned MXene frameworks for efficient overall water splitting
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.02.044
– volume: 18
  start-page: 2104354
  issue: 2
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0215
  article-title: Ultrafast Room-Temperature Synthesis of Self-Supported NiFe-Layered Double Hydroxide as Large-Current-Density Oxygen Evolution Electrocatalyst
  publication-title: Small.
  doi: 10.1002/smll.202104354
– volume: 9
  start-page: 6653
  issue: 8
  year: 2019
  ident: 10.1016/j.cej.2023.142669_b0025
  article-title: Experimental Activity Descriptors for Iridium-Based Catalysts for the Electrochemical Oxygen Evolution Reaction (OER)
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00648
– volume: 14
  start-page: 34793
  issue: 30
  year: 2022
  ident: 10.1016/j.cej.2023.142669_b0040
  article-title: S-Doping Promotes Pyridine Nitrogen Conversion and Lattice Defects of Carbon Nitride to Enhance the Performance of Zn-Air Batteries
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.2c09019
SSID ssj0006919
Score 2.705059
Snippet [Display omitted] •Inducing lattice distortion in NiFe-LDH nanosheets by Ce-doping towards accelerating electrocatalytic oxygen evolution reaction.•The optimal...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 142669
SubjectTerms Ce doping
Lattice distortion
NiFe LDH
Oxygen evolution reaction
Title Lattice distortion induced Ce-doped NiFe-LDH for efficient oxygen evolution
URI https://dx.doi.org/10.1016/j.cej.2023.142669
Volume 464
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lD14ErbNc5M9lmqJpvagFnsL2c0EWqQtUkUv_nZn8vAB6sFTHsyG8O0w8y3zYuzUlkbrUPkCMjybeHbqCp3bRjiuoaiciwyCipOvRzIae1cTf9Jg_boWhtIqK9tf2vTCWldvuhWa3eV02r21KaalvMApTglF223PC0jLO2-faR5SFcM9SFiQdB3ZLHK8DMw6ND8c7QU6KvWzb_ribwZbbLMiirxX_ss2a8B8h218aR-4y-JhuqLcNZ4VvT4IYo5HbNysjPdBZIsl3oymAxDD84gjO-VQNIxAP8MXL6-oOhyeK9XbY-PBxV0_EtVwBGEcFawE0iCpTO5rhZQGqODVCpVxlbFMCrZK8xQCS5qAKBVoP0RJcJzcR_jBT5GY7LPmfDGHA8YdLW0dSB1qQICoFNfKtabPSNcyQdpiVg1LYqrO4TTA4iGpU8RmCSKZEJJJiWSLnX0sWZZtM_4S9mqsk297n6BZ_33Z4f-WHbF1eqIMANs_Zs3V4xOcILFY6XahOW221ruMoxFd45v7-B3kScx_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xHIADYhU7PsAFyTSrUx84IKAqdLnQSr2F2J1IRaitoGwXfoofZCZNWCTggMQtSmzLeR7NvJFnAdhzlTWmrEOJXfJNAjfxpUldKz3f8q2cTwyCk5MbTVVtBxedsDMBr0UuDIdV5rp_rNMzbZ2_KeVoloa9XunS5TstHURe5iU4Ko-srOHzI_ltd0fnp3TI-55XOWudVGXeWkBaT0cjSSRCaZuGRhMhQE4Xdcra-to6NkFXJ2mCkaNsxIQETVimkeh5aUibxzAhs07rTsJ0QOqC2yYcvnzElSiddRPh3UneXnGVmgWVWbw-5IblpKDIMurvjeEnA1dZgPmcmYrj8c8vwgT2l2DuU73CZajVkxEHy4luVlyEz1SQT0_S0RUnKLuDIT00exWU9dOqIDosMKtQQYZNDJ6eSVYFPuSyvgLtf4FsFab6gz6ugfCMck2kTNkgAcS5v05qDC-jfMdGyTo4BSyxzUuVc8eMm7iISbuOCcmYkYzHSK7DwfuU4bhOx2-DgwLr-IuwxWRHfp628bdpuzBTbTXqcf28WduEWf7C4QduuAVTo9t73CZWMzI7mRQJuPpvsX0DUAcFrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lattice+distortion+induced+Ce-doped+NiFe-LDH+for+efficient+oxygen+evolution&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Liao%2C+Yuanyuan&rft.au=He%2C+Ruchen&rft.au=Pan%2C+Wanghao&rft.au=Li%2C+Yao&rft.date=2023-05-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=464&rft_id=info:doi/10.1016%2Fj.cej.2023.142669&rft.externalDocID=S1385894723014006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon