Modeling sloshing damping for spacecraft: A smoothed particle hydrodynamics application
Characterizing the movement of space propellant in the tank subjected to maneuvers and predicting its damping is a fundamental requirement for the success of space missions. In this work, we evaluate the capabilities of the smoothed particle hydrodynamics method (SPH) of characterizing liquid sloshi...
Saved in:
Published in | Aerospace science and technology Vol. 133; p. 108090 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Masson SAS
01.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Characterizing the movement of space propellant in the tank subjected to maneuvers and predicting its damping is a fundamental requirement for the success of space missions. In this work, we evaluate the capabilities of the smoothed particle hydrodynamics method (SPH) of characterizing liquid sloshing motion.
SPH simulations are performed using the open-source code DualSPHysics, which employs a weakly compressible assumption to simulate incompressible flows. We verify the SPH scheme by showing that the calculated boundary layer matches the analytical solution of the Stokes problem. The methodology is then validated against an open-access experimental database involving sloshing experiments on partially-filled cylindrical tanks subject to horizontal excitations. We present a study of two regimes: (a) a forced, periodic regime and (b) a transient regime where we compare the full liquid interface elevation, the corresponding frequency content and the full liquid interface damping maps.
The simulations are able to capture the relevant flow physics with a good level of accuracy. In particular, the simulations fairly accurately reproduced the elevation of the full free surface, predicting a 3D crescent shape of the rising wavefronts, as well as damping rates under free sloshing. Analysis of the frequency range further showed good agreement of the dominant frequencies between the experimental, simulated and analytical values given by the linearized sloshing theory. |
---|---|
AbstractList | Characterizing the movement of space propellant in the tank subjected to maneuvers and predicting its damping is a fundamental requirement for the success of space missions. In this work, we evaluate the capabilities of the smoothed particle hydrodynamics method (SPH) of characterizing liquid sloshing motion.
SPH simulations are performed using the open-source code DualSPHysics, which employs a weakly compressible assumption to simulate incompressible flows. We verify the SPH scheme by showing that the calculated boundary layer matches the analytical solution of the Stokes problem. The methodology is then validated against an open-access experimental database involving sloshing experiments on partially-filled cylindrical tanks subject to horizontal excitations. We present a study of two regimes: (a) a forced, periodic regime and (b) a transient regime where we compare the full liquid interface elevation, the corresponding frequency content and the full liquid interface damping maps.
The simulations are able to capture the relevant flow physics with a good level of accuracy. In particular, the simulations fairly accurately reproduced the elevation of the full free surface, predicting a 3D crescent shape of the rising wavefronts, as well as damping rates under free sloshing. Analysis of the frequency range further showed good agreement of the dominant frequencies between the experimental, simulated and analytical values given by the linearized sloshing theory. |
ArticleNumber | 108090 |
Author | Debarre, O. Tafuni, A. Green, M.D. Kotsarinis, K. Magin, T. Simonini, A. |
Author_xml | – sequence: 1 givenname: K. orcidid: 0000-0001-5413-1928 surname: Kotsarinis fullname: Kotsarinis, K. organization: von Karman Institute for Fluid Dynamics, Department of Aerospace and Aeronautics, Sint-Genesius-Rode, Belgium – sequence: 2 givenname: M.D. orcidid: 0000-0002-2971-7895 surname: Green fullname: Green, M.D. organization: King's College London, Department of Engineering, London, UK – sequence: 3 givenname: A. orcidid: 0000-0002-9191-2456 surname: Simonini fullname: Simonini, A. email: alessia.simonini@vki.ac.be organization: von Karman Institute for Fluid Dynamics, Department of Aerospace and Aeronautics, Sint-Genesius-Rode, Belgium – sequence: 4 givenname: O. surname: Debarre fullname: Debarre, O. organization: King's College London, Department of Engineering, London, UK – sequence: 5 givenname: T. surname: Magin fullname: Magin, T. organization: von Karman Institute for Fluid Dynamics, Department of Aerospace and Aeronautics, Sint-Genesius-Rode, Belgium – sequence: 6 givenname: A. orcidid: 0000-0003-0815-1463 surname: Tafuni fullname: Tafuni, A. organization: New Jersey Institute of Technology, School of Applied Engineering and Technology, Newark NJ, USA |
BookMark | eNp9kMtOwzAQRS0EEm3hA9j5B1L8SJMYVlXFSypiA2JpOeMJdZXEkW0h9e9JKCsWXc0djc5o5szJee97JOSGsyVnvLjdL01MS8GEGPuKKXZGZrwQRSYFV-djFiXLVCGrSzKPcc8YEyoXM_L56i22rv-isfVxNwVrumGqjQ80DgYQgmnSHV3T2HmfdmjpYEJy0CLdHWzw9tCbzkGkZhhaByY531-Ri8a0Ea__6oJ8PD68b56z7dvTy2a9zUCoMmWyMryAhudKyRxWJq9qLgSgacAoC_WqrCteF7YCyRTUJXBZyHFWiWalEGu5IOVxLwQfY8BGg0u_F6RgXKs505MfvdejHz350Uc_I8n_kUNwnQmHk8z9kcHxpW-HQUdw2ANaFxCStt6doH8AcDWCSg |
CitedBy_id | crossref_primary_10_1007_s42241_024_0018_6 crossref_primary_10_1016_j_ast_2023_108450 crossref_primary_10_1016_j_ast_2024_109546 crossref_primary_10_1016_j_oceaneng_2023_116192 crossref_primary_10_1016_j_rineng_2025_104543 crossref_primary_10_1063_5_0242258 crossref_primary_10_1016_j_ijmecsci_2023_108631 crossref_primary_10_1007_s10665_023_10316_0 crossref_primary_10_1016_j_ast_2023_108814 crossref_primary_10_1016_j_ast_2024_109539 |
Cites_doi | 10.1016/j.ast.2021.106681 10.1016/j.euromechflu.2022.01.002 10.1007/s11071-019-04927-5 10.1080/00221686.2010.9641242 10.1016/j.oceaneng.2008.09.014 10.1007/s40571-021-00404-2 10.1016/j.ast.2022.107708 10.1088/0034-4885/68/8/R01 10.1016/j.est.2022.104830 10.1016/j.oceaneng.2003.09.002 10.1016/j.compfluid.2019.06.009 10.1016/j.ast.2019.01.005 10.1016/j.apor.2021.102734 10.1016/j.jsse.2022.07.008 10.1016/j.cma.2010.12.016 10.1038/s41526-020-00124-6 10.1016/j.ast.2016.07.013 10.1016/j.oceaneng.2021.108652 10.1016/j.ast.2020.106007 10.1016/j.compfluid.2018.07.006 10.1016/j.ast.2020.106369 10.1016/j.apor.2021.102989 10.1016/j.ymssp.2020.107452 10.1017/jfm.2012.140 10.1016/S1270-9638(97)90001-8 10.1016/j.dib.2020.106546 10.1146/annurev.aa.30.090192.002551 10.1007/BF02123482 10.1007/s00466-019-01705-3 10.1016/j.oceaneng.2022.112026 10.1080/00221686.2015.1119209 10.1016/j.compfluid.2016.05.029 10.1006/jcph.1997.5776 10.1109/MCS.2005.1432593 10.1016/j.coastaleng.2005.10.004 10.1016/j.expthermflusci.2020.110232 10.1016/j.jcp.2006.12.020 10.1016/j.oceaneng.2021.108925 10.1063/1.5068697 10.1017/S0022112057000051 10.1016/j.jfluidstructs.2015.04.003 10.1007/s40722-016-0049-3 10.1017/S0022112007004764 10.1080/00221686.2016.1212944 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Masson SAS |
Copyright_xml | – notice: 2022 Elsevier Masson SAS |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ast.2022.108090 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1626-3219 |
ExternalDocumentID | 10_1016_j_ast_2022_108090 S1270963822007647 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSZ T5K T9H VH1 XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c297t-38a16cf149934c5a48b122ceafca9dcb57b81b6d8c309cb7c1363fca82f59eeb3 |
IEDL.DBID | .~1 |
ISSN | 1270-9638 |
IngestDate | Thu Apr 24 22:56:01 EDT 2025 Tue Jul 01 01:22:12 EDT 2025 Fri Feb 23 02:35:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Damping DualSPHysics SPH Free-surface modeling Sloshing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c297t-38a16cf149934c5a48b122ceafca9dcb57b81b6d8c309cb7c1363fca82f59eeb3 |
ORCID | 0000-0002-9191-2456 0000-0003-0815-1463 0000-0001-5413-1928 0000-0002-2971-7895 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ast_2022_108090 crossref_primary_10_1016_j_ast_2022_108090 elsevier_sciencedirect_doi_10_1016_j_ast_2022_108090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationTitle | Aerospace science and technology |
PublicationYear | 2023 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Wendland (br0540) 1995; 4 Violeau (br0520) 2012 Moya, Gonzalez, Alfaro, Chinesta, Cueto (br0130) 2019; 64 English, Domínguez, Vacondio, Crespo, Stansby, Lind, Chiapponi, Gómez-Gesteira (br0580) Apr 2021 Dalrymple, Rogers (br0560) 2006; 53 Dreyer (br0480) 2007 Aeronautics, Administration (br0080) 2020 Kojima, Tagawa (br0180) 2021; 38 Atif, Chi, Grossi, Shabana (br0200) 2019; 97 Crespo (br0500) 2020 Veldman, Gerrits, Luppes, Helder, Vreeburg (br0140) 2007; 224 Pilloton, Bardazzi, Colagrossi, Marrone (br0310) 2022; 93 Green, Peiró (br0210) 2018; 174 Domínguez, Fourtakas, Altomare, Canelas, Tafuni, García-Feal, Martínez-Estévez, Mokos, Vacondio, Crespo, Rogers, Stansby, Gómez-Gesteira (br0490) 2022; 9 Saltari, Traini, Gambioli, Mastroddi (br0110) 2021; 108 Patel, Brunstetter, Tarver, Whitmire, Zwart, Smith, Huff (br0020) 2020; 6 Pyle (br0100) 2019 Morris, Fox, Zhu (br0570) 1997; 136 Violeau, Rogers (br0250) 2016; 54 Hartwig (br0030) 2015 Perrin (br0060) 2018 Liu, Li, Li, Zhuang, Zhou (br0070) 2020; 105 Fuller, Lehnhardt, Zaid, Halloran (br0010) 2022 Yang, Niu, Zhang (br0170) 2021; 113 Shadloo, Oger, Touzé (br0260) 2016; 136 Green, Zhou, Dominguez, Gesteira, Peiró (br0510) 2021; 229 Saltari, Pizzoli, Gambioli, Jetzschmann, Mastroddi (br0120) 2022; 127 Simonini, Fontanarosa, De Giorgi, Vetrano (br0390) 2021; 120 Delorme, Colagrossi, Souto-Iglesias, Zamora-Rodríguez, Botía-Vera (br0320) 2009; 36 Gomez-Gesteira, Rogers, Dalrymple, Crespo (br0590) 2010; 48 Antuono, Bouscasse, Colagrossi, Lugni (br0620) 2012; 700 Liu, Yuan, Liu, Andersson, Li (br0160) 2022; 52 Case, Parkinson (br0440) 1957; 2 Calderon-Sanchez, Martinez-Carrascal, Gonzalez-Gutierrez, Colagrossi (br0220) 2021; 15 Stoica (br0090) 2018 Yang, Zhang, Zhang, Feng, Sun (br0330) 2022; 118 Corp (br0050) 2007 Fourtakas, Dominguez, Vacondio, Rogers (br0550) 2019; 190 Luo, Khayyer, Lin (br0290) 2021; 114 Miles (br0450) 1956 Royon-Lebeaud, Hopfinger, Cartellier (br0460) 2007; 577 Gotoh, Khayyer (br0270) 2016; 2 Liu, Feng, Lei, Li (br0150) 2019; 85 Ng, Low, Chen, Tafuni, Nakayama (br0360) 2022; 260 Bauer, Eidel (br0430) 1997; 1 Souto Iglesias, Pérez Rojas, Zamora Rodríguez (br0300) 2004; 31 Monaghan (br0240) 2005; 68 Monaghan (br0230) 1992; 30 Simonini, Fontanarosa, De Giorgi, Vetrano (br0400) 2020; 33 Marrone, Antuono, Colagrossi, Colicchio, Le Touzé, Graziani (br0530) 2011; 200 Lance (br0410) 1996 Ibrahim (br0420) 2005 Hall, Rendall, Allen, Peel (br0370) 2015; 56 Dodge (br0470) 2000 Ye, Pan, Huang, Liu (br0280) 2019; 31 Vreeburg (br0040) 2005; 25 Constantin, De Courcy, Titurus, Rendall, Cooper (br0380) 2021; 152 Parasil, Watanabe (br0190) 2016; 56 Leimkuhler, Matthews (br0600) 2015 Khayyer, Shimizu, Gotoh, Hattori (br0350) 2021; 226 Mokos, Rogers, Stansby (br0340) 2017; 55 Antuono (10.1016/j.ast.2022.108090_br0620) 2012; 700 Kojima (10.1016/j.ast.2022.108090_br0180) 2021; 38 Veldman (10.1016/j.ast.2022.108090_br0140) 2007; 224 Saltari (10.1016/j.ast.2022.108090_br0120) 2022; 127 Liu (10.1016/j.ast.2022.108090_br0150) 2019; 85 Corp (10.1016/j.ast.2022.108090_br0050) 2007 Monaghan (10.1016/j.ast.2022.108090_br0230) 1992; 30 Mokos (10.1016/j.ast.2022.108090_br0340) 2017; 55 Ng (10.1016/j.ast.2022.108090_br0360) 2022; 260 Simonini (10.1016/j.ast.2022.108090_br0390) 2021; 120 Dodge (10.1016/j.ast.2022.108090_br0470) 2000 Monaghan (10.1016/j.ast.2022.108090_br0240) 2005; 68 Violeau (10.1016/j.ast.2022.108090_br0520) 2012 Calderon-Sanchez (10.1016/j.ast.2022.108090_br0220) 2021; 15 Fuller (10.1016/j.ast.2022.108090_br0010) 2022 Dalrymple (10.1016/j.ast.2022.108090_br0560) 2006; 53 Pilloton (10.1016/j.ast.2022.108090_br0310) 2022; 93 Yang (10.1016/j.ast.2022.108090_br0330) 2022; 118 Case (10.1016/j.ast.2022.108090_br0440) 1957; 2 Parasil (10.1016/j.ast.2022.108090_br0190) 2016; 56 Luo (10.1016/j.ast.2022.108090_br0290) 2021; 114 Stoica (10.1016/j.ast.2022.108090_br0090) 2018 Khayyer (10.1016/j.ast.2022.108090_br0350) 2021; 226 Green (10.1016/j.ast.2022.108090_br0510) 2021; 229 Green (10.1016/j.ast.2022.108090_br0210) 2018; 174 Delorme (10.1016/j.ast.2022.108090_br0320) 2009; 36 Gomez-Gesteira (10.1016/j.ast.2022.108090_br0590) 2010; 48 Crespo (10.1016/j.ast.2022.108090_br0500) Marrone (10.1016/j.ast.2022.108090_br0530) 2011; 200 Bauer (10.1016/j.ast.2022.108090_br0430) 1997; 1 Royon-Lebeaud (10.1016/j.ast.2022.108090_br0460) 2007; 577 Wendland (10.1016/j.ast.2022.108090_br0540) 1995; 4 Vreeburg (10.1016/j.ast.2022.108090_br0040) 2005; 25 Constantin (10.1016/j.ast.2022.108090_br0380) 2021; 152 Liu (10.1016/j.ast.2022.108090_br0070) 2020; 105 Souto Iglesias (10.1016/j.ast.2022.108090_br0300) 2004; 31 Hartwig (10.1016/j.ast.2022.108090_br0030) 2015 Dreyer (10.1016/j.ast.2022.108090_br0480) 2007 Leimkuhler (10.1016/j.ast.2022.108090_br0600) 2015 Saltari (10.1016/j.ast.2022.108090_br0110) 2021; 108 Hall (10.1016/j.ast.2022.108090_br0370) 2015; 56 Yang (10.1016/j.ast.2022.108090_br0170) 2021; 113 Lance (10.1016/j.ast.2022.108090_br0410) 1996 Morris (10.1016/j.ast.2022.108090_br0570) 1997; 136 Fourtakas (10.1016/j.ast.2022.108090_br0550) 2019; 190 Pyle (10.1016/j.ast.2022.108090_br0100) 2019 English (10.1016/j.ast.2022.108090_br0580) 2021 Ye (10.1016/j.ast.2022.108090_br0280) 2019; 31 Domínguez (10.1016/j.ast.2022.108090_br0490) 2022; 9 Perrin (10.1016/j.ast.2022.108090_br0060) 2018 Ibrahim (10.1016/j.ast.2022.108090_br0420) 2005 Atif (10.1016/j.ast.2022.108090_br0200) 2019; 97 Moya (10.1016/j.ast.2022.108090_br0130) 2019; 64 Gotoh (10.1016/j.ast.2022.108090_br0270) 2016; 2 Miles (10.1016/j.ast.2022.108090_br0450) 1956 Shadloo (10.1016/j.ast.2022.108090_br0260) 2016; 136 Simonini (10.1016/j.ast.2022.108090_br0400) 2020; 33 Liu (10.1016/j.ast.2022.108090_br0160) 2022; 52 Patel (10.1016/j.ast.2022.108090_br0020) 2020; 6 Violeau (10.1016/j.ast.2022.108090_br0250) 2016; 54 Aeronautics (10.1016/j.ast.2022.108090_br0080) 2020 |
References_xml | – year: 2018 ident: br0060 article-title: Cryocooler selection and implementation for a propellant depot at Earth-Moon L1 publication-title: 2018 AIAA SPACE and Astronautics Forum and Exposition – volume: 31 start-page: 1169 year: 2004 end-page: 1192 ident: br0300 article-title: Simulation of anti-roll tanks and sloshing type problems with smoothed particle hydrodynamics publication-title: Ocean Eng. – volume: 52 year: 2022 ident: br0160 article-title: Fluid sloshing hydrodynamics in a cryogenic fuel storage tank under different order natural frequencies publication-title: J. Energy Storage – volume: 4 start-page: 389 year: 1995 end-page: 396 ident: br0540 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. – volume: 48 start-page: 6 year: 2010 end-page: 27 ident: br0590 article-title: State-of-the-art of classical sph for free-surface flows publication-title: J. Hydraul. Res. – start-page: 1 year: 2015 end-page: 51 ident: br0600 article-title: Introduction – volume: 56 start-page: 11 year: 2015 end-page: 32 ident: br0370 article-title: A multi-physics computational model of fuel sloshing effects on aeroelastic behaviour publication-title: J. Fluids Struct. – volume: 54 start-page: 1 year: 2016 end-page: 26 ident: br0250 article-title: Smoothed particle hydrodynamics (sph) for free-surface flows: past, present and future publication-title: J. Hydraul. Res. – volume: 200 start-page: 1526 year: 2011 end-page: 1542 ident: br0530 article-title: Delta-sph model for simulating violent impact flows publication-title: Comput. Methods Appl. Mech. Eng. – volume: 190 start-page: 346 year: 2019 end-page: 361 ident: br0550 article-title: Local uniform stencil (lust) boundary condition for arbitrary 3-d boundaries in parallel smoothed particle hydrodynamics (sph) models publication-title: Comput. Fluids – volume: 260 year: 2022 ident: br0360 article-title: A three-dimensional fluid-structure interaction model based on sph and lattice-spring method for simulating complex hydroelastic problems publication-title: Ocean Eng. – year: 2019 ident: br0100 article-title: Space 2.0: How Private Spaceflight, a Resurgent NASA, and International Partners Are Creating a New Space Age – volume: 38 year: 2021 ident: br0180 article-title: Lattice Boltzmann simulation for sloshing in a circular tank under microgravity conditions publication-title: Int. J. Microgravity Sci. Appl. – volume: 226 year: 2021 ident: br0350 article-title: Multi-resolution isph-sph for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering publication-title: Ocean Eng. – volume: 93 start-page: 65 year: 2022 end-page: 92 ident: br0310 article-title: Sph method for long-time simulations of sloshing flows in lng tanks publication-title: Eur. J. Mech. B, Fluids – volume: 31 year: 2019 ident: br0280 article-title: Smoothed particle hydrodynamics (sph) for complex fluid flows: recent developments in methodology and applications publication-title: Phys. Fluids – volume: 6 start-page: 33 year: 2020 ident: br0020 article-title: Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars publication-title: npj Microgravity – year: 2012 ident: br0520 article-title: Sluid Mechanics and the SPH Method: Theory and Applications – volume: 229 year: 2021 ident: br0510 article-title: Smooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanks publication-title: Ocean Eng. – volume: 224 start-page: 82 year: 2007 end-page: 99 ident: br0140 article-title: The numerical simulation of liquid sloshing on board spacecraft publication-title: J. Comput. Phys. – volume: 700 start-page: 419 year: 2012 end-page: 440 ident: br0620 article-title: Two-dimensional modal method for shallow-water sloshing in rectangular basins publication-title: J. Fluid Mech. – volume: 30 start-page: 543 year: 1992 end-page: 574 ident: br0230 article-title: Smoothed particle hydrodynamics publication-title: Annu. Rev. Astron. Astrophys. – year: 2005 ident: br0420 article-title: Liquid Sloshing Dynamics: Theory and Applications – year: 1956 ident: br0450 article-title: On the Sloshing of Liquid in a Cylindrical Tank – volume: 120 year: 2021 ident: br0390 article-title: Mode characterization and damping measurement of liquid sloshing in cylindrical containers by means of reference image topography publication-title: Exp. Therm. Fluid Sci. – year: 2020 ident: br0080 article-title: Nasa's plan for sustained lunar exploration and development – volume: 174 start-page: 179 year: 2018 end-page: 199 ident: br0210 article-title: Long duration sph simulations of sloshing in tanks with a low fill ratio and high stretching publication-title: Comput. Fluids – volume: 127 year: 2022 ident: br0120 article-title: Sloshing reduced-order model based on neural networks for aeroelastic analyses publication-title: Aerosp. Sci. Technol. – volume: 136 start-page: 214 year: 1997 end-page: 226 ident: br0570 article-title: Modeling low Reynolds number incompressible flows using sph publication-title: J. Comput. Phys. – volume: 25 start-page: 12 year: 2005 end-page: 16 ident: br0040 article-title: Spacecraft maneuvers and slosh control publication-title: IEEE Control Syst. Mag. – year: 2000 ident: br0470 article-title: The new “Dynamic Behavior of Liquids in Moving Containers” – start-page: 11 year: 2018 end-page: 12 ident: br0090 article-title: Robots on the moon, and their role in a future lunar economy publication-title: 2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI) – volume: 97 start-page: 45 year: 2019 end-page: 62 ident: br0200 article-title: Evaluation of breaking wave effects in liquid sloshing problems: ancf/sph comparative study publication-title: Nonlinear Dyn. – year: Apr 2021 ident: br0580 article-title: Modified dynamic boundary conditions (mdbc) for general-purpose smoothed particle hydrodynamics (sph): application to tank sloshing, dam break and fish pass problems publication-title: Comput. Part. Mech. – volume: 9 start-page: 867 year: 2022 end-page: 895 ident: br0490 article-title: Dualsphysics: from fluid dynamics to multiphysics problems publication-title: Comput. Part. Mech. – volume: 68 start-page: 1703 year: 2005 end-page: 1759 ident: br0240 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. – volume: 33 year: 2020 ident: br0400 article-title: Liquid dynamics sloshing in cylindrical containers: a 3d free-surface reconstruction dataset publication-title: Data Brief – volume: 114 year: 2021 ident: br0290 article-title: Particle methods in ocean and coastal engineering publication-title: Appl. Ocean Res. – year: 2015 ident: br0030 article-title: Liquid Acquisition Devices for Advanced in-Space Cryogenic Propulsion Systems – volume: 118 year: 2022 ident: br0330 article-title: Simulating multi-phase sloshing flows with the sph method publication-title: Appl. Ocean Res. – year: 2007 ident: br0480 article-title: Free Surface Flows Under Compensated Gravity Conditions – volume: 108 year: 2021 ident: br0110 article-title: A linearized reduced-order model approach for sloshing to be used for aerospace design publication-title: Aerosp. Sci. Technol. – year: 2022 ident: br0010 article-title: Gateway program status and overview publication-title: J. Space Saf. Eng. – year: 2007 ident: br0050 article-title: Demo flight 2 – flight review update – volume: 105 year: 2020 ident: br0070 article-title: Experimental investigation of liquid transport in a vane type tank of satellite with microgravity publication-title: Aerosp. Sci. Technol. – volume: 56 start-page: 212 year: 2016 end-page: 222 ident: br0190 article-title: Nonlinear dynamic analysis of the interaction between a two-dimensional rubberlike membrane and a liquid in a rectangular tank publication-title: Aerosp. Sci. Technol. – year: 2020 ident: br0500 article-title: Official dualsphics wiki - SPH formulation – volume: 1 start-page: 519 year: 1997 end-page: 532 ident: br0430 article-title: Oscillations of a viscous liquid in a cylindrical container publication-title: Aerosp. Sci. Technol. – volume: 85 start-page: 544 year: 2019 end-page: 555 ident: br0150 article-title: Hydrodynamic performance in a sloshing liquid oxygen tank under different initial liquid filling levels publication-title: Aerosp. Sci. Technol. – volume: 113 year: 2021 ident: br0170 article-title: Numerical analyses of liquid slosh by finite volume and lattice Boltzmann methods publication-title: Aerosp. Sci. Technol. – volume: 136 start-page: 11 year: 2016 end-page: 34 ident: br0260 article-title: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges publication-title: Comput. Fluids – volume: 64 start-page: 511 year: 2019 end-page: 523 ident: br0130 article-title: Learning slosh dynamics by means of data publication-title: Comput. Mech. – volume: 152 year: 2021 ident: br0380 article-title: Analysis of damping from vertical sloshing in a sdof system publication-title: Mech. Syst. Signal Process. – volume: 53 start-page: 141 year: 2006 end-page: 147 ident: br0560 article-title: Numerical modeling of water waves with the sph method publication-title: Coastal Hydrodynamics and Morphodynamics – volume: 36 start-page: 168 year: 2009 end-page: 178 ident: br0320 article-title: A set of canonical problems in sloshing, part I: pressure field in forced roll—comparison between experimental results and sph publication-title: Ocean Eng. – volume: 2 start-page: 251 year: 2016 end-page: 278 ident: br0270 article-title: Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering publication-title: J. Ocean Eng. Mar. Energy – volume: 55 start-page: 143 year: 2017 end-page: 162 ident: br0340 article-title: A multi-phase particle shifting algorithm for sph simulations of violent hydrodynamics with a large number of particles publication-title: J. Hydraul. Res. – year: 1996 ident: br0410 article-title: Analysis of propellant slosh dynamics and generation of an equivalent mechanical model for use in preliminary voyager autopilot design studies – volume: 2 start-page: 172 year: 1957 end-page: 184 ident: br0440 article-title: Damping of surface waves in an incompressible liquid publication-title: J. Fluid Mech. – volume: 577 start-page: 467 year: 2007 end-page: 494 ident: br0460 article-title: Liquid sloshing and wave breaking in circular and square-base cylindrical containers publication-title: J. Fluid Mech. – volume: 15 start-page: 865 year: 2021 end-page: 888 ident: br0220 article-title: A global analysis of a coupled violent vertical sloshing problem using an sph methodology publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 113 year: 2021 ident: 10.1016/j.ast.2022.108090_br0170 article-title: Numerical analyses of liquid slosh by finite volume and lattice Boltzmann methods publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106681 – volume: 93 start-page: 65 year: 2022 ident: 10.1016/j.ast.2022.108090_br0310 article-title: Sph method for long-time simulations of sloshing flows in lng tanks publication-title: Eur. J. Mech. B, Fluids doi: 10.1016/j.euromechflu.2022.01.002 – year: 2015 ident: 10.1016/j.ast.2022.108090_br0030 – year: 2007 ident: 10.1016/j.ast.2022.108090_br0480 – volume: 97 start-page: 45 issue: 1 year: 2019 ident: 10.1016/j.ast.2022.108090_br0200 article-title: Evaluation of breaking wave effects in liquid sloshing problems: ancf/sph comparative study publication-title: Nonlinear Dyn. doi: 10.1007/s11071-019-04927-5 – year: 1956 ident: 10.1016/j.ast.2022.108090_br0450 – volume: 48 start-page: 6 issue: sup1 year: 2010 ident: 10.1016/j.ast.2022.108090_br0590 article-title: State-of-the-art of classical sph for free-surface flows publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2010.9641242 – year: 2007 ident: 10.1016/j.ast.2022.108090_br0050 – volume: 36 start-page: 168 issue: 2 year: 2009 ident: 10.1016/j.ast.2022.108090_br0320 article-title: A set of canonical problems in sloshing, part I: pressure field in forced roll—comparison between experimental results and sph publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2008.09.014 – volume: 9 start-page: 867 issue: 5 year: 2022 ident: 10.1016/j.ast.2022.108090_br0490 article-title: Dualsphysics: from fluid dynamics to multiphysics problems publication-title: Comput. Part. Mech. doi: 10.1007/s40571-021-00404-2 – volume: 127 year: 2022 ident: 10.1016/j.ast.2022.108090_br0120 article-title: Sloshing reduced-order model based on neural networks for aeroelastic analyses publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2022.107708 – volume: 68 start-page: 1703 issue: 8 year: 2005 ident: 10.1016/j.ast.2022.108090_br0240 article-title: Smoothed particle hydrodynamics publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/68/8/R01 – volume: 52 year: 2022 ident: 10.1016/j.ast.2022.108090_br0160 article-title: Fluid sloshing hydrodynamics in a cryogenic fuel storage tank under different order natural frequencies publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104830 – volume: 31 start-page: 1169 issue: 8 year: 2004 ident: 10.1016/j.ast.2022.108090_br0300 article-title: Simulation of anti-roll tanks and sloshing type problems with smoothed particle hydrodynamics publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2003.09.002 – volume: 190 start-page: 346 year: 2019 ident: 10.1016/j.ast.2022.108090_br0550 article-title: Local uniform stencil (lust) boundary condition for arbitrary 3-d boundaries in parallel smoothed particle hydrodynamics (sph) models publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2019.06.009 – volume: 85 start-page: 544 year: 2019 ident: 10.1016/j.ast.2022.108090_br0150 article-title: Hydrodynamic performance in a sloshing liquid oxygen tank under different initial liquid filling levels publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.01.005 – start-page: 1 year: 2015 ident: 10.1016/j.ast.2022.108090_br0600 – volume: 114 year: 2021 ident: 10.1016/j.ast.2022.108090_br0290 article-title: Particle methods in ocean and coastal engineering publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102734 – year: 2022 ident: 10.1016/j.ast.2022.108090_br0010 article-title: Gateway program status and overview publication-title: J. Space Saf. Eng. doi: 10.1016/j.jsse.2022.07.008 – volume: 200 start-page: 1526 issue: 13 year: 2011 ident: 10.1016/j.ast.2022.108090_br0530 article-title: Delta-sph model for simulating violent impact flows publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2010.12.016 – year: 2021 ident: 10.1016/j.ast.2022.108090_br0580 article-title: Modified dynamic boundary conditions (mdbc) for general-purpose smoothed particle hydrodynamics (sph): application to tank sloshing, dam break and fish pass problems publication-title: Comput. Part. Mech. – start-page: 11 year: 2018 ident: 10.1016/j.ast.2022.108090_br0090 article-title: Robots on the moon, and their role in a future lunar economy – volume: 6 start-page: 33 issue: 1 year: 2020 ident: 10.1016/j.ast.2022.108090_br0020 article-title: Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars publication-title: npj Microgravity doi: 10.1038/s41526-020-00124-6 – volume: 56 start-page: 212 year: 2016 ident: 10.1016/j.ast.2022.108090_br0190 article-title: Nonlinear dynamic analysis of the interaction between a two-dimensional rubberlike membrane and a liquid in a rectangular tank publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2016.07.013 – volume: 226 year: 2021 ident: 10.1016/j.ast.2022.108090_br0350 article-title: Multi-resolution isph-sph for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108652 – volume: 105 year: 2020 ident: 10.1016/j.ast.2022.108090_br0070 article-title: Experimental investigation of liquid transport in a vane type tank of satellite with microgravity publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106007 – volume: 174 start-page: 179 year: 2018 ident: 10.1016/j.ast.2022.108090_br0210 article-title: Long duration sph simulations of sloshing in tanks with a low fill ratio and high stretching publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.07.006 – volume: 108 year: 2021 ident: 10.1016/j.ast.2022.108090_br0110 article-title: A linearized reduced-order model approach for sloshing to be used for aerospace design publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2020.106369 – volume: 118 year: 2022 ident: 10.1016/j.ast.2022.108090_br0330 article-title: Simulating multi-phase sloshing flows with the sph method publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102989 – volume: 152 year: 2021 ident: 10.1016/j.ast.2022.108090_br0380 article-title: Analysis of damping from vertical sloshing in a sdof system publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.107452 – year: 2019 ident: 10.1016/j.ast.2022.108090_br0100 – volume: 700 start-page: 419 year: 2012 ident: 10.1016/j.ast.2022.108090_br0620 article-title: Two-dimensional modal method for shallow-water sloshing in rectangular basins publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.140 – volume: 1 start-page: 519 issue: 8 year: 1997 ident: 10.1016/j.ast.2022.108090_br0430 article-title: Oscillations of a viscous liquid in a cylindrical container publication-title: Aerosp. Sci. Technol. doi: 10.1016/S1270-9638(97)90001-8 – year: 2000 ident: 10.1016/j.ast.2022.108090_br0470 – year: 2018 ident: 10.1016/j.ast.2022.108090_br0060 article-title: Cryocooler selection and implementation for a propellant depot at Earth-Moon L1 – volume: 33 year: 2020 ident: 10.1016/j.ast.2022.108090_br0400 article-title: Liquid dynamics sloshing in cylindrical containers: a 3d free-surface reconstruction dataset publication-title: Data Brief doi: 10.1016/j.dib.2020.106546 – year: 2012 ident: 10.1016/j.ast.2022.108090_br0520 – volume: 30 start-page: 543 issue: 1 year: 1992 ident: 10.1016/j.ast.2022.108090_br0230 article-title: Smoothed particle hydrodynamics publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev.aa.30.090192.002551 – volume: 4 start-page: 389 issue: 1 year: 1995 ident: 10.1016/j.ast.2022.108090_br0540 article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree publication-title: Adv. Comput. Math. doi: 10.1007/BF02123482 – volume: 64 start-page: 511 issue: 2 year: 2019 ident: 10.1016/j.ast.2022.108090_br0130 article-title: Learning slosh dynamics by means of data publication-title: Comput. Mech. doi: 10.1007/s00466-019-01705-3 – volume: 260 year: 2022 ident: 10.1016/j.ast.2022.108090_br0360 article-title: A three-dimensional fluid-structure interaction model based on sph and lattice-spring method for simulating complex hydroelastic problems publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112026 – volume: 54 start-page: 1 year: 2016 ident: 10.1016/j.ast.2022.108090_br0250 article-title: Smoothed particle hydrodynamics (sph) for free-surface flows: past, present and future publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2015.1119209 – volume: 136 start-page: 11 year: 2016 ident: 10.1016/j.ast.2022.108090_br0260 article-title: Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: motivations, current state, and challenges publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2016.05.029 – ident: 10.1016/j.ast.2022.108090_br0500 – volume: 136 start-page: 214 issue: 1 year: 1997 ident: 10.1016/j.ast.2022.108090_br0570 article-title: Modeling low Reynolds number incompressible flows using sph publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5776 – volume: 25 start-page: 12 issue: 3 year: 2005 ident: 10.1016/j.ast.2022.108090_br0040 article-title: Spacecraft maneuvers and slosh control publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2005.1432593 – volume: 53 start-page: 141 issue: 2 year: 2006 ident: 10.1016/j.ast.2022.108090_br0560 article-title: Numerical modeling of water waves with the sph method publication-title: Coast. Eng. doi: 10.1016/j.coastaleng.2005.10.004 – volume: 120 year: 2021 ident: 10.1016/j.ast.2022.108090_br0390 article-title: Mode characterization and damping measurement of liquid sloshing in cylindrical containers by means of reference image topography publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/j.expthermflusci.2020.110232 – volume: 224 start-page: 82 issue: 1 year: 2007 ident: 10.1016/j.ast.2022.108090_br0140 article-title: The numerical simulation of liquid sloshing on board spacecraft publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.12.020 – year: 1996 ident: 10.1016/j.ast.2022.108090_br0410 – volume: 229 year: 2021 ident: 10.1016/j.ast.2022.108090_br0510 article-title: Smooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanks publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108925 – year: 2020 ident: 10.1016/j.ast.2022.108090_br0080 – year: 2005 ident: 10.1016/j.ast.2022.108090_br0420 – volume: 31 issue: 1 year: 2019 ident: 10.1016/j.ast.2022.108090_br0280 article-title: Smoothed particle hydrodynamics (sph) for complex fluid flows: recent developments in methodology and applications publication-title: Phys. Fluids doi: 10.1063/1.5068697 – volume: 2 start-page: 172 issue: 2 year: 1957 ident: 10.1016/j.ast.2022.108090_br0440 article-title: Damping of surface waves in an incompressible liquid publication-title: J. Fluid Mech. doi: 10.1017/S0022112057000051 – volume: 15 start-page: 865 issue: 1 year: 2021 ident: 10.1016/j.ast.2022.108090_br0220 article-title: A global analysis of a coupled violent vertical sloshing problem using an sph methodology publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 56 start-page: 11 year: 2015 ident: 10.1016/j.ast.2022.108090_br0370 article-title: A multi-physics computational model of fuel sloshing effects on aeroelastic behaviour publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2015.04.003 – volume: 2 start-page: 251 issue: 3 year: 2016 ident: 10.1016/j.ast.2022.108090_br0270 article-title: Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering publication-title: J. Ocean Eng. Mar. Energy doi: 10.1007/s40722-016-0049-3 – volume: 577 start-page: 467 year: 2007 ident: 10.1016/j.ast.2022.108090_br0460 article-title: Liquid sloshing and wave breaking in circular and square-base cylindrical containers publication-title: J. Fluid Mech. doi: 10.1017/S0022112007004764 – volume: 38 year: 2021 ident: 10.1016/j.ast.2022.108090_br0180 article-title: Lattice Boltzmann simulation for sloshing in a circular tank under microgravity conditions publication-title: Int. J. Microgravity Sci. Appl. – volume: 55 start-page: 143 issue: 2 year: 2017 ident: 10.1016/j.ast.2022.108090_br0340 article-title: A multi-phase particle shifting algorithm for sph simulations of violent hydrodynamics with a large number of particles publication-title: J. Hydraul. Res. doi: 10.1080/00221686.2016.1212944 |
SSID | ssj0002942 |
Score | 2.4021337 |
Snippet | Characterizing the movement of space propellant in the tank subjected to maneuvers and predicting its damping is a fundamental requirement for the success of... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 108090 |
SubjectTerms | Damping DualSPHysics Free-surface modeling Sloshing SPH |
Title | Modeling sloshing damping for spacecraft: A smoothed particle hydrodynamics application |
URI | https://dx.doi.org/10.1016/j.ast.2022.108090 |
Volume | 133 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwGLWqssCAOEU5Kg9MSKH1lcRsVUVVQOoCFd0iXxFFvUTCwMJvx18OKBIwsCa2lDx9fv5sv88PoXO_2oqdUDZwxHQDLlIHY44FJFWMiVSmQhdqi1E4HPPbiZg0UL-uhQFZZcX9JacXbF096VRodlbTaecezkwhfChst4UcKso5jyDKL9-_ZB5UFgY60DiA1vXJZqHxUhnIKSktlHZAyz_NTWvzzWAHbVeJIu6V37KLGm6xh7bWrg_cR49gZAbl5DibLYutJGzVHAqgsE9FsecK45NCleZXuIez-RKKrSxeVb-Hn96sZ8_SkT7DayfZB2g8uH7oD4PKKCEwVEZ5wGJFQpP6xY5k3AjFY00oNU6lRklrtIi0z05DGxvWlUZHhrCQ-XcxTYV0fjl9iJqL5cIdIRwxqy0hSnq8uKNEG2Ns14FHj5U-t2mhbg1RYqpbxMHMYpbUcrHnxKOaAKpJiWoLXXx2WZVXaPzVmNe4J9_iIPEU_3u34_91O0GbYB9fqrBPUTN_eXVnPsnIdbuIojba6N3cDUcfpjDR-Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGxFOUpwcmpKiNHScxW1WBWlq60IpukWM7oqgvkTLw7_HlURUJGFgTn5R8cj6f4-_uA7ixu63QcKkd46qm4_HE4DfHHDeRjPFEJDzO1BYDvzPyHsd8XIF2WQuDssqC-3NOz9i6uNIo0GwsJ5PGM56Z4vSh-LvN94ItqGF3Kl6FWqvb6wzWhExF5qGD4x0MKA83M5mXTFFRSWkmtkNm_ml52lhyHvZhr8gVSSt_nAOomPkh7G50EDyCF_Qyw4pykk4X2d8kouUMa6CIzUaJpQtl80KZrO5Ii6SzBdZbabIs3pC8fmpLoLkpfUo2DrOPYfRwP2x3nMIrwVFUBCuHhdL1VWL3O4J5iksvjF1KlZGJkkKrmAexTVB9HSrWFCoOlMt8Zu-FNOHC2B31CVTni7k5BRIwHWvXlcLi5Rnqxkop3TRo06OFTW_q0CwhilTRSBz9LKZRqRh7iyyqEaIa5ajW4XYdssy7aPw12Ctxj75Nhciy_O9hZ_8Lu4btzvCpH_W7g9457KCbfC7KvoDq6v3DXNqcYxVfFXPqC-bA1Ko |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+sloshing+damping+for+spacecraft%3A+A+smoothed+particle+hydrodynamics+application&rft.jtitle=Aerospace+science+and+technology&rft.au=Kotsarinis%2C+K.&rft.au=Green%2C+M.D.&rft.au=Simonini%2C+A.&rft.au=Debarre%2C+O.&rft.date=2023-02-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1270-9638&rft.eissn=1626-3219&rft.volume=133&rft_id=info:doi/10.1016%2Fj.ast.2022.108090&rft.externalDocID=S1270963822007647 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1270-9638&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1270-9638&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1270-9638&client=summon |