Newton Geometric Iterative Method for B-Spline Curve and Surface Approximation

We introduce a progressive and iterative method for B-spline curve and surface approximation, incorporating parameter correction based on the Newton iterative method. While parameter corrections have been used in existing Geometric Approximation (GA) methods to enhance approximation quality, they su...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 172; p. 103716
Main Authors Song, Qiuyang, Bo, Pengbo
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2024
Subjects
Online AccessGet full text
ISSN0010-4485
1879-2685
DOI10.1016/j.cad.2024.103716

Cover

Loading…
Abstract We introduce a progressive and iterative method for B-spline curve and surface approximation, incorporating parameter correction based on the Newton iterative method. While parameter corrections have been used in existing Geometric Approximation (GA) methods to enhance approximation quality, they suffer from low computational efficiency. Our approach unifies control point updates and parameter corrections in a progressive and iterative procedure, employing a one-step strategy for parameter correction. We provide a theoretical proof of convergence for the algorithm, demonstrating its superior computational efficiency compared to current GA methods. Furthermore, the provided convergence proof offers a methodology for proving the convergence of existing GA methods with location parameter correction. •We propose a GA method that unifies control point update and parameter correction (PC).•We provide proof of the convergence of the proposed algorithm.•Our proof inspires the convergence proof of traditional GA methods with PC.•We provide experiments comparing our method to existing GA methods.
AbstractList We introduce a progressive and iterative method for B-spline curve and surface approximation, incorporating parameter correction based on the Newton iterative method. While parameter corrections have been used in existing Geometric Approximation (GA) methods to enhance approximation quality, they suffer from low computational efficiency. Our approach unifies control point updates and parameter corrections in a progressive and iterative procedure, employing a one-step strategy for parameter correction. We provide a theoretical proof of convergence for the algorithm, demonstrating its superior computational efficiency compared to current GA methods. Furthermore, the provided convergence proof offers a methodology for proving the convergence of existing GA methods with location parameter correction. •We propose a GA method that unifies control point update and parameter correction (PC).•We provide proof of the convergence of the proposed algorithm.•Our proof inspires the convergence proof of traditional GA methods with PC.•We provide experiments comparing our method to existing GA methods.
ArticleNumber 103716
Author Bo, Pengbo
Song, Qiuyang
Author_xml – sequence: 1
  givenname: Qiuyang
  surname: Song
  fullname: Song, Qiuyang
– sequence: 2
  givenname: Pengbo
  orcidid: 0000-0002-0940-9879
  surname: Bo
  fullname: Bo, Pengbo
  email: pbbo@hit.edu.cn
BookMark eNp9kMFOAjEQhhuDiYA-gLe-wGLbLd3deEKiSIJ4QM9Nt53GbmC76RbUt7eIJw-cJpPJ9-efb4QGrW8BoVtKJpRQcddMtDITRhhPe15QcYGGtCyqjIlyOkBDQijJOC-nV2jU9w0hhNG8GqL1Gj6jb_EC_A5icBovIwQV3QHwC8QPb7D1AT9km27rWsDzfUgX1Rq82QerNOBZ1wX_5XaJ8e01urRq28PN3xyj96fHt_lztnpdLOezVaZZVcQsN6qkvK6srgswNSdKlSXnuVZANdO5FbakwIywlhIhLIDmNc2tUqKuVMXzMaKnXB183wewsgupQviWlMijENnIJEQehciTkMQU_xjt4m_rGJTbniXvTySklw4Oguy1g1aDcQF0lMa7M_QP-OZ96A
CitedBy_id crossref_primary_10_1016_j_asej_2024_103256
Cites_doi 10.1016/j.cad.2010.01.006
10.1016/j.camwa.2005.01.023
10.1016/j.cag.2012.07.002
10.1016/j.cad.2006.12.008
10.1007/s00371-020-02036-8
10.1016/j.cag.2023.08.001
10.1016/j.cad.2012.02.011
10.1007/s00371-021-02318-9
10.1016/j.cad.2013.08.012
10.1016/j.cad.2011.01.018
10.3390/math10203766
10.1145/1138450.1138453
10.1016/j.cad.2023.103673
10.1016/j.cagd.2004.12.001
10.1007/s11424-018-7443-y
10.1016/j.cagd.2009.11.001
10.1016/j.cad.2017.10.002
10.1007/s00371-023-03090-8
10.1007/s00371-015-1170-3
10.1016/j.cag.2012.03.036
10.1016/j.cag.2011.07.003
10.1016/0010-4485(89)90003-1
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cad.2024.103716
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2685
ExternalDocumentID 10_1016_j_cad_2024_103716
S0010448524000435
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-3da814b9fcb7edb40aa88443cae1c2c3f6f81e2d6ff1066feec4b13faa6b9a943
IEDL.DBID .~1
ISSN 0010-4485
IngestDate Thu Apr 24 23:06:29 EDT 2025
Tue Jul 01 03:34:37 EDT 2025
Sat May 11 15:33:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Geometric iterative approximation
Geometric optimization
Geometric modeling
Progressive and iterative approximation
Curve and surface approximation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-3da814b9fcb7edb40aa88443cae1c2c3f6f81e2d6ff1066feec4b13faa6b9a943
ORCID 0000-0002-0940-9879
ParticipantIDs crossref_primary_10_1016_j_cad_2024_103716
crossref_citationtrail_10_1016_j_cad_2024_103716
elsevier_sciencedirect_doi_10_1016_j_cad_2024_103716
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Computer aided design
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rios, Jüttler (b15) 2021; 406
Xiong, Li, Mao (b23) 2012; 36
Wang, Li, Liu, Ma, Deng (b16) 2021; 39
Lin, Bao, Wang (b8) 2005; 50
Bo, Ling, Wang (b26) 2012; 36
Lin, Maekawa, Deng (b1) 2018; 95
Chang, Ma, Deng (b18) 2023
Lu (b9) 2010; 27
Lin, Cao, Zhang (b11) 2018; 31
Qi, Tian, Zhang (b6) 1975; 18
Lan, Ji, Wang, Zhu (b19) 2024; 169
Lin, Zhang (b10) 2011; 35
Lin (b22) 2010; 42
Maekawa, Matsumoto, Namiki (b21) 2007; 39
Jiang, Lin (b14) 2022
Lee (b27) 1989; 21
Hu, Wallner (b25) 2005; 22
Zhang, Ge, Tan (b12) 2016; 32
Bo, Mai, Meng, Zhang (b5) 2023
Hoschek, Lasser (b20) 1996
Deng, Lin (b4) 2014; 47
Kineri, Wang, Lin, Maekawa (b3) 2012; 44
Wang (b13) 2021; 38
Lin, Wang, Dong (b7) 2004; 47
Shou, Hu, Fang (b17) 2022
Carnicer, Delgado, Peña (b24) 2012; 44
Wang, Pottmann, Liu (b2) 2006; 25
Lu (10.1016/j.cad.2024.103716_b9) 2010; 27
Wang (10.1016/j.cad.2024.103716_b16) 2021; 39
Jiang (10.1016/j.cad.2024.103716_b14) 2022
Chang (10.1016/j.cad.2024.103716_b18) 2023
Lan (10.1016/j.cad.2024.103716_b19) 2024; 169
Xiong (10.1016/j.cad.2024.103716_b23) 2012; 36
Shou (10.1016/j.cad.2024.103716_b17) 2022
Carnicer (10.1016/j.cad.2024.103716_b24) 2012; 44
Lin (10.1016/j.cad.2024.103716_b7) 2004; 47
Lin (10.1016/j.cad.2024.103716_b1) 2018; 95
Lin (10.1016/j.cad.2024.103716_b22) 2010; 42
Bo (10.1016/j.cad.2024.103716_b5) 2023
Wang (10.1016/j.cad.2024.103716_b13) 2021; 38
Lin (10.1016/j.cad.2024.103716_b8) 2005; 50
Lin (10.1016/j.cad.2024.103716_b11) 2018; 31
Hoschek (10.1016/j.cad.2024.103716_b20) 1996
Lee (10.1016/j.cad.2024.103716_b27) 1989; 21
Kineri (10.1016/j.cad.2024.103716_b3) 2012; 44
Deng (10.1016/j.cad.2024.103716_b4) 2014; 47
Zhang (10.1016/j.cad.2024.103716_b12) 2016; 32
Wang (10.1016/j.cad.2024.103716_b2) 2006; 25
Maekawa (10.1016/j.cad.2024.103716_b21) 2007; 39
Rios (10.1016/j.cad.2024.103716_b15) 2021; 406
Qi (10.1016/j.cad.2024.103716_b6) 1975; 18
Bo (10.1016/j.cad.2024.103716_b26) 2012; 36
Lin (10.1016/j.cad.2024.103716_b10) 2011; 35
Hu (10.1016/j.cad.2024.103716_b25) 2005; 22
References_xml – volume: 39
  start-page: 139
  year: 2021
  end-page: 148
  ident: b16
  article-title: Gauss-Seidel progressive iterative approximation (GS-PIA) for subdivision surface interpolation
  publication-title: Vis Comput
– volume: 95
  start-page: 40
  year: 2018
  end-page: 51
  ident: b1
  article-title: Survey on geometric iterative methods and their applications
  publication-title: Comput Aided Des
– volume: 44
  start-page: 143
  year: 2012
  end-page: 145
  ident: b24
  article-title: Progressive iteration approximation and the geometric algorithm
  publication-title: Comput Aided Des
– volume: 42
  start-page: 505
  year: 2010
  end-page: 508
  ident: b22
  article-title: The convergence of the geometric interpolation algorithm
  publication-title: Comput Aided Des
– volume: 22
  start-page: 251
  year: 2005
  end-page: 260
  ident: b25
  article-title: A second order algorithm for orthogonal projection onto curves and surfaces
  publication-title: Comput Aided Geom Design
– volume: 169
  year: 2024
  ident: b19
  article-title: Full-LSPIA: A least-squares progressive-iterative approximation method with optimization of weights and knots for NURBS curves and surfaces
  publication-title: Comput Aided Des
– volume: 406
  year: 2021
  ident: b15
  article-title: LSPIA, (stochastic) gradient descent, and parameter correction
  publication-title: J Comput Appl Math
– volume: 21
  start-page: 363
  year: 1989
  end-page: 370
  ident: b27
  article-title: Choosing nodes in parametric curve interpolation
  publication-title: Comput Aided Des
– volume: 32
  start-page: 1109
  year: 2016
  end-page: 1120
  ident: b12
  article-title: Least square geometric iterative fitting method for generalized B-spline curves with two different kinds of weights
  publication-title: Vis Comput
– start-page: 1
  year: 2022
  end-page: 18
  ident: b14
  article-title: Fairing-PIA: progressive-iterative approximation for fairing curve and surface generation
  publication-title: Vis Comput
– year: 2023
  ident: b5
  article-title: Improving geometric iterative approximation methods using local approximations
  publication-title: Comput Graph
– volume: 27
  start-page: 129
  year: 2010
  end-page: 137
  ident: b9
  article-title: Weighted progressive iteration approximation and convergence analysis
  publication-title: Comput Aided Geom Design
– volume: 50
  start-page: 575
  year: 2005
  end-page: 586
  ident: b8
  article-title: Totally positive bases and progressive iteration approximation
  publication-title: Comput Math Appl
– volume: 31
  start-page: 1618
  year: 2018
  end-page: 1632
  ident: b11
  article-title: The convergence of least-squares progressive iterative approximation for singular least-squares fitting system
  publication-title: J. Syst. Sci. Complex.
– volume: 36
  start-page: 884
  year: 2012
  end-page: 891
  ident: b23
  article-title: Convergence analysis for B-spline geometric interpolation
  publication-title: Comput Graph
– year: 1996
  ident: b20
  article-title: Fundamentals of computer aided geometric design
– volume: 39
  start-page: 313
  year: 2007
  end-page: 323
  ident: b21
  article-title: Interpolation by geometric algorithm
  publication-title: Comput Aided Des
– volume: 47
  start-page: 32
  year: 2014
  end-page: 44
  ident: b4
  article-title: Progressive and iterative approximation for least squares B-spline curve and surface fitting
  publication-title: Comput Aided Des
– volume: 25
  start-page: 214
  year: 2006
  end-page: 238
  ident: b2
  article-title: Fitting B-spline curves to point clouds by curvature-based squared distance minimization
  publication-title: ACM Trans. Graphics (ToG)
– volume: 35
  start-page: 967
  year: 2011
  end-page: 975
  ident: b10
  article-title: An extended iterative format for the progressive-iteration approximation
  publication-title: Comput Graph
– year: 2022
  ident: b17
  article-title: Progressive iterative approximation of non-uniform cubic B-spline curves and surfaces via successive over-relaxation iteration
  publication-title: Mathematics
– volume: 36
  start-page: 534
  year: 2012
  end-page: 540
  ident: b26
  article-title: A revisit to fitting parametric surfaces to point clouds
  publication-title: Comput Graph
– volume: 44
  start-page: 697
  year: 2012
  end-page: 708
  ident: b3
  article-title: B-spline surface fitting by iterative geometric interpolation/approximation algorithms
  publication-title: Comput Aided Des
– volume: 18
  start-page: 173
  year: 1975
  end-page: 184
  ident: b6
  article-title: The method of numeric polish in curve fitting
  publication-title: Comput Math Appl
– volume: 47
  start-page: 315
  year: 2004
  end-page: 331
  ident: b7
  article-title: Constructing iterative non-uniform B-spline curve and surface to fit data points
  publication-title: Sci. China Ser. : Inf. Sci.
– volume: 38
  start-page: 591
  year: 2021
  end-page: 602
  ident: b13
  article-title: On extended progressive and iterative approximation for least squares fitting
  publication-title: Vis Comput
– year: 2023
  ident: b18
  article-title: Constrained least square progressive and iterative approximation (CLSPIA) for B-spline curve and surface fitting
  publication-title: Vis Comput
– volume: 42
  start-page: 505
  year: 2010
  ident: 10.1016/j.cad.2024.103716_b22
  article-title: The convergence of the geometric interpolation algorithm
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2010.01.006
– volume: 50
  start-page: 575
  year: 2005
  ident: 10.1016/j.cad.2024.103716_b8
  article-title: Totally positive bases and progressive iteration approximation
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2005.01.023
– volume: 36
  start-page: 884
  issn: 0097-8493
  issue: 7
  year: 2012
  ident: 10.1016/j.cad.2024.103716_b23
  article-title: Convergence analysis for B-spline geometric interpolation
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2012.07.002
– volume: 39
  start-page: 313
  year: 2007
  ident: 10.1016/j.cad.2024.103716_b21
  article-title: Interpolation by geometric algorithm
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2006.12.008
– volume: 38
  start-page: 591
  year: 2021
  ident: 10.1016/j.cad.2024.103716_b13
  article-title: On extended progressive and iterative approximation for least squares fitting
  publication-title: Vis Comput
  doi: 10.1007/s00371-020-02036-8
– year: 2023
  ident: 10.1016/j.cad.2024.103716_b5
  article-title: Improving geometric iterative approximation methods using local approximations
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2023.08.001
– start-page: 1
  year: 2022
  ident: 10.1016/j.cad.2024.103716_b14
  article-title: Fairing-PIA: progressive-iterative approximation for fairing curve and surface generation
  publication-title: Vis Comput
– volume: 47
  start-page: 315
  year: 2004
  ident: 10.1016/j.cad.2024.103716_b7
  article-title: Constructing iterative non-uniform B-spline curve and surface to fit data points
  publication-title: Sci. China Ser. : Inf. Sci.
– volume: 44
  start-page: 697
  year: 2012
  ident: 10.1016/j.cad.2024.103716_b3
  article-title: B-spline surface fitting by iterative geometric interpolation/approximation algorithms
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2012.02.011
– volume: 39
  start-page: 139
  year: 2021
  ident: 10.1016/j.cad.2024.103716_b16
  article-title: Gauss-Seidel progressive iterative approximation (GS-PIA) for subdivision surface interpolation
  publication-title: Vis Comput
  doi: 10.1007/s00371-021-02318-9
– volume: 47
  start-page: 32
  year: 2014
  ident: 10.1016/j.cad.2024.103716_b4
  article-title: Progressive and iterative approximation for least squares B-spline curve and surface fitting
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2013.08.012
– volume: 44
  start-page: 143
  year: 2012
  ident: 10.1016/j.cad.2024.103716_b24
  article-title: Progressive iteration approximation and the geometric algorithm
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2011.01.018
– year: 2022
  ident: 10.1016/j.cad.2024.103716_b17
  article-title: Progressive iterative approximation of non-uniform cubic B-spline curves and surfaces via successive over-relaxation iteration
  publication-title: Mathematics
  doi: 10.3390/math10203766
– volume: 25
  start-page: 214
  year: 2006
  ident: 10.1016/j.cad.2024.103716_b2
  article-title: Fitting B-spline curves to point clouds by curvature-based squared distance minimization
  publication-title: ACM Trans. Graphics (ToG)
  doi: 10.1145/1138450.1138453
– volume: 169
  issn: 0010-4485
  year: 2024
  ident: 10.1016/j.cad.2024.103716_b19
  article-title: Full-LSPIA: A least-squares progressive-iterative approximation method with optimization of weights and knots for NURBS curves and surfaces
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2023.103673
– volume: 22
  start-page: 251
  year: 2005
  ident: 10.1016/j.cad.2024.103716_b25
  article-title: A second order algorithm for orthogonal projection onto curves and surfaces
  publication-title: Comput Aided Geom Design
  doi: 10.1016/j.cagd.2004.12.001
– volume: 31
  start-page: 1618
  year: 2018
  ident: 10.1016/j.cad.2024.103716_b11
  article-title: The convergence of least-squares progressive iterative approximation for singular least-squares fitting system
  publication-title: J. Syst. Sci. Complex.
  doi: 10.1007/s11424-018-7443-y
– volume: 27
  start-page: 129
  year: 2010
  ident: 10.1016/j.cad.2024.103716_b9
  article-title: Weighted progressive iteration approximation and convergence analysis
  publication-title: Comput Aided Geom Design
  doi: 10.1016/j.cagd.2009.11.001
– volume: 95
  start-page: 40
  year: 2018
  ident: 10.1016/j.cad.2024.103716_b1
  article-title: Survey on geometric iterative methods and their applications
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2017.10.002
– year: 2023
  ident: 10.1016/j.cad.2024.103716_b18
  article-title: Constrained least square progressive and iterative approximation (CLSPIA) for B-spline curve and surface fitting
  publication-title: Vis Comput
  doi: 10.1007/s00371-023-03090-8
– year: 1996
  ident: 10.1016/j.cad.2024.103716_b20
– volume: 32
  start-page: 1109
  year: 2016
  ident: 10.1016/j.cad.2024.103716_b12
  article-title: Least square geometric iterative fitting method for generalized B-spline curves with two different kinds of weights
  publication-title: Vis Comput
  doi: 10.1007/s00371-015-1170-3
– volume: 36
  start-page: 534
  year: 2012
  ident: 10.1016/j.cad.2024.103716_b26
  article-title: A revisit to fitting parametric surfaces to point clouds
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2012.03.036
– volume: 35
  start-page: 967
  year: 2011
  ident: 10.1016/j.cad.2024.103716_b10
  article-title: An extended iterative format for the progressive-iteration approximation
  publication-title: Comput Graph
  doi: 10.1016/j.cag.2011.07.003
– volume: 406
  year: 2021
  ident: 10.1016/j.cad.2024.103716_b15
  article-title: LSPIA, (stochastic) gradient descent, and parameter correction
  publication-title: J Comput Appl Math
– volume: 18
  start-page: 173
  year: 1975
  ident: 10.1016/j.cad.2024.103716_b6
  article-title: The method of numeric polish in curve fitting
  publication-title: Comput Math Appl
– volume: 21
  start-page: 363
  year: 1989
  ident: 10.1016/j.cad.2024.103716_b27
  article-title: Choosing nodes in parametric curve interpolation
  publication-title: Comput Aided Des
  doi: 10.1016/0010-4485(89)90003-1
SSID ssj0002139
Score 2.4251688
Snippet We introduce a progressive and iterative method for B-spline curve and surface approximation, incorporating parameter correction based on the Newton iterative...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103716
SubjectTerms Curve and surface approximation
Geometric iterative approximation
Geometric modeling
Geometric optimization
Progressive and iterative approximation
Title Newton Geometric Iterative Method for B-Spline Curve and Surface Approximation
URI https://dx.doi.org/10.1016/j.cad.2024.103716
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lXvQgfmKrlhw8CWu7yWx291iLtVXaSy30tkyyCVR0W0oLnvztJvuhFdSDx93NwDIJb2bImzeEXEm7qTy0larQGj1QtkCJBSgPUmQQRhiK_KJ9NBaDKTzMglmN9KpeGEerLLG_wPQcrcs37dKb7eV87np8bSkBUeBYkB0b9V0HO4ROP__m_YvmwXxepMAWb9zq6mYz53gpdGKhDPLWczfy_KfYtBVv-gdkv0wUabf4l0NS09kR2duSDzwmY4tQNnWj93rx6gZjKTrMNZItgNFRPhma2pSU3noT13araW-zsl8wS-lkszKoNO06RfG3edG-eEKm_bun3sAr5yN4isXh2uMpRj7I2CgZ6lRCBzGKALhC7SumuBEm8jVLhTG28BNGawXS5wZRyBhj4Kekni0yfUaoDyYOJAOZcgPIVWQEUw6AmNCIgd8gncoziSrFw90Mi5ekYok9J9aZiXNmUjizQa4_TZaFcsZfi6Fyd_Jt-xOL7L-bNf9ndk523VPBur0g9fVqoy9tbrGWrfzwtMhOd_g4GH8A6rHMyg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iz47MGTyQrbznZ3j0hEUOACJNyattsmGF0IgcSTv912H4qJevC67SSbr803M-k3MwhdS3uoNLSZKtNaeKBsghIzUB4kgkAYiZBlD-39AeuM4XESTCqoVdbCOFllwf05p2dsXXypF2jW59Opq_G1qQREgVNBNqzX30CbENDQXe3b9y-dB_FpHgNbwnHby6fNTOSlhOsWSiCrPXczz39yTmsOp72HdotIETfzn9lHFZ0eoJ21_oGHaGApysZu-EHPXt1kLIW7WZNky2C4n42GxjYmxXfe0NXdatxaLeyKSBM8XC2MUBo3XUvxt2lev3iExu37UavjFQMSPEXicOnRREQ-yNgoGepEQkOIKAKgSmhfEUUNM5GvScKMsZkfM1orkD41QjAZixjoMaqms1SfIOyDiQNJQCbUgKAqMowox0CEaSECv4YaJTJcFd3D3RCLF17KxJ65BZM7MHkOZg3dfJrM89YZf22GEm7-7fy5pfbfzU7_Z3aFtjqjfo_3uoOnM7TtVnIJ7jmqLhcrfWEDjaW8zC7SB9z4zmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Newton+Geometric+Iterative+Method+for+B-Spline+Curve+and+Surface+Approximation&rft.jtitle=Computer+aided+design&rft.au=Song%2C+Qiuyang&rft.au=Bo%2C+Pengbo&rft.date=2024-07-01&rft.issn=0010-4485&rft.volume=172&rft.spage=103716&rft_id=info:doi/10.1016%2Fj.cad.2024.103716&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cad_2024_103716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon