High-efficient and durable overall water splitting performance by interfacial engineering of Fe-doped urchin-like Ni2P/Ni3S2 heterostructure

A novel Fe-doped urchin-like Ni2P/Ni3S2 (NPZFNS@C/NF) heterostructure with abundant hetero-interfaces and carbon-coating is successfully constructed, which exhibits outstanding oxygen evolution reaction (OER) performance and excellent hydrogen evolution reaction (HER) performance. Furthermore, it al...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering journal (Lausanne, Switzerland : 1996) Vol. 424; p. 130434
Main Authors Chen, Wei-Zhe, Liu, Peng-Yu, Zhang, Lei, Liu, Yang, Liu, Zhiliang, He, Jinlu, Wang, Yan-Qin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel Fe-doped urchin-like Ni2P/Ni3S2 (NPZFNS@C/NF) heterostructure with abundant hetero-interfaces and carbon-coating is successfully constructed, which exhibits outstanding oxygen evolution reaction (OER) performance and excellent hydrogen evolution reaction (HER) performance. Furthermore, it also exhibits a small overpotential of 1.5 V for overall water splitting with NPZFNS/NF as both anode and cathode, lower than most of non-noble metal-based bifunctional electrocatalysts reported. [Display omitted] •Fe-doped Fe-Ni3S2/Ni2P@C/NF hetero-interface electrocatalyst is firstly constructed.•The catalyst shows oustanding OER and excellent HER performances.•It can act as a bifunctional catalyst toward excellent overall water splitting bebavior.•The unique electronic structure of the catalyst is the intrinsic reason for the excellent OER and HER performances.•DFT calculations further reveal the changes the d-band center and the rate-degerming step. Interfacial engineering is an efficient strategy to develop electrocatalysts with excellent performance. By using this strategy, a novel Fe-doped urchin-like Ni2P/Ni3S2 (NPZFNS@C/NF) heterostructure with metal–organic frameworks (MOFs) as the precursor in-suit grows on nickel foam (NF) with abundant hetero-interfaces and carbon-coating is successfully constructed. Owing to the existence of hetero-interfaces and carbon coating, the unique surface electronic structure and d-band center of NPZFNS@C/NF are also obtained. Benefiting from the regulation of electronic structure and d-band center, the NPZFNS@C/NF electrode exhibits extremely high activity for oxygen evolution reaction (OER) and high activity for hydrogen evolution reaction (HER), which shows a very low overpotential of 141 mV at the current density of 10 mA cm−2 for OER and 129 mV for HER respectively in alkaline electrolyte. Furthermore, it also exhibits a small overpotential of 1.5 V for overall water splitting with NPZFNS@C/NF as both anode and cathode, which is lower than most of non-noble metal-based bifunctional electrocatalysts reported. Density functional theory (DFT) results further confirm that the hetero-interface with carbon coating can further optimize Gibbs free energies for both OER and HER processes. This design and constructure strategy provides a new avenue for overall water splitting.
AbstractList A novel Fe-doped urchin-like Ni2P/Ni3S2 (NPZFNS@C/NF) heterostructure with abundant hetero-interfaces and carbon-coating is successfully constructed, which exhibits outstanding oxygen evolution reaction (OER) performance and excellent hydrogen evolution reaction (HER) performance. Furthermore, it also exhibits a small overpotential of 1.5 V for overall water splitting with NPZFNS/NF as both anode and cathode, lower than most of non-noble metal-based bifunctional electrocatalysts reported. [Display omitted] •Fe-doped Fe-Ni3S2/Ni2P@C/NF hetero-interface electrocatalyst is firstly constructed.•The catalyst shows oustanding OER and excellent HER performances.•It can act as a bifunctional catalyst toward excellent overall water splitting bebavior.•The unique electronic structure of the catalyst is the intrinsic reason for the excellent OER and HER performances.•DFT calculations further reveal the changes the d-band center and the rate-degerming step. Interfacial engineering is an efficient strategy to develop electrocatalysts with excellent performance. By using this strategy, a novel Fe-doped urchin-like Ni2P/Ni3S2 (NPZFNS@C/NF) heterostructure with metal–organic frameworks (MOFs) as the precursor in-suit grows on nickel foam (NF) with abundant hetero-interfaces and carbon-coating is successfully constructed. Owing to the existence of hetero-interfaces and carbon coating, the unique surface electronic structure and d-band center of NPZFNS@C/NF are also obtained. Benefiting from the regulation of electronic structure and d-band center, the NPZFNS@C/NF electrode exhibits extremely high activity for oxygen evolution reaction (OER) and high activity for hydrogen evolution reaction (HER), which shows a very low overpotential of 141 mV at the current density of 10 mA cm−2 for OER and 129 mV for HER respectively in alkaline electrolyte. Furthermore, it also exhibits a small overpotential of 1.5 V for overall water splitting with NPZFNS@C/NF as both anode and cathode, which is lower than most of non-noble metal-based bifunctional electrocatalysts reported. Density functional theory (DFT) results further confirm that the hetero-interface with carbon coating can further optimize Gibbs free energies for both OER and HER processes. This design and constructure strategy provides a new avenue for overall water splitting.
ArticleNumber 130434
Author He, Jinlu
Liu, Peng-Yu
Liu, Zhiliang
Liu, Yang
Zhang, Lei
Wang, Yan-Qin
Chen, Wei-Zhe
Author_xml – sequence: 1
  givenname: Wei-Zhe
  surname: Chen
  fullname: Chen, Wei-Zhe
  organization: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China
– sequence: 2
  givenname: Peng-Yu
  surname: Liu
  fullname: Liu, Peng-Yu
  organization: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China
– sequence: 3
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China
– sequence: 4
  givenname: Yang
  surname: Liu
  fullname: Liu, Yang
  organization: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China
– sequence: 5
  givenname: Zhiliang
  surname: Liu
  fullname: Liu, Zhiliang
  organization: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China
– sequence: 6
  givenname: Jinlu
  surname: He
  fullname: He, Jinlu
  organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China
– sequence: 7
  givenname: Yan-Qin
  surname: Wang
  fullname: Wang, Yan-Qin
  email: yqwang_chem@imu.edu.cn
  organization: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China
BookMark eNp9kM1OwkAQxzcGEwF9AG_7AoX9KP2IJ0NETAiaqOfNdncKU8u22S4Y3sGHtgRPHjjNJPP_zWR-IzJwjQNC7jmbcMaTaTUxUE0EE3zCJYtlfEWGPEtlJAUXg76X2SzK8ji9IaOuqxhjSc7zIflZ4mYbQVmiQXCBamep3Xtd1ECbA3hd1_RbB_C0a2sMAd2GtuDLxu-0M0CLI0XXj0ttUNcU3AYdgD_FmpIuILJNC5buvdmii2r8ArpG8TZdo3wXdAs92nTB703Ye7gl16WuO7j7q2PyuXj6mC-j1evzy_xxFRmRpyGSuZVC2ziTMyEKOysyKYtUz2LLshhYwhKTQS5zY60uC8tsrHkCMeNprybLtRyT9LzX9Mc7D6UyGHTAxgWvsVacqZNUValeqjpJVWepPcn_ka3HnfbHi8zDmYH-pQOCV93JtQGLHkxQtsEL9C-sqpO3
CitedBy_id crossref_primary_10_1016_j_mtener_2022_100968
crossref_primary_10_1016_j_jcis_2024_05_002
crossref_primary_10_1002_ejic_202300087
crossref_primary_10_1016_j_ijhydene_2022_07_242
crossref_primary_10_1016_j_jcis_2024_08_050
crossref_primary_10_1016_j_electacta_2022_141269
crossref_primary_10_1021_acsanm_2c00326
crossref_primary_10_1016_j_nanoen_2023_108718
crossref_primary_10_1016_j_apcatb_2023_123635
crossref_primary_10_1021_acsami_3c19548
crossref_primary_10_1039_D3CC06015B
crossref_primary_10_1002_adsu_202300379
crossref_primary_10_1016_j_ccr_2024_215777
crossref_primary_10_1016_j_surfin_2023_103632
crossref_primary_10_1002_eem2_12332
crossref_primary_10_1002_advs_202411526
crossref_primary_10_1016_j_jallcom_2022_165342
crossref_primary_10_1016_j_electacta_2023_142524
crossref_primary_10_1039_D2NR01516A
crossref_primary_10_1016_j_ccr_2024_216343
crossref_primary_10_1016_j_cej_2022_136961
crossref_primary_10_1016_j_jcis_2022_12_064
crossref_primary_10_1002_aenm_202303730
crossref_primary_10_1016_j_ijhydene_2023_01_238
crossref_primary_10_1016_j_fuel_2025_135112
crossref_primary_10_1016_j_ijhydene_2023_01_237
crossref_primary_10_1002_smll_202206655
crossref_primary_10_1002_smll_202311770
crossref_primary_10_1002_smll_202200832
crossref_primary_10_1016_j_jece_2023_111222
crossref_primary_10_1016_j_jpowsour_2024_235132
crossref_primary_10_1021_acssuschemeng_2c02133
crossref_primary_10_1016_j_cej_2021_134073
crossref_primary_10_1016_j_jcis_2024_02_170
crossref_primary_10_1016_j_nanoen_2024_110177
crossref_primary_10_1016_j_electacta_2023_142377
crossref_primary_10_1021_acs_inorgchem_2c03759
crossref_primary_10_3390_en14248535
crossref_primary_10_1016_j_cej_2022_135884
crossref_primary_10_1002_cssc_202401197
crossref_primary_10_1016_j_ijhydene_2023_04_132
crossref_primary_10_1016_j_cej_2022_138358
crossref_primary_10_1016_j_jcis_2022_07_118
crossref_primary_10_1016_j_jcis_2022_10_041
crossref_primary_10_1016_j_seppur_2024_128968
crossref_primary_10_1016_j_scriptamat_2024_116242
crossref_primary_10_1016_j_apcatb_2022_121799
crossref_primary_10_1002_er_7933
crossref_primary_10_1016_j_cej_2023_143140
crossref_primary_10_1016_j_apcatb_2022_121356
crossref_primary_10_1016_j_apcatb_2022_121432
crossref_primary_10_1021_acssuschemeng_2c06849
crossref_primary_10_1016_j_electacta_2023_143196
crossref_primary_10_1039_D1CC06113E
crossref_primary_10_1016_j_ccr_2024_216287
crossref_primary_10_1016_j_jallcom_2022_167465
crossref_primary_10_1016_j_fuel_2023_129732
crossref_primary_10_1039_D3QM00793F
crossref_primary_10_1016_j_fuel_2024_132608
crossref_primary_10_1039_D2NJ00104G
crossref_primary_10_1002_smm2_1063
crossref_primary_10_1002_advs_202205605
crossref_primary_10_1016_j_jelechem_2022_116630
crossref_primary_10_1002_jctb_7655
crossref_primary_10_1002_smll_202304512
Cites_doi 10.1039/D0CC04893C
10.1039/D0EE02113J
10.1039/C9TA00646J
10.1021/acsami.0c09005
10.1016/j.nanoen.2018.06.048
10.1016/j.nanoen.2016.08.040
10.1021/acssuschemeng.8b05611
10.1016/j.nanoen.2017.03.024
10.1002/adma.201803590
10.1039/C9TA01044K
10.1039/C7TA02651J
10.1021/jacs.5b08186
10.1002/aenm.201902714
10.1021/acsami.8b09361
10.1002/adfm.201802596
10.1021/acscatal.6b03192
10.1016/j.jcat.2017.12.020
10.1038/nchem.2515
10.1002/adfm.201701008
10.1021/acscatal.8b00413
10.1002/adma.202003414
10.1038/nenergy.2015.6
10.1039/C9TA05578A
10.1038/nmat1840
10.1039/C6EE03768B
10.1021/jacs.8b05134
10.1021/acsenergylett.0c01858
10.1039/D0EE01960G
10.1002/aenm.201903891
10.1039/C5EE01155H
10.1021/acsami.9b14995
10.1002/adma.201502696
10.1016/j.apcatb.2020.119120
10.1002/adma.201905679
10.1002/smll.202002426
10.1002/adfm.201906316
10.1002/adfm.202003198
10.1002/adfm.201803278
10.1021/acsami.6b11821
10.1002/adma.201506314
10.1002/aenm.201902104
10.1021/acsami.5b01467
10.1039/C9TA06347A
10.1039/C6TA00894A
10.1002/cssc.201702328
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cej.2021.130434
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3212
ExternalDocumentID 10_1016_j_cej_2021_130434
S1385894721020209
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABLST
ABMAC
ABNUV
ABUDA
ABYKQ
ACDAQ
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSJ
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABXDB
ACVFH
ADCNI
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BKOMP
BNPGV
CITATION
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
RIG
SEW
SSH
ZY4
ID FETCH-LOGICAL-c297t-39d32ad483522bd5b833b7a54d084e0606c8e939cddafbd0d4a16e401713089a3
IEDL.DBID .~1
ISSN 1385-8947
IngestDate Tue Jul 01 04:27:34 EDT 2025
Thu Apr 24 23:01:10 EDT 2025
Fri Feb 23 02:43:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nickel phosphides/sulfides
Overall water splitting
Carbon-coating
Interfacial engineering
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-39d32ad483522bd5b833b7a54d084e0606c8e939cddafbd0d4a16e401713089a3
ParticipantIDs crossref_citationtrail_10_1016_j_cej_2021_130434
crossref_primary_10_1016_j_cej_2021_130434
elsevier_sciencedirect_doi_10_1016_j_cej_2021_130434
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Chemical engineering journal (Lausanne, Switzerland : 1996)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Xu, Fei, Cai, Ha, Liu, Jia, Zhang, Liu, Wu (b0020) 2019; 10
Hou, Sun, Li, Zhang, Cao, Wu, Gao, Sun (b0075) 2018; 28
Feng, Zhang, Zhang, Li, Wang, Appl (b0130) 2015; 7
Dong, Zhang, Yan, Wang, Sun, Zhang, Feng, Zhang, Appl (b0040) 2019; 11
Lin, Wang, Peng, Bu, Chiang, Tian, Zhao, Zhao, Lin, Lee, Gao (b0170) 2020; 16
Zhao, Wang, Huang, Feng, Gu, Zhang, Xu, Zeng, Gu, Li (b0050) 2020; 13
Gao, Lang, Yu, Tan, Yan, Wang, Ma, Li (b0220) 2018; 11
Huang, Meng, Cao, Yao, He, Wang, Pan, Wu (b0115) 2020; 274
Wang, Cui, Liu, Xing, Asiri, Sun (b0120) 2016; 28
Cao, Cheng, Hu, Jing, Ma, Liu, Gao, Zhang (b0015) 2019; 29
Wu, Zou, Huang, Gao (b0195) 2018; 358
Ma, Dai, Liu, Yong, Qiao, Jin, Li, Huang, Wang, Zhang, Appl (b0135) 2016; 8
Zhang, Sa, Yang, Zhou, Jiang, Wang (b0225) 2020; 75
Yang, Zhang, Lin, Li, Chan, Yang, Gao (b0070) 2017; 7
Zhou, Yu, Zhu, Huang, Yu (b0005) 2019; 7
Wu, Gagliardi, Truhlar (b0240) 2019; 150
Zhang, Liu, Liang, Ang, Zhang, Ma, Dai (b0245) 2021; 284
Zhang, Jiang, Hu, Li, Xu, Petr, Li (b0105) 2019; 7
Luo, Ji, Wang, Cheng, Chen, Lin, Zhang, He, Shi, Li, Xiao, Mu (b0160) 2020; 10
Wang, Jin, Meng, Liao, Meng, Yang, He, Xiong, Mu (b0185) 2018; 28
Luo, Wang, Su, Tang, Liu, Tian, Li (b0030) 2017; 5
Stern, Feng, Song, Hu (b0085) 2015; 8
Xi, Ren, Kong, Wu, Du, Zhu, Xue, Meng, Fu (b0125) 2016; 4
Wu, Yang, Chen, Luo, Fu, Shen, Luo, Li (b0165) 2020; 56
Xu, Shan, Wu, Sun, Huang, Tang, Yan (b0200) 2020; 13
Li, Dong, Jiao (b0230) 2019; 10
Zhang, Jiang, Wang, Yu, Cui, Wu, Shu, Qin, Sun, Yan, Zheng, Zhang, Wu (b0140) 2019; 321
Cui, Tan, Xiao, Zhao, Bedford, Liu, Wang, Wu, Pan, Saputera, Cheong, Tilley, Smith, Yun, Dai, Amal, Wang (b0190) 2020; 5
Li, Wang, Wang, Da, Zhang, Li, Zhong, Deng, Han, Hu (b0080) 2020; 32
Jiang, Zhang, Zhu, Lu, Long, Chen (b0045) 2021; 81
Diao, Qiu, Liu, Wang, Chen, Li, Yuan, Qu, Guo (b0110) 2020; 32
Xia, Yan, Li, Wu, Lou, Wang (b0155) 2016; 1
Fang, Li, Guan, Feng, Zhang, Wang, Wang (b0055) 2017; 27
Liu, Li, Wang, Zhou, Liu, Guo (b0090) 2018; 30
Pachfule, Shinde, Majumder, Xu (b0175) 2016; 8
Zhao, Liu, Rao, Li, Wang, Xia, Wu (b0095) 2018; 7
Zeng, Sun, Wang, Liu, Pan, Liu, Cao, Song, Liu, Liu (b0205) 2018; 51
Jin, Wang, Li, Yue, Han, Shen, Cui (b0215) 2016; 28
Peng, Gong, Li, Yu, Ji, Zhang, Hu, Zhang, Chou, Du, Ramakrishna (b0235) 2018; 140
Diao, Yuan, Qiu, Cheng, Guo (b0210) 2019; 7
Zhao, Liu, Liu, Han, Xu, Xing, Guo, Appl (b0250) 2020; 12
Feng, Yu, Wu, Li, Li, Sun, Asefa, Chen, Zou (b0065) 2015; 137
Zhang, Li, Zhu, Wang, Cui, Wu, Xu, Shu, Qin, Zheng, Ajayan, Zhang, Wu, Appl (b0035) 2018; 10
Zhou, Lu, Zhou, Yang, Ke, Tang, Chen (b0150) 2016; 28
Ma, Wu, Feng, Tan, Yan, Liu, Kang, Wang, Li (b0180) 2017; 10
Zhang, Feng, Lu, He, Wang, Li, Wang, Cao (b0010) 2018; 8
Li, Sun, Shang, Li, Lei, Li, Pan (b0100) 2019; 7
Stamenkovic, Mun, Arenz, Mayrhofer, Lucas, Wang, Ross, Markovic (b0025) 2007; 6
Wu, Liu, Li, Zou, Lian, Wang, Sun, Asefa, Zou (b0060) 2017; 35
Li, Hu, Zhang, Huo, Jing, Liu, Gao, Zhang, Liu (b0145) 2020; 30
Fang (10.1016/j.cej.2021.130434_b0055) 2017; 27
Stamenkovic (10.1016/j.cej.2021.130434_b0025) 2007; 6
Li (10.1016/j.cej.2021.130434_b0100) 2019; 7
Yang (10.1016/j.cej.2021.130434_b0070) 2017; 7
Zhou (10.1016/j.cej.2021.130434_b0150) 2016; 28
Li (10.1016/j.cej.2021.130434_b0145) 2020; 30
Zeng (10.1016/j.cej.2021.130434_b0205) 2018; 51
Wang (10.1016/j.cej.2021.130434_b0120) 2016; 28
Zhou (10.1016/j.cej.2021.130434_b0005) 2019; 7
Ma (10.1016/j.cej.2021.130434_b0135) 2016; 8
Luo (10.1016/j.cej.2021.130434_b0030) 2017; 5
Xu (10.1016/j.cej.2021.130434_b0200) 2020; 13
Wu (10.1016/j.cej.2021.130434_b0165) 2020; 56
Luo (10.1016/j.cej.2021.130434_b0160) 2020; 10
Zhang (10.1016/j.cej.2021.130434_b0225) 2020; 75
Cao (10.1016/j.cej.2021.130434_b0015) 2019; 29
Li (10.1016/j.cej.2021.130434_b0080) 2020; 32
Jiang (10.1016/j.cej.2021.130434_b0045) 2021; 81
Wu (10.1016/j.cej.2021.130434_b0195) 2018; 358
Wu (10.1016/j.cej.2021.130434_b0060) 2017; 35
Zhang (10.1016/j.cej.2021.130434_b0010) 2018; 8
Zhang (10.1016/j.cej.2021.130434_b0035) 2018; 10
Huang (10.1016/j.cej.2021.130434_b0115) 2020; 274
Cui (10.1016/j.cej.2021.130434_b0190) 2020; 5
Feng (10.1016/j.cej.2021.130434_b0130) 2015; 7
Zhang (10.1016/j.cej.2021.130434_b0105) 2019; 7
Diao (10.1016/j.cej.2021.130434_b0110) 2020; 32
Hou (10.1016/j.cej.2021.130434_b0075) 2018; 28
Liu (10.1016/j.cej.2021.130434_b0090) 2018; 30
Gao (10.1016/j.cej.2021.130434_b0220) 2018; 11
Peng (10.1016/j.cej.2021.130434_b0235) 2018; 140
Zhao (10.1016/j.cej.2021.130434_b0095) 2018; 7
Wang (10.1016/j.cej.2021.130434_b0185) 2018; 28
Jin (10.1016/j.cej.2021.130434_b0215) 2016; 28
Wu (10.1016/j.cej.2021.130434_b0240) 2019; 150
Zhao (10.1016/j.cej.2021.130434_b0050) 2020; 13
Diao (10.1016/j.cej.2021.130434_b0210) 2019; 7
Zhang (10.1016/j.cej.2021.130434_b0245) 2021; 284
Zhao (10.1016/j.cej.2021.130434_b0250) 2020; 12
Dong (10.1016/j.cej.2021.130434_b0040) 2019; 11
Xia (10.1016/j.cej.2021.130434_b0155) 2016; 1
Feng (10.1016/j.cej.2021.130434_b0065) 2015; 137
Pachfule (10.1016/j.cej.2021.130434_b0175) 2016; 8
Zhang (10.1016/j.cej.2021.130434_b0140) 2019; 321
Lin (10.1016/j.cej.2021.130434_b0170) 2020; 16
Xi (10.1016/j.cej.2021.130434_b0125) 2016; 4
Stern (10.1016/j.cej.2021.130434_b0085) 2015; 8
Ma (10.1016/j.cej.2021.130434_b0180) 2017; 10
Xu (10.1016/j.cej.2021.130434_b0020) 2019; 10
Li (10.1016/j.cej.2021.130434_b0230) 2019; 10
References_xml – volume: 8
  start-page: 718
  year: 2016
  end-page: 724
  ident: b0175
  publication-title: Nat Chem
– volume: 8
  start-page: 34396
  year: 2016
  end-page: 34404
  ident: b0135
  publication-title: Mater. Interfaces
– volume: 4
  start-page: 7297
  year: 2016
  end-page: 7304
  ident: b0125
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 1803590
  year: 2018
  ident: b0090
  publication-title: Adv. Mater.
– volume: 28
  start-page: 3785
  year: 2016
  end-page: 3790
  ident: b0215
  publication-title: Adv. Mater.
– volume: 150
  year: 2019
  ident: b0240
  publication-title: J Chem Phys.
– volume: 35
  start-page: 161
  year: 2017
  end-page: 170
  ident: b0060
  publication-title: Nano Energy
– volume: 274
  year: 2020
  ident: b0115
  publication-title: Appl. Catal. B
– volume: 284
  year: 2021
  ident: b0245
  publication-title: Appl. Catal. B
– volume: 7
  start-page: 6730
  year: 2019
  end-page: 6739
  ident: b0210
  publication-title: J. Mater. Chem. A
– volume: 30
  start-page: 2003198
  year: 2020
  ident: b0145
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 5143
  year: 2020
  end-page: 5151
  ident: b0050
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 7548
  year: 2019
  end-page: 7552
  ident: b0105
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 788
  year: 2017
  end-page: 798
  ident: b0180
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 2357
  year: 2017
  end-page: 2366
  ident: b0070
  publication-title: ACS Catal.
– volume: 11
  start-page: 1082
  year: 2018
  end-page: 1091
  ident: b0220
  publication-title: ChemSusChem
– volume: 10
  start-page: 31330
  year: 2018
  end-page: 31339
  ident: b0035
  publication-title: Mater. Interfaces
– volume: 28
  start-page: 215
  year: 2016
  end-page: 230
  ident: b0120
  publication-title: Adv. Mater.
– volume: 12
  start-page: 40248
  year: 2020
  end-page: 40260
  ident: b0250
  publication-title: Mater. Interfaces
– volume: 10
  start-page: 1902714
  year: 2019
  ident: b0020
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 5431
  year: 2018
  end-page: 5441
  ident: b0010
  publication-title: ACS Catal.
– volume: 7
  start-page: 9203
  year: 2015
  end-page: 9210
  ident: b0130
  publication-title: Mater. Interfaces
– volume: 7
  start-page: 2610
  year: 2018
  end-page: 2618
  ident: b0095
  publication-title: ACS Sustainable Chem. Eng.
– volume: 56
  start-page: 12339
  year: 2020
  end-page: 12342
  ident: b0165
  publication-title: Chem Commun
– volume: 358
  start-page: 243
  year: 2018
  end-page: 252
  ident: b0195
  publication-title: J Catal.
– volume: 7
  start-page: 18003
  year: 2019
  end-page: 18011
  ident: b0100
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 13644
  year: 2018
  end-page: 13653
  ident: b0235
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 3560
  year: 2020
  end-page: 3568
  ident: b0190
  publication-title: ACS Energy Lett.
– volume: 32
  start-page: 2003414
  year: 2020
  ident: b0080
  publication-title: Adv. Mater.
– volume: 7
  start-page: 18118
  year: 2019
  end-page: 18125
  ident: b0005
  publication-title: J. Mater. Chem. A
– volume: 81
  year: 2021
  ident: b0045
  publication-title: Nano Energy
– volume: 51
  start-page: 26
  year: 2018
  end-page: 36
  ident: b0205
  publication-title: Nano Energy
– volume: 13
  start-page: 2949
  year: 2020
  end-page: 2956
  ident: b0200
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 1902104
  year: 2019
  ident: b0230
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 143
  year: 2016
  end-page: 150
  ident: b0150
  publication-title: Nano Energy
– volume: 5
  start-page: 14865
  year: 2017
  end-page: 14872
  ident: b0030
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 241
  year: 2007
  end-page: 247
  ident: b0025
  publication-title: Nat. Mater.
– volume: 1
  start-page: 15006
  year: 2016
  ident: b0155
  publication-title: Nat. Energy
– volume: 75
  year: 2020
  ident: b0225
  publication-title: Nano Energy
– volume: 32
  start-page: 1905679
  year: 2020
  ident: b0110
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1802596
  year: 2018
  ident: b0185
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 1803278
  year: 2018
  ident: b0075
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 45080
  year: 2019
  end-page: 45086
  ident: b0040
  publication-title: Mater. Interfaces
– volume: 137
  start-page: 14023
  year: 2015
  end-page: 14026
  ident: b0065
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 1701008
  year: 2017
  ident: b0055
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 2347
  year: 2015
  end-page: 2351
  ident: b0085
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 2002426
  year: 2020
  ident: b0170
  publication-title: Small
– volume: 29
  start-page: 1906316
  year: 2019
  ident: b0015
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1903891
  year: 2020
  ident: b0160
  publication-title: Adv. Energy Mater.
– volume: 321
  year: 2019
  ident: b0140
  publication-title: Electrochim. Acta
– volume: 56
  start-page: 12339
  year: 2020
  ident: 10.1016/j.cej.2021.130434_b0165
  publication-title: Chem Commun
  doi: 10.1039/D0CC04893C
– volume: 13
  start-page: 2949
  year: 2020
  ident: 10.1016/j.cej.2021.130434_b0200
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02113J
– volume: 7
  start-page: 7548
  year: 2019
  ident: 10.1016/j.cej.2021.130434_b0105
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA00646J
– volume: 12
  start-page: 40248
  year: 2020
  ident: 10.1016/j.cej.2021.130434_b0250
  publication-title: Mater. Interfaces
  doi: 10.1021/acsami.0c09005
– volume: 51
  start-page: 26
  year: 2018
  ident: 10.1016/j.cej.2021.130434_b0205
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.06.048
– volume: 28
  start-page: 143
  year: 2016
  ident: 10.1016/j.cej.2021.130434_b0150
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.08.040
– volume: 7
  start-page: 2610
  year: 2018
  ident: 10.1016/j.cej.2021.130434_b0095
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b05611
– volume: 35
  start-page: 161
  year: 2017
  ident: 10.1016/j.cej.2021.130434_b0060
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.03.024
– volume: 30
  start-page: 1803590
  year: 2018
  ident: 10.1016/j.cej.2021.130434_b0090
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803590
– volume: 7
  start-page: 6730
  year: 2019
  ident: 10.1016/j.cej.2021.130434_b0210
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA01044K
– volume: 5
  start-page: 14865
  year: 2017
  ident: 10.1016/j.cej.2021.130434_b0030
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02651J
– volume: 75
  year: 2020
  ident: 10.1016/j.cej.2021.130434_b0225
  publication-title: Nano Energy
– volume: 137
  start-page: 14023
  year: 2015
  ident: 10.1016/j.cej.2021.130434_b0065
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08186
– volume: 10
  start-page: 1902714
  year: 2019
  ident: 10.1016/j.cej.2021.130434_b0020
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902714
– volume: 10
  start-page: 31330
  year: 2018
  ident: 10.1016/j.cej.2021.130434_b0035
  publication-title: Mater. Interfaces
  doi: 10.1021/acsami.8b09361
– volume: 28
  start-page: 1802596
  year: 2018
  ident: 10.1016/j.cej.2021.130434_b0185
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802596
– volume: 7
  start-page: 2357
  year: 2017
  ident: 10.1016/j.cej.2021.130434_b0070
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03192
– volume: 358
  start-page: 243
  year: 2018
  ident: 10.1016/j.cej.2021.130434_b0195
  publication-title: J Catal.
  doi: 10.1016/j.jcat.2017.12.020
– volume: 8
  start-page: 718
  year: 2016
  ident: 10.1016/j.cej.2021.130434_b0175
  publication-title: Nat Chem
  doi: 10.1038/nchem.2515
– volume: 27
  start-page: 1701008
  year: 2017
  ident: 10.1016/j.cej.2021.130434_b0055
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701008
– volume: 8
  start-page: 5431
  year: 2018
  ident: 10.1016/j.cej.2021.130434_b0010
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b00413
– volume: 32
  start-page: 2003414
  year: 2020
  ident: 10.1016/j.cej.2021.130434_b0080
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003414
– volume: 1
  start-page: 15006
  year: 2016
  ident: 10.1016/j.cej.2021.130434_b0155
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.6
– volume: 7
  start-page: 18003
  year: 2019
  ident: 10.1016/j.cej.2021.130434_b0100
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05578A
– volume: 6
  start-page: 241
  year: 2007
  ident: 10.1016/j.cej.2021.130434_b0025
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1840
– volume: 10
  start-page: 788
  year: 2017
  ident: 10.1016/j.cej.2021.130434_b0180
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03768B
– volume: 140
  start-page: 13644
  year: 2018
  ident: 10.1016/j.cej.2021.130434_b0235
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05134
– volume: 5
  start-page: 3560
  year: 2020
  ident: 10.1016/j.cej.2021.130434_b0190
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01858
– volume: 13
  start-page: 5143
  year: 2020
  ident: 10.1016/j.cej.2021.130434_b0050
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01960G
– volume: 10
  start-page: 1903891
  year: 2020
  ident: 10.1016/j.cej.2021.130434_b0160
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903891
– volume: 8
  start-page: 2347
  year: 2015
  ident: 10.1016/j.cej.2021.130434_b0085
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01155H
– volume: 11
  start-page: 45080
  year: 2019
  ident: 10.1016/j.cej.2021.130434_b0040
  publication-title: Mater. Interfaces
  doi: 10.1021/acsami.9b14995
– volume: 28
  start-page: 215
  year: 2016
  ident: 10.1016/j.cej.2021.130434_b0120
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502696
– volume: 274
  year: 2020
  ident: 10.1016/j.cej.2021.130434_b0115
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2020.119120
– volume: 32
  start-page: 1905679
  year: 2020
  ident: 10.1016/j.cej.2021.130434_b0110
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905679
– volume: 16
  start-page: 2002426
  year: 2020
  ident: 10.1016/j.cej.2021.130434_b0170
  publication-title: Small
  doi: 10.1002/smll.202002426
– volume: 29
  start-page: 1906316
  year: 2019
  ident: 10.1016/j.cej.2021.130434_b0015
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201906316
– volume: 30
  start-page: 2003198
  year: 2020
  ident: 10.1016/j.cej.2021.130434_b0145
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003198
– volume: 28
  start-page: 1803278
  year: 2018
  ident: 10.1016/j.cej.2021.130434_b0075
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803278
– volume: 321
  year: 2019
  ident: 10.1016/j.cej.2021.130434_b0140
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 34396
  year: 2016
  ident: 10.1016/j.cej.2021.130434_b0135
  publication-title: Mater. Interfaces
  doi: 10.1021/acsami.6b11821
– volume: 28
  start-page: 3785
  year: 2016
  ident: 10.1016/j.cej.2021.130434_b0215
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506314
– volume: 10
  start-page: 1902104
  year: 2019
  ident: 10.1016/j.cej.2021.130434_b0230
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902104
– volume: 7
  start-page: 9203
  year: 2015
  ident: 10.1016/j.cej.2021.130434_b0130
  publication-title: Mater. Interfaces
  doi: 10.1021/acsami.5b01467
– volume: 150
  year: 2019
  ident: 10.1016/j.cej.2021.130434_b0240
  publication-title: J Chem Phys.
– volume: 81
  year: 2021
  ident: 10.1016/j.cej.2021.130434_b0045
  publication-title: Nano Energy
– volume: 284
  year: 2021
  ident: 10.1016/j.cej.2021.130434_b0245
  publication-title: Appl. Catal. B
– volume: 7
  start-page: 18118
  year: 2019
  ident: 10.1016/j.cej.2021.130434_b0005
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA06347A
– volume: 4
  start-page: 7297
  year: 2016
  ident: 10.1016/j.cej.2021.130434_b0125
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00894A
– volume: 11
  start-page: 1082
  year: 2018
  ident: 10.1016/j.cej.2021.130434_b0220
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201702328
SSID ssj0006919
Score 2.591813
Snippet A novel Fe-doped urchin-like Ni2P/Ni3S2 (NPZFNS@C/NF) heterostructure with abundant hetero-interfaces and carbon-coating is successfully constructed, which...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 130434
SubjectTerms Carbon-coating
Interfacial engineering
Nickel phosphides/sulfides
Overall water splitting
Title High-efficient and durable overall water splitting performance by interfacial engineering of Fe-doped urchin-like Ni2P/Ni3S2 heterostructure
URI https://dx.doi.org/10.1016/j.cej.2021.130434
Volume 424
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5EL-5B1HVZ1wd98CS0k6Q76fRRZIfRwUF8oLfQnapg3CEzjIp48Rf4o7crjx2F1YPkEDp0hVDVVFWnv_qKsT2tA-fSMBQalRVKpyCMBj_M40JG0uZYUKHw6SgZXKmTm_hmgR11tTAEq2x9f-PTa2_dPum12uxNy7J3EdKZllGaNi3-oiI-pTSt8oOXOcwjMXVzD5osaHZ3slljvHK881vEKKSeyEqq_8emN_Gmv8pW2kSRHzbfssYWsFpn397QB35nrwTSEFiTQPjYwW0FHB5nVAzFCZlpx2P-5HPJGb_3qWYNcObTeaEAd8-c2CJmhaX_5hzn7-aTgvdRwGSKwKldVFmJcfkH-aiMznqjUl5E_JaANJOGf_Zxhhvsqv_78mgg2u4KIo-MfhDSgIwsqDoFcxC7VEqnbawgSBUGfmOTp2ikyQFs4SAAZcMEFfHryCA1Vv5gi9Wkwp-MJ5hI4lW1kUuUATAyyMFnhgnEscRYbbKg02uWt9Tj1AFjnHUYs7vMmyIjU2SNKTbZ_j-RacO78dlk1Rkre7d4Mh8XPhb79TWxLbZMIypIDONttuj1jDs-M3lwu_XS22VLh8fDwYjuw_Pr4V-SReSX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqco5TEHuCCZTWzn4QMHBKy2tF0htZV6C3Zmoqassqttq6oXfgH_hj-IJw-2SMABqcopD1vOjDUztr_5RoiXWRZ5n8exzMg4abIcpc0w3JZJpZV2JVWcKLw3TSeH5tNRcrQmfgy5MAyr7G1_Z9Nba90_GfXSHC3qerQf85mWNRkvWsJle2TlDl1ehHXb6dvtD0HJr5Qafzx4P5F9aQFZKpudSW1RK4emjT88Jj7X2mcuMRjlhqIQ1Zc5WW1LRFd5jNC4OCXD5DI6yq3Tod8b4qYJ5oLLJrz5tsKVpLatJsKjkzy84Si1BZWVdBLWpCrmIsxGmz87wysObnxXbPSRKbzrfv6eWKPmvrhzha_wgfjOqBBJLetEcFbgGgQ8X3L2FTAU1M1mcBGC1yWchti2RVTDYpWZAP4SmJ5iWTneqAda9Q3zCsYkcb4gBK5PVTdyVn8lmNbq82ha630Fx4zcmXeEt-dLeigOr0Xmj8R6M2_osYCUUs1Erk751FhEq6MSQyiaYpJoSsymiAa5FmXPdc4lN2bFAGo7KYIqClZF0aliU7z-1WTREX3862MzKKv4bbYWwRH9vdmT_2v2QtyaHOztFrvb050tcZvfcDZknDwV60Hm9CyERWf-eTsNQXy57nn_E5LMHfU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficient+and+durable+overall+water+splitting+performance+by+interfacial+engineering+of+Fe-doped+urchin-like+Ni2P%2FNi3S2+heterostructure&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Chen%2C+Wei-Zhe&rft.au=Liu%2C+Peng-Yu&rft.au=Zhang%2C+Lei&rft.au=Liu%2C+Yang&rft.date=2021-11-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=424&rft_id=info:doi/10.1016%2Fj.cej.2021.130434&rft.externalDocID=S1385894721020209
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon