High-efficient and durable overall water splitting performance by interfacial engineering of Fe-doped urchin-like Ni2P/Ni3S2 heterostructure
A novel Fe-doped urchin-like Ni2P/Ni3S2 (NPZFNS@C/NF) heterostructure with abundant hetero-interfaces and carbon-coating is successfully constructed, which exhibits outstanding oxygen evolution reaction (OER) performance and excellent hydrogen evolution reaction (HER) performance. Furthermore, it al...
Saved in:
Published in | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 424; p. 130434 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel Fe-doped urchin-like Ni2P/Ni3S2 (NPZFNS@C/NF) heterostructure with abundant hetero-interfaces and carbon-coating is successfully constructed, which exhibits outstanding oxygen evolution reaction (OER) performance and excellent hydrogen evolution reaction (HER) performance. Furthermore, it also exhibits a small overpotential of 1.5 V for overall water splitting with NPZFNS/NF as both anode and cathode, lower than most of non-noble metal-based bifunctional electrocatalysts reported.
[Display omitted]
•Fe-doped Fe-Ni3S2/Ni2P@C/NF hetero-interface electrocatalyst is firstly constructed.•The catalyst shows oustanding OER and excellent HER performances.•It can act as a bifunctional catalyst toward excellent overall water splitting bebavior.•The unique electronic structure of the catalyst is the intrinsic reason for the excellent OER and HER performances.•DFT calculations further reveal the changes the d-band center and the rate-degerming step.
Interfacial engineering is an efficient strategy to develop electrocatalysts with excellent performance. By using this strategy, a novel Fe-doped urchin-like Ni2P/Ni3S2 (NPZFNS@C/NF) heterostructure with metal–organic frameworks (MOFs) as the precursor in-suit grows on nickel foam (NF) with abundant hetero-interfaces and carbon-coating is successfully constructed. Owing to the existence of hetero-interfaces and carbon coating, the unique surface electronic structure and d-band center of NPZFNS@C/NF are also obtained. Benefiting from the regulation of electronic structure and d-band center, the NPZFNS@C/NF electrode exhibits extremely high activity for oxygen evolution reaction (OER) and high activity for hydrogen evolution reaction (HER), which shows a very low overpotential of 141 mV at the current density of 10 mA cm−2 for OER and 129 mV for HER respectively in alkaline electrolyte. Furthermore, it also exhibits a small overpotential of 1.5 V for overall water splitting with NPZFNS@C/NF as both anode and cathode, which is lower than most of non-noble metal-based bifunctional electrocatalysts reported. Density functional theory (DFT) results further confirm that the hetero-interface with carbon coating can further optimize Gibbs free energies for both OER and HER processes. This design and constructure strategy provides a new avenue for overall water splitting. |
---|---|
AbstractList | A novel Fe-doped urchin-like Ni2P/Ni3S2 (NPZFNS@C/NF) heterostructure with abundant hetero-interfaces and carbon-coating is successfully constructed, which exhibits outstanding oxygen evolution reaction (OER) performance and excellent hydrogen evolution reaction (HER) performance. Furthermore, it also exhibits a small overpotential of 1.5 V for overall water splitting with NPZFNS/NF as both anode and cathode, lower than most of non-noble metal-based bifunctional electrocatalysts reported.
[Display omitted]
•Fe-doped Fe-Ni3S2/Ni2P@C/NF hetero-interface electrocatalyst is firstly constructed.•The catalyst shows oustanding OER and excellent HER performances.•It can act as a bifunctional catalyst toward excellent overall water splitting bebavior.•The unique electronic structure of the catalyst is the intrinsic reason for the excellent OER and HER performances.•DFT calculations further reveal the changes the d-band center and the rate-degerming step.
Interfacial engineering is an efficient strategy to develop electrocatalysts with excellent performance. By using this strategy, a novel Fe-doped urchin-like Ni2P/Ni3S2 (NPZFNS@C/NF) heterostructure with metal–organic frameworks (MOFs) as the precursor in-suit grows on nickel foam (NF) with abundant hetero-interfaces and carbon-coating is successfully constructed. Owing to the existence of hetero-interfaces and carbon coating, the unique surface electronic structure and d-band center of NPZFNS@C/NF are also obtained. Benefiting from the regulation of electronic structure and d-band center, the NPZFNS@C/NF electrode exhibits extremely high activity for oxygen evolution reaction (OER) and high activity for hydrogen evolution reaction (HER), which shows a very low overpotential of 141 mV at the current density of 10 mA cm−2 for OER and 129 mV for HER respectively in alkaline electrolyte. Furthermore, it also exhibits a small overpotential of 1.5 V for overall water splitting with NPZFNS@C/NF as both anode and cathode, which is lower than most of non-noble metal-based bifunctional electrocatalysts reported. Density functional theory (DFT) results further confirm that the hetero-interface with carbon coating can further optimize Gibbs free energies for both OER and HER processes. This design and constructure strategy provides a new avenue for overall water splitting. |
ArticleNumber | 130434 |
Author | He, Jinlu Liu, Peng-Yu Liu, Zhiliang Liu, Yang Zhang, Lei Wang, Yan-Qin Chen, Wei-Zhe |
Author_xml | – sequence: 1 givenname: Wei-Zhe surname: Chen fullname: Chen, Wei-Zhe organization: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China – sequence: 2 givenname: Peng-Yu surname: Liu fullname: Liu, Peng-Yu organization: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China – sequence: 3 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China – sequence: 4 givenname: Yang surname: Liu fullname: Liu, Yang organization: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China – sequence: 5 givenname: Zhiliang surname: Liu fullname: Liu, Zhiliang organization: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China – sequence: 6 givenname: Jinlu surname: He fullname: He, Jinlu organization: College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China – sequence: 7 givenname: Yan-Qin surname: Wang fullname: Wang, Yan-Qin email: yqwang_chem@imu.edu.cn organization: Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, PR China |
BookMark | eNp9kM1OwkAQxzcGEwF9AG_7AoX9KP2IJ0NETAiaqOfNdncKU8u22S4Y3sGHtgRPHjjNJPP_zWR-IzJwjQNC7jmbcMaTaTUxUE0EE3zCJYtlfEWGPEtlJAUXg76X2SzK8ji9IaOuqxhjSc7zIflZ4mYbQVmiQXCBamep3Xtd1ECbA3hd1_RbB_C0a2sMAd2GtuDLxu-0M0CLI0XXj0ttUNcU3AYdgD_FmpIuILJNC5buvdmii2r8ArpG8TZdo3wXdAs92nTB703Ye7gl16WuO7j7q2PyuXj6mC-j1evzy_xxFRmRpyGSuZVC2ziTMyEKOysyKYtUz2LLshhYwhKTQS5zY60uC8tsrHkCMeNprybLtRyT9LzX9Mc7D6UyGHTAxgWvsVacqZNUValeqjpJVWepPcn_ka3HnfbHi8zDmYH-pQOCV93JtQGLHkxQtsEL9C-sqpO3 |
CitedBy_id | crossref_primary_10_1016_j_mtener_2022_100968 crossref_primary_10_1016_j_jcis_2024_05_002 crossref_primary_10_1002_ejic_202300087 crossref_primary_10_1016_j_ijhydene_2022_07_242 crossref_primary_10_1016_j_jcis_2024_08_050 crossref_primary_10_1016_j_electacta_2022_141269 crossref_primary_10_1021_acsanm_2c00326 crossref_primary_10_1016_j_nanoen_2023_108718 crossref_primary_10_1016_j_apcatb_2023_123635 crossref_primary_10_1021_acsami_3c19548 crossref_primary_10_1039_D3CC06015B crossref_primary_10_1002_adsu_202300379 crossref_primary_10_1016_j_ccr_2024_215777 crossref_primary_10_1016_j_surfin_2023_103632 crossref_primary_10_1002_eem2_12332 crossref_primary_10_1002_advs_202411526 crossref_primary_10_1016_j_jallcom_2022_165342 crossref_primary_10_1016_j_electacta_2023_142524 crossref_primary_10_1039_D2NR01516A crossref_primary_10_1016_j_ccr_2024_216343 crossref_primary_10_1016_j_cej_2022_136961 crossref_primary_10_1016_j_jcis_2022_12_064 crossref_primary_10_1002_aenm_202303730 crossref_primary_10_1016_j_ijhydene_2023_01_238 crossref_primary_10_1016_j_fuel_2025_135112 crossref_primary_10_1016_j_ijhydene_2023_01_237 crossref_primary_10_1002_smll_202206655 crossref_primary_10_1002_smll_202311770 crossref_primary_10_1002_smll_202200832 crossref_primary_10_1016_j_jece_2023_111222 crossref_primary_10_1016_j_jpowsour_2024_235132 crossref_primary_10_1021_acssuschemeng_2c02133 crossref_primary_10_1016_j_cej_2021_134073 crossref_primary_10_1016_j_jcis_2024_02_170 crossref_primary_10_1016_j_nanoen_2024_110177 crossref_primary_10_1016_j_electacta_2023_142377 crossref_primary_10_1021_acs_inorgchem_2c03759 crossref_primary_10_3390_en14248535 crossref_primary_10_1016_j_cej_2022_135884 crossref_primary_10_1002_cssc_202401197 crossref_primary_10_1016_j_ijhydene_2023_04_132 crossref_primary_10_1016_j_cej_2022_138358 crossref_primary_10_1016_j_jcis_2022_07_118 crossref_primary_10_1016_j_jcis_2022_10_041 crossref_primary_10_1016_j_seppur_2024_128968 crossref_primary_10_1016_j_scriptamat_2024_116242 crossref_primary_10_1016_j_apcatb_2022_121799 crossref_primary_10_1002_er_7933 crossref_primary_10_1016_j_cej_2023_143140 crossref_primary_10_1016_j_apcatb_2022_121356 crossref_primary_10_1016_j_apcatb_2022_121432 crossref_primary_10_1021_acssuschemeng_2c06849 crossref_primary_10_1016_j_electacta_2023_143196 crossref_primary_10_1039_D1CC06113E crossref_primary_10_1016_j_ccr_2024_216287 crossref_primary_10_1016_j_jallcom_2022_167465 crossref_primary_10_1016_j_fuel_2023_129732 crossref_primary_10_1039_D3QM00793F crossref_primary_10_1016_j_fuel_2024_132608 crossref_primary_10_1039_D2NJ00104G crossref_primary_10_1002_smm2_1063 crossref_primary_10_1002_advs_202205605 crossref_primary_10_1016_j_jelechem_2022_116630 crossref_primary_10_1002_jctb_7655 crossref_primary_10_1002_smll_202304512 |
Cites_doi | 10.1039/D0CC04893C 10.1039/D0EE02113J 10.1039/C9TA00646J 10.1021/acsami.0c09005 10.1016/j.nanoen.2018.06.048 10.1016/j.nanoen.2016.08.040 10.1021/acssuschemeng.8b05611 10.1016/j.nanoen.2017.03.024 10.1002/adma.201803590 10.1039/C9TA01044K 10.1039/C7TA02651J 10.1021/jacs.5b08186 10.1002/aenm.201902714 10.1021/acsami.8b09361 10.1002/adfm.201802596 10.1021/acscatal.6b03192 10.1016/j.jcat.2017.12.020 10.1038/nchem.2515 10.1002/adfm.201701008 10.1021/acscatal.8b00413 10.1002/adma.202003414 10.1038/nenergy.2015.6 10.1039/C9TA05578A 10.1038/nmat1840 10.1039/C6EE03768B 10.1021/jacs.8b05134 10.1021/acsenergylett.0c01858 10.1039/D0EE01960G 10.1002/aenm.201903891 10.1039/C5EE01155H 10.1021/acsami.9b14995 10.1002/adma.201502696 10.1016/j.apcatb.2020.119120 10.1002/adma.201905679 10.1002/smll.202002426 10.1002/adfm.201906316 10.1002/adfm.202003198 10.1002/adfm.201803278 10.1021/acsami.6b11821 10.1002/adma.201506314 10.1002/aenm.201902104 10.1021/acsami.5b01467 10.1039/C9TA06347A 10.1039/C6TA00894A 10.1002/cssc.201702328 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.cej.2021.130434 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3212 |
ExternalDocumentID | 10_1016_j_cej_2021_130434 S1385894721020209 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ABYKQ ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSG SSJ SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABXDB ACVFH ADCNI AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP BNPGV CITATION EJD FEDTE FGOYB HVGLF HZ~ R2- RIG SEW SSH ZY4 |
ID | FETCH-LOGICAL-c297t-39d32ad483522bd5b833b7a54d084e0606c8e939cddafbd0d4a16e401713089a3 |
IEDL.DBID | .~1 |
ISSN | 1385-8947 |
IngestDate | Tue Jul 01 04:27:34 EDT 2025 Thu Apr 24 23:01:10 EDT 2025 Fri Feb 23 02:43:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nickel phosphides/sulfides Overall water splitting Carbon-coating Interfacial engineering |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-39d32ad483522bd5b833b7a54d084e0606c8e939cddafbd0d4a16e401713089a3 |
ParticipantIDs | crossref_citationtrail_10_1016_j_cej_2021_130434 crossref_primary_10_1016_j_cej_2021_130434 elsevier_sciencedirect_doi_10_1016_j_cej_2021_130434 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-15 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Xu, Fei, Cai, Ha, Liu, Jia, Zhang, Liu, Wu (b0020) 2019; 10 Hou, Sun, Li, Zhang, Cao, Wu, Gao, Sun (b0075) 2018; 28 Feng, Zhang, Zhang, Li, Wang, Appl (b0130) 2015; 7 Dong, Zhang, Yan, Wang, Sun, Zhang, Feng, Zhang, Appl (b0040) 2019; 11 Lin, Wang, Peng, Bu, Chiang, Tian, Zhao, Zhao, Lin, Lee, Gao (b0170) 2020; 16 Zhao, Wang, Huang, Feng, Gu, Zhang, Xu, Zeng, Gu, Li (b0050) 2020; 13 Gao, Lang, Yu, Tan, Yan, Wang, Ma, Li (b0220) 2018; 11 Huang, Meng, Cao, Yao, He, Wang, Pan, Wu (b0115) 2020; 274 Wang, Cui, Liu, Xing, Asiri, Sun (b0120) 2016; 28 Cao, Cheng, Hu, Jing, Ma, Liu, Gao, Zhang (b0015) 2019; 29 Wu, Zou, Huang, Gao (b0195) 2018; 358 Ma, Dai, Liu, Yong, Qiao, Jin, Li, Huang, Wang, Zhang, Appl (b0135) 2016; 8 Zhang, Sa, Yang, Zhou, Jiang, Wang (b0225) 2020; 75 Yang, Zhang, Lin, Li, Chan, Yang, Gao (b0070) 2017; 7 Zhou, Yu, Zhu, Huang, Yu (b0005) 2019; 7 Wu, Gagliardi, Truhlar (b0240) 2019; 150 Zhang, Liu, Liang, Ang, Zhang, Ma, Dai (b0245) 2021; 284 Zhang, Jiang, Hu, Li, Xu, Petr, Li (b0105) 2019; 7 Luo, Ji, Wang, Cheng, Chen, Lin, Zhang, He, Shi, Li, Xiao, Mu (b0160) 2020; 10 Wang, Jin, Meng, Liao, Meng, Yang, He, Xiong, Mu (b0185) 2018; 28 Luo, Wang, Su, Tang, Liu, Tian, Li (b0030) 2017; 5 Stern, Feng, Song, Hu (b0085) 2015; 8 Xi, Ren, Kong, Wu, Du, Zhu, Xue, Meng, Fu (b0125) 2016; 4 Wu, Yang, Chen, Luo, Fu, Shen, Luo, Li (b0165) 2020; 56 Xu, Shan, Wu, Sun, Huang, Tang, Yan (b0200) 2020; 13 Li, Dong, Jiao (b0230) 2019; 10 Zhang, Jiang, Wang, Yu, Cui, Wu, Shu, Qin, Sun, Yan, Zheng, Zhang, Wu (b0140) 2019; 321 Cui, Tan, Xiao, Zhao, Bedford, Liu, Wang, Wu, Pan, Saputera, Cheong, Tilley, Smith, Yun, Dai, Amal, Wang (b0190) 2020; 5 Li, Wang, Wang, Da, Zhang, Li, Zhong, Deng, Han, Hu (b0080) 2020; 32 Jiang, Zhang, Zhu, Lu, Long, Chen (b0045) 2021; 81 Diao, Qiu, Liu, Wang, Chen, Li, Yuan, Qu, Guo (b0110) 2020; 32 Xia, Yan, Li, Wu, Lou, Wang (b0155) 2016; 1 Fang, Li, Guan, Feng, Zhang, Wang, Wang (b0055) 2017; 27 Liu, Li, Wang, Zhou, Liu, Guo (b0090) 2018; 30 Pachfule, Shinde, Majumder, Xu (b0175) 2016; 8 Zhao, Liu, Rao, Li, Wang, Xia, Wu (b0095) 2018; 7 Zeng, Sun, Wang, Liu, Pan, Liu, Cao, Song, Liu, Liu (b0205) 2018; 51 Jin, Wang, Li, Yue, Han, Shen, Cui (b0215) 2016; 28 Peng, Gong, Li, Yu, Ji, Zhang, Hu, Zhang, Chou, Du, Ramakrishna (b0235) 2018; 140 Diao, Yuan, Qiu, Cheng, Guo (b0210) 2019; 7 Zhao, Liu, Liu, Han, Xu, Xing, Guo, Appl (b0250) 2020; 12 Feng, Yu, Wu, Li, Li, Sun, Asefa, Chen, Zou (b0065) 2015; 137 Zhang, Li, Zhu, Wang, Cui, Wu, Xu, Shu, Qin, Zheng, Ajayan, Zhang, Wu, Appl (b0035) 2018; 10 Zhou, Lu, Zhou, Yang, Ke, Tang, Chen (b0150) 2016; 28 Ma, Wu, Feng, Tan, Yan, Liu, Kang, Wang, Li (b0180) 2017; 10 Zhang, Feng, Lu, He, Wang, Li, Wang, Cao (b0010) 2018; 8 Li, Sun, Shang, Li, Lei, Li, Pan (b0100) 2019; 7 Stamenkovic, Mun, Arenz, Mayrhofer, Lucas, Wang, Ross, Markovic (b0025) 2007; 6 Wu, Liu, Li, Zou, Lian, Wang, Sun, Asefa, Zou (b0060) 2017; 35 Li, Hu, Zhang, Huo, Jing, Liu, Gao, Zhang, Liu (b0145) 2020; 30 Fang (10.1016/j.cej.2021.130434_b0055) 2017; 27 Stamenkovic (10.1016/j.cej.2021.130434_b0025) 2007; 6 Li (10.1016/j.cej.2021.130434_b0100) 2019; 7 Yang (10.1016/j.cej.2021.130434_b0070) 2017; 7 Zhou (10.1016/j.cej.2021.130434_b0150) 2016; 28 Li (10.1016/j.cej.2021.130434_b0145) 2020; 30 Zeng (10.1016/j.cej.2021.130434_b0205) 2018; 51 Wang (10.1016/j.cej.2021.130434_b0120) 2016; 28 Zhou (10.1016/j.cej.2021.130434_b0005) 2019; 7 Ma (10.1016/j.cej.2021.130434_b0135) 2016; 8 Luo (10.1016/j.cej.2021.130434_b0030) 2017; 5 Xu (10.1016/j.cej.2021.130434_b0200) 2020; 13 Wu (10.1016/j.cej.2021.130434_b0165) 2020; 56 Luo (10.1016/j.cej.2021.130434_b0160) 2020; 10 Zhang (10.1016/j.cej.2021.130434_b0225) 2020; 75 Cao (10.1016/j.cej.2021.130434_b0015) 2019; 29 Li (10.1016/j.cej.2021.130434_b0080) 2020; 32 Jiang (10.1016/j.cej.2021.130434_b0045) 2021; 81 Wu (10.1016/j.cej.2021.130434_b0195) 2018; 358 Wu (10.1016/j.cej.2021.130434_b0060) 2017; 35 Zhang (10.1016/j.cej.2021.130434_b0010) 2018; 8 Zhang (10.1016/j.cej.2021.130434_b0035) 2018; 10 Huang (10.1016/j.cej.2021.130434_b0115) 2020; 274 Cui (10.1016/j.cej.2021.130434_b0190) 2020; 5 Feng (10.1016/j.cej.2021.130434_b0130) 2015; 7 Zhang (10.1016/j.cej.2021.130434_b0105) 2019; 7 Diao (10.1016/j.cej.2021.130434_b0110) 2020; 32 Hou (10.1016/j.cej.2021.130434_b0075) 2018; 28 Liu (10.1016/j.cej.2021.130434_b0090) 2018; 30 Gao (10.1016/j.cej.2021.130434_b0220) 2018; 11 Peng (10.1016/j.cej.2021.130434_b0235) 2018; 140 Zhao (10.1016/j.cej.2021.130434_b0095) 2018; 7 Wang (10.1016/j.cej.2021.130434_b0185) 2018; 28 Jin (10.1016/j.cej.2021.130434_b0215) 2016; 28 Wu (10.1016/j.cej.2021.130434_b0240) 2019; 150 Zhao (10.1016/j.cej.2021.130434_b0050) 2020; 13 Diao (10.1016/j.cej.2021.130434_b0210) 2019; 7 Zhang (10.1016/j.cej.2021.130434_b0245) 2021; 284 Zhao (10.1016/j.cej.2021.130434_b0250) 2020; 12 Dong (10.1016/j.cej.2021.130434_b0040) 2019; 11 Xia (10.1016/j.cej.2021.130434_b0155) 2016; 1 Feng (10.1016/j.cej.2021.130434_b0065) 2015; 137 Pachfule (10.1016/j.cej.2021.130434_b0175) 2016; 8 Zhang (10.1016/j.cej.2021.130434_b0140) 2019; 321 Lin (10.1016/j.cej.2021.130434_b0170) 2020; 16 Xi (10.1016/j.cej.2021.130434_b0125) 2016; 4 Stern (10.1016/j.cej.2021.130434_b0085) 2015; 8 Ma (10.1016/j.cej.2021.130434_b0180) 2017; 10 Xu (10.1016/j.cej.2021.130434_b0020) 2019; 10 Li (10.1016/j.cej.2021.130434_b0230) 2019; 10 |
References_xml | – volume: 8 start-page: 718 year: 2016 end-page: 724 ident: b0175 publication-title: Nat Chem – volume: 8 start-page: 34396 year: 2016 end-page: 34404 ident: b0135 publication-title: Mater. Interfaces – volume: 4 start-page: 7297 year: 2016 end-page: 7304 ident: b0125 publication-title: J. Mater. Chem. A – volume: 30 start-page: 1803590 year: 2018 ident: b0090 publication-title: Adv. Mater. – volume: 28 start-page: 3785 year: 2016 end-page: 3790 ident: b0215 publication-title: Adv. Mater. – volume: 150 year: 2019 ident: b0240 publication-title: J Chem Phys. – volume: 35 start-page: 161 year: 2017 end-page: 170 ident: b0060 publication-title: Nano Energy – volume: 274 year: 2020 ident: b0115 publication-title: Appl. Catal. B – volume: 284 year: 2021 ident: b0245 publication-title: Appl. Catal. B – volume: 7 start-page: 6730 year: 2019 end-page: 6739 ident: b0210 publication-title: J. Mater. Chem. A – volume: 30 start-page: 2003198 year: 2020 ident: b0145 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 5143 year: 2020 end-page: 5151 ident: b0050 publication-title: Energy Environ. Sci. – volume: 7 start-page: 7548 year: 2019 end-page: 7552 ident: b0105 publication-title: J. Mater. Chem. A – volume: 10 start-page: 788 year: 2017 end-page: 798 ident: b0180 publication-title: Energy Environ. Sci. – volume: 7 start-page: 2357 year: 2017 end-page: 2366 ident: b0070 publication-title: ACS Catal. – volume: 11 start-page: 1082 year: 2018 end-page: 1091 ident: b0220 publication-title: ChemSusChem – volume: 10 start-page: 31330 year: 2018 end-page: 31339 ident: b0035 publication-title: Mater. Interfaces – volume: 28 start-page: 215 year: 2016 end-page: 230 ident: b0120 publication-title: Adv. Mater. – volume: 12 start-page: 40248 year: 2020 end-page: 40260 ident: b0250 publication-title: Mater. Interfaces – volume: 10 start-page: 1902714 year: 2019 ident: b0020 publication-title: Adv. Energy Mater. – volume: 8 start-page: 5431 year: 2018 end-page: 5441 ident: b0010 publication-title: ACS Catal. – volume: 7 start-page: 9203 year: 2015 end-page: 9210 ident: b0130 publication-title: Mater. Interfaces – volume: 7 start-page: 2610 year: 2018 end-page: 2618 ident: b0095 publication-title: ACS Sustainable Chem. Eng. – volume: 56 start-page: 12339 year: 2020 end-page: 12342 ident: b0165 publication-title: Chem Commun – volume: 358 start-page: 243 year: 2018 end-page: 252 ident: b0195 publication-title: J Catal. – volume: 7 start-page: 18003 year: 2019 end-page: 18011 ident: b0100 publication-title: J. Mater. Chem. A – volume: 140 start-page: 13644 year: 2018 end-page: 13653 ident: b0235 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 3560 year: 2020 end-page: 3568 ident: b0190 publication-title: ACS Energy Lett. – volume: 32 start-page: 2003414 year: 2020 ident: b0080 publication-title: Adv. Mater. – volume: 7 start-page: 18118 year: 2019 end-page: 18125 ident: b0005 publication-title: J. Mater. Chem. A – volume: 81 year: 2021 ident: b0045 publication-title: Nano Energy – volume: 51 start-page: 26 year: 2018 end-page: 36 ident: b0205 publication-title: Nano Energy – volume: 13 start-page: 2949 year: 2020 end-page: 2956 ident: b0200 publication-title: Energy Environ. Sci. – volume: 10 start-page: 1902104 year: 2019 ident: b0230 publication-title: Adv. Energy Mater. – volume: 28 start-page: 143 year: 2016 end-page: 150 ident: b0150 publication-title: Nano Energy – volume: 5 start-page: 14865 year: 2017 end-page: 14872 ident: b0030 publication-title: J. Mater. Chem. A – volume: 6 start-page: 241 year: 2007 end-page: 247 ident: b0025 publication-title: Nat. Mater. – volume: 1 start-page: 15006 year: 2016 ident: b0155 publication-title: Nat. Energy – volume: 75 year: 2020 ident: b0225 publication-title: Nano Energy – volume: 32 start-page: 1905679 year: 2020 ident: b0110 publication-title: Adv. Mater. – volume: 28 start-page: 1802596 year: 2018 ident: b0185 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 1803278 year: 2018 ident: b0075 publication-title: Adv. Funct. Mater. – volume: 11 start-page: 45080 year: 2019 end-page: 45086 ident: b0040 publication-title: Mater. Interfaces – volume: 137 start-page: 14023 year: 2015 end-page: 14026 ident: b0065 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 1701008 year: 2017 ident: b0055 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 2347 year: 2015 end-page: 2351 ident: b0085 publication-title: Energy Environ. Sci. – volume: 16 start-page: 2002426 year: 2020 ident: b0170 publication-title: Small – volume: 29 start-page: 1906316 year: 2019 ident: b0015 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1903891 year: 2020 ident: b0160 publication-title: Adv. Energy Mater. – volume: 321 year: 2019 ident: b0140 publication-title: Electrochim. Acta – volume: 56 start-page: 12339 year: 2020 ident: 10.1016/j.cej.2021.130434_b0165 publication-title: Chem Commun doi: 10.1039/D0CC04893C – volume: 13 start-page: 2949 year: 2020 ident: 10.1016/j.cej.2021.130434_b0200 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02113J – volume: 7 start-page: 7548 year: 2019 ident: 10.1016/j.cej.2021.130434_b0105 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA00646J – volume: 12 start-page: 40248 year: 2020 ident: 10.1016/j.cej.2021.130434_b0250 publication-title: Mater. Interfaces doi: 10.1021/acsami.0c09005 – volume: 51 start-page: 26 year: 2018 ident: 10.1016/j.cej.2021.130434_b0205 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.06.048 – volume: 28 start-page: 143 year: 2016 ident: 10.1016/j.cej.2021.130434_b0150 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.040 – volume: 7 start-page: 2610 year: 2018 ident: 10.1016/j.cej.2021.130434_b0095 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b05611 – volume: 35 start-page: 161 year: 2017 ident: 10.1016/j.cej.2021.130434_b0060 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.03.024 – volume: 30 start-page: 1803590 year: 2018 ident: 10.1016/j.cej.2021.130434_b0090 publication-title: Adv. Mater. doi: 10.1002/adma.201803590 – volume: 7 start-page: 6730 year: 2019 ident: 10.1016/j.cej.2021.130434_b0210 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01044K – volume: 5 start-page: 14865 year: 2017 ident: 10.1016/j.cej.2021.130434_b0030 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02651J – volume: 75 year: 2020 ident: 10.1016/j.cej.2021.130434_b0225 publication-title: Nano Energy – volume: 137 start-page: 14023 year: 2015 ident: 10.1016/j.cej.2021.130434_b0065 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08186 – volume: 10 start-page: 1902714 year: 2019 ident: 10.1016/j.cej.2021.130434_b0020 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902714 – volume: 10 start-page: 31330 year: 2018 ident: 10.1016/j.cej.2021.130434_b0035 publication-title: Mater. Interfaces doi: 10.1021/acsami.8b09361 – volume: 28 start-page: 1802596 year: 2018 ident: 10.1016/j.cej.2021.130434_b0185 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802596 – volume: 7 start-page: 2357 year: 2017 ident: 10.1016/j.cej.2021.130434_b0070 publication-title: ACS Catal. doi: 10.1021/acscatal.6b03192 – volume: 358 start-page: 243 year: 2018 ident: 10.1016/j.cej.2021.130434_b0195 publication-title: J Catal. doi: 10.1016/j.jcat.2017.12.020 – volume: 8 start-page: 718 year: 2016 ident: 10.1016/j.cej.2021.130434_b0175 publication-title: Nat Chem doi: 10.1038/nchem.2515 – volume: 27 start-page: 1701008 year: 2017 ident: 10.1016/j.cej.2021.130434_b0055 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701008 – volume: 8 start-page: 5431 year: 2018 ident: 10.1016/j.cej.2021.130434_b0010 publication-title: ACS Catal. doi: 10.1021/acscatal.8b00413 – volume: 32 start-page: 2003414 year: 2020 ident: 10.1016/j.cej.2021.130434_b0080 publication-title: Adv. Mater. doi: 10.1002/adma.202003414 – volume: 1 start-page: 15006 year: 2016 ident: 10.1016/j.cej.2021.130434_b0155 publication-title: Nat. Energy doi: 10.1038/nenergy.2015.6 – volume: 7 start-page: 18003 year: 2019 ident: 10.1016/j.cej.2021.130434_b0100 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05578A – volume: 6 start-page: 241 year: 2007 ident: 10.1016/j.cej.2021.130434_b0025 publication-title: Nat. Mater. doi: 10.1038/nmat1840 – volume: 10 start-page: 788 year: 2017 ident: 10.1016/j.cej.2021.130434_b0180 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03768B – volume: 140 start-page: 13644 year: 2018 ident: 10.1016/j.cej.2021.130434_b0235 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05134 – volume: 5 start-page: 3560 year: 2020 ident: 10.1016/j.cej.2021.130434_b0190 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01858 – volume: 13 start-page: 5143 year: 2020 ident: 10.1016/j.cej.2021.130434_b0050 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01960G – volume: 10 start-page: 1903891 year: 2020 ident: 10.1016/j.cej.2021.130434_b0160 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903891 – volume: 8 start-page: 2347 year: 2015 ident: 10.1016/j.cej.2021.130434_b0085 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01155H – volume: 11 start-page: 45080 year: 2019 ident: 10.1016/j.cej.2021.130434_b0040 publication-title: Mater. Interfaces doi: 10.1021/acsami.9b14995 – volume: 28 start-page: 215 year: 2016 ident: 10.1016/j.cej.2021.130434_b0120 publication-title: Adv. Mater. doi: 10.1002/adma.201502696 – volume: 274 year: 2020 ident: 10.1016/j.cej.2021.130434_b0115 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2020.119120 – volume: 32 start-page: 1905679 year: 2020 ident: 10.1016/j.cej.2021.130434_b0110 publication-title: Adv. Mater. doi: 10.1002/adma.201905679 – volume: 16 start-page: 2002426 year: 2020 ident: 10.1016/j.cej.2021.130434_b0170 publication-title: Small doi: 10.1002/smll.202002426 – volume: 29 start-page: 1906316 year: 2019 ident: 10.1016/j.cej.2021.130434_b0015 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906316 – volume: 30 start-page: 2003198 year: 2020 ident: 10.1016/j.cej.2021.130434_b0145 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003198 – volume: 28 start-page: 1803278 year: 2018 ident: 10.1016/j.cej.2021.130434_b0075 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803278 – volume: 321 year: 2019 ident: 10.1016/j.cej.2021.130434_b0140 publication-title: Electrochim. Acta – volume: 8 start-page: 34396 year: 2016 ident: 10.1016/j.cej.2021.130434_b0135 publication-title: Mater. Interfaces doi: 10.1021/acsami.6b11821 – volume: 28 start-page: 3785 year: 2016 ident: 10.1016/j.cej.2021.130434_b0215 publication-title: Adv. Mater. doi: 10.1002/adma.201506314 – volume: 10 start-page: 1902104 year: 2019 ident: 10.1016/j.cej.2021.130434_b0230 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902104 – volume: 7 start-page: 9203 year: 2015 ident: 10.1016/j.cej.2021.130434_b0130 publication-title: Mater. Interfaces doi: 10.1021/acsami.5b01467 – volume: 150 year: 2019 ident: 10.1016/j.cej.2021.130434_b0240 publication-title: J Chem Phys. – volume: 81 year: 2021 ident: 10.1016/j.cej.2021.130434_b0045 publication-title: Nano Energy – volume: 284 year: 2021 ident: 10.1016/j.cej.2021.130434_b0245 publication-title: Appl. Catal. B – volume: 7 start-page: 18118 year: 2019 ident: 10.1016/j.cej.2021.130434_b0005 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA06347A – volume: 4 start-page: 7297 year: 2016 ident: 10.1016/j.cej.2021.130434_b0125 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA00894A – volume: 11 start-page: 1082 year: 2018 ident: 10.1016/j.cej.2021.130434_b0220 publication-title: ChemSusChem doi: 10.1002/cssc.201702328 |
SSID | ssj0006919 |
Score | 2.591813 |
Snippet | A novel Fe-doped urchin-like Ni2P/Ni3S2 (NPZFNS@C/NF) heterostructure with abundant hetero-interfaces and carbon-coating is successfully constructed, which... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 130434 |
SubjectTerms | Carbon-coating Interfacial engineering Nickel phosphides/sulfides Overall water splitting |
Title | High-efficient and durable overall water splitting performance by interfacial engineering of Fe-doped urchin-like Ni2P/Ni3S2 heterostructure |
URI | https://dx.doi.org/10.1016/j.cej.2021.130434 |
Volume | 424 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5EL-5B1HVZ1wd98CS0k6Q76fRRZIfRwUF8oLfQnapg3CEzjIp48Rf4o7crjx2F1YPkEDp0hVDVVFWnv_qKsT2tA-fSMBQalRVKpyCMBj_M40JG0uZYUKHw6SgZXKmTm_hmgR11tTAEq2x9f-PTa2_dPum12uxNy7J3EdKZllGaNi3-oiI-pTSt8oOXOcwjMXVzD5osaHZ3slljvHK881vEKKSeyEqq_8emN_Gmv8pW2kSRHzbfssYWsFpn397QB35nrwTSEFiTQPjYwW0FHB5nVAzFCZlpx2P-5HPJGb_3qWYNcObTeaEAd8-c2CJmhaX_5hzn7-aTgvdRwGSKwKldVFmJcfkH-aiMznqjUl5E_JaANJOGf_Zxhhvsqv_78mgg2u4KIo-MfhDSgIwsqDoFcxC7VEqnbawgSBUGfmOTp2ikyQFs4SAAZcMEFfHryCA1Vv5gi9Wkwp-MJ5hI4lW1kUuUATAyyMFnhgnEscRYbbKg02uWt9Tj1AFjnHUYs7vMmyIjU2SNKTbZ_j-RacO78dlk1Rkre7d4Mh8XPhb79TWxLbZMIypIDONttuj1jDs-M3lwu_XS22VLh8fDwYjuw_Pr4V-SReSX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqco5TEHuCCZTWzn4QMHBKy2tF0htZV6C3Zmoqassqttq6oXfgH_hj-IJw-2SMABqcopD1vOjDUztr_5RoiXWRZ5n8exzMg4abIcpc0w3JZJpZV2JVWcKLw3TSeH5tNRcrQmfgy5MAyr7G1_Z9Nba90_GfXSHC3qerQf85mWNRkvWsJle2TlDl1ehHXb6dvtD0HJr5Qafzx4P5F9aQFZKpudSW1RK4emjT88Jj7X2mcuMRjlhqIQ1Zc5WW1LRFd5jNC4OCXD5DI6yq3Tod8b4qYJ5oLLJrz5tsKVpLatJsKjkzy84Si1BZWVdBLWpCrmIsxGmz87wysObnxXbPSRKbzrfv6eWKPmvrhzha_wgfjOqBBJLetEcFbgGgQ8X3L2FTAU1M1mcBGC1yWchti2RVTDYpWZAP4SmJ5iWTneqAda9Q3zCsYkcb4gBK5PVTdyVn8lmNbq82ha630Fx4zcmXeEt-dLeigOr0Xmj8R6M2_osYCUUs1Erk751FhEq6MSQyiaYpJoSsymiAa5FmXPdc4lN2bFAGo7KYIqClZF0aliU7z-1WTREX3862MzKKv4bbYWwRH9vdmT_2v2QtyaHOztFrvb050tcZvfcDZknDwV60Hm9CyERWf-eTsNQXy57nn_E5LMHfU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-efficient+and+durable+overall+water+splitting+performance+by+interfacial+engineering+of+Fe-doped+urchin-like+Ni2P%2FNi3S2+heterostructure&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Chen%2C+Wei-Zhe&rft.au=Liu%2C+Peng-Yu&rft.au=Zhang%2C+Lei&rft.au=Liu%2C+Yang&rft.date=2021-11-15&rft.pub=Elsevier+B.V&rft.issn=1385-8947&rft.eissn=1873-3212&rft.volume=424&rft_id=info:doi/10.1016%2Fj.cej.2021.130434&rft.externalDocID=S1385894721020209 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |