Structural stability, electronic and magnetic properties of MoS2 quantum dots based on the first principles

The properties of MoS2 quantum dots are mainly ruled by the edge structures and shapes. We systematically explore structural stability, shapes and magnetic properties of different MoS2 quantum dots with different chemical potential of sulfur using the first principles. Three possible stable edge str...

Full description

Saved in:
Bibliographic Details
Published inSolid state communications Vol. 218; pp. 25 - 30
Main Authors Pei, Liang, Tao, Shen, Haibo, Shu, Song, Xing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The properties of MoS2 quantum dots are mainly ruled by the edge structures and shapes. We systematically explore structural stability, shapes and magnetic properties of different MoS2 quantum dots with different chemical potential of sulfur using the first principles. Three possible stable edge structures corresponding to different chemical potential of sulfur are confirmed. These edge structures are combined into different shapes of MoS2 quantum dots which is changed with sulfur chemical potential. The electronic structure calculation and the partial charge analysis indicate that the MoS2 quantum dot with armchair edge might have better catalyze ability. These MoS2 quantum dots show different magnetic behavior, which can adapt to different needs of spin devices. Given the recent achievement of graphene quantum dot structures and MoS2 quantum dots experimental study, we believe that our calculated results are suitable for experimental verification and can be useful to preparing different shapes of MoS2 quantum dots. •The Edge structures and shapes ruled properties of MoS2 quantum dots.•Three possible stable edge structures are combined into different shapes of MoS2 quantum dots.•MoS2 quantum dot with armchair edge might have better catalyze ability.
AbstractList The properties of MoS2 quantum dots are mainly ruled by the edge structures and shapes. We systematically explore structural stability, shapes and magnetic properties of different MoS2 quantum dots with different chemical potential of sulfur using the first principles. Three possible stable edge structures corresponding to different chemical potential of sulfur are confirmed. These edge structures are combined into different shapes of MoS2 quantum dots which is changed with sulfur chemical potential. The electronic structure calculation and the partial charge analysis indicate that the MoS2 quantum dot with armchair edge might have better catalyze ability. These MoS2 quantum dots show different magnetic behavior, which can adapt to different needs of spin devices. Given the recent achievement of graphene quantum dot structures and MoS2 quantum dots experimental study, we believe that our calculated results are suitable for experimental verification and can be useful to preparing different shapes of MoS2 quantum dots. •The Edge structures and shapes ruled properties of MoS2 quantum dots.•Three possible stable edge structures are combined into different shapes of MoS2 quantum dots.•MoS2 quantum dot with armchair edge might have better catalyze ability.
Author Song, Xing
Tao, Shen
Haibo, Shu
Pei, Liang
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0002-2493-2238
  surname: Pei
  fullname: Pei, Liang
  email: plianghust@gmail.com
  organization: College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People׳s Republic of China
– sequence: 2
  givenname: Shen
  surname: Tao
  fullname: Tao, Shen
  organization: College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People׳s Republic of China
– sequence: 3
  givenname: Shu
  surname: Haibo
  fullname: Haibo, Shu
  organization: College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People׳s Republic of China
– sequence: 4
  givenname: Xing
  surname: Song
  fullname: Song, Xing
  organization: College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People׳s Republic of China
BookMark eNp90L1OwzAQwHELFYlSeAA2PwAJ57iJEzGhii8JxFCYLcc-g0tqF9tF6tsTVCaGTtYNv9P5f0omPngk5IJByYA1V6syJV1WwOoSmhKgPSJT1oquqETTTMgUgLcFg649IacprQBAtIJNyecyx63O26gGmrLq3eDy7pLigDrH4J2myhu6Vu8e8zhsYthgzA4TDZY-h2VFv7bK5-2ampAT7VVCQ4On-QOpdTHlkTiv3WbAdEaOrRoSnv-9M_J2d_u6eCieXu4fFzdPha46kQtuDeNgm6riFdd8znuGvKvqWhvWmYbXGjoN2Pein9d9A8JYIdDOkfWtaC3wGRH7vTqGlCJaqV1W2QWfo3KDZCB_m8mVHJvJ32YSGjk2GyX7J8fr1yruDprrvcHxS98Oo0zaoddoXBwjShPcAf0DdN6I0w
CitedBy_id crossref_primary_10_1002_bkcs_12816
crossref_primary_10_1016_j_ssc_2016_07_021
crossref_primary_10_1007_s11467_018_0795_x
crossref_primary_10_1002_qua_25994
crossref_primary_10_1103_PhysRevB_101_035401
crossref_primary_10_1038_s41598_017_03594_z
crossref_primary_10_1016_j_physe_2019_01_021
crossref_primary_10_1088_1674_1056_25_5_058104
crossref_primary_10_1039_C6AY03147A
crossref_primary_10_1039_C6RA09060E
crossref_primary_10_1103_PhysRevB_104_195412
crossref_primary_10_1142_S0217984924501641
crossref_primary_10_1007_s10948_019_05236_z
crossref_primary_10_1016_j_jmmm_2017_10_085
crossref_primary_10_1021_acsnano_2c05397
crossref_primary_10_1088_1674_1056_27_5_056104
crossref_primary_10_1016_j_microc_2019_104406
crossref_primary_10_1039_C5CS00811E
crossref_primary_10_1063_1674_0068_31_cjcp1802018
crossref_primary_10_1002_pssb_202100509
crossref_primary_10_1016_j_mtnano_2023_100367
crossref_primary_10_1016_j_vacuum_2017_03_005
Cites_doi 10.1103/PhysRevLett.85.146
10.1038/nnano.2006.171
10.1021/am404843b
10.1186/1556-276X-7-233
10.1021/nl404444k
10.1021/nl500515q
10.1002/chem.200400451
10.1021/cm980034u
10.1021/nl2043612
10.1021/ja201269b
10.1039/c1jm10174a
10.1103/PhysRevLett.91.126402
10.1021/ja017121z
10.1007/s10562-009-0132-7
10.1038/ncomms2018
10.1103/PhysRevLett.87.196803
10.1021/la049838g
10.1021/nn203715c
10.1038/nmat3439
10.1021/nn501479e
10.1021/nl2021575
10.1007/s11249-009-9472-0
10.1103/PhysRevB.85.161403
10.1103/PhysRevLett.84.951
10.1021/nn203879f
10.1021/ja805545x
10.1021/nl903868w
10.1021/cs400384h
10.1038/nnano.2010.279
10.1039/c2ee02618j
10.1039/c2jm15906f
10.1021/ja302846n
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ssc.2015.06.008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1879-2766
EndPage 30
ExternalDocumentID 10_1016_j_ssc_2015_06_008
S0038109815002161
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
3O-
4.4
457
4G.
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
KOM
M24
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSM
SSQ
SSZ
T5K
TN5
UQL
WUQ
XFK
XPP
XSW
ZMT
ZY4
~02
~G-
~S-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-3fd130f622323c343b1e39255cd19d635c09c0ebb7b45b607df77ef4e1b878f03
IEDL.DBID .~1
ISSN 0038-1098
IngestDate Thu Apr 24 23:01:42 EDT 2025
Tue Jul 01 03:58:01 EDT 2025
Fri Feb 23 02:32:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords First principles
Chemical potentials
Edge structure
MoS2 quantum dot
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-3fd130f622323c343b1e39255cd19d635c09c0ebb7b45b607df77ef4e1b878f03
ORCID 0000-0002-2493-2238
PageCount 6
ParticipantIDs crossref_citationtrail_10_1016_j_ssc_2015_06_008
crossref_primary_10_1016_j_ssc_2015_06_008
elsevier_sciencedirect_doi_10_1016_j_ssc_2015_06_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Solid state communications
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chang, Chen, Ma, Li, Li, Huang, Xu, Zhang, Lee (bib1) 2011; 21
Castellanos-Gomez, Poot, Steele, van der Zant, Agraït, Rubio-Bollinger (bib4) 2012; 7
Chen, Kuriyama, Yuan, Takeshita, Sakai (bib8) 2001; 123
Xiang, Yu, Jaroniec (bib32) 2012; 134
Bollinger, Lauritsen, Jacobsen, Norskov, Helveg, Besenbacher (bib16) 2001; 87
Rydberg, Dion, Jacobson, Schröder, Hyldgaard, Simak, Langreth, Lundqvist (bib17) 2003; 91
Yan, Xia, Ge, Liu, Wang, Wang (bib33) 2013; 5
Laursen, Kegnæs, Dahl, Chorkendorff (bib34) 2012; 5
Zhang, Ye, Matsuhashi, Iwasa (bib24) 2012; 12
Rosentsveig, Gorodnev, Feuerstein, Friedman, Zak, Fleischer, Tannous, Dassenoy, Tenne (bib6) 2009; 36
Kim, Konar, Hwang, Lee, Lee, Yang, Jung, Kim, Yoo, Choi (bib3) 2012; 3
Tongay, Fan, Kang, Park, Koldemir, Suh, Narang, Liu, Ji, Li, Sinclair, Wu (bib22) 2014; 14
Dungey, Curtis, Penner-Hahn (bib5) 1998; 10
Akola, Heiskanen, Manninen (bib27) 2008
Tsai, Abild-Pedersen, Norskov (bib31) 2014; 14
Kibsgaard, Chen, Reinecke, Jaramillo (bib30) 2012; 11
Bertolazzi, Brivio, Kis (bib20) 2011; 5
Ho, Yu, Lin, Yu, Li (bib10) 2004; 20
Li, Wang, Xie, Liang, Hong, Dai (bib7) 2011; 133
Lauritsen, Kibsgaard, Helveg, Topsøe, Clausen, Lægsgaard, Besenbacher (bib29) 2007; 2
Tsai, Abild-Pedersen, Norskov (bib23) 2014; 14
Wu, Fang, Wang, Wang, Liu, Liu, Wang, Alfantazi, Wang, Wilkinson (bib35) 2013; 3
Radisavljevic, Whitwick, Kis (bib13) 2011; 5
Gopalakrishnan, Damien, Shaijumon (bib21) 2014; 8
Helveg, Lauritsen, Lægsgaard, Stensgaard, Nørskov, Clausen, Topsøe, Besenbacher (bib15) 2000; 84
Galvan, Amarillas, José-Yacamán (bib26) 2009; 132
Splendiani, Sun, Zhang, Li, Kim, Chim, Galli, Wang (bib9) 2010; 10
Lima, Fazzio, da Silva (bib28) 2009
Liu, Zhang, Lee, Lin, Chang, Su, Chang, Li, Shi, Zhang (bib14) 2012; 12
Radisavljevic, Radenovic, Brivio, Giacometti, Kis (bib11) 2011; 6
Chakraborty, Bera, Muthu, Bhowmick, Waghmare, Sood (bib12) 2012; 85
Seifert, Terrones, Terrones, Jungnickel, Frauenheim (bib18) 2000; 85
Li, Zhou, Zhang, Chen (bib19) 2008; 130
Li, Ge, Li (bib2) 2004; 10
Pan, Zhang (bib25) 2012; 22
Bollinger (10.1016/j.ssc.2015.06.008_bib16) 2001; 87
Splendiani (10.1016/j.ssc.2015.06.008_bib9) 2010; 10
Dungey (10.1016/j.ssc.2015.06.008_bib5) 1998; 10
Liu (10.1016/j.ssc.2015.06.008_bib14) 2012; 12
Tongay (10.1016/j.ssc.2015.06.008_bib22) 2014; 14
Seifert (10.1016/j.ssc.2015.06.008_bib18) 2000; 85
Zhang (10.1016/j.ssc.2015.06.008_bib24) 2012; 12
Lima (10.1016/j.ssc.2015.06.008_bib28) 2009
Radisavljevic (10.1016/j.ssc.2015.06.008_bib13) 2011; 5
Rydberg (10.1016/j.ssc.2015.06.008_bib17) 2003; 91
Li (10.1016/j.ssc.2015.06.008_bib19) 2008; 130
Yan (10.1016/j.ssc.2015.06.008_bib33) 2013; 5
Akola (10.1016/j.ssc.2015.06.008_bib27) 2008
Pan (10.1016/j.ssc.2015.06.008_bib25) 2012; 22
Tsai (10.1016/j.ssc.2015.06.008_bib31) 2014; 14
Chen (10.1016/j.ssc.2015.06.008_bib8) 2001; 123
Gopalakrishnan (10.1016/j.ssc.2015.06.008_bib21) 2014; 8
Kibsgaard (10.1016/j.ssc.2015.06.008_bib30) 2012; 11
Chang (10.1016/j.ssc.2015.06.008_bib1) 2011; 21
Ho (10.1016/j.ssc.2015.06.008_bib10) 2004; 20
Tsai (10.1016/j.ssc.2015.06.008_bib23) 2014; 14
Galvan (10.1016/j.ssc.2015.06.008_bib26) 2009; 132
Kim (10.1016/j.ssc.2015.06.008_bib3) 2012; 3
Castellanos-Gomez (10.1016/j.ssc.2015.06.008_bib4) 2012; 7
Helveg (10.1016/j.ssc.2015.06.008_bib15) 2000; 84
Li (10.1016/j.ssc.2015.06.008_bib7) 2011; 133
Lauritsen (10.1016/j.ssc.2015.06.008_bib29) 2007; 2
Wu (10.1016/j.ssc.2015.06.008_bib35) 2013; 3
Xiang (10.1016/j.ssc.2015.06.008_bib32) 2012; 134
Li (10.1016/j.ssc.2015.06.008_bib2) 2004; 10
Rosentsveig (10.1016/j.ssc.2015.06.008_bib6) 2009; 36
Radisavljevic (10.1016/j.ssc.2015.06.008_bib11) 2011; 6
Bertolazzi (10.1016/j.ssc.2015.06.008_bib20) 2011; 5
Laursen (10.1016/j.ssc.2015.06.008_bib34) 2012; 5
Chakraborty (10.1016/j.ssc.2015.06.008_bib12) 2012; 85
References_xml – volume: 10
  start-page: 2152
  year: 1998
  end-page: 2161
  ident: bib5
  publication-title: Chem. Mater.
– volume: 3
  start-page: 2101
  year: 2013
  end-page: 2107
  ident: bib35
  publication-title: ACS Catal.
– volume: 85
  start-page: 161403
  year: 2012
  ident: bib12
  publication-title: Phys. Rev. B
– volume: 134
  start-page: 6575
  year: 2012
  end-page: 6578
  ident: bib32
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1011
  year: 2012
  ident: bib3
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1271
  year: 2010
  end-page: 1275
  ident: bib9
  publication-title: Nano Lett.
– volume: 22
  start-page: 7280
  year: 2012
  ident: bib25
  publication-title: J. Mater. Chem.
– start-page: 77
  year: 2008
  ident: bib27
  publication-title: Phys. Rev. B
– volume: 132
  start-page: 323
  year: 2009
  end-page: 328
  ident: bib26
  publication-title: Catal. Lett.
– volume: 5
  start-page: 12794
  year: 2013
  end-page: 12798
  ident: bib33
  publication-title: ACS Appl. Mater. Interfaces
– volume: 85
  start-page: 146
  year: 2000
  ident: bib18
  publication-title: Phys. Rev. Lett.
– volume: 20
  start-page: 5865
  year: 2004
  end-page: 5869
  ident: bib10
  publication-title: Langmuir
– volume: 14
  start-page: 1381
  year: 2014
  end-page: 1387
  ident: bib23
  publication-title: Nano Lett.
– volume: 5
  start-page: 9703
  year: 2011
  end-page: 9709
  ident: bib20
  publication-title: Acs Nano
– volume: 8
  start-page: 5297
  year: 2014
  end-page: 5303
  ident: bib21
  publication-title: Acs Nano
– volume: 10
  start-page: 6163
  year: 2004
  end-page: 6171
  ident: bib2
  publication-title: Chem.-A Eur. J.
– volume: 11
  start-page: 963
  year: 2012
  end-page: 969
  ident: bib30
  publication-title: Nat. Mater.
– volume: 5
  start-page: 5577
  year: 2012
  ident: bib34
  publication-title: Energy Environ. Sci.
– volume: 14
  start-page: 1381
  year: 2014
  end-page: 1387
  ident: bib31
  publication-title: Nano Lett.
– volume: 91
  start-page: 126402
  year: 2003
  ident: bib17
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 1
  year: 2012
  end-page: 4
  ident: bib4
  publication-title: Nanoscale Res. Lett.
– volume: 36
  start-page: 175
  year: 2009
  end-page: 182
  ident: bib6
  publication-title: Tribol. Lett.
– volume: 2
  start-page: 53
  year: 2007
  end-page: 58
  ident: bib29
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 9934
  year: 2011
  end-page: 9938
  ident: bib13
  publication-title: ACS Nano
– volume: 87
  start-page: 196803
  year: 2001
  ident: bib16
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 3185
  year: 2014
  end-page: 3190
  ident: bib22
  publication-title: Nano Lett.
– volume: 133
  start-page: 7296
  year: 2011
  end-page: 7299
  ident: bib7
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 147
  year: 2011
  end-page: 150
  ident: bib11
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 1538
  year: 2012
  end-page: 1544
  ident: bib14
  publication-title: Nano Lett.
– volume: 84
  start-page: 951
  year: 2000
  ident: bib15
  publication-title: Phys. Rev. Lett.
– volume: 130
  start-page: 16739
  year: 2008
  end-page: 16744
  ident: bib19
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1136
  year: 2012
  end-page: 1140
  ident: bib24
  publication-title: Nano Lett.
– start-page: 79
  year: 2009
  ident: bib28
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 6251
  year: 2011
  ident: bib1
  publication-title: J. Mater. Chem.
– volume: 123
  start-page: 11813
  year: 2001
  end-page: 11814
  ident: bib8
  publication-title: J. Am. Chem. Soc.
– volume: 85
  start-page: 146
  year: 2000
  ident: 10.1016/j.ssc.2015.06.008_bib18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.146
– volume: 2
  start-page: 53
  year: 2007
  ident: 10.1016/j.ssc.2015.06.008_bib29
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2006.171
– volume: 5
  start-page: 12794
  year: 2013
  ident: 10.1016/j.ssc.2015.06.008_bib33
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am404843b
– volume: 7
  start-page: 1
  year: 2012
  ident: 10.1016/j.ssc.2015.06.008_bib4
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-7-233
– volume: 14
  start-page: 1381
  year: 2014
  ident: 10.1016/j.ssc.2015.06.008_bib31
  publication-title: Nano Lett.
  doi: 10.1021/nl404444k
– volume: 14
  start-page: 3185
  year: 2014
  ident: 10.1016/j.ssc.2015.06.008_bib22
  publication-title: Nano Lett.
  doi: 10.1021/nl500515q
– volume: 10
  start-page: 6163
  year: 2004
  ident: 10.1016/j.ssc.2015.06.008_bib2
  publication-title: Chem.-A Eur. J.
  doi: 10.1002/chem.200400451
– volume: 10
  start-page: 2152
  year: 1998
  ident: 10.1016/j.ssc.2015.06.008_bib5
  publication-title: Chem. Mater.
  doi: 10.1021/cm980034u
– volume: 12
  start-page: 1538
  year: 2012
  ident: 10.1016/j.ssc.2015.06.008_bib14
  publication-title: Nano Lett.
  doi: 10.1021/nl2043612
– volume: 133
  start-page: 7296
  year: 2011
  ident: 10.1016/j.ssc.2015.06.008_bib7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201269b
– volume: 21
  start-page: 6251
  year: 2011
  ident: 10.1016/j.ssc.2015.06.008_bib1
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10174a
– volume: 91
  start-page: 126402
  year: 2003
  ident: 10.1016/j.ssc.2015.06.008_bib17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.126402
– volume: 123
  start-page: 11813
  year: 2001
  ident: 10.1016/j.ssc.2015.06.008_bib8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja017121z
– volume: 132
  start-page: 323
  year: 2009
  ident: 10.1016/j.ssc.2015.06.008_bib26
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-009-0132-7
– volume: 3
  start-page: 1011
  year: 2012
  ident: 10.1016/j.ssc.2015.06.008_bib3
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2018
– start-page: 77
  year: 2008
  ident: 10.1016/j.ssc.2015.06.008_bib27
  publication-title: Phys. Rev. B
– start-page: 79
  year: 2009
  ident: 10.1016/j.ssc.2015.06.008_bib28
  publication-title: Phys. Rev. B
– volume: 87
  start-page: 196803
  year: 2001
  ident: 10.1016/j.ssc.2015.06.008_bib16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.196803
– volume: 14
  start-page: 1381
  year: 2014
  ident: 10.1016/j.ssc.2015.06.008_bib23
  publication-title: Nano Lett.
  doi: 10.1021/nl404444k
– volume: 20
  start-page: 5865
  year: 2004
  ident: 10.1016/j.ssc.2015.06.008_bib10
  publication-title: Langmuir
  doi: 10.1021/la049838g
– volume: 5
  start-page: 9934
  year: 2011
  ident: 10.1016/j.ssc.2015.06.008_bib13
  publication-title: ACS Nano
  doi: 10.1021/nn203715c
– volume: 11
  start-page: 963
  year: 2012
  ident: 10.1016/j.ssc.2015.06.008_bib30
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3439
– volume: 8
  start-page: 5297
  year: 2014
  ident: 10.1016/j.ssc.2015.06.008_bib21
  publication-title: Acs Nano
  doi: 10.1021/nn501479e
– volume: 12
  start-page: 1136
  year: 2012
  ident: 10.1016/j.ssc.2015.06.008_bib24
  publication-title: Nano Lett.
  doi: 10.1021/nl2021575
– volume: 36
  start-page: 175
  year: 2009
  ident: 10.1016/j.ssc.2015.06.008_bib6
  publication-title: Tribol. Lett.
  doi: 10.1007/s11249-009-9472-0
– volume: 85
  start-page: 161403
  year: 2012
  ident: 10.1016/j.ssc.2015.06.008_bib12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.161403
– volume: 84
  start-page: 951
  year: 2000
  ident: 10.1016/j.ssc.2015.06.008_bib15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.951
– volume: 5
  start-page: 9703
  year: 2011
  ident: 10.1016/j.ssc.2015.06.008_bib20
  publication-title: Acs Nano
  doi: 10.1021/nn203879f
– volume: 130
  start-page: 16739
  year: 2008
  ident: 10.1016/j.ssc.2015.06.008_bib19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja805545x
– volume: 10
  start-page: 1271
  year: 2010
  ident: 10.1016/j.ssc.2015.06.008_bib9
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 3
  start-page: 2101
  year: 2013
  ident: 10.1016/j.ssc.2015.06.008_bib35
  publication-title: ACS Catal.
  doi: 10.1021/cs400384h
– volume: 6
  start-page: 147
  year: 2011
  ident: 10.1016/j.ssc.2015.06.008_bib11
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– volume: 5
  start-page: 5577
  year: 2012
  ident: 10.1016/j.ssc.2015.06.008_bib34
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee02618j
– volume: 22
  start-page: 7280
  year: 2012
  ident: 10.1016/j.ssc.2015.06.008_bib25
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15906f
– volume: 134
  start-page: 6575
  year: 2012
  ident: 10.1016/j.ssc.2015.06.008_bib32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja302846n
SSID ssj0007871
Score 2.275052
Snippet The properties of MoS2 quantum dots are mainly ruled by the edge structures and shapes. We systematically explore structural stability, shapes and magnetic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 25
SubjectTerms Chemical potentials
Edge structure
First principles
MoS2 quantum dot
Title Structural stability, electronic and magnetic properties of MoS2 quantum dots based on the first principles
URI https://dx.doi.org/10.1016/j.ssc.2015.06.008
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EEb2IT6wv9uBJjE2ym25ylKJUxV5qobeQfUnVptHUgxd_uzObxCqoB495LISZYebbzTffEHKMfTzwCDwgg8zjmQ68JLTK47HKtLJCSOPUPvud3pBfj6LRAuk2vTBIq6xzf5XTXbau77Rra7aL8Rh7fFGdKokB0kChclsgzgVG-dn7nOYBAVlNzWMoY5rEzZ9Nx_EqS1QxDCIn4YkTJn-qTV_qzeU6WauBIj2vvmWDLJh8k6x0m_lsm2TZkTdVuUUeB04EFgU0KIA9R3d9O6XzCTc0yzWdZPc5dizSAs_fX1BIlU4tvZ0OQvr8CgZ-nVDYopYUC5um05wCNqR2DPCQFs2RfLlNhpcXd92eVw9R8FSYiJnHrIYyZTsAA0KmGGcyMICJokjpINEAN5SfKN9IKSSPZMcXGhxkLDeBjEVsfbZDFvNpbnYJFcYw4StYbMDQjMe-SZjMhEWE7lvdIn5jvlTVCuM46OIpbahkDylYPEWLp45OF7fIyeeSopLX-Otl3vgk_RYjKaT_35ft_W_ZPlnFq4pPdkAWwZPmEADITB65CDsiS-dXN73-BxqS20s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ki-hFtCrW5x48icGk2XSTYylKa2svreAtZF9SH2k19uC_dyYPH6AevGYzEGaWmW8333wDcEJ9PLiEEZBe4vBEe07UtsrhoUq0skJIk6t9jjv9G351G9zWoFf1whCtssz9RU7Ps3X55Lz05vliNqMeX1KnikKENFio6AjUIHWqoA6N7mDYH38kZNyTxeA8n5RMo7D6uZnTvLKMhAy9IFfxpCGTP5WnLyXncgPWS6zIusXnbELNpE1Y7VUj2pqwkvM3VbYFD5NcB5Y0NBjivZzx-nbGPofcsCTV7Cm5S6lpkS3oCv6FtFTZ3LLr-aTNnpfo4-UTw1Nqxqi2aTZPGcJDZmeIENmiupXPtuHm8mLa6zvlHAVHtSPx6vhWY6WyHUQCbV_53JeeQVgUBEp7kUbEodxIuUZKIXkgO67QGCNjufFkKELr-jtQT-ep2QUmjPGFq9DYcE7COK6JfJkISyDdtboFbuW-WJUi4zTr4jGu2GT3MXo8Jo_HOaMubMHph8miUNj462VexST-tk1irAC_m-39z-wYVvvT61E8GoyH-7BGKwW97ADqGFVziHjkVR6V--0dqizd_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+stability%2C+electronic+and+magnetic+properties+of+MoS2+quantum+dots+based+on+the+first+principles&rft.jtitle=Solid+state+communications&rft.au=Pei%2C+Liang&rft.au=Tao%2C+Shen&rft.au=Haibo%2C+Shu&rft.au=Song%2C+Xing&rft.date=2015-09-01&rft.pub=Elsevier+Ltd&rft.issn=0038-1098&rft.eissn=1879-2766&rft.volume=218&rft.spage=25&rft.epage=30&rft_id=info:doi/10.1016%2Fj.ssc.2015.06.008&rft.externalDocID=S0038109815002161
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-1098&client=summon