Implanting multi-functional ionic liquids into MOF nodes for boosting CO2 cycloaddition under solventless and cocatalyst-free conditions
•MIL-101(Cr) nodes were tethered by ionic liquids bearing hydrogen-bond donor.•MIL-101(Cr) derivative as catalyst boosted the epoxide cycloaddition with CO2.•The heterogeneous catalyst containing carboxyl displayed superior activity.•The catalyst exhibited the great durability and recyclability. It...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 490; p. 151657 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •MIL-101(Cr) nodes were tethered by ionic liquids bearing hydrogen-bond donor.•MIL-101(Cr) derivative as catalyst boosted the epoxide cycloaddition with CO2.•The heterogeneous catalyst containing carboxyl displayed superior activity.•The catalyst exhibited the great durability and recyclability.
It is critical to design an effective catalyst for CO2 conversion into cyclocarbonate to achieve the carbon neutrality. Herein, MIL-101(Cr) tethered by hydrogen bond donors (HBD)-containing ionic liquids (denoted as MIL-101-ILs(R), R = OH, NH2, and COOH) were synthesized through the implantation of 4,4′-bipyridine into MOF nodes via the post-synthetic modification, followed by the decoration with bromoalkanes including bromoethanol, bromoethylamine, and bromoacetic acid. Their catalytic performance were evaluated by the epoxide cycloaddition reaction under 1.0 MPa CO2 and 80 ℃ for 6 h in the absence of solvent and cocatalyst. Compared to MIL-101-ILs without HBD, MIL-101-ILs(OH) and MIL-101-ILs(NH2) demonstrated the more chloropropene carbonate (CPC) yield of 88 % and 83 %, respectively. Notably, MIL-101-ILs(COOH) exhibited an uppermost activity with a CPC yield of 96 %, attributed to the cooperativity of Lewis acidity originating from Cr3O clusters, hydrogen-bond interaction afforded by carboxyl groups, and the strong nucleophilicity offered by Br- ions of ILs. Moreover, MIL-101-ILs(COOH) presented excellent recyclability. A potential catalytic mechanism for epoxide cycloaddition with CO2 into cyclic carbonate has been proposed. |
---|---|
AbstractList | •MIL-101(Cr) nodes were tethered by ionic liquids bearing hydrogen-bond donor.•MIL-101(Cr) derivative as catalyst boosted the epoxide cycloaddition with CO2.•The heterogeneous catalyst containing carboxyl displayed superior activity.•The catalyst exhibited the great durability and recyclability.
It is critical to design an effective catalyst for CO2 conversion into cyclocarbonate to achieve the carbon neutrality. Herein, MIL-101(Cr) tethered by hydrogen bond donors (HBD)-containing ionic liquids (denoted as MIL-101-ILs(R), R = OH, NH2, and COOH) were synthesized through the implantation of 4,4′-bipyridine into MOF nodes via the post-synthetic modification, followed by the decoration with bromoalkanes including bromoethanol, bromoethylamine, and bromoacetic acid. Their catalytic performance were evaluated by the epoxide cycloaddition reaction under 1.0 MPa CO2 and 80 ℃ for 6 h in the absence of solvent and cocatalyst. Compared to MIL-101-ILs without HBD, MIL-101-ILs(OH) and MIL-101-ILs(NH2) demonstrated the more chloropropene carbonate (CPC) yield of 88 % and 83 %, respectively. Notably, MIL-101-ILs(COOH) exhibited an uppermost activity with a CPC yield of 96 %, attributed to the cooperativity of Lewis acidity originating from Cr3O clusters, hydrogen-bond interaction afforded by carboxyl groups, and the strong nucleophilicity offered by Br- ions of ILs. Moreover, MIL-101-ILs(COOH) presented excellent recyclability. A potential catalytic mechanism for epoxide cycloaddition with CO2 into cyclic carbonate has been proposed. |
ArticleNumber | 151657 |
Author | Liu, Laiyao Zhou, Ying-Hua Chen, Yan Li, Fangfang |
Author_xml | – sequence: 1 givenname: Yan surname: Chen fullname: Chen, Yan – sequence: 2 givenname: Fangfang surname: Li fullname: Li, Fangfang – sequence: 3 givenname: Laiyao surname: Liu fullname: Liu, Laiyao – sequence: 4 givenname: Ying-Hua orcidid: 0000-0002-0355-723X surname: Zhou fullname: Zhou, Ying-Hua email: yhzhou@ahnu.edu.cn |
BookMark | eNp9kMFOAyEQQDnUxLb6Ad74gV2B7S4lnkxj1aSmFz0TCoOhoVCBNukf-NluXU8eepnJZOZNZt4EjUIMgNAdJTUltLvf1hq2NSNsVtOWdi0foTFt5m01FzN-jSY5bwkhnaBijL5fd3uvQnHhE-8OvrjKHoIuLgblcR-dxt59HZzJ2IUS8dt6iUM0kLGNCW9izL_oYs2wPmkflTHuTONDMJBwjv4IoXjIGatgsI5aFeVPuVQ2AfR1GObzDbqyyme4_ctT9LF8el-8VKv18-vicVVpJnipGssFM4LyOWVqbrURwGzTqY5RThin0LANE6wVjbD9WN8x3Uxzs-GmM5a0zRTRYa9OMecEVu6T26l0kpTIsz65lb0-edYnB309w_8x2hV1Prsk5fxF8mEgoX_p6CDJrB0EDcYl0EWa6C7QP1CCkUM |
CitedBy_id | crossref_primary_10_1016_j_jorganchem_2024_123494 crossref_primary_10_1016_j_jece_2024_114311 crossref_primary_10_1016_j_inoche_2024_113341 crossref_primary_10_1016_j_jece_2025_115695 crossref_primary_10_1039_D4CC05095A crossref_primary_10_1002_chem_202500026 crossref_primary_10_53941_see_2025_100001 crossref_primary_10_1016_j_molstruc_2025_142155 crossref_primary_10_1016_j_seppur_2024_130448 crossref_primary_10_1016_j_seppur_2024_128851 crossref_primary_10_1016_j_molstruc_2025_142068 crossref_primary_10_1016_j_seppur_2024_131254 crossref_primary_10_1002_aoc_7640 crossref_primary_10_1016_j_seppur_2024_131352 crossref_primary_10_1016_j_jece_2024_115080 crossref_primary_10_1021_acsanm_4c06518 crossref_primary_10_1016_j_apcata_2025_120237 |
Cites_doi | 10.1016/j.est.2022.104827 10.1021/acscatal.3c01604 10.1021/acs.inorgchem.7b03084 10.1016/j.jece.2021.105275 10.1016/j.jcou.2018.09.014 10.1039/D1DT04110J 10.1039/D0DT00778A 10.1039/D1NJ02590B 10.1021/acscatal.7b03404 10.1007/s10562-020-03259-z 10.1039/C9DT00501C 10.1016/j.cej.2023.146873 10.1002/adfm.200801130 10.1021/acs.cgd.0c01666 10.1021/acs.iecr.1c01118 10.1016/j.apcatb.2022.121163 10.1016/j.jcou.2022.102294 10.1016/j.jcis.2022.03.066 10.1021/acscentsci.1c01563 10.1016/j.micromeso.2021.111027 10.1080/01614940.2018.1550243 10.1016/j.jcis.2022.03.038 10.1039/C4RA14111C 10.1002/anie.202305213 10.1126/science.1230444 10.1016/j.cej.2023.146453 10.1021/acsami.8b08914 10.1016/j.molliq.2023.121284 10.1021/acs.inorgchem.6b02413 10.1021/acscatal.3c02550 10.1016/j.cej.2023.145918 10.1039/D1DT00198A 10.1039/D1GC01312B 10.1016/j.micromeso.2018.03.011 10.1002/cssc.201902719 10.1021/acs.inorgchem.1c00536 10.1021/acs.iecr.9b05779 10.1039/C8CS00829A 10.1016/j.jcou.2020.101173 10.1016/j.jcou.2019.10.021 10.1021/ic2021929 10.1016/j.apsusc.2017.09.040 10.1126/science.1116275 10.1039/C8RA10366F 10.1016/j.micromeso.2022.111984 10.1016/j.micromeso.2023.112461 10.1002/cssc.201802990 10.1016/j.apcata.2014.09.034 10.1016/j.apcata.2021.118307 10.1021/jacs.5b10000 10.1016/j.cej.2021.131633 10.1038/nature08047 10.1002/adma.202005798 10.1002/anie.202301497 10.1039/C5TA07026K 10.1002/anie.201102010 10.1016/j.ijhydene.2022.09.128 10.1039/D0GC03465G 10.1016/j.fuel.2022.124389 10.1016/j.carbon.2016.05.030 10.1021/acs.inorgchem.6b03169 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2024.151657 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_cej_2024_151657 S1385894724031449 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSH SSJ SSZ T5K ~G- AAYWO AAYXX ABXDB ACVFH ADCNI AEUPX AFFNX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BKOMP CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- ZY4 |
ID | FETCH-LOGICAL-c297t-3f792d917812a8fcd9e2f36a62170271e32b2925939fd9136ad64c7db7d6df053 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 02:12:00 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Sun Apr 06 06:53:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MIL-101 Epoxide cycloaddition Heterogeneous catalysis CO2 Ionic liquid |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-3f792d917812a8fcd9e2f36a62170271e32b2925939fd9136ad64c7db7d6df053 |
ORCID | 0000-0002-0355-723X |
ParticipantIDs | crossref_primary_10_1016_j_cej_2024_151657 crossref_citationtrail_10_1016_j_cej_2024_151657 elsevier_sciencedirect_doi_10_1016_j_cej_2024_151657 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-15 |
PublicationDateYYYYMMDD | 2024-06-15 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Guo, Zhang, Yang, Gao, Wei, Xiao (b0075) 2023; 475 Jiang, He, Zhang, Yin, Ding, Wang, Li (b0250) 2023; 375 Xu, Chen, Jin, Chu, Lu, He, Yao, Li, Dong, Fan (b0280) 2021; 624 Matthews, Gillett, Stott, Zickfeld (b0005) 2009; 459 Han, Lu, Liang, Zhou, Chen, Zeng (b0085) 2012; 51 Gupta, Guha, Krishnan, Mathur, Rai (b0170) 2020; 39 Yuan, Wu, Pan, Gao, Xiao (b0145) 2020; 150 Li, Lei, Li, Liu, Zheng, Liu, Guo, Liu, Hao, He (b0010) 2023; 13 Dai, Mao, Liu, Zhang, Li, Yang, Luo, Zou (b0230) 2020; 36 Jiang, Liu, Xiong, Weng, An, Fan, Zheng, Yang, Zhang (b0070) 2023; 476 Sun, Huang, Vardhan, Aguila, Zhong, Perman, Al-Enizi, Nafady, Ma (b0295) 2018; 10 Hou, Dong, Zhao, Li, Ren, Zhao, Zhao (b0040) 2023; 62 Jiang, Li, Zhao, Sun (b0255) 2022; 618 Qu, Chen, Ye, Xu, Sun (b0135) 2022; 66 Quan, Sun, Meng, Han, Wu, Xu, Xu, Zhang (b0185) 2019; 48 Gong, Zhu, Zhang, Li (b0025) 2018; 28 Gao, Wang, Liu, Han, Wei, Cao, Yuan (b0090) 2017; 56 Huang, Worch, Dove, Coulembier (b0030) 2020; 13 Qin, Chen, Li, Shen (b0060) 2023; 13 Jiang, Wang, Xu, Sun (b0235) 2021; 21 Gao, Li, Xu, Ji, Gu, Zhou (b0130) 2022; 51 Li, Qin, Yang, Chen, Li, Shen (b0110) 2022; 8 Campos, Contreras-Cáceres, Bandosz, Jiménez-Jiménez, Rodríguez-Castellón, Esteves da Silva, Algarra (b0215) 2016; 106 Cokoja, Bruckmeier, Rieger, Herrmann, Kühn (b0050) 2011; 50 Ding, Yao, Jiang, Li, Fu, Li, Liu, Ma, Dong (b0150) 2017; 56 Long, Dai, Zou, Li, Zhang, Yang, Mao, Mao, Luo, Luo (b0175) 2021; 318 Pirzadeh, Ghoreyshi, Rohani, Rahimnejad (b0205) 2019; 59 Liao, Lin, Yin, Zhang, Zhu, Lü (b0055) 2022; 323 Mao, Zhou, Zhu, Sang, Li, Tao (b0260) 2021; 60 Bahadori, Tangestaninejad, Bertmer, Moghadam, Mirkhani, Mohammadpoor-Baltork, Kardanpour, Zadehahmadi (b0270) 2019; 7 Wang, Song, Luo, Yang, Chong, Zhang, Ji (b0155) 2018; 267 Luo, Zhou, Yan, Luo, Deng, Fan, Zhao (b0190) 2022; 47 Liu, Gao, Zhang, Liu, Han (b0200) 2021; 60 Férey, Serre, Millange, Dutour, Surblé, Margiolaki (b0165) 2005; 309 Xiong, Bu, Yang, Gao (b0305) 2022; 339 Jie Dong, Shi, Cheng, Zhao (b0300) 2015; 137 Liu, Li, Liu (b0290) 2018; 428 Zhang, Wang, Liu, Wei, Gao, Zhao, Han (b0100) 2018; 57 Ding, Jiang (b0140) 2018; 8 Liu, Wang, Shi, Liang, Sun (b0310) 2015; 5 Ma, Xu, Jiang, Yuan (b0180) 2019; 9 Dapaah, Liu, Cheng (b0210) 2021; 9 Furukawa, Cordova, O'Keeffe, Yaghi (b0080) 2013; 341 Yang, Chen, Wang, Sun (b0160) 2022; 618 Ma, Li, Liu, Zhang, Zou, Yang, Li, Shi, Feng (b0265) 2015; 3 Wang, Liu, Zheng (b0015) 2021; 33 Guo, Lamb, North (b0045) 2021; 23 Ding, Flaig, Jiang, Yaghi (b0095) 2019; 48 Zhou, Fang, Yang, Lu, Fei, Mu, He (b0220) 2022; 52 Das, Nagaraja (b0035) 2021; 23 Qin, Li, Yang, Chen, Li, Shen (b0105) 2022; 307 Liu, Wang, Jiang, Sun, Arai (b0115) 2018; 61 Bao, Jiang, Zhao, Li, Xu, Sun (b0275) 2021; 45 Qadir, Dupont (b0020) 2023; 62 Liu, Li, Chen, Li, Chen, Hu, Shi, Pudukudy, Shan, Zhi (b0225) 2023; 474 Li, Dai, Mao, He, Liu, Xu, Yang, Zou, Luo (b0120) 2023; 350 Wu, Yao, Xiang, Zou, Zhou (b0195) 2020; 49 Liu, Di, Chen, Zhou, Liu (b0240) 2021; 50 Liu, Shi, Zhang, Sun (b0065) 2022; 427 Baj, Krawczyk, Jasiak, Siewniak, Pawlyta (b0245) 2014; 488 Hong, Hwang, Serre, Férey, Chang (b0125) 2009; 19 Zhou, Sun, Yang, Li, Gong, Sun, Sui, Gao (b0285) 2019; 12 Quan (10.1016/j.cej.2024.151657_b0185) 2019; 48 Hong (10.1016/j.cej.2024.151657_b0125) 2009; 19 Zhou (10.1016/j.cej.2024.151657_b0285) 2019; 12 Wu (10.1016/j.cej.2024.151657_b0195) 2020; 49 Ding (10.1016/j.cej.2024.151657_b0095) 2019; 48 Hou (10.1016/j.cej.2024.151657_b0040) 2023; 62 Jiang (10.1016/j.cej.2024.151657_b0070) 2023; 476 Guo (10.1016/j.cej.2024.151657_b0075) 2023; 475 Gao (10.1016/j.cej.2024.151657_b0090) 2017; 56 Cokoja (10.1016/j.cej.2024.151657_b0050) 2011; 50 Liu (10.1016/j.cej.2024.151657_b0290) 2018; 428 Liao (10.1016/j.cej.2024.151657_b0055) 2022; 323 Férey (10.1016/j.cej.2024.151657_b0165) 2005; 309 Li (10.1016/j.cej.2024.151657_b0110) 2022; 8 Gao (10.1016/j.cej.2024.151657_b0130) 2022; 51 Ma (10.1016/j.cej.2024.151657_b0265) 2015; 3 Li (10.1016/j.cej.2024.151657_b0120) 2023; 350 Ding (10.1016/j.cej.2024.151657_b0140) 2018; 8 Wang (10.1016/j.cej.2024.151657_b0155) 2018; 267 Yang (10.1016/j.cej.2024.151657_b0160) 2022; 618 Long (10.1016/j.cej.2024.151657_b0175) 2021; 318 Jiang (10.1016/j.cej.2024.151657_b0250) 2023; 375 Gupta (10.1016/j.cej.2024.151657_b0170) 2020; 39 Dapaah (10.1016/j.cej.2024.151657_b0210) 2021; 9 Jiang (10.1016/j.cej.2024.151657_b0255) 2022; 618 Wang (10.1016/j.cej.2024.151657_b0015) 2021; 33 Furukawa (10.1016/j.cej.2024.151657_b0080) 2013; 341 Campos (10.1016/j.cej.2024.151657_b0215) 2016; 106 Han (10.1016/j.cej.2024.151657_b0085) 2012; 51 Guo (10.1016/j.cej.2024.151657_b0045) 2021; 23 Liu (10.1016/j.cej.2024.151657_b0115) 2018; 61 Liu (10.1016/j.cej.2024.151657_b0065) 2022; 427 Ma (10.1016/j.cej.2024.151657_b0180) 2019; 9 Mao (10.1016/j.cej.2024.151657_b0260) 2021; 60 Liu (10.1016/j.cej.2024.151657_b0225) 2023; 474 Ding (10.1016/j.cej.2024.151657_b0150) 2017; 56 Sun (10.1016/j.cej.2024.151657_b0295) 2018; 10 Jie Dong (10.1016/j.cej.2024.151657_b0300) 2015; 137 Gong (10.1016/j.cej.2024.151657_b0025) 2018; 28 Bao (10.1016/j.cej.2024.151657_b0275) 2021; 45 Dai (10.1016/j.cej.2024.151657_b0230) 2020; 36 Xu (10.1016/j.cej.2024.151657_b0280) 2021; 624 Qin (10.1016/j.cej.2024.151657_b0060) 2023; 13 Li (10.1016/j.cej.2024.151657_b0010) 2023; 13 Liu (10.1016/j.cej.2024.151657_b0200) 2021; 60 Luo (10.1016/j.cej.2024.151657_b0190) 2022; 47 Qadir (10.1016/j.cej.2024.151657_b0020) 2023; 62 Zhang (10.1016/j.cej.2024.151657_b0100) 2018; 57 Liu (10.1016/j.cej.2024.151657_b0310) 2015; 5 Baj (10.1016/j.cej.2024.151657_b0245) 2014; 488 Bahadori (10.1016/j.cej.2024.151657_b0270) 2019; 7 Matthews (10.1016/j.cej.2024.151657_b0005) 2009; 459 Yuan (10.1016/j.cej.2024.151657_b0145) 2020; 150 Huang (10.1016/j.cej.2024.151657_b0030) 2020; 13 Pirzadeh (10.1016/j.cej.2024.151657_b0205) 2019; 59 Liu (10.1016/j.cej.2024.151657_b0240) 2021; 50 Das (10.1016/j.cej.2024.151657_b0035) 2021; 23 Qin (10.1016/j.cej.2024.151657_b0105) 2022; 307 Qu (10.1016/j.cej.2024.151657_b0135) 2022; 66 Jiang (10.1016/j.cej.2024.151657_b0235) 2021; 21 Xiong (10.1016/j.cej.2024.151657_b0305) 2022; 339 Zhou (10.1016/j.cej.2024.151657_b0220) 2022; 52 |
References_xml | – volume: 428 start-page: 218 year: 2018 end-page: 225 ident: b0290 article-title: Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO publication-title: Appl. Surf. Sci. – volume: 13 start-page: 469 year: 2020 end-page: 487 ident: b0030 article-title: Update and challenges in carbon dioxide-based polycarbonate synthesis publication-title: ChemSusChem – volume: 47 start-page: 39563 year: 2022 end-page: 39571 ident: b0190 article-title: In-situ one-step synthesis of activated Carbon@MIL-101 (Cr) composites for hydrogen storage publication-title: Int. J. Hydrogen Energy – volume: 21 start-page: 3689 year: 2021 end-page: 3698 ident: b0235 article-title: Dicationic ionic liquid @MIL-101 for the cycloaddition of CO publication-title: Cryst. Growth Des. – volume: 51 start-page: 674 year: 2012 end-page: 679 ident: b0085 article-title: Mn(II)-based porous metal-organic framework showing metamagnetic properties and high hydrogen adsorption at low pressure publication-title: Inorg. Chem. – volume: 427 year: 2022 ident: b0065 article-title: One-pot synthesis of pyridine-based ionic hyper-cross-linked polymers with hierarchical pores for efficient CO publication-title: Chem. Eng. J. – volume: 307 year: 2022 ident: b0105 article-title: Heterogenizing homogeneous cocatalysts by well-designed hollow MOF-based nanoreactors for efficient and size-selective CO publication-title: Appl. Catal., B – volume: 318 year: 2021 ident: b0175 article-title: Chemical conversion of CO2 into cyclic carbonates using a versatile and efficient all-in-one catalyst integrated with DABCO ionic liquid and MIL-101(Cr) publication-title: Microporous Mesoporous Mater. – volume: 52 year: 2022 ident: b0220 article-title: MIL-101(Cr)-NH2/reduced graphene oxide composite carrier enhanced thermal conductivity and stability of shape-stabilized phase change materials for thermal energy management publication-title: J. Energy Storage – volume: 49 start-page: 5722 year: 2020 end-page: 5729 ident: b0195 article-title: Efficient removal of methyl orange by a flower-like TiO2/MIL-101(Cr) composite nanomaterial publication-title: Dalton Transactions – volume: 474 year: 2023 ident: b0225 article-title: Urea/amide-functionalized melamine-based organic polymers as efficient heterogeneous catalysts for CO publication-title: Chem. Eng. J. – volume: 23 start-page: 5195 year: 2021 end-page: 5204 ident: b0035 article-title: Noble metal-free Cu(I)-anchored NHC-based MOF for highly recyclable fixation of CO2 under RT and atmospheric pressure conditions publication-title: Green Chem. – volume: 339 year: 2022 ident: b0305 article-title: Three in one: rational engineering of multifunctional MIL-101-based ionic catalysts for carbon dioxide-epoxide cycloaddition publication-title: Microporous Mesoporous Mater. – volume: 36 start-page: 295 year: 2020 end-page: 305 ident: b0230 article-title: Quaternary phosphonium salt-functionalized Cr-MIL-101: A bifunctional and efficient catalyst for CO publication-title: J. CO – volume: 48 start-page: 2783 year: 2019 end-page: 2828 ident: b0095 article-title: Carbon capture and conversion using metal-organic frameworks and MOF-based materials publication-title: Chem. Soc. Rev. – volume: 350 year: 2023 ident: b0120 article-title: Facile integration of hydroxyl ionic liquid into Cr-MIL-101 as multifunctional heterogeneous catalyst for promoting the efficiency of CO publication-title: Microporous Mesoporous Mater. – volume: 56 start-page: 511 year: 2017 end-page: 517 ident: b0090 article-title: Microporous hexanuclear Ln(III) cluster-based metal-organic frameworks: color tunability for barcode application and selective removal of methylene blue publication-title: Inorg. Chem. – volume: 106 start-page: 171 year: 2016 end-page: 178 ident: b0215 article-title: Carbon dots as fluorescent sensor for detection of explosive nitrocompounds publication-title: Carbon – volume: 57 start-page: 2193 year: 2018 end-page: 2198 ident: b0100 article-title: Robust bifunctional lanthanide cluster based metal-organic frameworks (MOFs) for tandem deacetalization-knoevenagel reaction publication-title: Inorg. Chem. – volume: 150 start-page: 3561 year: 2020 end-page: 3571 ident: b0145 article-title: Pyridyl ionic liquid functionalized ZIF-90 for catalytic conversion of CO publication-title: Catal. Lett. – volume: 51 start-page: 2567 year: 2022 end-page: 2576 ident: b0130 article-title: Guanidyl-implanted UiO-66 as an efficient catalyst for the enhanced conversion of carbon dioxide into cyclic carbonates publication-title: Dalton Trans. – volume: 50 start-page: 3848 year: 2021 end-page: 3853 ident: b0240 article-title: A pyridyl-decorated Zr-organic framework for enhanced gas separation and CO publication-title: Dalton Trans. – volume: 19 start-page: 1537 year: 2009 end-page: 1552 ident: b0125 article-title: Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis publication-title: Adv. Funct. Mater. – volume: 60 start-page: 6152 year: 2021 end-page: 6156 ident: b0200 article-title: Trifunctional Metal–organic framework catalyst for CO publication-title: Inorg. Chem. – volume: 50 start-page: 8510 year: 2011 end-page: 8537 ident: b0050 article-title: Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge? publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 2202 year: 2019 end-page: 2210 ident: b0285 article-title: A facile and versatile “click” approach toward multifunctional ionic metal-organic frameworks for efficient conversion of CO publication-title: ChemSusChem – volume: 62 start-page: e202301497 year: 2023 ident: b0020 article-title: Thermo- and photocatalytic activation of CO2 in ionic liquids nanodomains publication-title: Angew. Chem. Int. Ed. – volume: 3 start-page: 23136 year: 2015 end-page: 23142 ident: b0265 article-title: Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO publication-title: J. Mater. Chem. – volume: 56 start-page: 2337 year: 2017 end-page: 2344 ident: b0150 article-title: Bifunctional imidazolium-based ionic liquid decorated UiO-67 type MOF for selective CO publication-title: Inorg. Chem. – volume: 323 year: 2022 ident: b0055 article-title: Confinement of halide ions in Mg-Beta zeolites enables synergistic catalysis for CO publication-title: Fuel – volume: 8 start-page: 718 year: 2022 end-page: 728 ident: b0110 article-title: Growth pattern control and nanoarchitecture engineering of metal-organic framework single crystals by confined space synthesis publication-title: ACS Cent. Sci. – volume: 137 start-page: 15988 year: 2015 ident: b0300 article-title: Ultrastrong alkali-resisting lanthanide-zeolites assembled by [Ln60] nanocages publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 14277 year: 2015 end-page: 14284 ident: b0310 article-title: Zn-based ionic liquids as highly efficient catalysts for chemical fixation of carbon dioxide to epoxides publication-title: RSC Adv. – volume: 62 start-page: e202305213 year: 2023 ident: b0040 article-title: Thermocatalytic conversion of CO2 to valuable products activated by noble-metal-free metal-organic frameworks publication-title: Angew. Chem. Int. Ed. – volume: 341 start-page: 1230444 year: 2013 ident: b0080 article-title: The chemistry and applications of metal-organic frameworks publication-title: Science – volume: 624 year: 2021 ident: b0280 article-title: Quaternary ammonium salt functionalized MIL-101-NH2(Cr) as a bifunctional catalyst for the cycloaddition of CO2 with epoxides to produce cyclic carbonates publication-title: Appl. Catal., A – volume: 9 year: 2021 ident: b0210 article-title: Adsorption of organic compounds from aqueous solution by pyridine-2-carboxaldehyde grafted MIL-101(Cr)-NH2 metal-organic frameworks publication-title: J. Environ. Chem. Eng. – volume: 33 start-page: 2005798 year: 2021 ident: b0015 article-title: Designing copper-based catalysts for efficient carbon dioxide electroreduction publication-title: Adv. Mater. – volume: 28 start-page: 221 year: 2018 end-page: 227 ident: b0025 article-title: Biological carbon fixation: From natural to synthetic publication-title: J. CO – volume: 476 year: 2023 ident: b0070 article-title: A halogen-free hyper-crosslinked ionic polymer for efficient multi-conversion of CO publication-title: Chem. Eng. J. – volume: 475 year: 2023 ident: b0075 article-title: Construction of covalent organic framework functionalized with carbene dual active sites for enhancing CO publication-title: Chem. Eng. J. – volume: 61 start-page: 214 year: 2018 end-page: 269 ident: b0115 article-title: Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO publication-title: Catal. Rev. – volume: 267 start-page: 84 year: 2018 end-page: 92 ident: b0155 article-title: Acid-base bifunctional catalyst: carboxyl ionic liquid immobilized on MIL-101-NH publication-title: Microporous Mesoporous Mater. – volume: 375 year: 2023 ident: b0250 article-title: Conjugate acid-base bi-functional polymeric ionic liquids (CAB-PILs) as efficient catalysts for CO2 capture and subsequent glycidol cycloaddition reaction publication-title: J. Mol. Liq. – volume: 618 start-page: 22 year: 2022 end-page: 33 ident: b0255 article-title: Hydrogen bond donor functionalized poly(ionic liquids)@MIL-101 for the CO2 capture and improving the catalytic CO2 conversion with epoxide publication-title: J. Colloid Interface Sci. – volume: 9 start-page: 5692 year: 2019 end-page: 5700 ident: b0180 article-title: Comparative research on three types of MIL-101(Cr)-SO3H for esterification of cyclohexene with formic acid publication-title: RSC Adv. – volume: 13 start-page: 8372 year: 2023 end-page: 8383 ident: b0060 article-title: Bifunctional Catalysts with Core-Shell Distributed ZrO2 and Co Nanoparticles Derived from MOF-on-MOF Heterostructures for Economical One-Pot Tandem CO2 Fixation publication-title: ACS Catal – volume: 8 start-page: 3194 year: 2018 end-page: 3201 ident: b0140 article-title: Incorporation of imidazolium-based poly(ionic liquid)s into a metal–organic framework for CO2 capture and conversion publication-title: ACS Catal. – volume: 13 start-page: 10177 year: 2023 end-page: 10204 ident: b0010 article-title: Recent progress on photocatalytic CO publication-title: ACS Catal. – volume: 45 start-page: 13893 year: 2021 end-page: 13901 ident: b0275 article-title: Aminoethylimidazole ionic liquid-grafted MIL-101-NH publication-title: New J. Chem. – volume: 309 start-page: 2040 year: 2005 end-page: 2042 ident: b0165 article-title: A chromium terephthalate-based solid with unusually large pore volumes and surface area publication-title: Science – volume: 7 start-page: 3962 year: 2019 end-page: 3973 ident: b0270 article-title: Task-specific ionic liquid functionalized–MIL–101(Cr) as a heterogeneous and efficient catalyst for the cycloaddition of CO2 with epoxides under solvent free conditions, ACS Sustainable publication-title: Chem. Eng. – volume: 23 start-page: 77 year: 2021 end-page: 118 ident: b0045 article-title: Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates publication-title: Green Chem. – volume: 48 start-page: 5384 year: 2019 end-page: 5396 ident: b0185 article-title: Surface functionalization of MIL-101(Cr) by aminated mesoporous silica and improved adsorption selectivity toward special metal ions publication-title: Dalton Trans. – volume: 10 start-page: 27124 year: 2018 end-page: 27130 ident: b0295 article-title: Facile approach to graft ionic liquid into MOF for improving the efficiency of CO publication-title: ACS Appl. Mater. Interfaces – volume: 66 year: 2022 ident: b0135 article-title: Supercritical CO publication-title: J. CO – volume: 59 start-page: 366 year: 2019 end-page: 378 ident: b0205 article-title: Strong influence of amine grafting on MIL-101(Cr) metal–organic framework with exceptional CO2/N2 selectivity publication-title: Ind. Eng. Chem. Res. – volume: 488 start-page: 96 year: 2014 end-page: 102 ident: b0245 article-title: Catalytic coupling of epoxides and CO publication-title: Appl. Catal., A – volume: 618 start-page: 44 year: 2022 end-page: 55 ident: b0160 article-title: Polymeric ionic liquid with carboxyl anchored on mesoporous silica for efficient fixation of carbon dioxide publication-title: J. Colloid. Interface. Sci. – volume: 459 start-page: 829 year: 2009 end-page: 832 ident: b0005 article-title: The proportionality of global warming to cumulative carbon emissions publication-title: Nature – volume: 39 year: 2020 ident: b0170 article-title: A three-dimensional Cu(II)-MOF with lewis acid-base dual functional sites for chemical fixation of CO2 via cyclic carbonate synthesis publication-title: J. CO – volume: 60 start-page: 5984 year: 2021 end-page: 5991 ident: b0260 article-title: Synthesis of guanidinium-based poly(ionic liquids) with nonporosity for highly efficient SO2 capture from flue gas publication-title: Ind. Eng. Chem. Res. – volume: 52 year: 2022 ident: 10.1016/j.cej.2024.151657_b0220 article-title: MIL-101(Cr)-NH2/reduced graphene oxide composite carrier enhanced thermal conductivity and stability of shape-stabilized phase change materials for thermal energy management publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104827 – volume: 13 start-page: 8372 issue: 13 year: 2023 ident: 10.1016/j.cej.2024.151657_b0060 article-title: Bifunctional Catalysts with Core-Shell Distributed ZrO2 and Co Nanoparticles Derived from MOF-on-MOF Heterostructures for Economical One-Pot Tandem CO2 Fixation publication-title: ACS Catal doi: 10.1021/acscatal.3c01604 – volume: 57 start-page: 2193 year: 2018 ident: 10.1016/j.cej.2024.151657_b0100 article-title: Robust bifunctional lanthanide cluster based metal-organic frameworks (MOFs) for tandem deacetalization-knoevenagel reaction publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b03084 – volume: 9 year: 2021 ident: 10.1016/j.cej.2024.151657_b0210 article-title: Adsorption of organic compounds from aqueous solution by pyridine-2-carboxaldehyde grafted MIL-101(Cr)-NH2 metal-organic frameworks publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105275 – volume: 28 start-page: 221 year: 2018 ident: 10.1016/j.cej.2024.151657_b0025 article-title: Biological carbon fixation: From natural to synthetic publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2018.09.014 – volume: 51 start-page: 2567 year: 2022 ident: 10.1016/j.cej.2024.151657_b0130 article-title: Guanidyl-implanted UiO-66 as an efficient catalyst for the enhanced conversion of carbon dioxide into cyclic carbonates publication-title: Dalton Trans. doi: 10.1039/D1DT04110J – volume: 49 start-page: 5722 year: 2020 ident: 10.1016/j.cej.2024.151657_b0195 article-title: Efficient removal of methyl orange by a flower-like TiO2/MIL-101(Cr) composite nanomaterial publication-title: Dalton Transactions doi: 10.1039/D0DT00778A – volume: 45 start-page: 13893 year: 2021 ident: 10.1016/j.cej.2024.151657_b0275 article-title: Aminoethylimidazole ionic liquid-grafted MIL-101-NH2 heterogeneous catalyst for the conversion of CO2 and epoxide without solvent and cocatalyst publication-title: New J. Chem. doi: 10.1039/D1NJ02590B – volume: 8 start-page: 3194 year: 2018 ident: 10.1016/j.cej.2024.151657_b0140 article-title: Incorporation of imidazolium-based poly(ionic liquid)s into a metal–organic framework for CO2 capture and conversion publication-title: ACS Catal. doi: 10.1021/acscatal.7b03404 – volume: 150 start-page: 3561 year: 2020 ident: 10.1016/j.cej.2024.151657_b0145 article-title: Pyridyl ionic liquid functionalized ZIF-90 for catalytic conversion of CO2 into cyclic carbonates publication-title: Catal. Lett. doi: 10.1007/s10562-020-03259-z – volume: 48 start-page: 5384 year: 2019 ident: 10.1016/j.cej.2024.151657_b0185 article-title: Surface functionalization of MIL-101(Cr) by aminated mesoporous silica and improved adsorption selectivity toward special metal ions publication-title: Dalton Trans. doi: 10.1039/C9DT00501C – volume: 476 year: 2023 ident: 10.1016/j.cej.2024.151657_b0070 article-title: A halogen-free hyper-crosslinked ionic polymer for efficient multi-conversion of CO2 into carbonates under mild conditions, with a combination of theoretical study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.146873 – volume: 19 start-page: 1537 year: 2009 ident: 10.1016/j.cej.2024.151657_b0125 article-title: Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: surface functionalization, encapsulation, sorption and catalysis publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801130 – volume: 21 start-page: 3689 year: 2021 ident: 10.1016/j.cej.2024.151657_b0235 article-title: Dicationic ionic liquid @MIL-101 for the cycloaddition of CO2 and epoxides under cocatalyst-free conditions publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.0c01666 – volume: 60 start-page: 5984 year: 2021 ident: 10.1016/j.cej.2024.151657_b0260 article-title: Synthesis of guanidinium-based poly(ionic liquids) with nonporosity for highly efficient SO2 capture from flue gas publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c01118 – volume: 307 year: 2022 ident: 10.1016/j.cej.2024.151657_b0105 article-title: Heterogenizing homogeneous cocatalysts by well-designed hollow MOF-based nanoreactors for efficient and size-selective CO2 fixation publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121163 – volume: 66 year: 2022 ident: 10.1016/j.cej.2024.151657_b0135 article-title: Supercritical CO2 assisted synthesis of SBA-15 supported amino acid ionic liquid for CO2 cycloaddition under cocatalyst/metal/solvent-free conditions publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2022.102294 – volume: 618 start-page: 44 year: 2022 ident: 10.1016/j.cej.2024.151657_b0160 article-title: Polymeric ionic liquid with carboxyl anchored on mesoporous silica for efficient fixation of carbon dioxide publication-title: J. Colloid. Interface. Sci. doi: 10.1016/j.jcis.2022.03.066 – volume: 8 start-page: 718 issue: 6 year: 2022 ident: 10.1016/j.cej.2024.151657_b0110 article-title: Growth pattern control and nanoarchitecture engineering of metal-organic framework single crystals by confined space synthesis publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.1c01563 – volume: 318 year: 2021 ident: 10.1016/j.cej.2024.151657_b0175 article-title: Chemical conversion of CO2 into cyclic carbonates using a versatile and efficient all-in-one catalyst integrated with DABCO ionic liquid and MIL-101(Cr) publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.111027 – volume: 61 start-page: 214 year: 2018 ident: 10.1016/j.cej.2024.151657_b0115 article-title: Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: current state-of-the art of catalyst development and reaction analysis publication-title: Catal. Rev. doi: 10.1080/01614940.2018.1550243 – volume: 618 start-page: 22 year: 2022 ident: 10.1016/j.cej.2024.151657_b0255 article-title: Hydrogen bond donor functionalized poly(ionic liquids)@MIL-101 for the CO2 capture and improving the catalytic CO2 conversion with epoxide publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.03.038 – volume: 5 start-page: 14277 year: 2015 ident: 10.1016/j.cej.2024.151657_b0310 article-title: Zn-based ionic liquids as highly efficient catalysts for chemical fixation of carbon dioxide to epoxides publication-title: RSC Adv. doi: 10.1039/C4RA14111C – volume: 62 start-page: e202305213 year: 2023 ident: 10.1016/j.cej.2024.151657_b0040 article-title: Thermocatalytic conversion of CO2 to valuable products activated by noble-metal-free metal-organic frameworks publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202305213 – volume: 341 start-page: 1230444 year: 2013 ident: 10.1016/j.cej.2024.151657_b0080 article-title: The chemistry and applications of metal-organic frameworks publication-title: Science doi: 10.1126/science.1230444 – volume: 475 year: 2023 ident: 10.1016/j.cej.2024.151657_b0075 article-title: Construction of covalent organic framework functionalized with carbene dual active sites for enhancing CO2 carboxylation conversion publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.146453 – volume: 10 start-page: 27124 year: 2018 ident: 10.1016/j.cej.2024.151657_b0295 article-title: Facile approach to graft ionic liquid into MOF for improving the efficiency of CO2 chemical fixation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b08914 – volume: 375 year: 2023 ident: 10.1016/j.cej.2024.151657_b0250 article-title: Conjugate acid-base bi-functional polymeric ionic liquids (CAB-PILs) as efficient catalysts for CO2 capture and subsequent glycidol cycloaddition reaction publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2023.121284 – volume: 56 start-page: 511 year: 2017 ident: 10.1016/j.cej.2024.151657_b0090 article-title: Microporous hexanuclear Ln(III) cluster-based metal-organic frameworks: color tunability for barcode application and selective removal of methylene blue publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b02413 – volume: 13 start-page: 10177 year: 2023 ident: 10.1016/j.cej.2024.151657_b0010 article-title: Recent progress on photocatalytic CO2 conversion reactions over plasmonic metal-based catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.3c02550 – volume: 474 year: 2023 ident: 10.1016/j.cej.2024.151657_b0225 article-title: Urea/amide-functionalized melamine-based organic polymers as efficient heterogeneous catalysts for CO2 cycloaddition publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.145918 – volume: 50 start-page: 3848 year: 2021 ident: 10.1016/j.cej.2024.151657_b0240 article-title: A pyridyl-decorated Zr-organic framework for enhanced gas separation and CO2 transformation publication-title: Dalton Trans. doi: 10.1039/D1DT00198A – volume: 23 start-page: 5195 year: 2021 ident: 10.1016/j.cej.2024.151657_b0035 article-title: Noble metal-free Cu(I)-anchored NHC-based MOF for highly recyclable fixation of CO2 under RT and atmospheric pressure conditions publication-title: Green Chem. doi: 10.1039/D1GC01312B – volume: 267 start-page: 84 year: 2018 ident: 10.1016/j.cej.2024.151657_b0155 article-title: Acid-base bifunctional catalyst: carboxyl ionic liquid immobilized on MIL-101-NH2 for rapid synthesis of propylene carbonate from CO2 and propylene oxide under facile solvent-free conditions publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2018.03.011 – volume: 13 start-page: 469 year: 2020 ident: 10.1016/j.cej.2024.151657_b0030 article-title: Update and challenges in carbon dioxide-based polycarbonate synthesis publication-title: ChemSusChem doi: 10.1002/cssc.201902719 – volume: 7 start-page: 3962 year: 2019 ident: 10.1016/j.cej.2024.151657_b0270 article-title: Task-specific ionic liquid functionalized–MIL–101(Cr) as a heterogeneous and efficient catalyst for the cycloaddition of CO2 with epoxides under solvent free conditions, ACS Sustainable publication-title: Chem. Eng. – volume: 60 start-page: 6152 year: 2021 ident: 10.1016/j.cej.2024.151657_b0200 article-title: Trifunctional Metal–organic framework catalyst for CO2 conversion into cyclic carbonates publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c00536 – volume: 59 start-page: 366 year: 2019 ident: 10.1016/j.cej.2024.151657_b0205 article-title: Strong influence of amine grafting on MIL-101(Cr) metal–organic framework with exceptional CO2/N2 selectivity publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b05779 – volume: 48 start-page: 2783 year: 2019 ident: 10.1016/j.cej.2024.151657_b0095 article-title: Carbon capture and conversion using metal-organic frameworks and MOF-based materials publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00829A – volume: 39 year: 2020 ident: 10.1016/j.cej.2024.151657_b0170 article-title: A three-dimensional Cu(II)-MOF with lewis acid-base dual functional sites for chemical fixation of CO2 via cyclic carbonate synthesis publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2020.101173 – volume: 36 start-page: 295 year: 2020 ident: 10.1016/j.cej.2024.151657_b0230 article-title: Quaternary phosphonium salt-functionalized Cr-MIL-101: A bifunctional and efficient catalyst for CO2 cycloaddition with epoxides publication-title: J. CO2 Util. doi: 10.1016/j.jcou.2019.10.021 – volume: 51 start-page: 674 year: 2012 ident: 10.1016/j.cej.2024.151657_b0085 article-title: Mn(II)-based porous metal-organic framework showing metamagnetic properties and high hydrogen adsorption at low pressure publication-title: Inorg. Chem. doi: 10.1021/ic2021929 – volume: 428 start-page: 218 year: 2018 ident: 10.1016/j.cej.2024.151657_b0290 article-title: Functionalized MIL-101 with imidazolium-based ionic liquids for the cycloaddition of CO2 and epoxides under mild condition publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.09.040 – volume: 309 start-page: 2040 year: 2005 ident: 10.1016/j.cej.2024.151657_b0165 article-title: A chromium terephthalate-based solid with unusually large pore volumes and surface area publication-title: Science doi: 10.1126/science.1116275 – volume: 9 start-page: 5692 year: 2019 ident: 10.1016/j.cej.2024.151657_b0180 article-title: Comparative research on three types of MIL-101(Cr)-SO3H for esterification of cyclohexene with formic acid publication-title: RSC Adv. doi: 10.1039/C8RA10366F – volume: 339 year: 2022 ident: 10.1016/j.cej.2024.151657_b0305 article-title: Three in one: rational engineering of multifunctional MIL-101-based ionic catalysts for carbon dioxide-epoxide cycloaddition publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2022.111984 – volume: 350 year: 2023 ident: 10.1016/j.cej.2024.151657_b0120 article-title: Facile integration of hydroxyl ionic liquid into Cr-MIL-101 as multifunctional heterogeneous catalyst for promoting the efficiency of CO2 conversion publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2023.112461 – volume: 12 start-page: 2202 year: 2019 ident: 10.1016/j.cej.2024.151657_b0285 article-title: A facile and versatile “click” approach toward multifunctional ionic metal-organic frameworks for efficient conversion of CO2 publication-title: ChemSusChem doi: 10.1002/cssc.201802990 – volume: 488 start-page: 96 year: 2014 ident: 10.1016/j.cej.2024.151657_b0245 article-title: Catalytic coupling of epoxides and CO2 to cyclic carbonates by carbon nanotube-supported quaternary ammonium salts publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2014.09.034 – volume: 624 year: 2021 ident: 10.1016/j.cej.2024.151657_b0280 article-title: Quaternary ammonium salt functionalized MIL-101-NH2(Cr) as a bifunctional catalyst for the cycloaddition of CO2 with epoxides to produce cyclic carbonates publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2021.118307 – volume: 137 start-page: 15988 year: 2015 ident: 10.1016/j.cej.2024.151657_b0300 article-title: Ultrastrong alkali-resisting lanthanide-zeolites assembled by [Ln60] nanocages publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10000 – volume: 427 year: 2022 ident: 10.1016/j.cej.2024.151657_b0065 article-title: One-pot synthesis of pyridine-based ionic hyper-cross-linked polymers with hierarchical pores for efficient CO2 capture and catalytic conversion publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131633 – volume: 459 start-page: 829 year: 2009 ident: 10.1016/j.cej.2024.151657_b0005 article-title: The proportionality of global warming to cumulative carbon emissions publication-title: Nature doi: 10.1038/nature08047 – volume: 33 start-page: 2005798 year: 2021 ident: 10.1016/j.cej.2024.151657_b0015 article-title: Designing copper-based catalysts for efficient carbon dioxide electroreduction publication-title: Adv. Mater. doi: 10.1002/adma.202005798 – volume: 62 start-page: e202301497 year: 2023 ident: 10.1016/j.cej.2024.151657_b0020 article-title: Thermo- and photocatalytic activation of CO2 in ionic liquids nanodomains publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202301497 – volume: 3 start-page: 23136 year: 2015 ident: 10.1016/j.cej.2024.151657_b0265 article-title: Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO2 under mild and co-catalyst free conditions publication-title: J. Mater. Chem. doi: 10.1039/C5TA07026K – volume: 50 start-page: 8510 year: 2011 ident: 10.1016/j.cej.2024.151657_b0050 article-title: Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge? publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201102010 – volume: 47 start-page: 39563 year: 2022 ident: 10.1016/j.cej.2024.151657_b0190 article-title: In-situ one-step synthesis of activated Carbon@MIL-101 (Cr) composites for hydrogen storage publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.09.128 – volume: 23 start-page: 77 year: 2021 ident: 10.1016/j.cej.2024.151657_b0045 article-title: Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates publication-title: Green Chem. doi: 10.1039/D0GC03465G – volume: 323 year: 2022 ident: 10.1016/j.cej.2024.151657_b0055 article-title: Confinement of halide ions in Mg-Beta zeolites enables synergistic catalysis for CO2 cycloaddition publication-title: Fuel doi: 10.1016/j.fuel.2022.124389 – volume: 106 start-page: 171 year: 2016 ident: 10.1016/j.cej.2024.151657_b0215 article-title: Carbon dots as fluorescent sensor for detection of explosive nitrocompounds publication-title: Carbon doi: 10.1016/j.carbon.2016.05.030 – volume: 56 start-page: 2337 year: 2017 ident: 10.1016/j.cej.2024.151657_b0150 article-title: Bifunctional imidazolium-based ionic liquid decorated UiO-67 type MOF for selective CO2 adsorption and catalytic property for CO2 cycloaddition with epoxides publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b03169 |
SSID | ssj0006919 |
Score | 2.5604835 |
Snippet | •MIL-101(Cr) nodes were tethered by ionic liquids bearing hydrogen-bond donor.•MIL-101(Cr) derivative as catalyst boosted the epoxide cycloaddition with... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 151657 |
SubjectTerms | CO2 Epoxide cycloaddition Heterogeneous catalysis Ionic liquid MIL-101 |
Title | Implanting multi-functional ionic liquids into MOF nodes for boosting CO2 cycloaddition under solventless and cocatalyst-free conditions |
URI | https://dx.doi.org/10.1016/j.cej.2024.151657 |
Volume | 490 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KXvQgPvFZ9uBJ2DbdbDbusRRLtWhBLXoLyT4gUlJt4sGLZ3-2M3n4APXgKSSZgbAzmW9n99sZQo4DG_ieDQ0LEsOZiJ1kyjjDnNUO0MXrxWXJ_MsrOZqKi_vgvkUGzVkYpFXWsb-K6WW0rp9069HsPqZp96aHe1pKhFhRDtICPMQnRIhe3nn9pHlIVTb3QGGG0s3OZsnx0vYBUkQuOoB7EhHqJ2z6gjfDdbJWTxRpv_qWDdKy2SZZ_VI-cIu8YWnfuGz1QEtiIEOUqhb3KK6zajpLn55Tk9M0K-b0cjKk2dzYnMJMlcL0Oi9VBxNO9YuezZFbhNoUD5YtKHglkiFnEAtpnBkKoRPXel7ygrmFtXCfVfL5NpkOz24HI1Z3VmCaq7BgvgsVN5CpAbzHp04bZbnzZSwhQYE8tWd9nnAFmZGvHIjBGyOFDk0SGmkc_Lc7ZCmbZ3aXUOmkDaQvA6USAekWtqMMdeKfer7xJHd7xGvGNNJ12XHsfjGLGn7ZQwRmiNAMUWWGPXLyofJY1dz4S1g0hoq-OU4EmPC72v7_1A7ICt4hV6wXHJKlYvFsj2BWUiTt0u3aZLl_Ph5d4XV8fTd-B73D5DI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgHIAD4ine5MAJKaxL25Qc0cQ0HhsHQOJWtXlIRVMHaznwD_jZ2H0gkIADxza2VMWpPztxPgMchzb0PRsZHqZG8CBxkivjDHdWO0QXr5dUlPmjsRw-BFeP4eMc9Nu7MFRW2fj-2qdX3rp5021ms_ucZd27Hp1pqSAiRjlMC9Q8LBA7VdiBhfPL6-H40yFLVfX3IHlOCu3hZlXmpe0TZokiOEXokwRSP8HTF8gZrMJKEyuy8_pz1mDO5uuw_IVBcAPeid03qbo9sKo2kBNQ1ft7jLZaNZtkL6-ZKViWl1M2uh2wfGpswTBYZRhhF5Vq_1Yw_aYnUyovIm1Gd8tmDBcm1UNO0B2yJDcMvSdt97wVJXcza_E5r-WLTXgYXNz3h7xprsC1UFHJfRcpYTBZQ4RPzpw2ygrny0RijoKpas_6IhUKkyNfORTDESMDHZk0MtI4_HW3oJNPc7sNTDppQ-nLUKk0wIyLOlJGOvXPPN94Urgd8No5jXXDPE4NMCZxW2L2FKMZYjJDXJthB04-VZ5r2o2_hIPWUPG3tRMjLPyutvs_tSNYHN6PbuKby_H1HizRCJWO9cJ96JSzV3uAQUqZHjaL8ANuluVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Implanting+multi-functional+ionic+liquids+into+MOF+nodes+for+boosting+CO2+cycloaddition+under+solventless+and+cocatalyst-free+conditions&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Chen%2C+Yan&rft.au=Li%2C+Fangfang&rft.au=Liu%2C+Laiyao&rft.au=Zhou%2C+Ying-Hua&rft.date=2024-06-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.volume=490&rft_id=info:doi/10.1016%2Fj.cej.2024.151657&rft.externalDocID=S1385894724031449 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |