Newton Geometric Iterative Method for B-Spline Curve and Surface Approximation
We introduce a progressive and iterative method for B-spline curve and surface approximation, incorporating parameter correction based on the Newton iterative method. While parameter corrections have been used in existing Geometric Approximation (GA) methods to enhance approximation quality, they su...
Saved in:
Published in | Computer aided design Vol. 172; p. 103716 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-4485 1879-2685 |
DOI | 10.1016/j.cad.2024.103716 |
Cover
Loading…
Abstract | We introduce a progressive and iterative method for B-spline curve and surface approximation, incorporating parameter correction based on the Newton iterative method. While parameter corrections have been used in existing Geometric Approximation (GA) methods to enhance approximation quality, they suffer from low computational efficiency. Our approach unifies control point updates and parameter corrections in a progressive and iterative procedure, employing a one-step strategy for parameter correction. We provide a theoretical proof of convergence for the algorithm, demonstrating its superior computational efficiency compared to current GA methods. Furthermore, the provided convergence proof offers a methodology for proving the convergence of existing GA methods with location parameter correction.
•We propose a GA method that unifies control point update and parameter correction (PC).•We provide proof of the convergence of the proposed algorithm.•Our proof inspires the convergence proof of traditional GA methods with PC.•We provide experiments comparing our method to existing GA methods. |
---|---|
AbstractList | We introduce a progressive and iterative method for B-spline curve and surface approximation, incorporating parameter correction based on the Newton iterative method. While parameter corrections have been used in existing Geometric Approximation (GA) methods to enhance approximation quality, they suffer from low computational efficiency. Our approach unifies control point updates and parameter corrections in a progressive and iterative procedure, employing a one-step strategy for parameter correction. We provide a theoretical proof of convergence for the algorithm, demonstrating its superior computational efficiency compared to current GA methods. Furthermore, the provided convergence proof offers a methodology for proving the convergence of existing GA methods with location parameter correction.
•We propose a GA method that unifies control point update and parameter correction (PC).•We provide proof of the convergence of the proposed algorithm.•Our proof inspires the convergence proof of traditional GA methods with PC.•We provide experiments comparing our method to existing GA methods. |
ArticleNumber | 103716 |
Author | Bo, Pengbo Song, Qiuyang |
Author_xml | – sequence: 1 givenname: Qiuyang surname: Song fullname: Song, Qiuyang – sequence: 2 givenname: Pengbo orcidid: 0000-0002-0940-9879 surname: Bo fullname: Bo, Pengbo email: pbbo@hit.edu.cn |
BookMark | eNp9kMFOAjEQhhuDiYA-gLe-wGLbLd3deEKiSIJ4QM9Nt53GbmC76RbUt7eIJw-cJpPJ9-efb4QGrW8BoVtKJpRQcddMtDITRhhPe15QcYGGtCyqjIlyOkBDQijJOC-nV2jU9w0hhNG8GqL1Gj6jb_EC_A5icBovIwQV3QHwC8QPb7D1AT9km27rWsDzfUgX1Rq82QerNOBZ1wX_5XaJ8e01urRq28PN3xyj96fHt_lztnpdLOezVaZZVcQsN6qkvK6srgswNSdKlSXnuVZANdO5FbakwIywlhIhLIDmNc2tUqKuVMXzMaKnXB183wewsgupQviWlMijENnIJEQehciTkMQU_xjt4m_rGJTbniXvTySklw4Oguy1g1aDcQF0lMa7M_QP-OZ96A |
CitedBy_id | crossref_primary_10_1016_j_asej_2024_103256 |
Cites_doi | 10.1016/j.cad.2010.01.006 10.1016/j.camwa.2005.01.023 10.1016/j.cag.2012.07.002 10.1016/j.cad.2006.12.008 10.1007/s00371-020-02036-8 10.1016/j.cag.2023.08.001 10.1016/j.cad.2012.02.011 10.1007/s00371-021-02318-9 10.1016/j.cad.2013.08.012 10.1016/j.cad.2011.01.018 10.3390/math10203766 10.1145/1138450.1138453 10.1016/j.cad.2023.103673 10.1016/j.cagd.2004.12.001 10.1007/s11424-018-7443-y 10.1016/j.cagd.2009.11.001 10.1016/j.cad.2017.10.002 10.1007/s00371-023-03090-8 10.1007/s00371-015-1170-3 10.1016/j.cag.2012.03.036 10.1016/j.cag.2011.07.003 10.1016/0010-4485(89)90003-1 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cad.2024.103716 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2685 |
ExternalDocumentID | 10_1016_j_cad_2024_103716 S0010448524000435 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-3da814b9fcb7edb40aa88443cae1c2c3f6f81e2d6ff1066feec4b13faa6b9a943 |
IEDL.DBID | .~1 |
ISSN | 0010-4485 |
IngestDate | Thu Apr 24 23:06:29 EDT 2025 Tue Jul 01 03:34:37 EDT 2025 Sat May 11 15:33:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Geometric iterative approximation Geometric optimization Geometric modeling Progressive and iterative approximation Curve and surface approximation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-3da814b9fcb7edb40aa88443cae1c2c3f6f81e2d6ff1066feec4b13faa6b9a943 |
ORCID | 0000-0002-0940-9879 |
ParticipantIDs | crossref_primary_10_1016_j_cad_2024_103716 crossref_citationtrail_10_1016_j_cad_2024_103716 elsevier_sciencedirect_doi_10_1016_j_cad_2024_103716 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationTitle | Computer aided design |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rios, Jüttler (b15) 2021; 406 Xiong, Li, Mao (b23) 2012; 36 Wang, Li, Liu, Ma, Deng (b16) 2021; 39 Lin, Bao, Wang (b8) 2005; 50 Bo, Ling, Wang (b26) 2012; 36 Lin, Maekawa, Deng (b1) 2018; 95 Chang, Ma, Deng (b18) 2023 Lu (b9) 2010; 27 Lin, Cao, Zhang (b11) 2018; 31 Qi, Tian, Zhang (b6) 1975; 18 Lan, Ji, Wang, Zhu (b19) 2024; 169 Lin, Zhang (b10) 2011; 35 Lin (b22) 2010; 42 Maekawa, Matsumoto, Namiki (b21) 2007; 39 Jiang, Lin (b14) 2022 Lee (b27) 1989; 21 Hu, Wallner (b25) 2005; 22 Zhang, Ge, Tan (b12) 2016; 32 Bo, Mai, Meng, Zhang (b5) 2023 Hoschek, Lasser (b20) 1996 Deng, Lin (b4) 2014; 47 Kineri, Wang, Lin, Maekawa (b3) 2012; 44 Wang (b13) 2021; 38 Lin, Wang, Dong (b7) 2004; 47 Shou, Hu, Fang (b17) 2022 Carnicer, Delgado, Peña (b24) 2012; 44 Wang, Pottmann, Liu (b2) 2006; 25 Lu (10.1016/j.cad.2024.103716_b9) 2010; 27 Wang (10.1016/j.cad.2024.103716_b16) 2021; 39 Jiang (10.1016/j.cad.2024.103716_b14) 2022 Chang (10.1016/j.cad.2024.103716_b18) 2023 Lan (10.1016/j.cad.2024.103716_b19) 2024; 169 Xiong (10.1016/j.cad.2024.103716_b23) 2012; 36 Shou (10.1016/j.cad.2024.103716_b17) 2022 Carnicer (10.1016/j.cad.2024.103716_b24) 2012; 44 Lin (10.1016/j.cad.2024.103716_b7) 2004; 47 Lin (10.1016/j.cad.2024.103716_b1) 2018; 95 Lin (10.1016/j.cad.2024.103716_b22) 2010; 42 Bo (10.1016/j.cad.2024.103716_b5) 2023 Wang (10.1016/j.cad.2024.103716_b13) 2021; 38 Lin (10.1016/j.cad.2024.103716_b8) 2005; 50 Lin (10.1016/j.cad.2024.103716_b11) 2018; 31 Hoschek (10.1016/j.cad.2024.103716_b20) 1996 Lee (10.1016/j.cad.2024.103716_b27) 1989; 21 Kineri (10.1016/j.cad.2024.103716_b3) 2012; 44 Deng (10.1016/j.cad.2024.103716_b4) 2014; 47 Zhang (10.1016/j.cad.2024.103716_b12) 2016; 32 Wang (10.1016/j.cad.2024.103716_b2) 2006; 25 Maekawa (10.1016/j.cad.2024.103716_b21) 2007; 39 Rios (10.1016/j.cad.2024.103716_b15) 2021; 406 Qi (10.1016/j.cad.2024.103716_b6) 1975; 18 Bo (10.1016/j.cad.2024.103716_b26) 2012; 36 Lin (10.1016/j.cad.2024.103716_b10) 2011; 35 Hu (10.1016/j.cad.2024.103716_b25) 2005; 22 |
References_xml | – volume: 39 start-page: 139 year: 2021 end-page: 148 ident: b16 article-title: Gauss-Seidel progressive iterative approximation (GS-PIA) for subdivision surface interpolation publication-title: Vis Comput – volume: 95 start-page: 40 year: 2018 end-page: 51 ident: b1 article-title: Survey on geometric iterative methods and their applications publication-title: Comput Aided Des – volume: 44 start-page: 143 year: 2012 end-page: 145 ident: b24 article-title: Progressive iteration approximation and the geometric algorithm publication-title: Comput Aided Des – volume: 42 start-page: 505 year: 2010 end-page: 508 ident: b22 article-title: The convergence of the geometric interpolation algorithm publication-title: Comput Aided Des – volume: 22 start-page: 251 year: 2005 end-page: 260 ident: b25 article-title: A second order algorithm for orthogonal projection onto curves and surfaces publication-title: Comput Aided Geom Design – volume: 169 year: 2024 ident: b19 article-title: Full-LSPIA: A least-squares progressive-iterative approximation method with optimization of weights and knots for NURBS curves and surfaces publication-title: Comput Aided Des – volume: 406 year: 2021 ident: b15 article-title: LSPIA, (stochastic) gradient descent, and parameter correction publication-title: J Comput Appl Math – volume: 21 start-page: 363 year: 1989 end-page: 370 ident: b27 article-title: Choosing nodes in parametric curve interpolation publication-title: Comput Aided Des – volume: 32 start-page: 1109 year: 2016 end-page: 1120 ident: b12 article-title: Least square geometric iterative fitting method for generalized B-spline curves with two different kinds of weights publication-title: Vis Comput – start-page: 1 year: 2022 end-page: 18 ident: b14 article-title: Fairing-PIA: progressive-iterative approximation for fairing curve and surface generation publication-title: Vis Comput – year: 2023 ident: b5 article-title: Improving geometric iterative approximation methods using local approximations publication-title: Comput Graph – volume: 27 start-page: 129 year: 2010 end-page: 137 ident: b9 article-title: Weighted progressive iteration approximation and convergence analysis publication-title: Comput Aided Geom Design – volume: 50 start-page: 575 year: 2005 end-page: 586 ident: b8 article-title: Totally positive bases and progressive iteration approximation publication-title: Comput Math Appl – volume: 31 start-page: 1618 year: 2018 end-page: 1632 ident: b11 article-title: The convergence of least-squares progressive iterative approximation for singular least-squares fitting system publication-title: J. Syst. Sci. Complex. – volume: 36 start-page: 884 year: 2012 end-page: 891 ident: b23 article-title: Convergence analysis for B-spline geometric interpolation publication-title: Comput Graph – year: 1996 ident: b20 article-title: Fundamentals of computer aided geometric design – volume: 39 start-page: 313 year: 2007 end-page: 323 ident: b21 article-title: Interpolation by geometric algorithm publication-title: Comput Aided Des – volume: 47 start-page: 32 year: 2014 end-page: 44 ident: b4 article-title: Progressive and iterative approximation for least squares B-spline curve and surface fitting publication-title: Comput Aided Des – volume: 25 start-page: 214 year: 2006 end-page: 238 ident: b2 article-title: Fitting B-spline curves to point clouds by curvature-based squared distance minimization publication-title: ACM Trans. Graphics (ToG) – volume: 35 start-page: 967 year: 2011 end-page: 975 ident: b10 article-title: An extended iterative format for the progressive-iteration approximation publication-title: Comput Graph – year: 2022 ident: b17 article-title: Progressive iterative approximation of non-uniform cubic B-spline curves and surfaces via successive over-relaxation iteration publication-title: Mathematics – volume: 36 start-page: 534 year: 2012 end-page: 540 ident: b26 article-title: A revisit to fitting parametric surfaces to point clouds publication-title: Comput Graph – volume: 44 start-page: 697 year: 2012 end-page: 708 ident: b3 article-title: B-spline surface fitting by iterative geometric interpolation/approximation algorithms publication-title: Comput Aided Des – volume: 18 start-page: 173 year: 1975 end-page: 184 ident: b6 article-title: The method of numeric polish in curve fitting publication-title: Comput Math Appl – volume: 47 start-page: 315 year: 2004 end-page: 331 ident: b7 article-title: Constructing iterative non-uniform B-spline curve and surface to fit data points publication-title: Sci. China Ser. : Inf. Sci. – volume: 38 start-page: 591 year: 2021 end-page: 602 ident: b13 article-title: On extended progressive and iterative approximation for least squares fitting publication-title: Vis Comput – year: 2023 ident: b18 article-title: Constrained least square progressive and iterative approximation (CLSPIA) for B-spline curve and surface fitting publication-title: Vis Comput – volume: 42 start-page: 505 year: 2010 ident: 10.1016/j.cad.2024.103716_b22 article-title: The convergence of the geometric interpolation algorithm publication-title: Comput Aided Des doi: 10.1016/j.cad.2010.01.006 – volume: 50 start-page: 575 year: 2005 ident: 10.1016/j.cad.2024.103716_b8 article-title: Totally positive bases and progressive iteration approximation publication-title: Comput Math Appl doi: 10.1016/j.camwa.2005.01.023 – volume: 36 start-page: 884 issn: 0097-8493 issue: 7 year: 2012 ident: 10.1016/j.cad.2024.103716_b23 article-title: Convergence analysis for B-spline geometric interpolation publication-title: Comput Graph doi: 10.1016/j.cag.2012.07.002 – volume: 39 start-page: 313 year: 2007 ident: 10.1016/j.cad.2024.103716_b21 article-title: Interpolation by geometric algorithm publication-title: Comput Aided Des doi: 10.1016/j.cad.2006.12.008 – volume: 38 start-page: 591 year: 2021 ident: 10.1016/j.cad.2024.103716_b13 article-title: On extended progressive and iterative approximation for least squares fitting publication-title: Vis Comput doi: 10.1007/s00371-020-02036-8 – year: 2023 ident: 10.1016/j.cad.2024.103716_b5 article-title: Improving geometric iterative approximation methods using local approximations publication-title: Comput Graph doi: 10.1016/j.cag.2023.08.001 – start-page: 1 year: 2022 ident: 10.1016/j.cad.2024.103716_b14 article-title: Fairing-PIA: progressive-iterative approximation for fairing curve and surface generation publication-title: Vis Comput – volume: 47 start-page: 315 year: 2004 ident: 10.1016/j.cad.2024.103716_b7 article-title: Constructing iterative non-uniform B-spline curve and surface to fit data points publication-title: Sci. China Ser. : Inf. Sci. – volume: 44 start-page: 697 year: 2012 ident: 10.1016/j.cad.2024.103716_b3 article-title: B-spline surface fitting by iterative geometric interpolation/approximation algorithms publication-title: Comput Aided Des doi: 10.1016/j.cad.2012.02.011 – volume: 39 start-page: 139 year: 2021 ident: 10.1016/j.cad.2024.103716_b16 article-title: Gauss-Seidel progressive iterative approximation (GS-PIA) for subdivision surface interpolation publication-title: Vis Comput doi: 10.1007/s00371-021-02318-9 – volume: 47 start-page: 32 year: 2014 ident: 10.1016/j.cad.2024.103716_b4 article-title: Progressive and iterative approximation for least squares B-spline curve and surface fitting publication-title: Comput Aided Des doi: 10.1016/j.cad.2013.08.012 – volume: 44 start-page: 143 year: 2012 ident: 10.1016/j.cad.2024.103716_b24 article-title: Progressive iteration approximation and the geometric algorithm publication-title: Comput Aided Des doi: 10.1016/j.cad.2011.01.018 – year: 2022 ident: 10.1016/j.cad.2024.103716_b17 article-title: Progressive iterative approximation of non-uniform cubic B-spline curves and surfaces via successive over-relaxation iteration publication-title: Mathematics doi: 10.3390/math10203766 – volume: 25 start-page: 214 year: 2006 ident: 10.1016/j.cad.2024.103716_b2 article-title: Fitting B-spline curves to point clouds by curvature-based squared distance minimization publication-title: ACM Trans. Graphics (ToG) doi: 10.1145/1138450.1138453 – volume: 169 issn: 0010-4485 year: 2024 ident: 10.1016/j.cad.2024.103716_b19 article-title: Full-LSPIA: A least-squares progressive-iterative approximation method with optimization of weights and knots for NURBS curves and surfaces publication-title: Comput Aided Des doi: 10.1016/j.cad.2023.103673 – volume: 22 start-page: 251 year: 2005 ident: 10.1016/j.cad.2024.103716_b25 article-title: A second order algorithm for orthogonal projection onto curves and surfaces publication-title: Comput Aided Geom Design doi: 10.1016/j.cagd.2004.12.001 – volume: 31 start-page: 1618 year: 2018 ident: 10.1016/j.cad.2024.103716_b11 article-title: The convergence of least-squares progressive iterative approximation for singular least-squares fitting system publication-title: J. Syst. Sci. Complex. doi: 10.1007/s11424-018-7443-y – volume: 27 start-page: 129 year: 2010 ident: 10.1016/j.cad.2024.103716_b9 article-title: Weighted progressive iteration approximation and convergence analysis publication-title: Comput Aided Geom Design doi: 10.1016/j.cagd.2009.11.001 – volume: 95 start-page: 40 year: 2018 ident: 10.1016/j.cad.2024.103716_b1 article-title: Survey on geometric iterative methods and their applications publication-title: Comput Aided Des doi: 10.1016/j.cad.2017.10.002 – year: 2023 ident: 10.1016/j.cad.2024.103716_b18 article-title: Constrained least square progressive and iterative approximation (CLSPIA) for B-spline curve and surface fitting publication-title: Vis Comput doi: 10.1007/s00371-023-03090-8 – year: 1996 ident: 10.1016/j.cad.2024.103716_b20 – volume: 32 start-page: 1109 year: 2016 ident: 10.1016/j.cad.2024.103716_b12 article-title: Least square geometric iterative fitting method for generalized B-spline curves with two different kinds of weights publication-title: Vis Comput doi: 10.1007/s00371-015-1170-3 – volume: 36 start-page: 534 year: 2012 ident: 10.1016/j.cad.2024.103716_b26 article-title: A revisit to fitting parametric surfaces to point clouds publication-title: Comput Graph doi: 10.1016/j.cag.2012.03.036 – volume: 35 start-page: 967 year: 2011 ident: 10.1016/j.cad.2024.103716_b10 article-title: An extended iterative format for the progressive-iteration approximation publication-title: Comput Graph doi: 10.1016/j.cag.2011.07.003 – volume: 406 year: 2021 ident: 10.1016/j.cad.2024.103716_b15 article-title: LSPIA, (stochastic) gradient descent, and parameter correction publication-title: J Comput Appl Math – volume: 18 start-page: 173 year: 1975 ident: 10.1016/j.cad.2024.103716_b6 article-title: The method of numeric polish in curve fitting publication-title: Comput Math Appl – volume: 21 start-page: 363 year: 1989 ident: 10.1016/j.cad.2024.103716_b27 article-title: Choosing nodes in parametric curve interpolation publication-title: Comput Aided Des doi: 10.1016/0010-4485(89)90003-1 |
SSID | ssj0002139 |
Score | 2.4251688 |
Snippet | We introduce a progressive and iterative method for B-spline curve and surface approximation, incorporating parameter correction based on the Newton iterative... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103716 |
SubjectTerms | Curve and surface approximation Geometric iterative approximation Geometric modeling Geometric optimization Progressive and iterative approximation |
Title | Newton Geometric Iterative Method for B-Spline Curve and Surface Approximation |
URI | https://dx.doi.org/10.1016/j.cad.2024.103716 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NSwMxEA2lXvQgfmKrlhw8CWu7yWx291iLtVXaSy30tkyyCVR0W0oLnvztJvuhFdSDx93NwDIJb2bImzeEXEm7qTy0larQGj1QtkCJBSgPUmQQRhiK_KJ9NBaDKTzMglmN9KpeGEerLLG_wPQcrcs37dKb7eV87np8bSkBUeBYkB0b9V0HO4ROP__m_YvmwXxepMAWb9zq6mYz53gpdGKhDPLWczfy_KfYtBVv-gdkv0wUabf4l0NS09kR2duSDzwmY4tQNnWj93rx6gZjKTrMNZItgNFRPhma2pSU3noT13araW-zsl8wS-lkszKoNO06RfG3edG-eEKm_bun3sAr5yN4isXh2uMpRj7I2CgZ6lRCBzGKALhC7SumuBEm8jVLhTG28BNGawXS5wZRyBhj4Kekni0yfUaoDyYOJAOZcgPIVWQEUw6AmNCIgd8gncoziSrFw90Mi5ekYok9J9aZiXNmUjizQa4_TZaFcsZfi6Fyd_Jt-xOL7L-bNf9ndk523VPBur0g9fVqoy9tbrGWrfzwtMhOd_g4GH8A6rHMyg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iz47MGTyQrbznZ3j0hEUOACJNyattsmGF0IgcSTv912H4qJevC67SSbr803M-k3MwhdS3uoNLSZKtNaeKBsghIzUB4kgkAYiZBlD-39AeuM4XESTCqoVdbCOFllwf05p2dsXXypF2jW59Opq_G1qQREgVNBNqzX30CbENDQXe3b9y-dB_FpHgNbwnHby6fNTOSlhOsWSiCrPXczz39yTmsOp72HdotIETfzn9lHFZ0eoJ21_oGHaGApysZu-EHPXt1kLIW7WZNky2C4n42GxjYmxXfe0NXdatxaLeyKSBM8XC2MUBo3XUvxt2lev3iExu37UavjFQMSPEXicOnRREQ-yNgoGepEQkOIKAKgSmhfEUUNM5GvScKMsZkfM1orkD41QjAZixjoMaqms1SfIOyDiQNJQCbUgKAqMowox0CEaSECv4YaJTJcFd3D3RCLF17KxJ65BZM7MHkOZg3dfJrM89YZf22GEm7-7fy5pfbfzU7_Z3aFtjqjfo_3uoOnM7TtVnIJ7jmqLhcrfWEDjaW8zC7SB9z4zmA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Newton+Geometric+Iterative+Method+for+B-Spline+Curve+and+Surface+Approximation&rft.jtitle=Computer+aided+design&rft.au=Song%2C+Qiuyang&rft.au=Bo%2C+Pengbo&rft.date=2024-07-01&rft.issn=0010-4485&rft.volume=172&rft.spage=103716&rft_id=info:doi/10.1016%2Fj.cad.2024.103716&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cad_2024_103716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |