Modeling sloshing damping for spacecraft: A smoothed particle hydrodynamics application

Characterizing the movement of space propellant in the tank subjected to maneuvers and predicting its damping is a fundamental requirement for the success of space missions. In this work, we evaluate the capabilities of the smoothed particle hydrodynamics method (SPH) of characterizing liquid sloshi...

Full description

Saved in:
Bibliographic Details
Published inAerospace science and technology Vol. 133; p. 108090
Main Authors Kotsarinis, K., Green, M.D., Simonini, A., Debarre, O., Magin, T., Tafuni, A.
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Characterizing the movement of space propellant in the tank subjected to maneuvers and predicting its damping is a fundamental requirement for the success of space missions. In this work, we evaluate the capabilities of the smoothed particle hydrodynamics method (SPH) of characterizing liquid sloshing motion. SPH simulations are performed using the open-source code DualSPHysics, which employs a weakly compressible assumption to simulate incompressible flows. We verify the SPH scheme by showing that the calculated boundary layer matches the analytical solution of the Stokes problem. The methodology is then validated against an open-access experimental database involving sloshing experiments on partially-filled cylindrical tanks subject to horizontal excitations. We present a study of two regimes: (a) a forced, periodic regime and (b) a transient regime where we compare the full liquid interface elevation, the corresponding frequency content and the full liquid interface damping maps. The simulations are able to capture the relevant flow physics with a good level of accuracy. In particular, the simulations fairly accurately reproduced the elevation of the full free surface, predicting a 3D crescent shape of the rising wavefronts, as well as damping rates under free sloshing. Analysis of the frequency range further showed good agreement of the dominant frequencies between the experimental, simulated and analytical values given by the linearized sloshing theory.
AbstractList Characterizing the movement of space propellant in the tank subjected to maneuvers and predicting its damping is a fundamental requirement for the success of space missions. In this work, we evaluate the capabilities of the smoothed particle hydrodynamics method (SPH) of characterizing liquid sloshing motion. SPH simulations are performed using the open-source code DualSPHysics, which employs a weakly compressible assumption to simulate incompressible flows. We verify the SPH scheme by showing that the calculated boundary layer matches the analytical solution of the Stokes problem. The methodology is then validated against an open-access experimental database involving sloshing experiments on partially-filled cylindrical tanks subject to horizontal excitations. We present a study of two regimes: (a) a forced, periodic regime and (b) a transient regime where we compare the full liquid interface elevation, the corresponding frequency content and the full liquid interface damping maps. The simulations are able to capture the relevant flow physics with a good level of accuracy. In particular, the simulations fairly accurately reproduced the elevation of the full free surface, predicting a 3D crescent shape of the rising wavefronts, as well as damping rates under free sloshing. Analysis of the frequency range further showed good agreement of the dominant frequencies between the experimental, simulated and analytical values given by the linearized sloshing theory.
ArticleNumber 108090
Author Debarre, O.
Tafuni, A.
Green, M.D.
Kotsarinis, K.
Magin, T.
Simonini, A.
Author_xml – sequence: 1
  givenname: K.
  orcidid: 0000-0001-5413-1928
  surname: Kotsarinis
  fullname: Kotsarinis, K.
  organization: von Karman Institute for Fluid Dynamics, Department of Aerospace and Aeronautics, Sint-Genesius-Rode, Belgium
– sequence: 2
  givenname: M.D.
  orcidid: 0000-0002-2971-7895
  surname: Green
  fullname: Green, M.D.
  organization: King's College London, Department of Engineering, London, UK
– sequence: 3
  givenname: A.
  orcidid: 0000-0002-9191-2456
  surname: Simonini
  fullname: Simonini, A.
  email: alessia.simonini@vki.ac.be
  organization: von Karman Institute for Fluid Dynamics, Department of Aerospace and Aeronautics, Sint-Genesius-Rode, Belgium
– sequence: 4
  givenname: O.
  surname: Debarre
  fullname: Debarre, O.
  organization: King's College London, Department of Engineering, London, UK
– sequence: 5
  givenname: T.
  surname: Magin
  fullname: Magin, T.
  organization: von Karman Institute for Fluid Dynamics, Department of Aerospace and Aeronautics, Sint-Genesius-Rode, Belgium
– sequence: 6
  givenname: A.
  orcidid: 0000-0003-0815-1463
  surname: Tafuni
  fullname: Tafuni, A.
  organization: New Jersey Institute of Technology, School of Applied Engineering and Technology, Newark NJ, USA
BookMark eNp9kMtOwzAQRS0EEm3hA9j5B1L8SJMYVlXFSypiA2JpOeMJdZXEkW0h9e9JKCsWXc0djc5o5szJee97JOSGsyVnvLjdL01MS8GEGPuKKXZGZrwQRSYFV-djFiXLVCGrSzKPcc8YEyoXM_L56i22rv-isfVxNwVrumGqjQ80DgYQgmnSHV3T2HmfdmjpYEJy0CLdHWzw9tCbzkGkZhhaByY531-Ri8a0Ea__6oJ8PD68b56z7dvTy2a9zUCoMmWyMryAhudKyRxWJq9qLgSgacAoC_WqrCteF7YCyRTUJXBZyHFWiWalEGu5IOVxLwQfY8BGg0u_F6RgXKs505MfvdejHz350Uc_I8n_kUNwnQmHk8z9kcHxpW-HQUdw2ANaFxCStt6doH8AcDWCSg
CitedBy_id crossref_primary_10_1007_s42241_024_0018_6
crossref_primary_10_1016_j_ast_2023_108450
crossref_primary_10_1016_j_ast_2024_109546
crossref_primary_10_1016_j_oceaneng_2023_116192
crossref_primary_10_1016_j_rineng_2025_104543
crossref_primary_10_1063_5_0242258
crossref_primary_10_1016_j_ijmecsci_2023_108631
crossref_primary_10_1007_s10665_023_10316_0
crossref_primary_10_1016_j_ast_2023_108814
crossref_primary_10_1016_j_ast_2024_109539
Cites_doi 10.1016/j.ast.2021.106681
10.1016/j.euromechflu.2022.01.002
10.1007/s11071-019-04927-5
10.1080/00221686.2010.9641242
10.1016/j.oceaneng.2008.09.014
10.1007/s40571-021-00404-2
10.1016/j.ast.2022.107708
10.1088/0034-4885/68/8/R01
10.1016/j.est.2022.104830
10.1016/j.oceaneng.2003.09.002
10.1016/j.compfluid.2019.06.009
10.1016/j.ast.2019.01.005
10.1016/j.apor.2021.102734
10.1016/j.jsse.2022.07.008
10.1016/j.cma.2010.12.016
10.1038/s41526-020-00124-6
10.1016/j.ast.2016.07.013
10.1016/j.oceaneng.2021.108652
10.1016/j.ast.2020.106007
10.1016/j.compfluid.2018.07.006
10.1016/j.ast.2020.106369
10.1016/j.apor.2021.102989
10.1016/j.ymssp.2020.107452
10.1017/jfm.2012.140
10.1016/S1270-9638(97)90001-8
10.1016/j.dib.2020.106546
10.1146/annurev.aa.30.090192.002551
10.1007/BF02123482
10.1007/s00466-019-01705-3
10.1016/j.oceaneng.2022.112026
10.1080/00221686.2015.1119209
10.1016/j.compfluid.2016.05.029
10.1006/jcph.1997.5776
10.1109/MCS.2005.1432593
10.1016/j.coastaleng.2005.10.004
10.1016/j.expthermflusci.2020.110232
10.1016/j.jcp.2006.12.020
10.1016/j.oceaneng.2021.108925
10.1063/1.5068697
10.1017/S0022112057000051
10.1016/j.jfluidstructs.2015.04.003
10.1007/s40722-016-0049-3
10.1017/S0022112007004764
10.1080/00221686.2016.1212944
ContentType Journal Article
Copyright 2022 Elsevier Masson SAS
Copyright_xml – notice: 2022 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.ast.2022.108090
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1626-3219
ExternalDocumentID 10_1016_j_ast_2022_108090
S1270963822007647
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSZ
T5K
T9H
VH1
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c297t-38a16cf149934c5a48b122ceafca9dcb57b81b6d8c309cb7c1363fca82f59eeb3
IEDL.DBID .~1
ISSN 1270-9638
IngestDate Thu Apr 24 22:56:01 EDT 2025
Tue Jul 01 01:22:12 EDT 2025
Fri Feb 23 02:35:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Damping
DualSPHysics
SPH
Free-surface modeling
Sloshing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c297t-38a16cf149934c5a48b122ceafca9dcb57b81b6d8c309cb7c1363fca82f59eeb3
ORCID 0000-0002-9191-2456
0000-0003-0815-1463
0000-0001-5413-1928
0000-0002-2971-7895
ParticipantIDs crossref_citationtrail_10_1016_j_ast_2022_108090
crossref_primary_10_1016_j_ast_2022_108090
elsevier_sciencedirect_doi_10_1016_j_ast_2022_108090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Aerospace science and technology
PublicationYear 2023
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Wendland (br0540) 1995; 4
Violeau (br0520) 2012
Moya, Gonzalez, Alfaro, Chinesta, Cueto (br0130) 2019; 64
English, Domínguez, Vacondio, Crespo, Stansby, Lind, Chiapponi, Gómez-Gesteira (br0580) Apr 2021
Dalrymple, Rogers (br0560) 2006; 53
Dreyer (br0480) 2007
Aeronautics, Administration (br0080) 2020
Kojima, Tagawa (br0180) 2021; 38
Atif, Chi, Grossi, Shabana (br0200) 2019; 97
Crespo (br0500) 2020
Veldman, Gerrits, Luppes, Helder, Vreeburg (br0140) 2007; 224
Pilloton, Bardazzi, Colagrossi, Marrone (br0310) 2022; 93
Green, Peiró (br0210) 2018; 174
Domínguez, Fourtakas, Altomare, Canelas, Tafuni, García-Feal, Martínez-Estévez, Mokos, Vacondio, Crespo, Rogers, Stansby, Gómez-Gesteira (br0490) 2022; 9
Saltari, Traini, Gambioli, Mastroddi (br0110) 2021; 108
Patel, Brunstetter, Tarver, Whitmire, Zwart, Smith, Huff (br0020) 2020; 6
Pyle (br0100) 2019
Morris, Fox, Zhu (br0570) 1997; 136
Violeau, Rogers (br0250) 2016; 54
Hartwig (br0030) 2015
Perrin (br0060) 2018
Liu, Li, Li, Zhuang, Zhou (br0070) 2020; 105
Fuller, Lehnhardt, Zaid, Halloran (br0010) 2022
Yang, Niu, Zhang (br0170) 2021; 113
Shadloo, Oger, Touzé (br0260) 2016; 136
Green, Zhou, Dominguez, Gesteira, Peiró (br0510) 2021; 229
Saltari, Pizzoli, Gambioli, Jetzschmann, Mastroddi (br0120) 2022; 127
Simonini, Fontanarosa, De Giorgi, Vetrano (br0390) 2021; 120
Delorme, Colagrossi, Souto-Iglesias, Zamora-Rodríguez, Botía-Vera (br0320) 2009; 36
Gomez-Gesteira, Rogers, Dalrymple, Crespo (br0590) 2010; 48
Antuono, Bouscasse, Colagrossi, Lugni (br0620) 2012; 700
Liu, Yuan, Liu, Andersson, Li (br0160) 2022; 52
Case, Parkinson (br0440) 1957; 2
Calderon-Sanchez, Martinez-Carrascal, Gonzalez-Gutierrez, Colagrossi (br0220) 2021; 15
Stoica (br0090) 2018
Yang, Zhang, Zhang, Feng, Sun (br0330) 2022; 118
Corp (br0050) 2007
Fourtakas, Dominguez, Vacondio, Rogers (br0550) 2019; 190
Luo, Khayyer, Lin (br0290) 2021; 114
Miles (br0450) 1956
Royon-Lebeaud, Hopfinger, Cartellier (br0460) 2007; 577
Gotoh, Khayyer (br0270) 2016; 2
Liu, Feng, Lei, Li (br0150) 2019; 85
Ng, Low, Chen, Tafuni, Nakayama (br0360) 2022; 260
Bauer, Eidel (br0430) 1997; 1
Souto Iglesias, Pérez Rojas, Zamora Rodríguez (br0300) 2004; 31
Monaghan (br0240) 2005; 68
Monaghan (br0230) 1992; 30
Simonini, Fontanarosa, De Giorgi, Vetrano (br0400) 2020; 33
Marrone, Antuono, Colagrossi, Colicchio, Le Touzé, Graziani (br0530) 2011; 200
Lance (br0410) 1996
Ibrahim (br0420) 2005
Hall, Rendall, Allen, Peel (br0370) 2015; 56
Dodge (br0470) 2000
Ye, Pan, Huang, Liu (br0280) 2019; 31
Vreeburg (br0040) 2005; 25
Constantin, De Courcy, Titurus, Rendall, Cooper (br0380) 2021; 152
Parasil, Watanabe (br0190) 2016; 56
Leimkuhler, Matthews (br0600) 2015
Khayyer, Shimizu, Gotoh, Hattori (br0350) 2021; 226
Mokos, Rogers, Stansby (br0340) 2017; 55
Antuono (10.1016/j.ast.2022.108090_br0620) 2012; 700
Kojima (10.1016/j.ast.2022.108090_br0180) 2021; 38
Veldman (10.1016/j.ast.2022.108090_br0140) 2007; 224
Saltari (10.1016/j.ast.2022.108090_br0120) 2022; 127
Liu (10.1016/j.ast.2022.108090_br0150) 2019; 85
Corp (10.1016/j.ast.2022.108090_br0050) 2007
Monaghan (10.1016/j.ast.2022.108090_br0230) 1992; 30
Mokos (10.1016/j.ast.2022.108090_br0340) 2017; 55
Ng (10.1016/j.ast.2022.108090_br0360) 2022; 260
Simonini (10.1016/j.ast.2022.108090_br0390) 2021; 120
Dodge (10.1016/j.ast.2022.108090_br0470) 2000
Monaghan (10.1016/j.ast.2022.108090_br0240) 2005; 68
Violeau (10.1016/j.ast.2022.108090_br0520) 2012
Calderon-Sanchez (10.1016/j.ast.2022.108090_br0220) 2021; 15
Fuller (10.1016/j.ast.2022.108090_br0010) 2022
Dalrymple (10.1016/j.ast.2022.108090_br0560) 2006; 53
Pilloton (10.1016/j.ast.2022.108090_br0310) 2022; 93
Yang (10.1016/j.ast.2022.108090_br0330) 2022; 118
Case (10.1016/j.ast.2022.108090_br0440) 1957; 2
Parasil (10.1016/j.ast.2022.108090_br0190) 2016; 56
Luo (10.1016/j.ast.2022.108090_br0290) 2021; 114
Stoica (10.1016/j.ast.2022.108090_br0090) 2018
Khayyer (10.1016/j.ast.2022.108090_br0350) 2021; 226
Green (10.1016/j.ast.2022.108090_br0510) 2021; 229
Green (10.1016/j.ast.2022.108090_br0210) 2018; 174
Delorme (10.1016/j.ast.2022.108090_br0320) 2009; 36
Gomez-Gesteira (10.1016/j.ast.2022.108090_br0590) 2010; 48
Crespo (10.1016/j.ast.2022.108090_br0500)
Marrone (10.1016/j.ast.2022.108090_br0530) 2011; 200
Bauer (10.1016/j.ast.2022.108090_br0430) 1997; 1
Royon-Lebeaud (10.1016/j.ast.2022.108090_br0460) 2007; 577
Wendland (10.1016/j.ast.2022.108090_br0540) 1995; 4
Vreeburg (10.1016/j.ast.2022.108090_br0040) 2005; 25
Constantin (10.1016/j.ast.2022.108090_br0380) 2021; 152
Liu (10.1016/j.ast.2022.108090_br0070) 2020; 105
Souto Iglesias (10.1016/j.ast.2022.108090_br0300) 2004; 31
Hartwig (10.1016/j.ast.2022.108090_br0030) 2015
Dreyer (10.1016/j.ast.2022.108090_br0480) 2007
Leimkuhler (10.1016/j.ast.2022.108090_br0600) 2015
Saltari (10.1016/j.ast.2022.108090_br0110) 2021; 108
Hall (10.1016/j.ast.2022.108090_br0370) 2015; 56
Yang (10.1016/j.ast.2022.108090_br0170) 2021; 113
Lance (10.1016/j.ast.2022.108090_br0410) 1996
Morris (10.1016/j.ast.2022.108090_br0570) 1997; 136
Fourtakas (10.1016/j.ast.2022.108090_br0550) 2019; 190
Pyle (10.1016/j.ast.2022.108090_br0100) 2019
English (10.1016/j.ast.2022.108090_br0580) 2021
Ye (10.1016/j.ast.2022.108090_br0280) 2019; 31
Domínguez (10.1016/j.ast.2022.108090_br0490) 2022; 9
Perrin (10.1016/j.ast.2022.108090_br0060) 2018
Ibrahim (10.1016/j.ast.2022.108090_br0420) 2005
Atif (10.1016/j.ast.2022.108090_br0200) 2019; 97
Moya (10.1016/j.ast.2022.108090_br0130) 2019; 64
Gotoh (10.1016/j.ast.2022.108090_br0270) 2016; 2
Miles (10.1016/j.ast.2022.108090_br0450) 1956
Shadloo (10.1016/j.ast.2022.108090_br0260) 2016; 136
Simonini (10.1016/j.ast.2022.108090_br0400) 2020; 33
Liu (10.1016/j.ast.2022.108090_br0160) 2022; 52
Patel (10.1016/j.ast.2022.108090_br0020) 2020; 6
Violeau (10.1016/j.ast.2022.108090_br0250) 2016; 54
Aeronautics (10.1016/j.ast.2022.108090_br0080) 2020
References_xml – year: 2018
  ident: br0060
  article-title: Cryocooler selection and implementation for a propellant depot at Earth-Moon L1
  publication-title: 2018 AIAA SPACE and Astronautics Forum and Exposition
– volume: 31
  start-page: 1169
  year: 2004
  end-page: 1192
  ident: br0300
  article-title: Simulation of anti-roll tanks and sloshing type problems with smoothed particle hydrodynamics
  publication-title: Ocean Eng.
– volume: 52
  year: 2022
  ident: br0160
  article-title: Fluid sloshing hydrodynamics in a cryogenic fuel storage tank under different order natural frequencies
  publication-title: J. Energy Storage
– volume: 4
  start-page: 389
  year: 1995
  end-page: 396
  ident: br0540
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv. Comput. Math.
– volume: 48
  start-page: 6
  year: 2010
  end-page: 27
  ident: br0590
  article-title: State-of-the-art of classical sph for free-surface flows
  publication-title: J. Hydraul. Res.
– start-page: 1
  year: 2015
  end-page: 51
  ident: br0600
  article-title: Introduction
– volume: 56
  start-page: 11
  year: 2015
  end-page: 32
  ident: br0370
  article-title: A multi-physics computational model of fuel sloshing effects on aeroelastic behaviour
  publication-title: J. Fluids Struct.
– volume: 54
  start-page: 1
  year: 2016
  end-page: 26
  ident: br0250
  article-title: Smoothed particle hydrodynamics (sph) for free-surface flows: past, present and future
  publication-title: J. Hydraul. Res.
– volume: 200
  start-page: 1526
  year: 2011
  end-page: 1542
  ident: br0530
  article-title: Delta-sph model for simulating violent impact flows
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 190
  start-page: 346
  year: 2019
  end-page: 361
  ident: br0550
  article-title: Local uniform stencil (lust) boundary condition for arbitrary 3-d boundaries in parallel smoothed particle hydrodynamics (sph) models
  publication-title: Comput. Fluids
– volume: 260
  year: 2022
  ident: br0360
  article-title: A three-dimensional fluid-structure interaction model based on sph and lattice-spring method for simulating complex hydroelastic problems
  publication-title: Ocean Eng.
– year: 2019
  ident: br0100
  article-title: Space 2.0: How Private Spaceflight, a Resurgent NASA, and International Partners Are Creating a New Space Age
– volume: 38
  year: 2021
  ident: br0180
  article-title: Lattice Boltzmann simulation for sloshing in a circular tank under microgravity conditions
  publication-title: Int. J. Microgravity Sci. Appl.
– volume: 226
  year: 2021
  ident: br0350
  article-title: Multi-resolution isph-sph for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering
  publication-title: Ocean Eng.
– volume: 93
  start-page: 65
  year: 2022
  end-page: 92
  ident: br0310
  article-title: Sph method for long-time simulations of sloshing flows in lng tanks
  publication-title: Eur. J. Mech. B, Fluids
– volume: 31
  year: 2019
  ident: br0280
  article-title: Smoothed particle hydrodynamics (sph) for complex fluid flows: recent developments in methodology and applications
  publication-title: Phys. Fluids
– volume: 6
  start-page: 33
  year: 2020
  ident: br0020
  article-title: Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars
  publication-title: npj Microgravity
– year: 2012
  ident: br0520
  article-title: Sluid Mechanics and the SPH Method: Theory and Applications
– volume: 229
  year: 2021
  ident: br0510
  article-title: Smooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanks
  publication-title: Ocean Eng.
– volume: 224
  start-page: 82
  year: 2007
  end-page: 99
  ident: br0140
  article-title: The numerical simulation of liquid sloshing on board spacecraft
  publication-title: J. Comput. Phys.
– volume: 700
  start-page: 419
  year: 2012
  end-page: 440
  ident: br0620
  article-title: Two-dimensional modal method for shallow-water sloshing in rectangular basins
  publication-title: J. Fluid Mech.
– volume: 30
  start-page: 543
  year: 1992
  end-page: 574
  ident: br0230
  article-title: Smoothed particle hydrodynamics
  publication-title: Annu. Rev. Astron. Astrophys.
– year: 2005
  ident: br0420
  article-title: Liquid Sloshing Dynamics: Theory and Applications
– year: 1956
  ident: br0450
  article-title: On the Sloshing of Liquid in a Cylindrical Tank
– volume: 120
  year: 2021
  ident: br0390
  article-title: Mode characterization and damping measurement of liquid sloshing in cylindrical containers by means of reference image topography
  publication-title: Exp. Therm. Fluid Sci.
– year: 2020
  ident: br0080
  article-title: Nasa's plan for sustained lunar exploration and development
– volume: 174
  start-page: 179
  year: 2018
  end-page: 199
  ident: br0210
  article-title: Long duration sph simulations of sloshing in tanks with a low fill ratio and high stretching
  publication-title: Comput. Fluids
– volume: 127
  year: 2022
  ident: br0120
  article-title: Sloshing reduced-order model based on neural networks for aeroelastic analyses
  publication-title: Aerosp. Sci. Technol.
– volume: 136
  start-page: 214
  year: 1997
  end-page: 226
  ident: br0570
  article-title: Modeling low Reynolds number incompressible flows using sph
  publication-title: J. Comput. Phys.
– volume: 25
  start-page: 12
  year: 2005
  end-page: 16
  ident: br0040
  article-title: Spacecraft maneuvers and slosh control
  publication-title: IEEE Control Syst. Mag.
– year: 2000
  ident: br0470
  article-title: The new “Dynamic Behavior of Liquids in Moving Containers”
– start-page: 11
  year: 2018
  end-page: 12
  ident: br0090
  article-title: Robots on the moon, and their role in a future lunar economy
  publication-title: 2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI)
– volume: 97
  start-page: 45
  year: 2019
  end-page: 62
  ident: br0200
  article-title: Evaluation of breaking wave effects in liquid sloshing problems: ancf/sph comparative study
  publication-title: Nonlinear Dyn.
– year: Apr 2021
  ident: br0580
  article-title: Modified dynamic boundary conditions (mdbc) for general-purpose smoothed particle hydrodynamics (sph): application to tank sloshing, dam break and fish pass problems
  publication-title: Comput. Part. Mech.
– volume: 9
  start-page: 867
  year: 2022
  end-page: 895
  ident: br0490
  article-title: Dualsphysics: from fluid dynamics to multiphysics problems
  publication-title: Comput. Part. Mech.
– volume: 68
  start-page: 1703
  year: 2005
  end-page: 1759
  ident: br0240
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Prog. Phys.
– volume: 33
  year: 2020
  ident: br0400
  article-title: Liquid dynamics sloshing in cylindrical containers: a 3d free-surface reconstruction dataset
  publication-title: Data Brief
– volume: 114
  year: 2021
  ident: br0290
  article-title: Particle methods in ocean and coastal engineering
  publication-title: Appl. Ocean Res.
– year: 2015
  ident: br0030
  article-title: Liquid Acquisition Devices for Advanced in-Space Cryogenic Propulsion Systems
– volume: 118
  year: 2022
  ident: br0330
  article-title: Simulating multi-phase sloshing flows with the sph method
  publication-title: Appl. Ocean Res.
– year: 2007
  ident: br0480
  article-title: Free Surface Flows Under Compensated Gravity Conditions
– volume: 108
  year: 2021
  ident: br0110
  article-title: A linearized reduced-order model approach for sloshing to be used for aerospace design
  publication-title: Aerosp. Sci. Technol.
– year: 2022
  ident: br0010
  article-title: Gateway program status and overview
  publication-title: J. Space Saf. Eng.
– year: 2007
  ident: br0050
  article-title: Demo flight 2 – flight review update
– volume: 105
  year: 2020
  ident: br0070
  article-title: Experimental investigation of liquid transport in a vane type tank of satellite with microgravity
  publication-title: Aerosp. Sci. Technol.
– volume: 56
  start-page: 212
  year: 2016
  end-page: 222
  ident: br0190
  article-title: Nonlinear dynamic analysis of the interaction between a two-dimensional rubberlike membrane and a liquid in a rectangular tank
  publication-title: Aerosp. Sci. Technol.
– year: 2020
  ident: br0500
  article-title: Official dualsphics wiki - SPH formulation
– volume: 1
  start-page: 519
  year: 1997
  end-page: 532
  ident: br0430
  article-title: Oscillations of a viscous liquid in a cylindrical container
  publication-title: Aerosp. Sci. Technol.
– volume: 85
  start-page: 544
  year: 2019
  end-page: 555
  ident: br0150
  article-title: Hydrodynamic performance in a sloshing liquid oxygen tank under different initial liquid filling levels
  publication-title: Aerosp. Sci. Technol.
– volume: 113
  year: 2021
  ident: br0170
  article-title: Numerical analyses of liquid slosh by finite volume and lattice Boltzmann methods
  publication-title: Aerosp. Sci. Technol.
– volume: 136
  start-page: 11
  year: 2016
  end-page: 34
  ident: br0260
  article-title: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges
  publication-title: Comput. Fluids
– volume: 64
  start-page: 511
  year: 2019
  end-page: 523
  ident: br0130
  article-title: Learning slosh dynamics by means of data
  publication-title: Comput. Mech.
– volume: 152
  year: 2021
  ident: br0380
  article-title: Analysis of damping from vertical sloshing in a sdof system
  publication-title: Mech. Syst. Signal Process.
– volume: 53
  start-page: 141
  year: 2006
  end-page: 147
  ident: br0560
  article-title: Numerical modeling of water waves with the sph method
  publication-title: Coastal Hydrodynamics and Morphodynamics
– volume: 36
  start-page: 168
  year: 2009
  end-page: 178
  ident: br0320
  article-title: A set of canonical problems in sloshing, part I: pressure field in forced roll—comparison between experimental results and sph
  publication-title: Ocean Eng.
– volume: 2
  start-page: 251
  year: 2016
  end-page: 278
  ident: br0270
  article-title: Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering
  publication-title: J. Ocean Eng. Mar. Energy
– volume: 55
  start-page: 143
  year: 2017
  end-page: 162
  ident: br0340
  article-title: A multi-phase particle shifting algorithm for sph simulations of violent hydrodynamics with a large number of particles
  publication-title: J. Hydraul. Res.
– year: 1996
  ident: br0410
  article-title: Analysis of propellant slosh dynamics and generation of an equivalent mechanical model for use in preliminary voyager autopilot design studies
– volume: 2
  start-page: 172
  year: 1957
  end-page: 184
  ident: br0440
  article-title: Damping of surface waves in an incompressible liquid
  publication-title: J. Fluid Mech.
– volume: 577
  start-page: 467
  year: 2007
  end-page: 494
  ident: br0460
  article-title: Liquid sloshing and wave breaking in circular and square-base cylindrical containers
  publication-title: J. Fluid Mech.
– volume: 15
  start-page: 865
  year: 2021
  end-page: 888
  ident: br0220
  article-title: A global analysis of a coupled violent vertical sloshing problem using an sph methodology
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 113
  year: 2021
  ident: 10.1016/j.ast.2022.108090_br0170
  article-title: Numerical analyses of liquid slosh by finite volume and lattice Boltzmann methods
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.106681
– volume: 93
  start-page: 65
  year: 2022
  ident: 10.1016/j.ast.2022.108090_br0310
  article-title: Sph method for long-time simulations of sloshing flows in lng tanks
  publication-title: Eur. J. Mech. B, Fluids
  doi: 10.1016/j.euromechflu.2022.01.002
– year: 2015
  ident: 10.1016/j.ast.2022.108090_br0030
– year: 2007
  ident: 10.1016/j.ast.2022.108090_br0480
– volume: 97
  start-page: 45
  issue: 1
  year: 2019
  ident: 10.1016/j.ast.2022.108090_br0200
  article-title: Evaluation of breaking wave effects in liquid sloshing problems: ancf/sph comparative study
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04927-5
– year: 1956
  ident: 10.1016/j.ast.2022.108090_br0450
– volume: 48
  start-page: 6
  issue: sup1
  year: 2010
  ident: 10.1016/j.ast.2022.108090_br0590
  article-title: State-of-the-art of classical sph for free-surface flows
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2010.9641242
– year: 2007
  ident: 10.1016/j.ast.2022.108090_br0050
– volume: 36
  start-page: 168
  issue: 2
  year: 2009
  ident: 10.1016/j.ast.2022.108090_br0320
  article-title: A set of canonical problems in sloshing, part I: pressure field in forced roll—comparison between experimental results and sph
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2008.09.014
– volume: 9
  start-page: 867
  issue: 5
  year: 2022
  ident: 10.1016/j.ast.2022.108090_br0490
  article-title: Dualsphysics: from fluid dynamics to multiphysics problems
  publication-title: Comput. Part. Mech.
  doi: 10.1007/s40571-021-00404-2
– volume: 127
  year: 2022
  ident: 10.1016/j.ast.2022.108090_br0120
  article-title: Sloshing reduced-order model based on neural networks for aeroelastic analyses
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2022.107708
– volume: 68
  start-page: 1703
  issue: 8
  year: 2005
  ident: 10.1016/j.ast.2022.108090_br0240
  article-title: Smoothed particle hydrodynamics
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/68/8/R01
– volume: 52
  year: 2022
  ident: 10.1016/j.ast.2022.108090_br0160
  article-title: Fluid sloshing hydrodynamics in a cryogenic fuel storage tank under different order natural frequencies
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104830
– volume: 31
  start-page: 1169
  issue: 8
  year: 2004
  ident: 10.1016/j.ast.2022.108090_br0300
  article-title: Simulation of anti-roll tanks and sloshing type problems with smoothed particle hydrodynamics
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2003.09.002
– volume: 190
  start-page: 346
  year: 2019
  ident: 10.1016/j.ast.2022.108090_br0550
  article-title: Local uniform stencil (lust) boundary condition for arbitrary 3-d boundaries in parallel smoothed particle hydrodynamics (sph) models
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2019.06.009
– volume: 85
  start-page: 544
  year: 2019
  ident: 10.1016/j.ast.2022.108090_br0150
  article-title: Hydrodynamic performance in a sloshing liquid oxygen tank under different initial liquid filling levels
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.01.005
– start-page: 1
  year: 2015
  ident: 10.1016/j.ast.2022.108090_br0600
– volume: 114
  year: 2021
  ident: 10.1016/j.ast.2022.108090_br0290
  article-title: Particle methods in ocean and coastal engineering
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102734
– year: 2022
  ident: 10.1016/j.ast.2022.108090_br0010
  article-title: Gateway program status and overview
  publication-title: J. Space Saf. Eng.
  doi: 10.1016/j.jsse.2022.07.008
– volume: 200
  start-page: 1526
  issue: 13
  year: 2011
  ident: 10.1016/j.ast.2022.108090_br0530
  article-title: Delta-sph model for simulating violent impact flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2010.12.016
– year: 2021
  ident: 10.1016/j.ast.2022.108090_br0580
  article-title: Modified dynamic boundary conditions (mdbc) for general-purpose smoothed particle hydrodynamics (sph): application to tank sloshing, dam break and fish pass problems
  publication-title: Comput. Part. Mech.
– start-page: 11
  year: 2018
  ident: 10.1016/j.ast.2022.108090_br0090
  article-title: Robots on the moon, and their role in a future lunar economy
– volume: 6
  start-page: 33
  issue: 1
  year: 2020
  ident: 10.1016/j.ast.2022.108090_br0020
  article-title: Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars
  publication-title: npj Microgravity
  doi: 10.1038/s41526-020-00124-6
– volume: 56
  start-page: 212
  year: 2016
  ident: 10.1016/j.ast.2022.108090_br0190
  article-title: Nonlinear dynamic analysis of the interaction between a two-dimensional rubberlike membrane and a liquid in a rectangular tank
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2016.07.013
– volume: 226
  year: 2021
  ident: 10.1016/j.ast.2022.108090_br0350
  article-title: Multi-resolution isph-sph for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108652
– volume: 105
  year: 2020
  ident: 10.1016/j.ast.2022.108090_br0070
  article-title: Experimental investigation of liquid transport in a vane type tank of satellite with microgravity
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.106007
– volume: 174
  start-page: 179
  year: 2018
  ident: 10.1016/j.ast.2022.108090_br0210
  article-title: Long duration sph simulations of sloshing in tanks with a low fill ratio and high stretching
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.07.006
– volume: 108
  year: 2021
  ident: 10.1016/j.ast.2022.108090_br0110
  article-title: A linearized reduced-order model approach for sloshing to be used for aerospace design
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.106369
– volume: 118
  year: 2022
  ident: 10.1016/j.ast.2022.108090_br0330
  article-title: Simulating multi-phase sloshing flows with the sph method
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102989
– volume: 152
  year: 2021
  ident: 10.1016/j.ast.2022.108090_br0380
  article-title: Analysis of damping from vertical sloshing in a sdof system
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107452
– year: 2019
  ident: 10.1016/j.ast.2022.108090_br0100
– volume: 700
  start-page: 419
  year: 2012
  ident: 10.1016/j.ast.2022.108090_br0620
  article-title: Two-dimensional modal method for shallow-water sloshing in rectangular basins
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.140
– volume: 1
  start-page: 519
  issue: 8
  year: 1997
  ident: 10.1016/j.ast.2022.108090_br0430
  article-title: Oscillations of a viscous liquid in a cylindrical container
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/S1270-9638(97)90001-8
– year: 2000
  ident: 10.1016/j.ast.2022.108090_br0470
– year: 2018
  ident: 10.1016/j.ast.2022.108090_br0060
  article-title: Cryocooler selection and implementation for a propellant depot at Earth-Moon L1
– volume: 33
  year: 2020
  ident: 10.1016/j.ast.2022.108090_br0400
  article-title: Liquid dynamics sloshing in cylindrical containers: a 3d free-surface reconstruction dataset
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.106546
– year: 2012
  ident: 10.1016/j.ast.2022.108090_br0520
– volume: 30
  start-page: 543
  issue: 1
  year: 1992
  ident: 10.1016/j.ast.2022.108090_br0230
  article-title: Smoothed particle hydrodynamics
  publication-title: Annu. Rev. Astron. Astrophys.
  doi: 10.1146/annurev.aa.30.090192.002551
– volume: 4
  start-page: 389
  issue: 1
  year: 1995
  ident: 10.1016/j.ast.2022.108090_br0540
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv. Comput. Math.
  doi: 10.1007/BF02123482
– volume: 64
  start-page: 511
  issue: 2
  year: 2019
  ident: 10.1016/j.ast.2022.108090_br0130
  article-title: Learning slosh dynamics by means of data
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01705-3
– volume: 260
  year: 2022
  ident: 10.1016/j.ast.2022.108090_br0360
  article-title: A three-dimensional fluid-structure interaction model based on sph and lattice-spring method for simulating complex hydroelastic problems
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.112026
– volume: 54
  start-page: 1
  year: 2016
  ident: 10.1016/j.ast.2022.108090_br0250
  article-title: Smoothed particle hydrodynamics (sph) for free-surface flows: past, present and future
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2015.1119209
– volume: 136
  start-page: 11
  year: 2016
  ident: 10.1016/j.ast.2022.108090_br0260
  article-title: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2016.05.029
– ident: 10.1016/j.ast.2022.108090_br0500
– volume: 136
  start-page: 214
  issue: 1
  year: 1997
  ident: 10.1016/j.ast.2022.108090_br0570
  article-title: Modeling low Reynolds number incompressible flows using sph
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5776
– volume: 25
  start-page: 12
  issue: 3
  year: 2005
  ident: 10.1016/j.ast.2022.108090_br0040
  article-title: Spacecraft maneuvers and slosh control
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2005.1432593
– volume: 53
  start-page: 141
  issue: 2
  year: 2006
  ident: 10.1016/j.ast.2022.108090_br0560
  article-title: Numerical modeling of water waves with the sph method
  publication-title: Coast. Eng.
  doi: 10.1016/j.coastaleng.2005.10.004
– volume: 120
  year: 2021
  ident: 10.1016/j.ast.2022.108090_br0390
  article-title: Mode characterization and damping measurement of liquid sloshing in cylindrical containers by means of reference image topography
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2020.110232
– volume: 224
  start-page: 82
  issue: 1
  year: 2007
  ident: 10.1016/j.ast.2022.108090_br0140
  article-title: The numerical simulation of liquid sloshing on board spacecraft
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.12.020
– year: 1996
  ident: 10.1016/j.ast.2022.108090_br0410
– volume: 229
  year: 2021
  ident: 10.1016/j.ast.2022.108090_br0510
  article-title: Smooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanks
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108925
– year: 2020
  ident: 10.1016/j.ast.2022.108090_br0080
– year: 2005
  ident: 10.1016/j.ast.2022.108090_br0420
– volume: 31
  issue: 1
  year: 2019
  ident: 10.1016/j.ast.2022.108090_br0280
  article-title: Smoothed particle hydrodynamics (sph) for complex fluid flows: recent developments in methodology and applications
  publication-title: Phys. Fluids
  doi: 10.1063/1.5068697
– volume: 2
  start-page: 172
  issue: 2
  year: 1957
  ident: 10.1016/j.ast.2022.108090_br0440
  article-title: Damping of surface waves in an incompressible liquid
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112057000051
– volume: 15
  start-page: 865
  issue: 1
  year: 2021
  ident: 10.1016/j.ast.2022.108090_br0220
  article-title: A global analysis of a coupled violent vertical sloshing problem using an sph methodology
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 56
  start-page: 11
  year: 2015
  ident: 10.1016/j.ast.2022.108090_br0370
  article-title: A multi-physics computational model of fuel sloshing effects on aeroelastic behaviour
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2015.04.003
– volume: 2
  start-page: 251
  issue: 3
  year: 2016
  ident: 10.1016/j.ast.2022.108090_br0270
  article-title: Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering
  publication-title: J. Ocean Eng. Mar. Energy
  doi: 10.1007/s40722-016-0049-3
– volume: 577
  start-page: 467
  year: 2007
  ident: 10.1016/j.ast.2022.108090_br0460
  article-title: Liquid sloshing and wave breaking in circular and square-base cylindrical containers
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007004764
– volume: 38
  year: 2021
  ident: 10.1016/j.ast.2022.108090_br0180
  article-title: Lattice Boltzmann simulation for sloshing in a circular tank under microgravity conditions
  publication-title: Int. J. Microgravity Sci. Appl.
– volume: 55
  start-page: 143
  issue: 2
  year: 2017
  ident: 10.1016/j.ast.2022.108090_br0340
  article-title: A multi-phase particle shifting algorithm for sph simulations of violent hydrodynamics with a large number of particles
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2016.1212944
SSID ssj0002942
Score 2.4021337
Snippet Characterizing the movement of space propellant in the tank subjected to maneuvers and predicting its damping is a fundamental requirement for the success of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108090
SubjectTerms Damping
DualSPHysics
Free-surface modeling
Sloshing
SPH
Title Modeling sloshing damping for spacecraft: A smoothed particle hydrodynamics application
URI https://dx.doi.org/10.1016/j.ast.2022.108090
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwGLWqssCAOEU5Kg9MSKH1lcRsVUVVQOoCFd0iXxFFvUTCwMJvx18OKBIwsCa2lDx9fv5sv88PoXO_2oqdUDZwxHQDLlIHY44FJFWMiVSmQhdqi1E4HPPbiZg0UL-uhQFZZcX9JacXbF096VRodlbTaecezkwhfChst4UcKso5jyDKL9-_ZB5UFgY60DiA1vXJZqHxUhnIKSktlHZAyz_NTWvzzWAHbVeJIu6V37KLGm6xh7bWrg_cR49gZAbl5DibLYutJGzVHAqgsE9FsecK45NCleZXuIez-RKKrSxeVb-Hn96sZ8_SkT7DayfZB2g8uH7oD4PKKCEwVEZ5wGJFQpP6xY5k3AjFY00oNU6lRklrtIi0z05DGxvWlUZHhrCQ-XcxTYV0fjl9iJqL5cIdIRwxqy0hSnq8uKNEG2Ns14FHj5U-t2mhbg1RYqpbxMHMYpbUcrHnxKOaAKpJiWoLXXx2WZVXaPzVmNe4J9_iIPEU_3u34_91O0GbYB9fqrBPUTN_eXVnPsnIdbuIojba6N3cDUcfpjDR-Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFOUpwcmpKiNHScxW1WBWlq60IpukWM7oqgvkTLw7_HlURUJGFgTn5R8cj6f4-_uA7ixu63QcKkd46qm4_HE4DfHHDeRjPFEJDzO1BYDvzPyHsd8XIF2WQuDssqC-3NOz9i6uNIo0GwsJ5PGM56Z4vSh-LvN94ItqGF3Kl6FWqvb6wzWhExF5qGD4x0MKA83M5mXTFFRSWkmtkNm_ml52lhyHvZhr8gVSSt_nAOomPkh7G50EDyCF_Qyw4pykk4X2d8kouUMa6CIzUaJpQtl80KZrO5Ii6SzBdZbabIs3pC8fmpLoLkpfUo2DrOPYfRwP2x3nMIrwVFUBCuHhdL1VWL3O4J5iksvjF1KlZGJkkKrmAexTVB9HSrWFCoOlMt8Zu-FNOHC2B31CVTni7k5BRIwHWvXlcLi5Rnqxkop3TRo06OFTW_q0CwhilTRSBz9LKZRqRh7iyyqEaIa5ajW4XYdssy7aPw12Ctxj75Nhciy_O9hZ_8Lu4btzvCpH_W7g9457KCbfC7KvoDq6v3DXNqcYxVfFXPqC-bA1Ko
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+sloshing+damping+for+spacecraft%3A+A+smoothed+particle+hydrodynamics+application&rft.jtitle=Aerospace+science+and+technology&rft.au=Kotsarinis%2C+K.&rft.au=Green%2C+M.D.&rft.au=Simonini%2C+A.&rft.au=Debarre%2C+O.&rft.date=2023-02-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.eissn=1626-3219&rft.volume=133&rft_id=info:doi/10.1016%2Fj.ast.2022.108090&rft.externalDocID=S1270963822007647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon